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Propagation of singularities in shells of non-uniform geometrical nature. A numerical investigation
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This paper deals with the propagation of singularities in thin elastic shells whose middle surface is not of an uniform nature. Numerical computations are performed using an adaptive mesh procedure proposed by the software Abaqus to refine the mesh inside the internal layers. The computation are done on three kinds of shells: hyperbolic-parabolic, hyperbolic-elliptic and parabolic-elliptic. The numerical results enable us to determine the propagation of singularities in such shells and to have information about their nature. In particular, when a singular force is applied in the hyperbolic part of a shell, the numerical computations show that a singularity propagates in the hyperbolic part and that a reflection occurs at the boundary with a part of a different nature (parabolic or elliptic).

Introduction

This paper is concerned with the propagation of singularities in thin elastic shells having a non-uniform geometrical nature. A shell is 3D solid whose one dimension (the thickness h) is much smaller than the two other dimensions. Classically, the geometry of a shell is described by a middle surface S and a value of the thickness h for each point of the surface. In this paper, we consider shells with a constant thickness h. A point p of a surface S can be classified with respect to the signs of the principal curvatures of the surface at this point: the point is parabolic (FIG. 1) when one and only one of its principal curvature vanishes, hyperbolic (FIG. 2) when the principal curvatures are of a different sign and elliptic (FIG. 3) when the principal curvatures have the same sign [START_REF] Stoker | Differential geometry[END_REF]. If all the points of the surface have the same nature, respectively parabolic, hyperbolic or elliptic the surface is said respectively parabolic, hyperbolic or elliptic. By extension, the corresponding shell is said parabolic, hyperbolic or elliptic. In this paper, we will focus on shells which do not have an uniform nature. The three possible combinations are considered: hyperbolic/parabolic, hyperbolic/elliptic and parabolic/elliptic. Classically, when mechanical models of thin shell are deduced from the three-dimensional elasticity by asymptotic methods with the relative thickness ε = h/L c as small parameter (L c is a charateristic length of the middle surface), we obtain at the limit for ε = 0 either a membrane model [START_REF] Sanchez-Palencia | Statique et dynamique des coques minces, II-Cas de flexion pure inhibée. approximation membranaire[END_REF] or a pure bending model [START_REF] Sanchez-Palencia | Statique et dynamique des coques minces, I-Cas de flexion pure non inhibée[END_REF] if the shell is respectively geometrically rigid or not.

The Koiter shell model [START_REF] Koiter | The Theory of Thin Elastic Shells[END_REF], which couples both membrane and bending effects, can not be obtained from three-dimensional elasticity by asymptotic methods. However, it was shown that its asymptotic behaviour is good for both possible limits (membrane or flexion) [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations[END_REF]. This is why this model is widely used for numerical computations. The classical variational formulation of the Koiter model in its nondimensional form [START_REF] Stoker | Differential geometry[END_REF] contains the membrane bi-linear form a m proportional to 1 and the bending bi-linear form a b proportional to ε 2 . Other models contain shear effects like the Naghdi model or "s-m-b model" in [START_REF] Chapelle | The finite element analysis of shells-fundamentals[END_REF] but the shear effects tend asymptotically to 0 when the relative thickness ε 0 and the limit problem is the same as the Koiter model. For ε > 0, the problem corresponding to the Koiter model is always elliptic and classical results of regularity hold true [START_REF] Bernadou | Sur l'ellipticité du modele linéaire de coques de W[END_REF]. When ε 0, the limit problem of the Koiter shell model will be identical to that of the asymptotic limit of three-dimensional elasticity [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations[END_REF]. It depends on the space G of inextensional displacements which keep the metrics of the middle surface of the shell unchanged. If the space G = {0}, the shell is said non-geometrically rigid or equivalently non-inhibited. When ε 0, we have a penalty problem tending to the pure bending model [START_REF] Sanchez-Palencia | Statique et dynamique des coques minces, I-Cas de flexion pure non inhibée[END_REF]. Oppositely, if G = {0}, the shell is geometrically rigid or inhibited. We have a singular perturbation problem whose limit is the membrane model [START_REF] Sanchez-Palencia | Statique et dynamique des coques minces, II-Cas de flexion pure inhibée. approximation membranaire[END_REF]. For a given shell, the inhibited character only depends on the boundary conditions. For any type of shells (parabolic, hyperbolic or elliptic), a sufficient condition to have G = {0} is that all the boundaries are fixed or clampled. Detailed studies about the conditions necessary to have a geometrically rigid shell are presented in [START_REF] Choi | On geometrical rigidity of surfaces[END_REF][START_REF] Sanchez-Hubert | Coques élastiques minces[END_REF]. More complex cases occur for hyperbolic shells which can be "partially non-inhibited" as studied in Chapter 10 of [START_REF] Sanchez-Palencia | Thin Elastic Shells-Computing and Asymptotics[END_REF].

The present paper is focused on inhibited shells. For such shells, the limit problem is the membrane problem. In many situations, the solution u 0 of the membrane model is singular because of the loading and/or the boundary conditions. The membrane model is less rich than the full problem and is not able to give a smooth solution where bending effects are important especially where the normal loadings are applied and near the clamped of fixed boundaries. The nature of the singularity (order, propagation) is directly related to the nature of the middle surface of the shell. In any case, the most singular component of the displacement is the displacement in the direction normal to the shell which is denoted u 0 3 at the limit ε = 0.

When ε > 0 (which is always the case for any physical problem), these singularities are replaced by internal layers and boundary layers which contain bending effects and most of the deformation energy. Such problems have been studied theoretically and numerically for parabolic, hyperbolic and elliptic shells in the case of a singular loading normal to the shell [START_REF] Sanchez-Palencia | Thin Elastic Shells-Computing and Asymptotics[END_REF]. The results are very different whether the loading is singular along an asymptotic line of the middle surface or not. An asymptotic line is a line tangent to the asymptotic directions at every point. The asymptotic directions are the directions for which the normal curvature vanishes [START_REF] Stoker | Differential geometry[END_REF]. There are two asymptotic directions for hyperbolic points, 1 for parabolic points and 0 for elliptic points (see dotted lines in FIG. 1, FIG. 2 and FIG. 3). Thus, if the loading is normal and singular along an asymptotic line, we have:

-For parabolic shells: the singularities of the normal displacement u 0 3 are 4 orders more singular than the normal loading f 3 and propagate along the single family of asymptotic lines of the middle surface [START_REF] Karamian | Boundary layers in thin elastic shells with developable middle surface[END_REF][START_REF] Béchet | Adaptive and anisotropic mesh strategy for thin shell problems. Case of inhibited parabolic shells[END_REF].

-For hyperbolic shells: the singularities of u 0 3 are only 2 orders more singular than the normal loading f 3 but propagate along the 2 families of asymptotic lines of the middle surface [START_REF] Souza | Anisotropic adaptive mesh procedure for computing very thin hyperbolic shells[END_REF]. Moreover, a pseudo-reflection of the signularity occurs when a singularity reaches a boundary if this boundary is not parrallel to the asymptotic lines and clamped or fixed [START_REF] Karamian-Surville | Pseudo-reflection phenomena for singularities in thin elastic shells[END_REF]. In that case, the pseudo-reflected singularity loses 1 order compared to the original one.

Studies have also been carried out on shells with a fold, both parts of the shell having the same geometrical nature [START_REF] Karamian-Surville | The refraction phenomenon of singularities in thin elastic shells with developable mid-surface in presence of rigid folds: Case of parabolic shells[END_REF]. It was shown that for parabolic shells, singularities propagate across the fold with the same order of singularity.

If the loading is singular along a non-asymptotic line, the singularity of the normal displacement u 0 3 is the same as the one of the normal loading and no propagation occurs. It means that the normal displacement u 0 3 is only singular where the loading is singular and with the same order of singularity. That is always the case for elliptic shells which have no asymptotic lines. However, other kinds of singularities may appear either if an elliptic shell is well-inhibited [START_REF] Béchet | Computing singular perturbations for linear elliptic shells[END_REF] or ill-inhibited [START_REF] Pitkaranta | On the asymptotic behaviour of sensitive shells with small thickness[END_REF][START_REF] Bathe | A shell problem 'highly sensitive'to thickness changes[END_REF][START_REF] Souza | Complexification phenomenon in an example of sensitive singular perturbation[END_REF][START_REF] Béchet | Singular perturbations generating complexification phenomena for elliptic shells[END_REF].

In the literature, no paper is concerned with the propagation of singularities for shells with a non-uniform geometrical nature (parabolic, hyperbolic, elliptic). In this paper, we will study the propagation of singularities when the nature the shell is not the same at every point. We will consider cases without any fold: the nature of the middle surface will evolve smoothly without any discontinuities of the normal N .

The paper is organized as follows. In the first section, some recalls about the singular perturbation problem associated to the Koiter model and about singularities are presented. Then, the problem considered in this paper and the numerical method used are detailed. Finally, in the last three sections, the results of the numerical simulations are presented and analysed for three different types of shell: hyperbolic-parabolic (HP), hyperbolic-elliptic (HE) and parabolic-elliptic (PE) and two possible locations for the applied force (first part or second part). The first example denoted HP-H (HP shell with a force in the hyperbolic part) is presented in details whereas the other are presented more briefly.

Theory

In the present paper, the study is limited to linear elastic isotropic shells, whose behavior is described by the linear Koiter shell model [START_REF] Koiter | The Theory of Thin Elastic Shells[END_REF]. We consider a shell whose middle surface is defined by the domain Ω and a mapping Ψ (see FIG. 4) and with a relative thickness ε = h/L c (the ratio of the thickness h of the shell to a characteristic length L C of the middle surface). For a loading f applied on a part of the surface denoted S, the Koiter model classically writes in a dimensionless form:

F ind u ε V, such as, ∀ v V : a m (u ε , v) + ε 2 a b (u ε , v) = b(v) with V = v = (v 1 , v 2 , v 3 ) ∈ H 1 (Ω) × H 1 (Ω) × H 2 (Ω) (1)
satisfying the boundary kinematic conditions, where

a m (u ε , v) = S A αβλµ γ λµ (u ε )γ αβ (v)dS (2) 
and

a b (u ε , v) = 1 12 S A αβλµ ρ λµ (u ε )ρ αβ (v)dS (3) 
are respectively the membrane energy and the bending energy bilinear forms. The right-hand side

b(v) = S f i v i dS (4) 
where we have set f = εf denotes the work of applied forces due to the displacement v.

The components γ αβ and ρ αβ of the membrane strain tensor and of the tensor of curvature variation are respectively given by:

γ αβ (u ε ) = 1 2 (D α u ε β + D β u ε α ) -b αβ u ε 3 (5) 
and

ρ αβ (u ε ) = ∂ α ∂ β u ε 3 -Γ γ αβ ∂ γ u ε 3 -b γ α b γβ u ε 3 + D α b γ β u ε γ + b γ α D β u ε γ (6) 
where

D α u ε β = ∂ α u ε β -Γ λ αβ u ε λ (7)
denotes the covariant derivative of u ε β , ∂ α being the classical derivative with respect to y α and Γ λ αβ the Christoffel symbols of the middle surface. Finally, b αβ are the coefficients of the second fundamental form of the middle surface accounting for curvatures.

The coefficients A αβλµ are the coefficients of the linear elastic isotropic constitutive law. They represent a fourth order tensor given by:

A αβλµ = E 2(1 + ν) a αλ a βµ + a αµ a βλ + 2ν 1 -ν a αβ a λµ (8) 
where E and ν are the Young's modulus and the Poisson's ratio, and a αβ the contravariant components of the metric tensor.

Remark In the present paper, the linear Koiter model is used (small displacements, linear Hooke's law). However, the displacements can in some cases be out of the linear range and the Von Mises stresses over the yield stress. But as we are interested in the qualitative results and not the value of displacements and stresses, it would always be possible to consider a loading αf 3 with α 1 leading to a normal displacement αu ε 3 in the linear range and a Von Mises stress below the yield stress.

It is important to note that the membrane strain tensor γ αβ in (2) does not involve derivatives of the normal displacement u ε 3 whereas the tensor of curvature variation ρ αβ in (3) involves second order derivatives of u ε 3 .

When ε 0, the limit problem of the Koiter shell model ( 1) is very different either the space

G = {v V ; a m (v, v) = 0} = {v V ; γ αβ (v) = 0} (9) 
reduces to {0} or not. The space G is the space of inextensional displacements which deform the middle surface without modifying its dimensions. When G = {0}, the shell is said "non-inhibited" and the limit problem is the pure bending one [START_REF] Sanchez-Palencia | Statique et dynamique des coques minces, I-Cas de flexion pure non inhibée[END_REF]. Oppositely, when G = {0}, the shell is inhibited or geometrically rigid.

In this paper, this latter case will be considered. When ε 0, we have a singular perturbation problem whose limit is the membrane problem [START_REF] Sanchez-Palencia | Statique et dynamique des coques minces, II-Cas de flexion pure inhibée. approximation membranaire[END_REF]: [START_REF] Sanchez-Palencia | Thin Elastic Shells-Computing and Asymptotics[END_REF] and satisfying the boundary conditions. Problem [START_REF] Sanchez-Palencia | Thin Elastic Shells-Computing and Asymptotics[END_REF] implies only the membrane strain tensor γ αβ and therefore lower order differential operators compared to problem [START_REF] Stoker | Differential geometry[END_REF]. Consequently, the solutions (displacements and stresses) of this limit problem can be singular for very usual boundary conditions and for very usual loadings such as a point force normal to the shell or a constant pressure on a part of the shell.

F ind u 0 V a , such as, ∀ v V a : a m (u 0 , v) = b(v) with V a = v = (v 1 , v 2 , v 3 ) ∈ H 1 (Ω) × H 1 (Ω) × L 2 (Ω)
During the singular perturbation problem (when ε 0), the regular solution u ε tends to the singular solution u 0 . The solution u ε is always smooth: it contains boundary or internal layers where the solution u 0 is singular. Inside these layers, bending effects are still present even for small values of ε. The structure of the singularities arising in these layers is very different with respect to the geometrical nature of the shell.

The study of the singular perturbation process is classically done by using the limit problem [START_REF] Sanchez-Palencia | Thin Elastic Shells-Computing and Asymptotics[END_REF] and determine the singularity of the solution u 0 . The membrane model can be expressed in term of membrane stresses [START_REF] Sanchez-Hubert | Coques élastiques minces[END_REF]:

         -D α T αβ = f β in Ω -b αβ T αβ = f 3 in Ω (11)
with the constitutive law : T αβ = A αβλµ γ λµ (u 0 ) and the associated boundary conditions.

An important result is that the characteristic lines of the differential system [START_REF] Karamian | Boundary layers in thin elastic shells with developable middle surface[END_REF] are the asymptotic lines of the middle surface of the shell [START_REF] Sanchez-Hubert | Coques élastiques minces[END_REF]. Consequently, the differential system is respectively parabolic, hyperbolic or elliptic if the middle surface of the shell is respectively parabolic, hyperbolic or elliptic.

For parabolic or hyperbolic shells, the most singular terms of the solution u 0 of the limit problem can be calculated (only the most singular term is important when ε 0) considering a well-adapted coordinate system where the curvature tensor reduces to one non-zero term. That was done in [START_REF] Béchet | Adaptive and anisotropic mesh strategy for thin shell problems. Case of inhibited parabolic shells[END_REF] for parabolic shells and in [START_REF] Souza | Anisotropic adaptive mesh procedure for computing very thin hyperbolic shells[END_REF] for hyperbolic shells. For elliptic shells, the results were obtained in a different way [START_REF] Béchet | Computing singular perturbations for linear elliptic shells[END_REF].

For a given geometrical nature and loading, we want to determine the nature of the singularity of the solution u 0 of the limit problem. In particular, we want to predict:

-the order of the singularity compared to the order of singularity of the loading f (ex: a point force is a δ-like singularity in both directions) -the possible propagation of this singularity -the variation of the thickness η of the internal and boundary layers with respect to the relative thickness ε during the singular perturbation phenomenon.

Considering the case of a normal loading f 3 singular along a line, the main results are summarized in Table 1.

Non asymptotic

Asymptotic lines Properties lines hyperbolic parabolic singularity order of u 0 3 (compared to f 3 ) +0 +2 +4 singularity order of u 0 1 and u 0 2 (compared to f 3 ) -1 (or less) +1 (or less) +3 (or less) propagation no yes yes 1 Main results of the singularity orders of the displacements and of the thickness orders according to the considered case.

layer thickness η O(ε 1/2 ) O(ε 1/3 ) O(ε 1/4 ) Table
The singularities of the tangential displacements u 0 1 and u 0 2 are not well-defined because they depend on the problem considered and the coordinate system used whereas the normal displacement u 0 3 is always along the normal N to the middle surface and has always the same order of singularity compared to f 3 .

According to the results of Table 1, when for instance a point force f 3 is applied at a point of a shell (it corresponds to a Dirac function δ), the normal displacement u 0 3 will have a singularity of the same order (=δ) if the shell is elliptic, 2 orders higher (= δ (2) ) if the shell is hyperbolic and 4 orders higher (= δ (4) ) if the shell is parabolic, with propagation of the singularities along asymptotic lines for the two last cases. More details about the chain of singularities are given in section 2.1.

In this paper, we consider a shell having two parts: the first part has a certain geometrical nature (parabolic, hyperbolic or elliptic) and the second part has a different geometrical nature. We would like to know what happens when a singularity arising in one part (following the results of Table 1) propagates and reaches the border between the two parts: does the singularity propagate in the second part? What happens at the transition between the two parts?

The theoretical study is not an easy task. We can not study the propagation of the singularities between the two part using the well-adapted coordinate system as used for previous studies [START_REF] Karamian | Boundary layers in thin elastic shells with developable middle surface[END_REF][START_REF] Souza | Anisotropic adaptive mesh procedure for computing very thin hyperbolic shells[END_REF]. That is why this paper will mainly focus on numerical results to determine the behaviour of the singularities for such shells.

Chain of singularities

When considering functions (or distributions) of only one variable x, denoting by S 0 (x) a basic singularity, we will consider the corresponding chain of singularities:

. . . , S -2 (x), S -1 (x), S 0 (x), S 1 (x), S 2 (x), S 3 (x), . . . ( 12 
)
with S k+1 = d dx S k . This chain must be understood in the sense of singular functions (or distributions) defined up to an additive function (or distribution) which is smooth in the neighbourhood of x = 0. A classical example of chain is

. . . , xH(x) , H(x), δ(x), δ (x), δ (2) (x), . . . ( 13 
)
where H(•) is the Heaviside step function and δ(•) the Dirac distribution. Other chains exist like in [START_REF] Béchet | Adaptive and anisotropic mesh strategy for thin shell problems. Case of inhibited parabolic shells[END_REF]. The Dirac family ( 13) is often met in thin shell problems because a point force corresponds to a Dirac distribution whereas a distributed force on a rectangular domain can be a represented with Heaviside step functions. The Dirac distribution can be seen as the limit when η 0 of a function having a support of width η and and amplitude 1/η with an integral equal to 1. For instance, we can see it as the limit of a Gaussian function 1

√ πη e (-x/η) 2 (14) 
when η 0. Its derivative δ is the limit of a function on the same support but with an amplitude 1/η 2 and one more oscillation. The subsequent derivatives follows the same recursive rule. The n th derivative of δ, denoted δ (n) has an amplitude 1/η n+1 and n + 1 main oscillations (FIG. 5). In practice, the number of oscillations is not easy to evaluate. In what follows, only the most singular term of the displacement will be considered since the lower order terms becomes negligible in comparison when ε 0.

Remark For commodity, we will often use the term "singularity" for a function which is not singular but tending to a singular function when ε 0 like the example [START_REF] Karamian-Surville | Pseudo-reflection phenomena for singularities in thin elastic shells[END_REF]. The normal displacement u ε 3 is never singular but its limit u 0 3 is. The nature of the singularities of u 0 3 will be studied through the evolution of u ε 3. Problem considered and numerical procedure used

Geometry of the shell and properties of the middle surface

In the sequel, we will consider revolution shells whose middle surface S is defined by the local mapping (Ω, Ψ) with:

Ψ(y 1 , y 2 ) = y 1 , R(y 1 ) sin y 2 , R(y 1 ) cos y 2 , (y 1 , y 2 ) ∈ Ω ( 15 
)
The domain Ω and the function R(y 1 ) will be specified for three different types of shell. The covariant basis of the surface is defined by a α = ∂ α ψ:

a 1 =            1 R (y 1 ) sin y 2 R (y 1 ) cos y 2            a 2 =            0 R(y 1 ) cos y 2 -R(y 1 ) sin y 2            N = 1 1 + R (y 1 ) 2            -R (y 1 ) sin y 2 cos y 2            (16) 
The corresponding metric tensor writes:

a αβ =      1 + (R ) 2 0 0 R 2      (17) 
The tensor of curvatures writes:

b αβ = 1 1 + (R ) 2      R 0 0 -R      (18) 
The functions R(y 1 ) used in the sequel are chosen such that the curvatures b 11 and b 22 are continuous with respect to y 1 . The sign of determinant of b αβ

det(b) = -RR 1 + R 2 (19) 
gives the nature of the surface. As the function R chosen is positive, the sign of R gives the nature of the surface:

-for R > 0, det(b) < 0: the surface is hyperbolic.

-for R = 0, det(b) = 0: the surface is parabolic.

-for R < 0, det(b) > 0: the surface is elliptic.

At each point of the surface, the asymptotic directions vanish the second fundamental form b 11 (dy 1 ) 2 + b 22 (dy 2 ) 2 + 2b 12 dy 1 dy 2 . This leads to two possible asymptotic directions:

dy 2 = ± -b 11 b 22 dy 1 = ± R R dy 1 (20) 
which are distinct if the surface is hyperbolic (b 11 b 22 < 0), identical and corresponding to the lines y 2 = 0 if the shell is parabolic (b 11 = 0) and imaginary if the shell is elliptic (b 11 b 22 > 0).

Numerical procedure

Numerical computations are performed with the software Abaqus [START_REF] Abaqus | .14 documentation[END_REF], using the element STRI65 (triangle with quadratic interpolation, 5 degrees of freedom: 3 displacements and 2 rotations). It is based on the bending strain mesure of Budiansky-Sander shell model [START_REF] Budiansky | On the 'best' first-order linear shell theory[END_REF] which slightly differs from the Koiter's model in the expression (6) of the curvature variation tensor ρ αβ . The element is adapted to thin shells: the Kirchhoff's condition is imposed numerically at certain points.

Predicting the propagation of singularities is not an easy task. Even when one can predict them, meshing the shell in a appropriate way is a fastidious task: one has to refine the mesh inside the layers, which can follow curved lines. That is why we will use adaptive meshes. That technique is available in Abaqus. A first uniform mesh is given. The results obtained with this first mesh are used to refine or coarse the mesh considering a criteria (Abaqus proposes the Von Mises stress or the deformation energy). A second computation is done and the process is repeated until the maximal error allowed is reached or up to a chosen maximum number of iterations.

For a fixed number of elements, adaptive meshes give better results than uniform meshes. The use of anisotropic adaptive meshes is the technique the most adapted to study boundary and internal layers [START_REF] Béchet | Singularities in shell theory: Anisotropic error estimates and numerical simulations[END_REF] but it is not available in Abaqus.

In the sequel, six different cases will be considered. Three different middle surfaces combining 2 of the 3 types of surface will be studied (hyperbolic/parabolic, hyperbolic/elliptic, parabolic/elliptic). For each geometry, a normal force f 3 will be applied in the first part of the shell and then in the second part. For each case, numerical computations will be performed for different relative thicknesses ε from 10 -4 to 10 -7 in order to study the singular perturbation process and evaluate the singularities of the normal displacement appearing when ε 0.

Hyperbolic-Parabolic shell

4.1. The shell considered and its geometrical properties First, we shall consider an example of a shell with a hyperbolic part and a parabolic part. The middle surface of the shell is defined by the local mapping (Ω, Ψ) given in [START_REF] Karamian-Surville | The refraction phenomenon of singularities in thin elastic shells with developable mid-surface in presence of rigid folds: Case of parabolic shells[END_REF] with

Ω = [-L, L] × [-π/2, π/2] and              R(y 1 ) = ρ 1 - y 1 L 3 for y 1 [-L, 0[ R(y 1 ) = ρ for y 1 [0, L] (21) 
The part of the shell corresponding to y 1 < 0 is hyperbolic whereas the part of the surface corresponding to y 1 ≥ 0 is parabolic (this is a half cylinder). The surface is plotted on FIG. 6. With the function R(y 1 ) chosen in [START_REF] Abaqus | .14 documentation[END_REF], there is no fold: the normal is continuous with respect to y 1 at the "transition" y 1 = 0. The constants ρ and L denote respectively the radius and the length of the cylinder. For the HP shell, the characteristic length is taken as L C = 0.20525 m (the length of the line y 2 = 0). The data used for the computations are summarized in Table 2. When nothing is specified, the relative thickness of the shell is ε = 10 -6 .

Boundary conditions

The shell is clamped at all its boundary except along the line segment (y 1 = L, y 2 = [0; π/2]). Thus, the shell is inhibited (all the asymptotic lines are clamped at least in one point).

Loading Two cases will be addressed. For both cases, a normal point force, proportional to the relative thickness f 3 = -0.01 × ε N (corresponding to f 3 = -0.01 N in equation ( 4)), is applied, in the hyperbolic part for the case HP-H or in the parabolic case for the case HP-P.

Normal force f 3 applied in the hyperbolic part (case HP-H)

Let us consider the normal point force f 3 is applied at the point P = (-L/2, 0) in the plane of parameters, in the hyperbolic part. Since the shell is hyperbolic, two asymptotic lines passes through point P : they are obtained by integration from (20) (numerically for y 1 < 0) and plotted on FIG. 7 in the plane of parameters (y 1 , y 2 ) and on FIG. 8 in the 3D space. They will be denoted AL 1 (blue line) and AL 2 (red line). Using the theoretical results of Table 1, the singular displacement caused by the point force at point P should propagate along the asymptotic lines passing through point P at least in the hyperbolic part. At the transition with parabolic part at y 1 = 0, we can postulate that the singularities will continue to propagate along the two asymptotic lines in the parabolic part but one does not know with which characteristics.

First, let us look at the remeshing process. Then, we will focus on the results and on the singular perturbation process. The evolution of the mesh during the adaptive remeshing is presented on figures 9 to 12 for the computation performed with ε = 10 -6 . The remeshing was based on the Von Mises stress (uniform error distribution) and limited to 6 iterations (5 remeshings). At the end of the last iteration the chosen criteria of 4% of error was not satisfied. During the mesh adaptation process, the number of elements increases. The mesh is refined inside layers, and especially internal layers. The mesh is refined along the two asymptotic lines described on FIG. 7 and FIG. 8. But it is also refined along the following curves (FIG. 13):

(i) the 2 other asymptotic lines of the surface AL 1 and AL 2 passing through the points P 1 and P 2 , intersections between the asymptotic lines AL 1 and AL 2 and the line y 1 = 0 (the transition between hyperbolic and parabolic parts).

(ii) the 2 other asymptotic lines of the surface AL 1 and AL 2 passing through the point P 1 and P 2 , intersections between the asymptotic lines AL 1 and AL 2 and the boundary y 1 = -L in the hyperbolic part. The evolution of the results of u ε 3 obtained with the successive meshes and for ε = 10 -6 are presented on Figures 14 to 17 on different lines. With the initial mesh, the singularities are nearly invisible. In the hyperbolic part, the results have converged at the 4 th iteration (FIG. 14). More iterations are needed in the parabolic part (FIG. 17). This is due to the amplitudes of the singularities which are much lower in the parabolic part. Then, the mesh is refined slower in this part of the shell. On FIG. 18, we see that the singularity caused by the point force f 3 propagates along the two asymptotic lines AL 1 and AL 2 passing through the point P (see FIG. 8). The two singularities propagate also in the parabolic part. Moreover, we can observe a kind of reflection at y 1 = 0 along the curves AL 1 and AL 2 . Let us investigate the propagation of these singularities more precisely by plotting the normal displacement u ε 3 on the lines y 1 = -L 2 , y 2 = 0 and y 1 = L 2 .

- In the case of hyperbolic shells, the displacement u 0 3 is two orders more singular than f 3 . As the loading f 3 has a δ singularity, the displacement u 0 3 must have a δ (2) singularity. Referring to FIG. 5, it corresponds to 3 main oscillations. That is what we can see on FIG. 19 at y 2 = 0. That singularity propagates along the two asymptotic lines AL 1 and AL 2 leading to two singularities which can be clearly seen at y 1 = 0 respectively around y 2 ≈ -0.5643 and y 2 ≈ 0.5643 (FIG. 21). These singularities propagate in the parabolic part along the asymptotic lines y 2 ≈ ±0.5643 with a decreasing amplitude (FIG. 22). At y 1 0, we can see kind of reflection: the two arriving at points 1 and P 2 (along the two asymptotic lines from point P ) are "reflected" along the second asymptotic lines passing through two points (respectively AL 1 AL 2 , see FIG. 13). It can be observed on FIG. 20 where 3 oscillations appear around the point (y 1 = -L 2 ; y 2 ≈ -1.07).

Moreover, a pseudo-reflection as described in [START_REF] Karamian-Surville | Pseudo-reflection phenomena for singularities in thin elastic shells[END_REF] at y 1 = -L/2 the boundary points P 1 and along the 2 lines AL 1 and AL 2 . It is a phenomenon specific to the hyperbolic shells and it will not be studied in the sequel.

Remark The singularities propagating along AL 1 , AL 2 , AL 1 and AL 2 have a pseudo-reflection at the boundary y 2 = -π/2 or y 2 = π/2. And the "pseudo-reflected singularities" also reflect again if they reach another boundary in the hyperbolic part. The subsequent pseudo-reflections are difficult to detect because they are of a lower order and amplitude and they are hidden by the internal layers along respectively AL 2 , AL 1 , AL 2 and AL 1 .

Using the number of oscillations is not accurate enough to conclude about the order of the singularity. The "ideal function" ( 14) is an example and other examples of such functions could have a different number of oscillations but the same properties (amplitude tending to infinity with integral equal to 1). Moreover, it is difficult to see which oscillations are significant. To characterize more precisely these different singularities and especially their orders, we will now study their evolution during the singular perturbation process (when ε 0).

4.2.3.

Study of the singular perturbation process (when ε 0) The results obtained for the normal displacement u ε 3 numerically for ε > 0 play the role of ( 14) or one of its derivatives and tend to the limit solution u 0 3 (which is a distribution of the Dirac family ( 13)) as ε 0. Considering properties of the Dirac family of paragraph 2.1, especially the thickness η of the layer and the amplitude of the singularities, it will enable us to determine the order of the singularities of the limit solution u 0 3 (see FIG. 5).

The normal displacement u ε 3 normalized for each relative thickness ε (by the maximum of its absolute value on the corresponding line) is plotted on FIG. 23 When ε 0, we clearly see that the thickness of the singularities diminishes. In the same time, the amplitude of u ε 3 increases inside the layers: on line y 1 = -L/2 (FIG. 23), from ε = 10 -4 to ε = 10 -7 , it was respectively 6.23 10 -7 , 7.56 10 -6 , 8.80 10 -5 and 9.98 10 -4 . On each line (y 1 = -L/2, y 1 = 0, y 1 = L/2), we measured the thickness η (distance between 2 main peaks of the oscillations, see FIG. 27) and the maximal value of the displacement. Plotting them with respect to the relative thickness ε in a logarithmic scale like in the example in FIG. 28, and fitting the numerical results with a straight line, we find how the thickness and amplitude of each singularity evolve with respect to ε (Table 3). All the results are obtained with a coefficient of determination R 2 superior to 0.995. position thickness amplitude interpretation

y 1 = -L/2 O(ε 0.3262 ) O(ε -1.0680 ) δ (2) 
y 1 = 0 O(ε 0.309 ) O(ε -0.9743 ) ?

y 1 = +L/2 O(ε 0.2531 ) O(ε -0.9593 ) δ (3) 
y 1 = -L/2 (reflection) O(ε 0.3048 ) O(ε -0.9239 ) δ (2 
) Table 3 Case HP-H: Evolution of the layer thicknesses and amplitudes of u ε 3 at different locations Considering the theoretical results of Table 1, the displacement u 0 3 should be 2 orders more singular than the normal force f 3 . Consequently, u 0 3 should have δ (2) singularities along the asymptotic lines passing through P . As described on FIG. 5, this singularity has an amplitude in 1/η 3 , with η the layer thickness. In the case of hyperbolic shells, the layer thickness along asymptotic lines is of order η = O(ε 1/3 ). So finally, the amplitude should vary in O(ε -1 ). We find coherent results for both the thickness and the amplitude on the line

y 1 = -L/2.
Let us now characterize the singularity in the parabolic part. In the case of uniformly parabolic shells, the layer thickness of propagated singularities is of order η = O(ε 1/4 ) (see Table 1). Thus the amplitude of a δ (2) singularity propagating in the parabolic part should be of order O(ε -3/4 ). The layer thickness found is close to the theoretical result but the amplitude is not close to the order O(ε -3/4 ) even if it varies more slowly than in the hyperbolic part O(ε -0.9593 ). The singularity amplitude seems to vary in 1/η 4 which correspond to a singularity in δ (3) . At the transition, in y 1 = 0, the amplitude of the displacements and the layer thickness is between those of the hyperbolic and parabolic parts. We have a smooth transition for the layer thickness between the hyperbolic and parabolic parts.

The pseudo-reflected singularities along AL 1 and AL 2 are difficult to characterize. The results obtained for ε = 10 -4 were not used for the reflection in the results of Table 3 because the layers are too large and interact with the layers around AL 1 and AL 2 . If we remove also the results obtained for ε = 10 -7 which may suffer from locking, we get η = O(ε 0.3136 ) and an amplitude in O(ε -0.9713 ): it seems that theirs properties are closed to the ones observed at the transition at y 1 = 0. When the normal force f 3 is singular along an asymptotic line of a parabolic shell (that's necessarily the case for a point force), the normal displacement u 0 3 is 4 orders more singular than the force (Table 1). As f 3 has a singularity in δ, u 0 3 has a singularity in δ (4) corresponding to 5 oscillations (FIG. 31). The singularity propagates along the asymptotic line y 2 = 0 up to the point (0, 0) (FIG. 32). At y 1 = 0, the singularity is transmitted in the hyperbolic part (y 1 < 0) and propagates along the two asymptotic lines (FIG. 33) passing through the point (0, 0). To determine the order of the singularities, we study the singular perturbation process. Computations are carried out with relative thicknesses ε = 10 -4 , 10 -5 , 10 -6 and 10 -7 . The results obtained allow to estimate the variation of the layer thickness η and the amplitude of the singularities. These estimations are presented in Table 4 with a coefficient of determination R 2 > 0.998. position thickness amplitude interpretation

y 1 = L/2 O(ε 0.2635 ) O(ε -1.2353 ) δ (4) 
y 1 = 0 O(ε 0.2563 ) O(ε -1.0066 ) ? The normal displacement u 0 3 should have δ (4) singularities along the asymptotic lines passing through P . This singularity has an amplitude in 1/η 5 , with η the layer thickness. In the case of parabolic shells, the layer thickness along asymptotic lines is of order η = O(ε 1/4 ). Consequently, the amplitude should be of order O(ε -5/4 ). The singularity in the parabolic part is clearly a δ (4) as predicted by the theory with an amplitude very close to O(ε -5/4 ). The layer thickness evolves from η = O(ε 1/4 ) in the parabolic part to η = O(ε 1/3 ) in the hyperbolic part. From this numerical results, we can conclude that the singularity is in δ (4) in the parabolic part and propagates as 2 singularities in δ (2) in the hyperbolic part (since the amplitude is in 1/η 3 ).

y 1 = -L/2 O(ε 0.3397 ) O(ε -0.9992 ) δ (2)

Hyperbolic-Elliptic shell

The shell considered and its geometrical properties

We now address the case of a hyperbolic/elliptic shell. The middle surface of the shell is defined by the local mapping (Ω, Ψ) given in [START_REF] Karamian-Surville | The refraction phenomenon of singularities in thin elastic shells with developable mid-surface in presence of rigid folds: Case of parabolic shells[END_REF] with Ω = [-L, ρ] × [-π/2, π/2] and

         R(y 1 ) = ρ 1 -y 1 /L 3 for y 1 [-L, 0[ R(y 1 ) = ρ 2 -(y 1 ) 2 for y 1 [0, ρ] (22) 
The part corresponding to y 1 < 0 is hyperbolic whereas the part of the surface corresponding to y 1 ≥ 0 is elliptic. The elliptic part corresponds to a quarter of sphere (see FIG. 34). The characteristic length of the HE shell is taken as L C = 0.14452 m (the length of the curve y 2 = 0). The data used for this problem are the same as for the HP shell and referenced in the Table 2.

Boundary conditions

The shell is clamped at all its boundary to ensure that the shell is inhibited in the hyperbolic part and well-inhibited in the elliptic part [START_REF] Béchet | Singular perturbations generating complexification phenomena for elliptic shells[END_REF].

Loading Two cases will be addressed. For both cases, a normal point force, proportional to the relative thickness is applied f 3 = -0.01 × ε N (corresponding to f 3 = -0.01 N in equation ( 4)), is applied, in the hyperbolic part for the case HE-H or in the elliptic case for the case HE-E.

Remark

The problem is symmetrical with respect to the plane y = 0.

Normal force f 3 applied in the hyperbolic part (Case HE-H)

Let us consider that a force f 3 , normal to the surface is applied at the point P = (-L/2, 0) in the plane of parameters. In the hyperbolic part, the asymptotic lines passing through point P are the same as in the HP-H case (section section 4.2). However, the asymptotic lines stop at y 1 = 0 since there is no asymptotic line in the elliptic part.

The deformed shape of the shell obtained for ε = 10 -6 with the last mesh (FIG. 37) of the remeshing process is plotted on FIG. 38. In the hyperbolic part, the same singularity apparently in δ (2) is observed (FIG. 39). Arriving at the boundary between hyperbolic and elliptic parts (corresponding to the line y 1 = 0 in the plane of parameters), the singularity is still visible at the transition line y 1 = 0 (FIG. 41) and does not propagate in the elliptic part (FIG. 42) but reflects and propagates along the other asymptotic line arriving at the 2 points (0, y 2 ≈ ±0.5643) (FIG. 40). The oscillations visible in the elliptic part are due to the boundary layers present in y 2 = ±π/2. The results for ε = 10 -7 were discarded because the symmetry with respect to the plane y = 0 was lost. All the layers thicknesses are closed to O(ε 1/3 ) and the amplitudes closed to O(ε -1 ). So it seems that all the singularities of u 0 The asymptotic lines are the lines y 2 = constant in the parabolic part and no real asymptotic line exist in the elliptic part.

y 1 = -L/2 O(ε 0.3327 ) O(ε -1.0656 ) δ (2) 
y 1 = 0 O(ε 0.3257 ) O(ε -0.9273 ) ? y 1 = -L/2 (reflection) O(ε 0.3163 ) O(ε -0.9721 ) δ (2)

Boundary conditions

The shell is clamped at all its boundary to ensure that the shell is inhibited in the parabolic part and well-inhibited in the elliptic part.

Loading Two cases will be addressed. For both cases, a normal point force, proportional to the relative thickness is applied f 3 = -0.01 × ε N corresponding to f 3 = -0.01 N in equation ( 4)), is applied, in the parabolic part for the case PE-P or in the elliptic case for the case PE-E.

Remark The problem is symmetrical with respect to the plane y = 0.

Normal force f 3 applied in the parabolic part (Case PE-P)

Let us consider that the force f 3 , normal to the surface is applied at the point P = (-L 2 , 0) in the plane of parameters, in the parabolic part. There is only one asymptotic line passing through point P , the generator of the cylinder of equation y 2 = 0.

The deformed shape of the shell obtained for ε = 10 -6 with the mesh of the last iteration (FIG. 45) is plotted on FIG. 46. The singularity is limited to the parabolic part. No propagation occurs in the elliptic part. In the parabolic part, the singularity in δ (4) (FIG. 47) caused by the point force f 3 propagates along the asymptotic line y 1 = 0 up to the point (0, 0) (FIG. 48). This singularity does not propagate in the elliptic part (FIG. 49) and does not reflect since there is no other asymptotic line passing through the point (0, 0). The numerical computations show here the classical results for parabolic shells [START_REF] Béchet | Adaptive and anisotropic mesh strategy for thin shell problems. Case of inhibited parabolic shells[END_REF]. There are no interaction between the parabolic part and the elliptic part in terms of singularities. No asymptotic line existing in the elliptic part, there is no propagation of the singularities in the elliptic part and consequently no singularity in the parabolic part. The results are very similar to the ones obtained in the case HE-E.

Conclusion

In this paper, we performed numerical computations using adaptive meshes to study the propagation of singularities in thin elastic shells having a non-uniform nature (hyperbolic-parabolic, hyperbolic-elliptic or parabolic-elliptic). The most interesting cases are the shells with a hyperbolic part. When a singular force is applied in a hyperbolic part, the singularity of the normal displacement u 0 3 classically propagates along two asymptotic lines. If the second part of the shell is parabolic, the singularities propagate in the parabolic part along two distinct asymptotic lines with what seems to be one order higher. If the second part is elliptic, the singularities do not propagate in the elliptic part as no asymptotic line exist. In both cases, the singularity reflects at the boundary between both parts in the hyperbolic part following the second asymptotic line. It seems that the reflected singularity keeps the same order as the original one. In the HP case, the original and reflected singularities add up to give a higher order singularity in the parabolic part. In the HE case, they balance to give no singularity in the elliptic part.

In the HP case, if the singular force is applied in the parabolic part, the normal displacement is 4 orders more singular in the parabolic part and classically propagate along the asymptotic line. It then propagates in the hyperbolic part along the 2 asymptotic lines (apparently) losing 2 orders. Finally, for the other cases, no new results were highlighted.

A theoretical study should be carried out to prove the observed results but it is not clear up to now how to proceed since we can not use the well-adapted coordinate system based on the characteristic lines of the membrane system [START_REF] Karamian | Boundary layers in thin elastic shells with developable middle surface[END_REF]. Indeed, we chose a problem with smooth transition between both part of the shell. The consequence is that the two families of characteristic lines in the hyperbolic part tend to become the same at the boundary between the 2 parts. Consequently, the coordinate system based on the two characteristic lines is unusable at the transition. To avoid this problem, we could study the same kind of problem but with a fold (the normal to the shell would not be continuous at the transition). But, it is not sure that the same kind of results would be obtained. Moreover, the study was limited to revolution shells and it would be interesting to study more general types of shells. For shells with elliptic part, a study could also be carried out when a part of the boundary of the shell is free. There should be situations where the shell is not well-inhibited leading to complexification phenomena that may propagate in the non-elliptic part of the shell.

Figure 3 .

 3 Figure 1. Parabolic point

Figure 4 .

 4 Figure 4. Mapping of the middle surface S

Figure 5 .

 5 Figure 5. Properties of the Dirac family

Figure 6 .

 6 Figure 6. Middle surface of the HP shell

Figure 7 .

 7 Figure 7. Case HP-H: The asymptotic lines passing through the point P in the plane of parameters.

Figure 8 .

 8 Figure 8. Case HP-H: The asymptotic lines passing through the point Ψ(-1 2 L, 0) in the 3D space.

4. 2 . 1 .

 21 Mesh adaptation process for ε = 10 -6

Figure 9 .Figure 10 . 6 Figure 11 . 6 Figure 12 .

 910611612 Figure 9. Case HP-H: Initial uniform mesh (1,741 elements)

Figure 13 .

 13 Figure 13. Case HP-H: Asymptotic lines bearing singularities

Figure 14 . 6 -Figure 15 . 6 -Figure 16 . 6 - 17 . 6 4. 2 . 2 .Figure

 14615616617622 Figure 14. Case HP-H: Evolution of u ε 3 on the line y 2 = -L 2 during the remeshing process (zoom around y 2 = 0) for ε = 10 -6
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Figure 23 .Figure 24 . 2 = - 1 )Figure 25 .- 1 Figure 26 .

 23242125126 Figure 23. Case HP-H: Evolution of the normalized normal displacement u 3 /|u 3 |max on the line y 2 = -L/2 (zoom around y 2 = 0)
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 227228 Figure 27. Measure of the layer thickness η on the line y 1 = -L/2
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 3 Normal force f 3 applied in the parabolic part (Case HP-P)In this part, let us consider that the normal force f 3 , normal to the surface is applied at the point P = (+ L 2 , 0) in the plane of parameters, in the parabolic part. The asymptotic lines passing through point P are plotted on FIG.29in the plane of parameters (y 1 , y 2 ).
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 29 Figure 29. Case HP-P: The asymptotic lines passing trough the point P in the plane of parameters. The deformed shape obtained for ε = 10 -6 is given on FIG. 30.
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 30 Figure 30. Case HP-P: Deformed shape (scale factor of 57) with Von Mises stress contours (just under the upper surface) for ε = 10 -6
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 34 Figure 34. Middle surface of the HE shell
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 35 Figure 35. Case HE-H: The asymptotic lines passing through the point P in the plane of parameters.
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 36 Figure 36. Case HE-H: The asymptotic lines passing through the point Ψ(-L/2, 0) in the 3D space.
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 37 Figure 37. Case HE-H: Mesh at the last iteration (261,746 elements)
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 38 Figure 38. Case HE-H: Deformed shape (scale factor of 65) with Von Mises stress contours (just under the upper surface)Like in the case HP-H, the singularity caused by the point force f 3 propagates along the two asymptotic lines passing through the point P (see FIG.36) leading to two singularities which also reflect at y 1 = 0. Let us investigate the propagation more precisely by plotting the normal displacement u ε 3 on the lines y 1 = -L/2, y 2 = 0.
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 24722248249 Figure 47. Case PE-P: Displacement u ε 3 on the line y 1 = -L 2
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 3 Normal force f 3 applied in the elliptic part (Case PE-E) In this part, let us consider that the force f 3 , normal to the surface is applied at the point P = ( √ 2ρ/2, 0) in the plane of parameters, in the elliptic part. The remeshing consists here again in refining the mesh around point P . The deformed shape obtained of ε = 10 -6 is plotted on FIG. 50.
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 50 Figure 50. Case PE-E: Deformed shape (scale factor of 750) with Von Mises stress contours (just under the upper surface)

  

Table 4

 4 Case HP-P: Layer thicknesses and amplitudes for u ε 3 at different locations (force in the parabolic part)

Table 5

 5 Case HE-H: Layer thicknesses and amplitudes for u ε 3 at different locations

(amplitude, thickness η like presented in FIG.5) inside the internal layers .

and especially the ones reflected are in δ[START_REF] Sanchez-Palencia | Statique et dynamique des coques minces, II-Cas de flexion pure inhibée. approximation membranaire[END_REF] . Contrary to the "pseudo-reflection" phenomenon[START_REF] Karamian | Boundary layers in thin elastic shells with developable middle surface[END_REF], the reflection seems to be here total and conserves the order of the singularity.

Normal force f 3 applied in the elliptic part (Case HE-E)

In this part, let us consider that the force f 3 , normal to the surface is applied at the point P = ( √ 2ρ/2, 0) in the plane of parameters. The remeshing just consists in refining the mesh around point P . The deformed shape obtained for ε = 10 -6 is given on FIG. 43. No asymptotic line existing in the elliptic part, there is no propagation of the singularity. Moreover, there is no logarithmic singularities because the shell is a sphere and the two principal curvatures are equal at point P [START_REF] Béchet | Computing singular perturbations for linear elliptic shells[END_REF].

Parabolic-Elliptic shell

The shell considered and its geometrical properties

The last example deals with a parabolic/elliptic shell. The middle surface of the shell is defined by the local mapping (Ω, Ψ) given in [START_REF] Karamian-Surville | The refraction phenomenon of singularities in thin elastic shells with developable mid-surface in presence of rigid folds: Case of parabolic shells[END_REF] 

The part corresponding to y 1 < 0 is parabolic whereas the part of the surface corresponding to y 1 ≥ 0 is elliptic. The two parts of the surface are respectively to a half cylinder and a quarter of sphere (see FIG. 44). The characteristic length is taken as L C = 0.13927 m (length of the curve y 2 = 0). The numerical data used is summarised in Table 2.