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Summary: The straightness error of a coordinate

measuring machine (CMM) is determined by measuring

a rule standard. Thanks to a reversal technique, the
straightness uncertainty of the CMM is theoretically

dissociated from the straightness uncertainty of the rule.

However, stochastic variations of the whole measure-
ment system involve uncertainties of the CMM

straightness error. To quantify these uncertainties,

different sources of stochastic variations are listed
with their associated probability density functions. Then

Monte Carlo methods are performed first to quantify

error and secondly to optimize measurement protocol. It
is shown that a 5-measurement distance from 0.1 mm to

each measurement coordinate allows a double reduction

of uncertainties, principally due to the rule roughness
amplitude (Ra ¼ 0.35 mm) and because this optimal

distance of 0.1 mm is equal to the autocorrelation length

of the rule roughness. With this optimal configuration,
the final uncertainly on the straightness error of the

CMM studied is less than 1 mm on the whole evaluated

length of the rule (1 m). An algorithm, including Probe
Tip Radius of the CMM and surface roughness of the

piece, is finally proposed to increase CMM reliability by

minimizing error measurements due to surface rough-
ness of the measured piece. SCANNING 36: 161–169,

2014. © 2013 Wiley Periodicals, Inc.
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Introduction

Straightness of a piece is often a basic requirement in
order for a machine to function correctly and/or produce

fault-free parts. This straightness is oftenmeasured daily

by a coordinate measuring machine (CMM) in many
industries, for example, members, rollers, pipes, machine

ends, machine runners, and conveyors. Straightness

measurements are also carried out for bearing positions
in, for example, diesel engines. For the CMM, the

Geometrical Product Specification standard (GPS) defines

straightness as a two-dimensional geometric tolerance that
controls how much a feature can deviate from a straight

line (NF E 10-101, ’88; NF E 11-151, 2003). Therefore,

for a machine, the straightness default along an axis
represents the deviation from this axis in the directions

perpendicular to the displacement.

One of the metrological problems with CMMs arises
in straightness errors along the horizontal and vertical

axes. Determining the straightness defaults of a CMM

can be performed using a rule as a geometric standard.
However, the rules themselves incur straightness

defaults that will be added to CMM errors. The

separation of the straightness default of the rule and
those of the machine is commonly performed by means

of reversal procedures (Cayère, ’56; Whitehouse, ’76):

to measure the straightness of the rule (the EABF plane
in Fig. 1), a first measurement is carried out along the

longitudinal axis (xpiece), and a second one after turning
the rule to this axis (a 180˚ rotation).

Nevertheless, it remains impossible to locate precisely

the same set of coordinates (xpiece, ypiece, zpiece) in the

piece-coordinate system after processing to the rule
rotation. This impossibility is due to two categories of

uncertainty. The first one can be modeled, taking into

account deterministic considerations such asmodeling the
flexion of the rule under its own weight. The second

uncertainty is stochastic in nature and is directly linked to
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the local uncertainties in the (xpiece, ypiece, zpiece) location.
The stochastic errors can be linked into two classes of

errors: the position errors on the plane, i.e. the (xpiece,
zpiece) coordinate location, and the altitude position error
along the ypiece axis. After some investigations, it can be

determined that the (xpiece, zpiece) errors are reduced to

three stochastic errors: the lack of precision in reposition-
ing between the two steps of the reversal procedure,

uncertainties on the target location error owing to the

numerical control, and machine repeatability. The error in
determining the straightness error of the machine in the

xmachine, ymachine plane is influenced by the rule’s

deformation due to climatic changes that induce thermal
strains. The ypiece error is principally based on the

statistical variations of the surface topography due to the

roughness of the rule, thermal strain, and machine
repeatability. The aim of this paper is to build a method

to reduce the uncertainty about the straightness determi-

nation by taking account of these sources of errors. A
Monte Carlo simulation (JCGM 100:2008;

JCGM 101:2008; JCGM 102:2011) associated with an

original protocol of measure is proposed to reduce
drastically the uncertainties of the straightness evaluation.

This study is also applicable when measuring in scanning

mode (Savio, 2006; Pereira and Hocken, 2007).

Principle to Determine the Straightness of the Rule

To facilitate understanding, the faces are identified as

follows (Fig. 1):

- The setting face corresponds to the AEHD face.

- The fitting face is the ABCD face in the first step and
the EFGH face in the second step of the straightness

measurement.

Generality

The measures are realized in two steps (Fig. 1), namely:

- A direct measurement along the length of the rule.

- A measurement done with a similar protocol to the
first step, after a 180˚ rotation of the rules around its

longitudinal axis. As a consequence, the theoretical

coordinates are the same from one position to another.

Positioning the Rule on the Machine

A repository reproducible and a mechanical system for

positioning the rule must be defined to limit its distortion

and thus minimize the positioning errors. Moreover, the
determination of the repository must be the same for both

steps of measurements (before and after reversal).

The rule is fixed on three points in order to have an
isostatic system. The three points of the fitting position

must be provided such that two points are as close as

possible to the measuring face in the two steps (Fig. 2).
Also, these points are positioned at the 2/9 of the rule

length in order to limit the flexion of the rule under its

own weight. Thus, in the first step, the fitting points P1
and P3 are aligned, and are set closer to the measuring

face. It is better to move the point P3 to that place in the

middle of the rule to avoid deformation of the measuring
face between the two steps A gauge block is tentatively

fixed against the setting face. Thus, when turning,

minimal contact against the gauge block is needed to
ensure positioning along the longitudinal axis of the

Fig 1. Description of the measurements on the rule.

Fig 2. Location of the fitting P1–P3 points of the rule.
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rule. By contrast, between the two steps, the fitting face
changes, as specified above. For these two reasons the

setting and fitting faces must provide honing and

polishing to minimize positioning errors. After turning
the rule (second step), in order to realize a good fitting

position, point P3must bemoved, and P2 and P3 aligned

and set closer to the measuring face.

Formalism

Figure 3 shows the calculation principle to determine

the straightness either of the rule r(x) or of the machine
m(x), using the reversal technique.

Nevertheless, it is necessary to ask three sign

conventions:

- If the point on the trajectory of the machine moves to

Y positive, then the default is counted positively and is
denoted þm(x).

- A bump of the rule is interpreted as a positive default

that is denoted as þr(x).
- If the sensor sinks, this information is positive

- In the first step, the comparator records:

e1ðxÞ ¼ mðxÞ þ rðxÞ.
- In the second step, the comparator records:

e2ðxÞ ¼ �mðxÞ þ rðxÞ.
- The half-sum and half-difference provide r(x) andm(x).

Errors Classifications in the Straightness
Determination of the Rule

Positioning Error

To determine the straightness of the rule by a reversal

technique, the precise repositioning of the rule is

essential in the measurement process. Consequently, the
sources of errors in the repositions must be listed and

quantified.

There are four major positioning errors:

- A low error in angular position of the rule (Zaxis).
This error causes a rotation curve of the straightness
curve, similar to a perpendicular error (Ekinci and

Mayer, 2007). This error can be suppressed by

removing the slope of the straightness.
- A positioning error by translation of the CMM probe

head along the transversal axis of the rule (zaxis). This
error only causes a simple translation of the
straightness curve without affecting its shape.

- A position error of the rule by translation of the CMM

probe head along the longitudinal axis (xaxis). In this
situation, the roughness of the rule produces most of the

errors. In fact, the amplitude of the roughnesswill create

a measurement noise on the measurement of straight-
ness. The positioning according to this longitudinal axis

must be achieved with maximum accuracy.

- A position error of the rule by vertical translation of
the CMM probe head (along the thickness of the rule).

This error is due to the different roughness of the rule

at the contact (fitting position—Fig. 2, points P1–P3)
and at the flexion of the rule under its own weight

(position of coordinates relative to the pitch line).

Deformation Caused by Thermal Strains Fluctuations

Potential evolution of the straightness, especially

during the climatic changes, can induce thermal strains

and thus a modification of the system coordinates of the
rules.

Quantification Determination of Élémentary
Defaults

The CMM Measures

The straightness of the machine depends on the plane

(x, y). The CMM characterized is a LeitzTM PMM-C

1000P (24 12 10), Hexagon Metrology Group, which
means that its useful dimensions are, respectively, 2.4 m

on the x, 1.2 m on the y, and 1 m on the z-axis. This
CMM is equipped with a continuous High-Speed-
Scanning probe head LSP-S4. This CMM is commer-

cialized by the Hexagon Metrology Group. The rule

used for determining the straightness is made of steel; its
different faces provide honing and polishing, and it is

1 m long. The room is controlled for temperature and

humidity at 20 � 1˚C. The rule and the CMM are
controlled for temperature in order to make necessary

corrections automatically. A step in measuring straight-

ness takes about 20 min. There are 101 measured sites,Fig 3. Principle to process the measurements
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and five points are measured by site. Figure 4 represents

themeasurements of (a) the straightness on x-axis before
the reversal technique and (b) after the reversal
technique.

Defaults of Positioning on Each Axis

To determine these positioning errors, a repository is

defined, the setting face is measured several times, and the

position along the longitudinal axis from a point of this
plan is assessed. Along the longitudinal axis, the errors of

setting position are experimentally estimated at�0.1 mm

(uniform distribution). This point can be built, for
example, as the intersection of this plane with the

theoretical measured line. Along the vertical axis, the

fitting errors (vertical positioning errors) are estimated
experimentally at�0.02 mm (uniform distribution). This

error takes account of the deformation of the rule,

especially the flexion of the rule under its own weight and
the vertical error due to the thickness variation of the rule.

Roughness Default Including CMM Tip Radius
Integration

The roughness of the rule can be seen as a local

default of rule geometry. The surface of the rule

provides honing and polishing. In fact, the roughness

impacts directly the repeatability of the straightness

measurements. With these mechanical treatments, the
roughness of the rule, seen by the CMM, has a total

roughness of Rt equal to less than one micrometer (more

precisely Ra ¼ 0.35 mm on both transversal and
longitudinal directions). It is only with such treatment

that it will be possible to obtain uncertainties of about

1 mm.To determine the influence of the rough surface of
the rule on the measurement of straightness, it is

Fig 4. Straightness measurement of the rule along x-axis (a) and y one (b) and the corresponding computation of the CMM straightness in
x-axis (c)) and y one (d).

Fig 5. Roughness profile of the rule surface along the X-axis of
the rule.
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necessary to measure the roughness (Fig. 5) and

simulate the tip integration due to the tactile measure-
ment on the rule. Roughness profiles are measured by

themechanical profilometer; the tip radius is about a few

micrometers. This tip radius is negligible in comparison
with the ball of the stylus used for the straightness

measurements. The stylus chosen for the straightness

measurement on the CMM is a ball of 5 ml diameter. As
the rule is measured on the CMM using a stylus with a

ball of 5 ml, a morphological filtering (with a ball of

5 ml) (Bigerelle, ’99; Wu, ’99; Coorevits et al., 2004;
Pawlus, 2004) is performed to simulate the apparent

profile of the rule for the machine. It is therefore

necessary to realize a morphological filtering with a ball
of the same diameter (Fig. 6). The profile, after the

morphological filtering is smoother than the initial

profile; that is natural because this filtering is a dilatation
of the profile with respect to a ball-shaped structuring

element of a radius 2.5 ml. In Figures 5 and 6, normal

deviations correspond to the heights of the measured
profile. Figure 6 represents the profile obtained after

filtering, which is measured by the machine.

Tracking Errors

The tracking measurements correspond to the
deviation from the theoretical position in the two

directions perpendicular to the measurement. The

tracking errors are directly estimated on straightness
measurements. The tracking errors in the vertical and

longitudinal directions are represented on the histo-

grams (experimental values; Figs. 7 and 8). The tracking
errors are relatively slight (around 2 mm).

Statistical Considerations

By measuring multi-point features, the accuracy and

repeatability of the feature will be optimized.

Measurement Repeatability

To quantify the machine repeatability on straightness

measurements, 30 straightness measurements are done,

following standard measurement protocol. All external
conditions include keeping a constant temperature and

rule position. The dispersion (standard deviation) is

evaluated at about � 0.1 mm on both Xmachine and
Zmachine axes on the CMM (Gaussian distribution).

Number of Located Points

A good strategy is to measure the same point several

times, which allows averaging and reduces the
measurement noise. In fact, the uncertainties on a

measured point decrease if the number n of measure-

ments increases according to the 1=
ffiffiffi
n

p
rate. To make a

compromise among a large number of measurement

points, as well as to have an average effect and a

reasonable time of measurement, five points seems to be
a good choice. In fact, in using between four and six

measurement points the gain in terms of uncertainty is

less than 10%. With increasing measurement time and

Fig 6. Roughness profile of the rule surface after morphological
filtering representing the tip radius integration of the CMM probe
head.

Fig 7. Tracking error (mm) along the longitudinal axis of the
rule.

Fig 8. Tracking error (mm) along the vertical axis of the rule.
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the risk of thermal drift, it is wise to choose five

measuring points.

Monte Carlo simulation

Presentation of the Monte Carlo Simulation
Performed

A Monte Carlo simulation (Schwenke et al., 2000;
Wilhelm et al., 2001; Gentle, 2003; Gustavo Gonzalez

et al., 2005; Trapet, 2005; Dhanish and Mathew, 2006;
Sanchez and Santillan, 2006) will be performed, which

allows optimization of the coordinates measured. The

goal of thisMonte Carlo simulation is to identify the best
the longitudinal and vertical position of the coordinates.

To take account for different positioning problems, it

was decided to locally distribute five points as the
number 5 of a poker die (Fig. 9), which is relatively

conventional in metrology. Thus, the estimated value of

an altitude is the average of five localized altitudes,
where the distance from the gravity center (center of the

poker dice motif) to the four peripheral points must be

optimized. Decreasing this distance, increasing the
localization reduces the precision (altitudes are rela-

tively the same due to stylus integration and similarity in

roughness altitude). On the contrary, increasing this
distance, reducing the localization yields greater

precision. This distance is considered as optimal if the

standard deviation computed from the five altitudes is
minimal. In the simulation, this distance between two

zones of five points is limited to 10 ml.

Presentation of the Monte Carlo Parameters

The various parameters interfering with the mea-

surement (repeatability, tracking errors, positioning
errors) have been assessed for the implemented process.

These parameters are the sources of uncertainty. Each

parameter is associated with a distribution, namely, a
Gaussian is characterized by the mean and standard

deviation, or a uniform law is characterized by an

interval. Table I represents the parameters used in the
simulation with the nature of the probability density

function and their associated parameters.

The performed Monte Carlo Simulation

The simulation was performed as follows:
Thirty roughness profiles were determined experi-

mentally for all the measuring surface of the rule

(longitudinal and transverse measurements). For each
profile, the following steps were completed as many

times as the number of Monte Carlo simulations

performed:

1. Simulate the possible variations to this profile when

measured with the CMM, namely:

- Dilatation of the profile with respect to a ball-

shaped structuring element of a radius 2.5 ml, in
order to generate a continuous profile.

- Simulation of the measurement of the profile by a

CMM; Theoretical points and measured points are
not really the same due to resolution, repeatability,

tracking errors, Thus, simulating the points

actually measured for each simulation according
to the draft produced for each parameter it

recreates so much profiles as simulations.

For example: consider an evaluation along the x-axis.
To determine a simulated profile in the first step in the

X-axis, Ysimulate_Step1(x) is also the theoretical y at the
x position þ positioning errors, where positioning

errors are the sum of:

Fig 9. Distances that must be optimized.

TABLE I Input parameters of the Monte Carlo simulation

N˚ Error PDF PDF parameters

1 Positioning errors along X- or Y-axis (mm) Uniform D ¼ �100
2 Positioning errors along Z-axis (mm) Uniform D ¼ �20
3 CMM resolution (mm) Uniform D ¼ �0.025
4 CMM repeatability (mm) GaussianMu ¼ 0, Std ¼ 0.2
5 CMM tracking error along the X- or Y-axis (mm) Uniform D ¼ �1
6 CMM tracking error along the Z-axis (mm) Uniform D ¼ �2
7 Dilatation due to thermal expansion of the rule of 1 m long (L), d: distance position on the rule (mm)Uniform D ¼ �5.75d/L

D is the range of the uniform law and Mu and Sig the mean and the standard deviation of the Gaussian law.
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- A random in an uniform distribution of the source

of uncertainty number 3.

- A random in an uniform distribution of the source
of uncertainty number 5.

- A random in theGaussian distribution of the source

of uncertainty number 4.

2. Generate the profile in a reversal technique. That is to

say, restart the same operations as the previous step

but shift the profile of a random value in a Gaussian
distribution corresponding the possible gap, accord-

ing to the considered direction (longitudinal or

transversal).
For example: consider an evaluation along the x-axis.
To determine a simulated profile in the second step in

the X-axis, Ysimulate_Step2(x) is also the theoretical y at
the x position þ positioning errors, where position-

ing errors are the sum of:

- A random in an uniform distribution of the source

of uncertainty number 1.

- A random in an uniform distribution of the source
of uncertainty number 3.

- A random in an uniform distribution of the source

of uncertainty number 5.
- A random in an uniform distribution of the source

of uncertainty number 7, which correspond to an

evolution of temperature between this step and the
previous.

- A random in theGaussian distribution of the source

of uncertainty number 4.

3. Calculate the distances (normal deviation) between

the respective coordinates of the two simulated
profiles, and calculate the mean of the absolute value

of the difference for the five local points.

For example: consider an evaluation along the x-axis.
|Ysimulate_Step2(x) � Ysimulate_Step1(x)| is calculated,

and the mean of the for the five local points is raised.

4. Thus, the vertical and horizontal distance between
the points (on the five localized points) is optimized

such that it minimizes the standard deviation of the

normal deviation calculated.

For example: consider an evaluation along the x-axis.
The optimum corresponds to the minimum of the

previous calculation when varying the distance along x
between the five local points.

To summarize, the profile is shifted a certain value,

the difference between the point on the initial profile and
the offset profile is calculated. The goal is to minimize

the standard deviation of this difference in the

longitudinal (Fig. 10) and the transversal (Fig. 11)
direction. Thus, by the Monte Carlo process, the

optimum disposition of points was obtained (Fig. 12).

The setting face in the longitudinal direction causes a

positioning error of � 0.1 mm in this direction. This

analysis gives evidence that this parameter is the most
influent on the measurement’s uncertainties. The

optimal distance between the points in the longitudinal

direction is 0.1 mm � 0.02 mm (Fig. 10). In the
transversal direction, the optimal distance is 0.05 mm

� 0.015 mm, and the most influential parameter is the

roughness of the rule (Fig. 11). The following serves to
explain these optimal values. As the hypothetical

explanation at the beginning of this paragraph noted,

the data points must be sufficiently far from the gravity

Fig 10. Plot of the straightness versus the longitudinal spacing
of the five local measurements.

Fig 11. Plot of the straightness versus vertical spacing of the
five local measurements.

Fig 12. Optimal localizations of coordinate measurement along
the rule (X-axis).
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center to integrate the variability of the roughness. More
precisely, the effect of the roughness amplitude of each

coordinate must be independent of the roughness of the

gravity center of the poker dice shape. In surface
topography, this independence is linked to the autocor-

relation function. As a consequence, the autocorrelation

functions of 37 roughness profiles in both directions
(along xaxis and yaxis) are computed before and after the

stylus integration filtering. The autocorrelation func-

tions are averages that allows us to compute their errors.
Figure 13 represents these four averaged autocorrelation

functions. First, the stylus integration has the effect of

increasing the autocorrelation length. This is due to the
stylus simulation, which produces a smoothing of the

surface topography that is linked to an increase of the

autocorrelation length. Secondly, the autocorrelation
length (computed at the usual threshold of 1/e–0.37) is
equal to 0.06 mm [0.04–0.07] along zaxis and 0.11 mm

[0.08–0.17] along xaxis. These values are equals to the
value of the optimal distance (0.1 mm � 0.02 mm

(Fig. 10) along xaxis and 0.05 mm � 0.015 mm along

zaxis (Fig. 11). Similar approached values can be
analytically obtained by considering the rule (straight-

edge) having a Gaussian roughness. We then filter the

honed surfaces by a morphological filter to obtain a
Gaussian-shape fromwhich roughness amplitude can be

extracted. The autocorrelation length is then obtained by

a simple trigonometric calculation of the chord of a
circle determined by the radius and the radius minus the

roughness. For a ball radius of D, with a roughness
amplitude R micrometers, the autocorrelation of 95%

independence should occur at the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � ðD� 3RÞ2

q

distance and give 0.07 mm along zaxis and 0.12 mm

along xaxis. This outcome, i.e. the optimal distance is
equal to the autocorrelation length of the rule roughness

after stylus integration, means that the optimal distance
depends on:

� The stylus radii of the CMM probe.
� The roughness of the rules.

The other CMM errors can be minimized in choosing

optimal distances. Then, a procedure to determine the

optimal distance of the poker dice position can by
proposed in the following four steps:

� Step 1. Record profiles on longitudinal and transversal
of the rules.

� Step 2. Apply a stylus integration algorithm on the

profile, taking into account the radius of the CMM
probe.

� Step 3. Compute the autocorrelation function.

� Step 4. Compute the longitudinal and transversal
autocorrelation lengths at the threshold of 1/e. These
values provide the characteristic distance of the poker

dice shape.

This original methodology could be applied generically
to all CMM measurements on industrial pieces with

rough surface (even for low surface roughness, Ra ¼
0.35 mm in our study), in order to increase CMM
reliability and thereby minimize error measurements.

Conclusions

The reversal technique to determine straightness is
simple, but its implementation is difficult. The rough-

ness of the rule and the quality of repositioning are

essential to the quality of the result. The causes of
uncertainty are essentially: the roughness, the setting,

the tracking error, the sensor, the repeatability of the

machine, and the uncertainties on the measurement of
the axis. This study has greatly optimized this measure

and has allowed calculation of the straightness with an

uncertainty of about one micrometer on a length of one
meter. This study was conducted as part of the first

accreditation in France MMT (Hennebelle et al., 2011).
There are many potential applications in the field of
microscopy. Indeed, it is possible, with a similar

technique to characterize the straightness of a table

moving in the optical microscope, for example, to
conduct metrology on very small pieces.
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