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Abstract-This paper presents the design and application of an 

efficient hybrid algorithm for solving the Optimal Reactive 
Power Flow (ORPF) problem. The ORPF is formulated as a 

nonlinear constrained optimization problem where the active 

power losses must be minimized. The proposed approach is based 

on the hybridization of Particle Swarm Optimization (PSO) and 

Tabu-Search (TS) technique. The proposed PSO-TS approach is 

used to find the settings of the control variables (i.e. generation 

bus voltages, transformer taps, and shunt capacitor sizes) which 
minimize transmission active power losses. The bus locations of 

the shunt capacitors are identified according to sensitive buses. 

To show the effectiveness of the proposed method, it is applied to 

the IEEE 30 bus benchmark test system and is compared with 

PSO and TS without hybridization, along with some other 

published approaches. The obtained results reveal the 
effectiveness of the proposed method in dealing with the highly 

nonlinear constrained nature of the ORPF problem. 

Keywords-optimal reactive power flow; active power loss 
minimization; hybrid methods; particle swarm optimization; tabu 

search; sensitive bus 

I. INTRODUCTION  

Due to their complex construction and operation, electrical 
power networks encounter several challenges. In modern power 

system operation and planning, Optimal Reactive Power Flow 
(ORPF), which is a specific Optimal Power Flow (OPF) and a 
highly constrained large-scale non-linear optimization problem, 
has emerged as one of the major problems and intensively 
explored topics. The goal of ORPF is to find the optimal 
settings for a power system under some imposed equality and 
inequality constraints, in order to optimize its active power loss 
objective [1, 2].  

The objective of ORPF in power systems is to minimize 
real power losses while satisfying a given set of operating and 
physical constraints. The ORPF then provides optimal control 
variables settings such as generator bus voltages, output of 
static reactive power compensators, transformer tap-settings, 
shunt capacitors, etc. [3, 4]. Due to its influence on the secure 
and economic operation of power systems, ORPF has attracted 
increasing interest from electric power suppliers. Many 
classical approaches for solving the ORPF problem have been 
reported such as the gradient based approach [5, 6], linear 
programming [7], non-linear programming [8, 9], quadratic 
programming [10], and interior point [11]. However, these 
methods have some disadvantages in solving complex ORPF 
problems, namely premature convergence, algorithmic 
complexity, and the local minima entrapment [12]. In order to 
overcome these drawbacks, researchers have applied 
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evolutionary and meta-heuristic algorithms such as the Genetic 
Algorithm (GA) [13], Differential Evolution (DE) [14], 
Artificial Physics Optimization (APO) [15], Sunflower 
Optimization (SFO) [16], Evolutionary Programming (EP) 
[17], Stud Krill Herd Algorithm (SKHA) [18], Whale 
Optimization Algorithm (WOA) [19] and Particle Swarm 
Optimization (PSO) [20, 21]. PSO in particular has received 
increased attention from researchers because of its searching 
capability. It was developed through simulations of a simplified 
social system, and has been found to be robust in solving 
continuous non-linear optimization problems. Generally, PSO 
has a more effective global searching ability at the beginning of 
the run and a local search near the end of the run [1]. PSO can 
generate high-quality solutions and has a more stable 
convergence than other stochastic methods. However, when 
solving complex multimodal problems, PSO can be trapped in 
local optima [22]. To overcome this drawback, PSO 
performance can be enhanced with a few adjustments. 
Hybridization is one of these modifications or techniques 
which, is applied to evolutionary algorithms in order to 
increase their efficiency and robustness [23]. 

Hybrid PSO has provided promising results for problems 
such as the power loss minimization problem [24, 25]. The 
novelty of this paper is that an efficient hybrid PSO with Tabu 
Search (PSO-TS) method is implemented to solve the ORPF 
problem by minimizing active power losses. The optimal 
locations of shunt capacitors have been identified based on 
sensitive buses.  

To demonstrate the superiority of the proposed technique, 
the obtained results were compared to those given by 
standalone PSO and TS and some other published approaches. 
Simulations were performed with MATLAB using the IEEE 
30-Bus benchmark system. 

II. ORPF PROBLEM FORMULATION 

The purpose of ORPF in a power system is to find the 
optimal settings of the reactive power control variables, which 
mainly include the generator voltages (VG), the transformer tap-
settings (T), and the shunt capacitors/reactors (Qsh), to 
minimize the real power loss (PLoss) while satisfying a given set 
of constraints. These comprise the power flow equations, the 
upper and lower limits of the control variables and the 
dependent variables, including mainly the PQ-bus voltages 
(VPQ) and the reactive power out-puts of generators (QG). The 
ORPF mathematical model can be written as [14]:  

�min ���,	
	subject	tog��, 	
 = 0ℎ��, 	
 ≤ 0     (1) 

where J(x,u) represents the transmission active power losses, g 
and h are the sets of equality and inequality constraints 
respectively, x is the state or dependent variables vector, and u 
is the control or independent variables vector. 

In this study, all control variables have been considered as 
continuous variables. The objective to be minimized is the 
system transmission active power losses. This objective 
function is expressed as [1]: 

���, 	
 = ∑ ������ + � � − 2��� #$%&� 
'(�)*     (2) 

where NL is the number of transmission lines, Vi and Vj 
represent the voltage magnitude at buses i and j respectively, �� is the conductance of branch k between buses i and j, and &�  is the voltage angle difference between bus i and bus j.  

The elements of the state variables vector x are load bus 
voltage (VL), generators' reactive power output (QG), and lines' 
apparent power flow (SL). The control variables vector u 
includes the generation buses voltage (VG), the transformer tap 
settings (T), and the shunt VAR compensators (QC). 
Accordingly, the x vector can be written as: �+ = [�-. …�-012 , 34. …3405 , 6-. …6-0(]    (3) 
where NG is the number of generators, NPQ is the number of PQ 
buses (load buses). u can be expressed as: 	+ = [�4. …�405 , 8* …8'9 , 3:. …3:0;]    (4) 
where NT is the number of tap regulating transformers and NC is 
the number of shunt VAR compensation. 

The minimization of the above function is subject to a 
number of equality and inequality constraints [1] which will be 
detailed below: 

A. Equality Constrains 

These constraints reflect the physical laws governing the 
electrical system, known as power flow equations. They are the 
expression of the balance between load demand (power loss 
included) and generated power. The power flow equations are: 

P=> − P?> − V>∑ VA�G>A cosθ>ADEA)* + B>A sin θ>A
 = 0    (5) 
Q=> −Q?> − V> ∑ VA�G>A sin θ>ADEA)* − B>A cos θ>A
 = 0     (6) 

where PGi, QGi are the active and reactive power of the i
th 

generator, PDi, QDi are the active and reactive power demand at 
bus i, NB is the total number of buses, and Bij, Gij are the real 
and imaginary parts of the (i,j)

th
 element of the bus admittance 

matrix.  

B. Inequality Constraints 

1) Inequality Constraints on Security Limits  

Some limits are imposed for security purposes:  

• Active power generated at the slack bus: H4,IJKL�M�N ≤ H4,IJKL� ≤ H4,IJKL�MKO     (7) 

• Load bus voltage: �-PM�N ≤ �-P ≤ �-PMKO					Q ∈ STU    (8) 
• Generated reactive power: 34�M�N ≤ 34� ≤ 34�MKO 					Q ∈ S4    (9) 
• Thermal limits: the apparent power flowing in line "L" must 

not exceed the maximum allowable apparent power flow 
value (6-MKO): 6- ≤ 6-MKO		, V ∈ S-    (10) 
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2) Inequality Constraints on Control Variable Limits 

The different control variables are bounded as follows: 

• Generator voltage limits: �4PM�N ≤ �4P ≤ �4PMKO				Q ∈ STW    (11) 
• Transformer tap limits: 

8�M�N, ≤ 8� ≤ 8�MKO 							Q ∈ S+    (12) 
• Shunt capacitor limits: 3:PM�N ≤ 3:P ≤ 3:PMKO					Q ∈ S:    (13) 
where PG,slack is the real power generation at the slack bus, VGi 
is the voltage magnitude at generator bus i, Ti is the tap ratio of 
the transformer i, Qci is the reactive power compensation 
source at bus i, and NPQ  is the number of PQ bus. (.)

max
 and 

(.)
min
 are the upper and lower limits of the considered variables 

respectively. 

The objective functions of equality and inequality 
constraints, are non-linear functions and they depend on control 
variables. Therefore, ORPF is a constrained non-linear 
optimization problem with multiple local minima [26]. The 
equality constraints given by (5) and (6) are met by solving the 
load-flow problem. The inequality constraints given by (11)-
(13) should be maintained during the solution evolution, while 
(7)-(9) should be handled by additional techniques. 

III. THE PROPOSED HYBRID ALGORITHM 

Hybridization is a way of combining two techniques in a 
judicious manner, so that the resulting algorithm contains the 
positive features of both algorithms. The success of the meta-
heuristic optimization algorithms depends to a large extent on 
the careful balance between the two conflicting goals: 
exploration (diversification) and exploitation (intensification). 
In order to achieve these two goals, the algorithms use local 
search techniques, global search approaches, or integrations of 
both, commonly known as hybrid methods [23]. For the ORPF 
problem, different hybridizations with PSO have been used to 
improve the algorithm’s performance by avoiding premature 
convergence. For instance, PSO has been hybridized with the 
linear interior point method [27], fuzzy logic [28, 29], Pareto 
optimal set [30], Grey wolf technique [31], DE [32], multi-
agent systems [1], imperialist competitive algorithm [33], GA 
[34], and chaotic bat algorithm [35]. Tabu search was used to 
solve OPF [36] and it is hybridized with harmony search 
algorithm to solve the reactive power flow problem [37]. Both 
algorithms (PSO, TS) and their hybridization (PSO-TS) for 
solving the ORPF problem are discussed below. 

A. Particle Swarm Optimization 

PSO is a population-based evolutionary computation 
technique. The main idea is to evolve the population (particles) 
of initial solutions in a search space in order to find the best 
solution. This evolution is an analogy of the behavior of some 
species as they look for food, like a flock of birds or a school of 
fish [38]. These particles move through the search domain with 
a specified velocity in search of the optimal solution. Each 
particle maintains a memory which helps it in keeping the track 

of its previous best position. The positions of the particles are 
distinguished as personal best and global best. The swarm of 
particles evolves in the search space by modifying their 
velocities according to the following equations [23]: X��Y* = Z�X�� + #*[\]^ × `abc%d� −���e + #�[\]^ ×`�bc%d − ���e    (14) 
where X�� is the current velocity of particle i at iteration k,  Z� is 
the inertia weight, rand is a random number between 0 and 1, #* and #�  are the acceleration coefficients, abc%d�  is the best 
position of the current particle achieved so far, �bc%d is the 
global best position achieved by all informants, and ��� is the 
current position of particle i at iteration k. 

The new position of each particle is given by: ���Y* = ��� + X��Y*    (15) 
The inertia weighting factor for the velocity of particle i is 

defined by the inertial weight approach [24]: 

Z� = ZMKO − fghijfgPk�lmnghi × o    (16) 
where itermax is the maximum number of iterations, k is the 
current iteration number, and wmax and wmin are the upper and 
lower limits of the inertia weighting factor.  

The efficiency of PSO has been proved in a wide range of 
optimization problems. However, constrained non-linear 
optimization problems have not been widely studied with this 
method. The authors in [39] were the first to try to adapt PSO 
to constrained non-linear problems. The penalty function 
approach is used in this paper due to its simplicity of 
implementation and its proven efficiency for many constrained 
non-linear optimization problems. The ORPF objective 
function is then modified as follows [22]: 

p+ = p +qT`H4,IJKL� −H4,IJKL�J�M e� + qW∑ `�-P −'12�)*�-PJ�Me�	+	qU ∑ `34� −34�J�Me� +qr ∑ `6-P − 6-PJ�Me�'(�)*'5�)* 	    (17) 
where F is the total active power loss given by (2), KP, KV, KQ 
and KS are the penalty factors of the slack bus generator, bus 
voltage limit violation, generator reactive power limit violation, 
and line flow violation respectively. H4,IJKL�J�M , �-PJ�M, 34�J�M and 6-PJ�M are defined as follows: 

H4,IJKL�J�M = s	H4,IJKL�M�N 	Qt		H4,IJKL� < H4,IJKL�M�N 	H4,IJKL�MKO 	Qt		H4,IJKL� > H4,IJKL�MKO     (18) 

�-PJ�M = s	�-PM�N	Qt		�-P < �-PM�N	�-PMKO 	Qt		�-P > �-PMKO     (19) 

34�J�M = s34�M�N	Qt		34� < 34�J�M	34�MKO 	Qt		34� > 34�MKO     (20) 

6-PJ�M = s	6-PMKO 	Qt			6-P > 6-PMKO	0								Qt				6-P ≤ 6-PMKO 	    (21) 
B. The Tabu Search Method  

TS is a meta-heuristic proposed in 1986 that guides a local 
heuristic search procedure to explore the solution space beyond 
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local optimality. This technique uses an operation called 
"move" to define the neighborhood of any given solution. One 
of the main components of TS is its use of adaptive memory, 
which creates a more flexible search behavior [40]. The 
simplest of these processes consists in recording in a tabu list 
the features of the visited regions on the space search, which 
provides a means to avoid revisiting already inspected solutions 
and thus avoid becoming trapped in local optima.  

C. The Hybrid PSO-TS Approach Applied to ORPF 

Several arguments support the hybridization of PSO with 
TS. Firstly, PSO is a global population-based algorithm while 
TS proposes a fast local search mechanism. Secondly, the 
incorporation of TS into PSO enables the algorithm to maintain 
population diversity. Finally, TS is integrated to prevent PSO 
from falling into local optima. To this end, TS is proposed to 
serve as a local optimizer of the best local solutions (pbest). 
The pbest solutions of PSO are the inputs of the TS 
diversification procedure. For each solution s, a neighborhood 
list is defined. Candidate solutions from the list are examined 
and the best one becomes the new current solution that replaces 
s. The move leading to the solution s is saved in the tabu list, 
called best_list. This process is repeated to produce successive 
new solutions until a defined stopping criterion is satisfied. The 
neighborhoods of a solution s are defined by hyper-rectangles 
introduced in [41]. A hyper-rectangle of s with a radius r is the 
space containing solutions s’ such that the distance between s 
and s’ is less than r. To generate m neighbors for the solution s, 
m hyper-rectangles centered on s are created, and a point is 
randomly chosen from each of them. The best of the m chosen 
points then replaces s. The search procedure of PSO-TS 
algorithm will terminate whenever the predetermined 
maximum number of generations is reached, or whenever the 
global best solution does not improve over a predetermined 
number of iterations. The diversification procedure is outlined 
in the algorithm in Figure 1, while the general flowcharts of the 
proposed PSO-tabu search are given in Figure 2. 

 

 
Fig. 1.  Tabu search procedure (diversification). 

 
Fig. 2.  Flowchart of the proposed PSO-TS algorithm. 

IV. SIMULATION RESULTS 

In this study, the proposed PSO-TS based reactive power 
optimization approach was applied to the IEEE 30-bus power 
system shown in Figure 3 with 12 control variables. Two cases 
were considered. In the first case, we kept the shunt capacitors 
on their initial buses [24]. In the second case, the capacitors 
were installed at the most sensitive buses. A sensitive bus is a 
load bus which requires the installation of a shunt capacitor. To 
identify this type of buses and their number, we removed the 
load from each load bus and calculated the active power losses 
(PLoss) each time. The bus giving the least active power losses 
was considered as the most sensitive bus. Table I shows the 
classification of the sensitive buses according to the new values 
of the active power losses when the loads of these buses were 
eliminated. From this Table we can see that the most sensitive 
buses are: 7, 21, 30, 24, and 19. Therefore, the 2 available 
shunt capacitors will be installed at buses 7 and 21. All 
inequality constraints (7)-(13) were taken into consideration. 
The simulations were carried out in Matlab 7.3 on a Pentium® 
3.4GHz computer with 1GB total memory. The PSO-TS 
parameter selection is a challenging task not only for this 
algorithm but also for other meta-heuristic algorithms. The 
parameter settings used in the proposed PSO-TS algorithm, 
namely initial inertia weight, acceleration factors, number of 
generations, swarm size, tabu list length, total number of 
neighborhoods, and neighborhood radius are shown in Table II. 

 

Inputs 

pbest; // best historical solution of particles 

pbestval; solutions values 

m; //neighborhood size 

r; //radius of hyper-rectangles 

eps; //threshold for accepting new solution 

best_list =( pbest,r); // Initializing the tabu list best_list  

Repeat 

For each solution s(VGi ,Ti ,Qci) in pbest 

//generation of m neighbors 

i=1 

While i <= m 

    Generate the hyper-rectangle of radius r*i around s, 

     choose randomly a solution NS in the hyper-rectangle 

 If NS ∉ best_list  then  

 add the move to best_list; 

 if eval(NS)-pbestval(s) ≤ eps then update 

   pbestval and pbest  

 s = NS, 

 End if 

 i=i+1; 

End While 

Until (stopping criteria) 
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Fig. 3.  Single-line diagram of the IEEE 30 bus test system. 

TABLE I.  CLASSIFICATION OF THE SENSITIVE BUSES  

Load bus New PLoss (MW) Load bus New PLoss (MW) 

7 4.787 10 5.696 

21 4.816 14 5.707 

30 5.040 23 5.769 

24 5.271 18 5.771 

19 5.306 16 5.838 

17 5.487 20 5.850 

15 5.517 3 5.944 

12 5.670 29 5.944 

4 5.691   

TABLE II.  CONTROL PARAMETER SETTINGS 

Parameters Value 

Initial inertia weight w 0.9 and decreased to 0.4 

Acceleration factor c1 2 

Acceleration factor c2 2 

Maximum number of generations (PSO) 200 

Swarm size 20 

Tabu list length 7 

Number of neighborhoods 3 

Neighborhood radius 0.1 

Maximum number of generations (TS) 1000 
 

This system contains 6 generator units connected to buses 
1, 2, 5, 8, 11, and 13. Four regulating transformers are 
connected between the line numbers 6–9, 6–10, 4–12, and 27–
28 and two shunt compensators were connected to buses 10 and 
24. The transmission feeder number is 41. The generator 
voltages, transformer tap settings, and VAR injection of the 
shunt capacitors were considered as control variables. The 
voltage magnitudes of all the buses were between 0.95 and 
1.1pu, transformer tap settings were within the range of 0.9-
1.1pu and shunt capacitor sizes were within the interval from 0 
to 30MVAR [24]. There are 12 control variables in this case, 
namely 6 generator voltages, 4 transformer taps and 2 capacitor 
banks. The initial total PLoss before optimization was 
5.2783MW. In the first case study, the shunt capacitors are 
installed at buses 10 and 24 as in [24]. In the second case study, 
the shunt capacitors are placed at the most sensitive buses, 
namely 7 and 21. Table III summarizes the results of the 
optimal settings and the system power losses obtained by the 
proposed PSO-TS approach, standalone PSO and TS, and the 
methods reported in [24, 25], namely CA, IP-OPF, LPAC, 
GPAC, and BBO. For the case 1, the results show that the 
dispatch optimal solutions determined by the PSO-TS led to 
better results. The achieved active power losses are lower than 

those found by the other methods. Using the PSO-TS 
algorithm, power losses decrease from 5.2783MW to 
4.6304MW, indicating a reduction of 12.27%, while standalone 
PSO and standalone TS reduce power losses by only 1.03% 
and 5.61% respectively. For the other optimization algorithms, 
the best result is given by the BBO algorithm [25] which 
reduces losses by 5.93%. The convergence characteristic of 
power loss objective function for this case is plotted in Figure 
4. From Figure 5, it is clear that the results obtained in case 2 
are better than those obtained in case 1. This amelioration is 
due to the installation of shunt capacitors at the most sensitive 
buses. The active power losses obtained by the PSO-TS 
method in case 2 decrease from 5.2783MW to 4.6095MW, 
indicating a reduction of 12.67% which is better than the 
reduction obtained in case 1. It can be concluded that the 
proposed PSO-TS method is able to determine a near-global 
optimal solution. At the same time, the proposed method 
succeeded in keeping the dependent variables within their 
limits. The convergence characteristics of power loss objective 
function for this case is plotted in Figure 6. 

As the hardware and the software environment significantly 
affect the computational time, it is not possible to compare the 
computational time requirements of the different methods 
unless all the methods are run on the same hardware and are 
programmed using the same environment. As a rough guide, 
however, the average time taken by PSO-TS is 19s. 

 

 
Fig. 4.  Convergence characteristic of the power losses (case 1). 

 
Fig. 5.  Comparative graph of the power losses. 
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TABLE III.  EXPERIMENTAL RESULTS OF THE PROPOSED AND OTHER KNOWN ALGORITHMS 

Control variables CA IP-OPF LPAC GPAC BBO TS PSO PSO-TS (case 1) PSO-TS (case 2) 

V1 1.02282 1.10000 1.02342 1.02942 1.1000 1.0684 1.1000 1.0992 1.0990 

V2 1.09093 1.05414 0.99893 1.00645 1.0943 1.0933 1.0943 1.0948 1.1000 

V5 1.03008 1.10000 0.99469 1.01692 1.0804 1.0893 1.1000 1.0766 1.0687 

V8 0.95000 1.03348 1.01364 1.03952 1.0939 1.0853 1.1000 1.0977 1.1000 

V11 1.04289 1.10000 1.01647 1.03952 1.1000 1.0017 0.9505 1.0837 1.1000 

V13 1.03921 1.01497 1.01101 1.04870 1.1000 1.0780 1.1000 1.0754 1.1000 

T6–9 1.07894 0.99334 1.04247 1.04225 1.1000 0.9979 1.0547 0.9257 0.9072 

T6–10 0.94276 1.05938 0.99432 0.99417 0.9058 0.9008 1.1000 1.0291 0.9399 

T4–12 1.00064 1.00879 1.00061 1.00218 0.9521 1.0337 0.9000 0.9265 0.9000 

T27–28 1.00693 0.99712 1.00694 1.00751 0.9638 0.9441 0.9468 0.9422 0.9149 

QSh10 0.15232 0.15253 0.17737 0.17267 0.2891 0.1395 0.3000 0.2864 - 

QSh24 0.06249 0.08926 0.06172 0.06539 0.1007 0.1838 0.0000 0.1363 - 

QSh07         0.1285 

QSh21         0.2052 

Ploss (MW) 5.09209 5.10091 5.09212 5.09226 4.9650 5.2240 4.9819 4.6304 4.6095 

 

 
Fig. 6.  Convergence characteristic of the power losses (case 2). 

V. CONCLUSION 

In this paper, a new efficient hybrid PSO-TS strategy was 
successfully implemented to solve the ORPF problem. This 
problem was formulated as a highly constrained non-linear 
optimization problem where all realistic constraints were taken 
into consideration. The proposed hybrid algorithm combines 
the exploration ability of the PSO algorithm and the 
exploitation ability of TS technique. In order to illustrate the 
application of the proposed method, it has been tested and 
examined on the standard IEEE 30-bus test system. Two case 
studies were considered. In the first case, we kept the shunt 
capacitors on their initial nodes. In the second case, the 
capacitors were installed at the most sensitive buses. The 
computational results show that the proposed hybrid approach, 
with a judicious choice of control parameters, has the ability to 
converge to high quality solutions with stable convergence 
characteristic and good computation efficiency. The 
comparison of the results with TS, PSO, and with various 
techniques reported in the literature, confirms the superiority of 
the proposed method and its potential to find accurate and 
feasible optimal solutions for the ORPF problem. 
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