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Abstract – The finite element analysis of the behaviour of airframes subjected to crash or impact load-
ings requires the use of suitable finite elements, in particular for the modelling of riveted assemblies. In
order to predict the structure survivability, it is indeed necessary to focus on these areas because stress
concentrations, and consequently crack initiations, which can lead to catastrophic loss of the airplane, are
likely to occur. Because of the local nature of the phenomenon, the disproportion between the aircraft
and the assembly scale, and the large number of fasteners in a complete structure (more than 100 000),
super-elements for the fasteners and for the perforated sheets have been developed in order to suitably
model assemblies in structural calculations. However, these two types of finite elements can not be currently
connected together. The paper presented here focuses on how to link these finite elements.
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Résumé – L’analyse par éléments finis du comportement des structures aéronautiques soumises au crash
ou à l’impact requiert l’utilisation d’éléments finis adaptés, en particulier pour la représentation des assem-
blages rivetés. Afin de prédire la survivabilité de la structure, il est en effet nécessaire de s’intéresser à ces
zones d’assemblages puisqu’elles sont propices à des concentrations de contraintes, et donc à l’amorçage
de fissures pouvant mener à la ruine de l’appareil. Du fait du caractère local de ces phénomènes, de la
disproportion entre l’échelle de l’avion et celle de l’assemblage, et, du nombre important de rivets dans
une structure complète (plus de 100 000), des super-éléments pour les fixations et les tôles perforées ont
été développés pour une représentation des assemblages adaptée aux calculs de structures. Cependant, ces
deux types d’éléments finis ne peuvent être connectés à l’heure actuelle. Les travaux présentés se focalisent
donc sur leur association.

Mots clés : Résistance à l’impact / assemblage riveté / interaction rivet-perforation / super-élément perforé

1 Introduction

The numerical study of airframes subjected to ex-
treme loads is tightly related to the modelling of the riv-
eted assemblies behaviour because phenomena such as
stress localisation can be observed in their neighbour-
hood. In order to predict the crack initiation and propa-
gation, and therefore, evaluate the structure survivability,
it is essential to take into account the riveted assemblies
and include their mechanical behaviour in the structural
analysis.

Normally, a fine mesh close to the assembly areas
would be necessary to describe accurately stress concen-
trations, but the large difference between the aircraft and
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the assembly scale, together with the substantial number
of rivets in a complete airplane (more than 100 000), will
imply excessive computing costs. Consequently, for sev-
eral years, research in this domain has focused on the de-
velopment of macro-elements, i.e., elements with a smaller
number of degrees of freedom compared to that of the fine
modelling, but with an accurate mechanical behaviour
implemented.

At first, macro-elements (1D beam, spring) dedicated
to the modelling of fasteners were formulated. The most
advanced formulations are able to describe the non-linear
behaviour of the rivet until rupture [1,2]. The assembly is
thus represented with such an element connected to two
conventional shell elements using kinematic conditions
(Fig. 1). However, the experimental and computational
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Fig. 1. Current modelling of assemblies.

results comparison has shown that the structural stiff-
ness was overestimated by the numerical model and the
plastic strain within the FE shell elements connected to
rivets was not efficiently enough predicted so as to ini-
tiate the failure of the sheet metal plates [3, 4]. The as-
sembly modelling suffers in fact from a lack of represen-
tativeness. The structural embrittlement caused by holes
in the sheets is not introduced in the conventional shell
elements to which rivets macro-elements are connected.
The forces are moreover not correctly transferred from
the rivet macro-element to the shell elements. The inter-
action between the fastener and the perforated sheets is
improperly taken into account, and, several failure modes
(e.g., bearing, pull-through) can not be handled.

2 A hybrid-Trefftz perforated super-element

In order to enhance the modelling of riveted assem-
blies, Onera and LAMIH performed research jointly to
develop a perforated shell super-element that is able to
localise mechanical fields around the hole during fast
dynamic loads. At this stage, an eight-node perforated
super-element (Fig. 2), able to describe accurately stress
concentrations due to the hole in plane elasticity, has been
developed [5].

This finite element (FE) is based on a hybrid-Trefftz
displacement variational principle. It permits to ensure
the compatibility with neighbouring conventional FE, and
to reduce the interior domain integrations to boundary
integrations. The interpolation functions associated with
this super-element come from the Kolosov-Muskhelishvili
(K-M) formalism [6] and do account for the influence of
the hole inside the element. In this formulation, an ana-
lytic expression is obtained for displacements and stresses
in accordance with two complex potentials, denoted by φ
and ψ. Their expressions depend on the considered prob-
lem (i.e., boundary conditions applied to the hole), and
these two functions are generally expanded in a Laurent
series. Here, considering a perforated plate whose hole
is a load-free boundary, the displacements and stresses
(known as homogeneous) are expressed in the form of a
Laurent series, and depend on (αj , βj) parameters. For
example, the displacement in the x-direction, for a circu-
lar hole of radius a, is given by equation (1).

uh
x(R, θ) =

1
2μ

M∑

j=−N

αj

[
(kRj +R−j) cos(jθ)

−j(Rj −Rj−2) cos(j − 2)θ
]

(1)

Fig. 2. An eight-node perforated super-element.

with (R, θ) the polar coordinates (the radial coordinate
is dimensionless R = r/a), μ the shear modulus of the
material and k the Muskhelishvili constant (k = (3− ν)/
(1 + ν) in plane stress, k = 3 − 4ν in plane strain, where
ν is the Poisson’s ratio).

The fields uh and σh can be written more concisely:

uh = Nc and σh = Qc (2)

where N and Q are matrices of interpolation functions
associated with displacements and stresses, respectively,
and, c = (αj , βj) represents the vector of the generalized
degrees of freedom (dofs) of the special element.
The upper and lower bounds of series appearing in equa-
tions (1, 2) are fixed in accordance with the number of
nodes of the element thanks to the relation (3).

nu ≥ nσ ≥ nq − r (3)

where nu and nσ represent the sufficient number of pa-
rameters to define displacements and stresses, nq is the
number of physical dofs, and r is the number of rigid body
modes.

The displacement and stress fields considered in equa-
tion (2) are both expressed with the vector c = (αj , βj),
so nu = nσ. The problem considered being bidimensional,
nq is twice the number of nodes, and r = 3. With this re-
lation, the minimum number of required parameters is set
relatively to the number of nodes of the formulated ele-
ment. In the literature [7,9–11], it is recommended to take
nσ approximatively equal to nq − r. This minimum num-
ber does not always guarantee a stiffness matrix with full
rank. Full rank may be achieved by suitably increasing
the number of parameters. However, too many parame-
ters would make the element become too stiff [9–11]. The
optimal value of parameters for a given type of element
should be found by numerical experimentation. For now,
following these theoretical requirements, N and M need
to be set to 4 for the formulation of an eight-node perfo-
rated element (Fig. 2).

This super-element is implemented into a FE code de-
veloped by Onera, and gives very accurate results with
low computing costs (few degrees of freedom) in com-
parison with a fine FE mesh [5]. However, this special
FE is formulated in such a way that the perforation is a
free analytic boundary. Thus, it is obvious that it is not
suitable for the modelling of riveted assemblies, since the
perforated element is intended to be linked with a rivet
macro-element (Fig. 3), as mentioned in Section 1. More-
over, it does not allow the hole boundary to be subjected
to any FE-like load.



C. Hennuyer et al.: Mechanics & Industry 15, 133-137 (2014) 135

Fig. 3. Modelling of the assembly by super-elements.

Fig. 4. A perforated super-element featuring nodes on its
perforation.

3 Modelling of the rivet/perforation
interaction

Loading the perforation of the super-element is only
possible by superimposing to the calculated perforated
homogeneous solution (1, 2) a particular analytical so-
lution corresponding to a particular perforation loading
kind. However, the loads that can be considered are quite
restricted [6,7,12]: uniform pressure applied on a part or
on the whole hole boundary, constant shear load on the
perforation, or concentrated forces applied along the per-
foration. They are not sufficient to model the generality
and the complexity of the fastener/perforated plate sys-
tem interaction. In order to establish a constant (data)
exchange between the fastener and the perforation, it is
proposed to develop a finite element internal perforation
permitting the interaction between the rivet and the hole
boundary of the super-element presented in Section 2.

3.1 A perforated super-element featuring nodes
on its perforation

A suitable solution to do so is to “materialize” the
perforation of the element by nodes formulated on this
boundary, and consequently, enable to stress these perfo-
ration nodes with the load provided by the rivet super-
element. Therefore, it is proposed to study the formula-
tion of a perforated super-element featuring 8 nodes on its
external boundary (as in Sect. 2) plus 8 additional nodes
placed on its perforation (Fig. 4). Since the order of the
Laurent series is linked to the number of element nodes,
and, that the proposed FE features 16 nodes, N and M
need to be fixed to 8.

A necessary but not sufficient step for the theoret-
ical development of this new FE, is to make sure that
the interpolation functions are able to build the displace-
ment and stress fields inside the element when additional
nodes are placed on the perforation. The numerical study

proposed here1 consists in collecting information (e.g.,
displacements) on a reference solution (i.e., an analytical
or a numerical solution (FEA)) at given points placed like
the 16 element nodes. Then, the K-M’s solution and the
reference solution are considered equal at these 16 par-
ticular points, and consequently, a linear system whose
unknowns are (αj , βj) parameters is formed. All fields
are then rebuilt by introducing the identified parameters
within the analytical expressions (1, 2).

3.2 Results

Here, the influence of the nodes disposition and
of the order of the interpolation functions on the ac-
curacy of the K-M’s solution is studied. The follow-
ing five configurations are thus analysed: {N = M = 4;
8 pts rect}, {N = M = 4 ; 16 pts rect}, {N = M = 4;
8 pts rect + 8 pts perfo}, {N = M = 8; 16 pts rect},
{N = M = 8; 8 pts rect + 8 pts perfo}.

In the first part of this study, a perforated plate featur-
ing a centred circular hole of radius a = 0.2 subjected to
a far-field uniaxial tensile load σ∞ = 100 MPa is con-
sidered. The material properties are E = 74 000 MPa
and ν = 0.3, for the Young modulus and the Poisson
ratio respectively. The value of the shear modulus μ and
Muskhelishvili constant k, required for the computation of
the K-M’s solution, are μ = 28 461.5 MPa and k = 2.0769
(plane stress). A reference analytical solution of this prob-
lem is provided by Kirsch [13]. By computing the K-M’s
solution from data collected on Kirsch’s solution, it ap-
peared that the value of significant parameters was the
same for all studied configurations (α−1 = 10, α1 = 5).
A little decrease of the accuracy is observed when only
the order N has been modified (i.e., fixed to 8 instead of
4). It seems to be counter intuitive, but, in fact, it can
be suggested that increasing the order means increasing
the number of parameters, which can make new terms
become significant, even if they are close to zero. A lit-
tle bias is consequently introduced for each contribution
added to the solution (1), which generates differences be-
tween the reference solution and K-M’s solution. The ac-
curacy of K-M’s solution also decreases in a more signif-
icant way when displacement values are also collected at
points placed on the perforation (and not only on the ex-
ternal boundary), but the results remain accurate enough.
More details about the value of these differences can be
found in [14].

In the second part of this study, the geometrical and
material properties are kept and several load cases are
now considered (uniaxial tension, biaxial tension, pure
shear, and, simple shear). FE models featuring refined
meshes in particular close to the hole, have been generated
in order to build a reference numerical solution. Globally,
the results obtained through K-M’s solution are rather
correct. The value of significant parameters is always

1 The methodology took on this study is similar to the one
set up during the development of the original perforated super-
element (8 nodes on external boundary) [5].
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Fig. 5. Comparison between reference and K-M’s solutions for a pure shear load case, with the configuration
{N = M = 8 ; 8 pts rect + 8 pts perfo}.

found in any load cases2 and for each configuration. A
little loss of accuracy is still noted when only the number
of collection points is increased, or when data are collected
on the perforation, but with minor significance. Concern-
ing the increase of the order, it has an influence on the ac-
curacy of the solution in every instance, but with more or
less importance according to the analysed configuration.
Two particular configurations give unexpected results:
{N = M = 8 ; 16 pts rect} for a tension load case (exam-
ple A) and {N = M = 8 ; 8 pts rect + 8 pts perfo} for a
shear load case (example B). The stresses/displacements
distribution is globally consistent with the load case, and
especially close to the hole. Nevertheless, important dif-
ferences are noticed in the vicinity of some points located
on the boundary of the studied area [−1, 1]× [−1, 1], and
in particular for the computation of stresses (Fig. 5). In
example B, when a pure shear load is applied to the plate,
a difference of more than 35 MPa is measured for σxy close
to the four corners of the domain: the reference value is
91.4 MPa, and the value obtained is 126.5 MPa (Figs. 5a–
5c). More important errors are observed for example A,
for instance the calculated value of σx at point (1,1) is
equal to 176.5 MPa instead of 331 MPa, the reference
value, the difference is important but very localised.

The origin of these errors has been identified. Firstly,
some (αj , βj) parameters which appear to be non signifi-
cant are responsible for these local differences. In example
B, the terms β−5 ≈ 10−4 and β7 ≈ 10−6 are the causes of
the observed differences; besides, the reference solution is
recovered when these parameters are set to zero (Fig. 5d).
Secondly, it has been verified that the accuracy of input
data (displacement values at 8 or 16 points) is important.
Indeed, these differences are never observed when collect-
ing data on analytical solutions3 but only on numerical
solutions.

2 In reference [5], it has been showed that each load case
can be represented by the K-M formalism where only few pa-
rameters take part. For example, the biaxial tension case is
completely defined by the parameter α1.

3 An analytical solution has been generated for each of the
four load cases considered, starting from K-M’s solution and
significant corresponding parameters.

3.3 Comparison with the literature

The analysis presented above shows clearly problems
of accuracy of the K-M’s solution which are linked to the
increase of the number of (αj , βj) parameters. It appeared
that this subject had been discussed by Dhanasekar
et al. [15], and Piltner [8,9]. Piltner was the first to formu-
late finite elements featuring a hole [7]. Dhanasekar et al.
announced that Piltner’s solution was unstable because
the associated interpolation functions would be sensitive
when the order of the series grows. They proposed an en-
hanced version (i.e., the variational principle is the same,
the improvement suggested is related to the interpolation
functions expression), and made comparisons. Piltner dis-
proved the results obtained by Dhanasekar et al. and indi-
cated that mistakes had been made in the implementation
of its element.

In any case, one can notice that each proposed solution
is evaluated and compared at only one or two points near
the hole (e.g., calculation of hoop stress). Piltner assures
that there is no loss of accuracy with the increase with the
number of (αj , βj) parameters [9]. In fact, he presented
more accurate results with a 24-node element than with
a 8-node element (cf. Tabs. 2–5 in [9]), but only at two
points.

In our study, we endeavoured to analyse each obtained
solution in the whole domain [−1, 1]×[−1, 1], and not only
at some points, in such a way to anticipate the recon-
struction of fields inside the future FE from nodal values.
Close to the perforation, all configurations give good re-
sults, as in Piltner’s articles, but problems related to the
order of the Laurent series appeared close to the domain
boundary.

4 Conclusions

A new formulation of a perforated super-element has
been proposed to link it with a rivet macro-element, in
order to model a riveted assembly suitably in structural
calculations. The original perforated element has been de-
veloped in such a way that the boundary that represents
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the hole is analytical, preventing any connection with a
rivet super-element. Consequently, the authors propose to
“materialize” the hole of the element by nodes. A neces-
sary numerical study, before the theoretical development
of this new FE, has been presented in order to evaluate if
the associated interpolation functions are able to describe
the displacement and stress fields inside the element when
additional nodes are placed on perforation.

The results of this study show that the mechanical
fields are generally correctly rebuilt, and particularly close
to the perforation. Some cases highlight significant dis-
crepancies, but these are very localised, and their origin
is now understood (additional series terms and numerical
solution). Moreover, it should be noticed that the pre-
sented work allows to elucidate a disagreement appearing
in the literature. Indeed, it is now clear that this disagree-
ment comes from the locations on which reconstructed
data are compared to the reference solution: the rebuilt
solution is still accurate when increasing the order in the
vicinity of the hole, but it becomes less accurate, due to
spurious terms of the series becoming significant, close to
the boundary of the domain. It is shown that spurious
terms become significant only when the reference solu-
tion, on which data are collected, is of numerical nature.
Note that the contribution of each mode of the series will
be deepened to explain their mechanical meaning. More-
over, a systematic parametric analysis will be included to
select meaningful modes.

The works in progress concern the formulation of the
new super-element, i.e. the development of the varia-
tional principle and the stiffness matrix of the element:
additional nodes are placed on the perforation (taking
into consideration the corresponding dofs), and the dis-
placement compatibility is only ensured along the exter-
nal boundary. Because of the discordance between these
two requirements, the study of stationary conditions and
the analysis of finite elements from the literature (to-
tally compatible FE [16], or, on the contrary, FE with-
out compatibility [17]) lead us to focus on the develop-
ment of a partially compatible perforated FE. Once the
new super-element with internal nodes and FE boundary
implemented and fully validated for elastic material be-
haviour, its extension to non-linear material behaviours
will be studied and addressed.
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