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Abstract

The energy management for hybrid electric vehicles can be seen as an optimal control problem.
The Pontryagin’s minimum principle represents a powerful methodology capable of solving the
energy management offline. Moreover, the Pontryagin’s minimum principle has been proved useful
in the derivation of online energy management algorithms, such as the equivalent consumption
minimization strategy. Nevertheless, difficulties on the application of the Pontryagin’s minimum
principle arise when state constraints are included in the definition of the problem. A possible
solution is to combine the Pontryagin’s minimum principle with a penalty function approach. This
is done by adding functions to the Hamiltonian, which increase the value of the Hamiltonian when-
ever the optimal trajectory violates its constraints. However, the addition of penalty functions
to the Hamiltonian makes it harder to compute its minimum. This work proposes an effective
penalty approach through an implicit Hamiltonian minimization. The effectiveness of the ap-
proach is illustrated by obtaining the energy management for a hybrid electric vehicle modeled as
a mixed input-state constrained optimal control problem. The dynamics considered for the energy
management formulation are the battery state-of-energy and temperature.

Keywords: Energy management; Hybrid electric vehicles; Pontryagin’s minimum principle;
Mixed input-state constraints; Penalty function approach

1. Introduction

Hybrid electric vehicles (HEV) are one of the approaches aimed to reduce the dependency
on finite fossil fuel resources used for transportation. Within an HEV, the power demand from
the driver is split among the different powertrain energy sources in order to operate the internal
combustion engine (ICE) in its most efficient region available, thus reducing the fuel consumption.
The algorithm applied to achieve the best power split is known as energy management strategy
(EMS) [1].

Although EMS mostly focusses on fuel efficiency, additional criteria may be considered as
well, such as reducing the emission of pollutants [2, 3], improving the driver’s comfort [4, 5], and
prolonging the lifetime of the energy sources [6, 7]. Real-time EMS [8] are used to operate actual
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cars and can only rely on causal algorithms. In simulation, finding the offline-EMS consists in
computing (eventually, in a non-causal way) the ultimate performance of the HEV in order to
compare different vehicle designs or to evaluate the performance of real-time EMS [9].

EMS in its most general form can be formulated as a mixed input-state constrained optimal
control problem with discrete and continuous inputs and dynamics. The methods for solving this
optimal control problem can be classified in three groups: dynamic programming (DP), direct-
approach methods, and indirect-approach methods. The contribution of this work lies within the
third group, the indirect-methods. However, a general discussion on the three groups of methods
will be provided before entering into the details of the contribution.

In the DP approach, all the variables, inputs, states and time, are quantized. Then, the resulting
discrete static optimization problem is solved to determine the optimal EMS. The DP approach is
widely used in the literature, since it can solve the EMS in its most general form, i.e, with hybrid
dynamics and input and state constraints. The main drawback of this method comes from its
computational expensiveness, referred as the curse of dimensionality [10]. Namely, the number of
elementary operations has an exponential relationship with respect to the number of states and
inputs in the problem formulation. Likewise, the memory requirements increase exponentially with
respect to the number of states. As a consequence, DP is, usually, restricted to problems with only
one [11][12], or two continuous states [13].

In the direct-approach methods, only the time is often quantized (finite-time problems). The
resulting static minimization problem is solved using mathematical programming techniques such
as nonlinear programming, e.g., sequential quadratic programming (SQP) [14, 15], or convex pro-
gramming, e.g., second-order cone programming (SOCP) [16], quadratic programming (QP) [17],
and linear programming (LP) [18]. State constraints can be taken into account. Optimizing dis-
crete controls leads to very large mixed-integer programming problems due to the considered long
optimization horizon (typically, more than 1000 time steps). These problems are not tractable
in general, even if they are restricted to be mixed-integer linear programming (MILP) problems.
Nonetheless, when only continuous controls are considered, the direct approach does not posses
the curse of dimensionality suffered by DP, therefore, it can be applied to obtain the optimal
EMS, when several continuous states are considered. Moreover, it has been even applied to obtain,
simultaneously, the optimal EMS and the optimal sizing of some components of the powertrain
[19].

In the group of indirect methods, the calculus of variations or the Pontryagin minimum prin-
ciple (PMP) is applied to obtain optimality conditions. The original EMS is then reduced to a
simpler equivalent problem, namely, a boundary value problem (BVP). Hybrid-PMP [20, 21] al-
lows considering both continuous and discrete systems, and thus, handling discrete controls signals,
although they can lead to singular control issues [22]. State constraints lead to many theoretical
difficulties, and there is no algorithm available to efficiently derive a solution in the general case.
An algorithm is proposed in [23] to solve the EMS problem restricted to a single state.

Problems with many constrained states can be handled using the penalty function approach. It
consists in adding an additional cost to the criterion that enforces the state to stay in the feasible
region. This approach converts the state constrained problem into an unconstrained one that can
be solved using the classical PMP [24, 25]. Nevertheless, the resulting optimality conditions are
significantly more difficult to solve [26].

In this work, a novel method for the minimization of the Hamiltonian is proposed in order to
overcome the difficulties of the penalty approaches to satisfy the optimality conditions. The novel
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method is based on an implicit Hamiltonian minimization that, under strict convexity assumptions,
can solve the EMS formulated with n states and m inputs under mixed input-state constraints.
Although other penalty approaches have been successfully applied to the EMS under state con-
straints, they have been so far restricted to formulations with only one state [24, 25]. Increasing
the number of states and inputs is relevant since it is necessary to produce a more accurate rep-
resentation of the vehicle and all its subsystems that have an effect on the energy management.
Preliminary results of this work were presented in [26].
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Figure 1: Worldwide Light-vehicle Test Cycle Class 3 (WLTC-C3) in m/s (left). Power demand signal w(t) for the
WLTC-C3 (right).

The the paper is organized as follows: Section II presents the vehicle modeling and the EMS
formulation as an optimal control problem. The main results, an indirect-approach method based
on penalty functions and an implicit Hamiltonian minimization, are presented in Section III. Section
IV introduces algorithms to overcome numerical difficulties of the indirect-approach method. In
Section V, the indirect-approach method is applied to compute the EMS formulated in Section II.
At last, Section VI contains the conclusions and some perspectives on possible future work.

2. Problem statement

The hybrid vehicle EMS consists in computing the optimal power split between the different
energy sources, when the vehicle is following a prescribed velocity profile, also known as driving
cycle. An example of a driving cycle, the Worldwide Light-vehicle Test Cycle Class 3 (WLTC-C3),
is depicted in Fig. 1 (left). For the considered series hybrid vehicle, see Fig. 2, the EMS input
data is the power w(t) (kW) required to propel the vehicle along the given driving cycle [1].

In the rest of this section, the offline-EMS will be defined in more detail for the considered
series hybrid vehicle. However, it is worth noticing that the methodology presented in this work
can be applied to many other hybrid vehicle topologies as well.

2.1. Series-HEV

Consider the HEV powertrain topology displayed in Fig. 2. The power required for propulsion
at the input of the traction motor (TM), w(t) ∈ R, must be provided at each instant by the
auxiliary power unit (APU), u(t) ∈ R, and/or the battery pack, Pb(t) ∈ R. Moreover, the APU
is subject to a on/off command signal, ϑ(t) ∈ {0, 1}. The series topology imposes the following
relationship among the power signals:

w(t) = ϑ(t) · u(t) + Pb(t). (1)
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Figure 2: Diagram of the series-HEV powertrain.

The models required to compute w(t), Pb(t), and u(t) are discussed in the following subsections.
For the ease of readiness, in the following, the time dependence of the variables will be omitted
when convenient.

2.1.1. Traction subsystem

The traction subsystem includes the vehicle model and transmission from the wheels to the
TM. The corresponding model allows evaluating the energetic requirement of the vehicle. Given a
velocity profile v(t) and the vehicle parameters, the torque Tw(t) and the angular velocity at the
wheels ωw(t), required to follow the driving cycle, are computed [1]:

Tw(t) =rw

(
meq ·

dv(t)

dt
+m · g · cr +

1

2
ρa ·Af · cd · v2(t)

)
, (2)

ωw(t) = v(t)/rw, (3)

with cr the tire rolling resistance (-), g the gravity acceleration
(
kg ·m/s2

)
, ρa the air density(

kg/m3
)
, Af the vehicle frontal area

(
m2
)
, cd the drag coefficient (-), γ the final gear ratio (-), rw

the radius of the wheels (m), m the vehicle mass (kg), and meq = m+ Jtm/
(
γ2r2

w

)
the equivalent

mass of the vehicle (kg). The vehicle is rear wheel driven (RWD): when braking, Tw < 0, only
40% of the torque is assumed to be provided by regenerative braking and the remaining 60% is
assumed to be provided by the mechanical brakes. Indicated with µb(t) as a piecewise constant
torque brake factor. A constant torque brake factor for regenerative braking is considered for the
sake of simplicity. More advanced blending braking strategies may be applied, as in [27]. Finally,
the TM torque and speed, denoted as Ttm and ωtm, are derived:

Ttm(t) = γ · µb (t) · Tw(t), (4)

µb(t) =

{
0.4, Tw(t) < 0

1, otherwise
(5)

ωtm(t) = ωw(t)/γ. (6)

At last, the power demand signal w(t) is computed using the traction motor efficiency map
ηtm:

w(t) = Ttm(t)ωtm(t)ηtm (Ttm(t), ωtm(t))−sign(Ttm(t)) (7)

Given the WLTC-C3 driving cycle, the power demand signal w(t) is displayed in Fig. 1 (right).
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Figure 3: Open circuit voltage U as a function of x1 derived from [29] (in blue) and the considered model U(x1) =
ax1 + bx1x1 (in red); plotted along the whole range of available data (left); plotted along the operating range (right).
The parameters of U(x1) are ax1 = 27.14 and bx1 = 653.85.

2.1.2. Battery Pack

The battery pack is connected to a DC/DC converter that fixes the DC bus voltage. Its
losses are assumed to be negligible. The energetic behavior is modeled using both the state-of-
energy dynamics given in [17] and a thermal model similar to the one found in [28]. They relate
the battery power, Pb(t), to the state-of-energy, denoted as x1(t), and the battery temperature,
denoted as x2(t). The battery state-of-energy, x1(t), is derived from an equivalent electric circuit
model. It consists of an open circuit voltage U(x1(t)) in series with a temperature dependent
resistance Rb(x2(t)). The state-of-energy, x1(t), has the following dynamics:

ẋ1(t) =
1

Ū ·Q

[
−Pb(t)−

Rb(x2(t))

U2(x1(t))
P 2
b (t)

]
, (8)

with Ū the maximum open circuit voltage (V) and Q the charge capacity of the battery pack (Ah).
The battery state-of-energy, x1(t), is constrained between

¯
x1 and x̄1

1

¯
x1 ≤ x1(t) ≤ x̄1. (9)

Within the battery pack operating range (30%–90%), U is modeled as a linear function of x1:
U(x1) = ax1 + bx1x1, derived from LiFePO4 battery cell data found in [29], as shown in Fig. 3.
The resistance Rb (Ω) is given by a linear function of x2 (K).

The battery pack power Pb(t) is constrained by the current limitations of the battery pack:

¯
Pb(Rb, U) ≤ Pb(t) ≤ P̄b(Rb, U), (10)

with
¯
Pb =

¯
I · U − Rb ·

¯
I2 and P̄b = Ī · U − Rb · Ī2,

¯
I the minimum, and Ī the maximum battery

pack current (A).

1Throughout the paper, an underline (
¯

) and an overline ( ¯ ) are used to denote minimum and maximum value,
respectively.
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The dynamics of x2 is obtained from a thermal balance energy equation [17, 28, 30, 31]:

ẋ2(t) =
1

Cb

[
h · (T∞ − x2(t)) +

Rb(x2(t))

U2(x1(t))
P 2
b (t)

]
(11)

with Cb the heat capacity of the battery pack (kJ/K), T∞ the ambient temperature (K), and
h the heat transfer coefficient between the battery pack and its surroundings (W/K). The term
depending on Pb stands for the heat dissipated by the battery resistance Rb. The battery resistance
increases for low temperatures, thus reducing both the battery pack efficiency and the maximum
power P̄b.

2.1.3. Auxiliary Power Unit

The APU consists of one ICE coupled with one generator (Gen) to produce electrical energy
using fuel. The APU instantaneous fuel consumption, ṁf (t) (g/s), required to generate a given
electric power u(t) (W), is estimated by the following quadratic function [17, 32]:

ṁf (u(t)) = a+ b · u(t) + c · u2(t). (12)

The criterion to be minimized by the EMS is the total fuel consumption:

J =

∫ tf

0

[
ṁf (u(t))ϑ(t) + d · (1− ϑ(t))u2(t)

]
dt, (13)

where tf stands for the duration of the driving cycle and d is a conversion factor
(

g
(kW)2·s

)
. The

additional term (1− ϑ) · u2 allows enforcing u = 0, whenever ϑ = 0 [26].
Optimizing the binary variable ϑ may lead to theoretical difficulties, such as singular controls

[22] and non-unique optimal solutions. In order to keep the analysis simple enough and focus on
the state constraints handling, the binary signal ϑ is assumed to be fixed beforehand. For instance,
it can be computed using a set of empirical rules according to the power demand w(t). The power
produced by the APU is constrained by the physical limits of its components:

0 ≤ u(t) ≤ ū, (14)

yet also by other components of the powertrain via (1):

w(t)− P̄b(t) ≤ u(t) ≤ w(t)−
¯
Pb(t). (15)

Constraints (14) and (15) can be combined together:

¯
u′(t) ≤ u(t) ≤ ū′(t), (16)

¯
u′(t) = max

[
0, w(t)− P̄b

]
,

ū′(t) = min [ū, w(t)−
¯
Pb] .

6



2.2. Energy management as an optimal control problem

Over a known driving cycle, the energy management problem can be formulated as an optimal
control problem (OCP) in the following way:

min J(u) =

∫ tf

0

[
ϑ ·
(
a+ b · u+ c · u2

)
+ d · (1− ϑ) · u2

]
dt, (17a)

subject to:

ẋ1(t) =
1

Ū ·Q

[
− (w − ϑu)− Rb(x2)

U2(x1)
(w − ϑu)2

]
, (17b)

ẋ2(t) =
1

Cb

[
h · (T∞ − x2) +

Rb(x2)

U2(x1)
(w − ϑu)2

]
, (17c)

¯
u′(t) ≤ u(t) ≤ ū′(t), (17d)

¯
u′(t) = max

[
0, w(t)− P̄b(t)

]
,

ū′(t) = min [ū, w(t)−
¯
Pb(t)] .

¯
x1 ≤ x1(t) ≤ x̄1, (17e)

x1(0) = x1,0, (17f)

x2(0) = x2,0, (17g)

x1(tf ) = x1,f . (17h)

The final condition x1(tf ) allows to guarantee that a certain amount of energy will remain in the
battery at the end of the driving cycle. The final state-of-energy x1(tf ) is often assumed to be
equal to x1(0) to allow a fair comparison with respect to the fuel consumption of conventional
vehicles.

The problem statement above is a state and input constrained OCP formulation for the EMS.
As it accounts for the battery thermal modeling, its solutions allows investigating the effect that a
battery operating under low-temperature has on the fuel consumption.

3. Penalty function approach and implicit Hamiltonian minimization approach

This first part of this section explains how (17) can be solved through an equivalent uncon-
strained OCP by means of the penalty function approach. The second part explains how the PMP
optimality conditions can transform the OCP formulation into an equivalent BVP. The optimal
control must be chosen to minimize the Hamiltonian, a given scalar function. Due to the considered
penalties, this minimization cannot be carried out explicitly. Hence, the last subsection focuses on
an implicit minimization scheme.

3.1. Penalty function approach

In the penalty approach, the inequality constraints (17d) and (17e) are taken into account by
extra terms, denoted as penalties, added to the cost functional (17a). These penalties drastically
increase their values, whenever a constraint is violated or close to be violated. These characteristics
force the optimal solution to satisfy the constraints. Consider a function Pz defined as follows:

Pz = P (z) =


(
¯
z − z)n , z ≤

¯
z

(z − z̄)n , z ≥ z̄
0, otherwise.

(18)
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with
¯
z the minimum allowed value for z, z̄ the maximum allowed value for z, and n > 1 a function

parameter. Pz is known as an exterior penalty function, as it only affects the cost-functional when
the constraints have been violated. Define Pu and Px as the exterior penalty functions for the
constraints (17d) and (17e), respectively, and P̃u = φ · Pu, with φ = (1/ū)n. Given (17a), the
penalty approach solves (17) by solving an equivalent unconstrained-OCP:

min Ĵ(u) =

∫ tf

0

[
ϑ · ṁf (u) + d · (1− ϑ) · u2 +

1

ε

(
P̃u + Px

)]
dt, (19a)

subject to:

(17b), (17c), (17f)− (17h), (19b)

where ε is a real positive parameter pondering the penalty functions P̃u and Px. If ε is small
enough, the effect of P̃u and Px increase to force the solution to (19), Ĵ∗, to be approximately
equal to the solution of (17), J∗. Moreover, Ĵ∗ → J∗ as ε→ 0. Therefore, in order to get a fairly
accurate approximation for the solution to (17), it is sufficient to solve (19) for a small enough
value of ε. Proofs on the convergence of the penalty approach are given in [33, 34].

3.2. Optimality conditions

Necessary optimality conditions for (19) can be obtained from the PMP. Before discussing the
PMP necessary conditions, it is necessary to define the Hamiltonian of the OCP, denoted as H.
The Hamiltonian for (19) is given by:

H(u, x, λ|ϑ,w) = ϑ · ṁf + d · (1− ϑ) · u2 +
1

ε

(
P̃u + Px

)
+ λT ẋ (20)

with λ(t) ∈ R2 denoting the vector of co-states and x =
[
x1 x2

]T
denoting the vector of states.

The necessary conditions of optimality for (19) are the following [35]: (i) the optimal control, u∗(t),
minimizes the Hamiltonian for every possible control:

u∗(t) = arg min
u∈R
{H (u, x, λ |ϑ,w)}, (21)

(ii) the co-states obey the following dynamics:

λ̇1(t) = −∂H
∂x1

, (22)

λ̇2(t) = −∂H
∂x2

, (23)

and (iii) the following final value condition for λ2 is met:

λ2(T ) = 0. (24)

It is not always possible to obtain u∗ explicitly. Nevertheless, let us assume by now that an explicit
expression can be computed for u∗ and let us denote this expression as Π(u, x, λ |ϑ,w):

u∗(t) = Π(u, x, λ |ϑ,w). (25)
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On the assumption that an optimal solution exists and that H satisfies the following sufficient
strict convexity condition with respect to u:

∂2H

∂u2
> 0, (26)

the conditions (21)-(24) become necessary and sufficient optimality conditions [36, 37]. Using
(21)-(25), (19) can be formulated as an equivalent boundary value problem (BVP):

ẋ1(t) =
1

Ū ·Q

[
− (w − ϑ ·Π)− Rb(x2)

U2(x1)
(w − ϑ ·Π)2

]
, (27a)

ẋ2(t) =
1

Cb

[
h · (T∞ − x2) +

Rb(x2)

U2(x1)
(w − ϑ ·Π)2

]
, (27b)

λ̇1(t) = −1

ε

∂Px
∂x1

, (27c)

λ̇2(t) = −λ1
∂ẋ1

∂x2
− λ2

∂ẋ2

∂x2
, (27d)

(27e)

λ2(tf ) = 0, , (27f)

(17f)− (17h). (27g)

This BVP can be solved through different numerical methods, e.g. shooting, multiple-shooting, or
collocation [38][39]. Due to its numerical stability, a collocation method is applied in this paper
[39]. It is worth noticing that the use of penalty functions increases the difficulty for minimizing
the Hamiltonian, which is a necessary optimality condition. A solution to overcome this issue is
presented in the following subsection.

3.3. Implicit Hamiltonian minimization

Firstly, consider the minimization of the Hamiltonian with respect to the input signal: opti-
mality condition (21). For an unconstrained input signal and assuming that H satisfies (26), the
optimal control, u∗(t), can be defined from the first order optimality conditions as follows:

u∗(t) =

{
u(t) | ∂H (u, x, λ |ϑ,w)

∂u(t)
= 0

}
. (28)

In general, (28) cannot be solved explicitly and an implicit Hamiltonian minimization can be used.
Let us define q(t) as follows:

q(t) =
∂H (u, x, λ |ϑ,w)

∂u
, (29)

The following equivalent conditions for u∗(t) can be obtained:

q(0) = 0, (30)

q̇(t) = 0, (31)

From (31), it follows:
∂q

∂u
u̇+

∂q

∂x1
ẋ1 +

∂q

∂x2
ẋ2 +

∂q

∂w
ẇ +

∂q

∂ϑ
ϑ̇ = 0,

9



from which the following optimal input dynamics can be computed:

u̇∗(t)=

(
∂q

∂u

)−1( ∂q

∂x1
ẋ1 +

∂q

∂x2
ẋ2 +

∂q

∂w
ẇ +

∂q

∂ϑ
ϑ̇

)
, (32)

Therefore, the explicit minimization of the Hamiltonian can be replaced by (30) and (32), since ∂q
∂u =

∂2H
∂u2

, (26) guarantees that
(
∂q
∂u

)−1
is defined. The methodology applied in order to approximate ẇ

and ϑ̇ is detailed in Appendix B. Considering these new optimality conditions, (19) can be solved
via the following BVP [26]:

ẋ1(t) =
1

Ū ·Q

[
− (w − ϑ · u∗)− Rb(x2)

U2(x1)
(w − ϑ · u∗)2

]
, (33a)

ẋ2(t) =
1

Cb

[
h · (T∞ − x2) +

Rb(x2)

U2(x1)
(w − ϑ · u∗)2

]
, (33b)

λ̇1(t) = −1

ε

∂Px
∂x1

, (33c)

λ̇2(t) = −λ1
∂ẋ1

∂x2
− λ2

∂ẋ2

∂x2
, (33d)

u̇∗(t)=

(
∂q

∂u

)−1( ∂q

∂x1
ẋ1 +

∂q

∂x2
ẋ2 +

∂q

∂w
ẇ +

∂q

∂ϑ
ϑ̇

)
, (33e)

q(0) = 0, (33f)

(17f)− (17h), (27f), (33g)

In the following, the solution to (33) will be denoted as Y (t) =
[
x1(t), x2(t), λ1(t), λ2(t), u∗(t)

]T
.

The dynamics of Y will be denoted as F (Y, t). The idea of computing higher order time derivatives
of the Hamiltonian was also considered in [40]. There, an inversion approach that allows parame-
terizing the OCP using only one higher-order unknown parameter is presented. However, for the
inversion method to be applied an explicit expression for the optimal control is required, which is
not the case for the problem formulation considered in this paper.

4. Numerical solution of the EMS

When the state-of-energy reaches a boundary, the co-state is discontinuous [41]. BVP solvers
cannot easily handle such discontinuities straightforwardly. This section deals with the numerical
details that need to be considered when trying to solve the BVP (33). The first two subsections
discuss the continuation procedure, a numerical routine that breaks down the initial BVP into
a sequence of several simpler sub-problems, starting from an unconstrained one down to a fully
constrained one. Solutions to these sub-problems may temporarily exceed the state and control
limits and as a result, the solutions may lay outside the definition domain of F (Y, t). To deal with
this issue, the third subsection proposes to extend F (Y, t) outside its domain of definition.

4.1. Continuation Procedure

The numerical success of the BVP solver depends on the quality of the provided initial guess
solution. The difficulty of generating a good enough initial guess is overcome by the implemen-
tation of a continuation or homotopy procedure [42, 43]. Before going into the application to the
considered BVP, let us briefly recall how a continuation procedure is implemented in general.
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Let us consider a BVP that depends on some parameters ζ. The objective is to compute a
solution for the parameters values ζN using a BVP solver. The continuation procedure, depicted in
the Algorithm 1, requires an initial guess Y0 derived for some given parameter values ζ0. At each
iteration i > 0 of the continuation procedure, the solution Yi of the BVP is numerically computed
using Yi−1 as an initial guess. The parameters are varied smoothly from their initial value ζ0 to
their final values ζN . The performance of the algorithm depends on the number of steps N and
the update function applied to vary the parameters from ζ0 to ζN .

Algorithm 1: General continuation procedure

Inputs : ζ0, Y0, ζN , N ;
Outputs: YN ;

1 for i = 1 to N do
2 ζi ← update (ζi−1) ;
3 Yi ← solve (ζi, Yi−1) ;

4 end

4.2. Application to the considered problem

In order to solve the BVP (33), first, an initial guess is generated and then several continuation
procedures are used. In order to differentiate the parameters of each continuation procedure, the
following notation is introduced: ζji denotes parameter values at iteration i ∈ {0, 1, . . . , N} of the
continuation procedure described in step j ∈ {a, b, c}.

4.2.1. Step a: generation of an initial solution

The penalty pondering coefficient εa is initially set to a large value so the penalty functions are

negligible. The initial co-states,
[
λ1(0), λ2(0)

]T
are selected such that assumption (26) is satisfied.

Failing to meet this assumption could lead to ∂2H
∂u2

= ∂q
∂u equal to zero, rendering the optimal

control, (33e), undefined. Given (20), (26) is satisfied if λ2(0) ≥ Cb

Ū ·Qλ1(0). The corresponding

initial optimal control u(0) is numerically computed as a solution of q(0) = 0. Given these initial
conditions, a solution is then numerically computed by integrating the differential equations (33a)-

(33e) using an ODE solver. This solution is denoted by Y a(t) =
[
xa1(t), xa2(t), λa1(t), λa2(t), u∗ a(t)

]T
.

4.2.2. Step b: First continuation procedure

The purpose of the first continuation procedure is to bring the final state-of-energy x1(tf ) to
its prescribed final value x1,f and the second co-state final value λ2(tf ) to zero. The penalty
pondering coefficient ε remains unchanged : εb = εa. The continuation procedure parameters are

ζb =
[
x1(tf ), λ2(tf )

]T
. ζb0 is set equal to the final conditions

[
xa1(tf ), λa2(tf )

]T
from the initial

solution Y a. ζbN is set to
[
x1,f , 0

]T
as defined in (17h) and (27f). The parameter update function

is assumed linear, values of ζbi are given by:

ζbi =
ζbN − ζb0
N b

+ ζbi−1, (34)

The output of the continuation procedure is the unconstrained solution to (17). The continua-
tion procedure is summarized in Algorithm 2.

11



Algorithm 2: First continuation procedure.

Inputs : ζb0 =
[
xa1(tf ), λa2(tf )

]T
, Y b

0 = Y a, ζbN =
[
x1,f , 0

]T
, N b;

Outputs: Y b
N ;

1 for i = 1 to N b do
2 ζbi ←

(
ζbN − ζb0

)
/N b + ζbi−1 ;

3 Y b
i ← solve

(
ζbi , Y

b
i−1

)
;

4 end

4.2.3. Step c: Second continuation procedure

The second continuation procedure activates the penalty functions by reducing the value of ε,
thus ζc = ε. ζc0 is set equal to the large value of ε used initially: ζc0 = εb = εa. In order to obtain
a solution that fulfills the constraints, a very small value of ε should be reached at the end of this
continuation procedure : ζcN ≈ 0. The values of ζci are chosen to be varied exponentially. The
continuation procedure can be summarized in the following algorithm:

Algorithm 3: Second continuation procedure.

Inputs : ζc0, Y
c

0 = Y b
N , ζ

c
N = 1 · 10−9, N c;

Outputs: Y c
N ;

1 α← (ln(ζcN )− ln(ζc0)) /N c ;
2 for i = 1 to N c do
3 ζci ← eα · ζci−1 ;
4 Y c

i ← solve
(
ζci , Y

c
i−1

)
;

5 end

The output of the second continuation procedure is the solution to constrained BVP (33). The
general numerical procedure presented in this subsection is summarized in Fig. 4.

Step a

λ(0)
s.t. (26)

ODE solver
Y a

Step b

Algorithm 2

BVP solver

BVP (33)

Y b
N

Step c

Algorithm 3

BVP solver

Y c
N

solution to
BVP (33)

ODES +
initial conditions:

(33a)-(33f),(17f),(17g)

Figure 4: Overview of Step a, Step b, and Step c.

4.3. Function extension

The dynamics F (Y, t) is not defined for U(x1) = 0 due to the term of 1/U(x1) in (8) and (11).
As the only constraint for the initial co-states, used to generate the initial solution in Step a, is
to satisfy (26), the states may reach values outside the definition domain of F . As a consequence,

12



Step a and b may not be feasible. Moreover, even in Step c, the BVP solver may require to evaluate
F (Y, t) outside its definition domain. To overcome the latter problems, F (Y, t) is extended outside
its definition domain and the resulting function is denoted by Fext(Y, t) ∈ R5. F and Fext are
identical for all Y ∈ Yfeas. Fext is obtained by replacing f(x1) = 1/U(x1) : (−ax1/bx1 ,+∞] → R+

by fext(x1 | x̃1) : R→ R+, with:

fext(x1 | x̃1) =

{
1/U(x1), if x1 ≥ x̃1

g(x1), otherwise
(35)

g(x1) =1/U(x̃1) + (x1 − x̃1)
d (1/U(x1))

dx1
+

1

2
(x1 − x̃1)2 d2 (1/U(x1))

dx2
1

, (36)

where x̃1 is a scalar to be chosen from the interval (−ax1/bx1 , ¯x1].
This extension is based on the Taylor series expansion and its generalization to terms depending

on n ∈ N variables is given in Appendix A.
The Taylor-based function extension (35)-(36) preserves the convexity properties of the original

function and thus guarantees that the Hamiltonian satisfies (26), which in turn guarantees that
the solution remains unique and that (33e) is well defined. Choosing x̃1 =

¯
x1 = 0.1, 1/U(x1) and

fext(x1 | x̃1) are shown in Fig. 5 along with x1 = −ax1/bx1 , the limit of the definition domain for
1/U(x1).

-25 -20 -15 -10 -5 0
0

2

4

6

8

Figure 5: 1/U(x1) (blue line), its function extension fext(x1 | x̃1) (black line), the limit of the definition domain of
1/U(x1): x1 = −ax1/bx1 (red dotted line), and x̃1 =

¯
x1 = 0.1 (green dotted line).

5. Numerical Results

Considering the vehicle parameters contained in Table 1, the offline-EMS is solved under low-
temperature and warm operation conditions in order to study the effect of the battery temperature
on the fuel consumption.
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Parameter Value Units

Meq 2166 kg

Af 1.98 m2

cd 0.32 -

cr 0.01 -

γ 4.2 -

rw 0.26 m

g 9.81 kg·m/s2

Jtm 0.045 kg·m2

¯
I −40 A

Ī 40 A

ax1 653.85 V

bx1 27.14 V

Q 1800 A·s
h 4.343 W/K

Cb 142.56 kJ/K

a 0.2924 g/s

b 0.0834 g
kW·s

c 0.0055 g
(kW)2·s

d 1 g
(kW)2·s

ū 17.5 kW

Table 1: Parameters considered in the numerical experiments.

5.1. Low-temperature operation

The low-temperature operation is defined here as starting the vehicle with T∞ = 253.15 K (−20
◦C), where T∞ is assumed to remain constant along the entire driving cycle. At the beginning of the
driving cycle, the following assumption holds: x2 = T∞. Considering the WLTC-C3 driving cycle,
the optimal offline-EMS defined in (17) is solved via the equivalent BVP (33) using a collocation
solver [39] and the numerical procedure and function extension described in Section IV.

First, the initial guess Y a is generated as described in Step a using λ(0) =
[
1.4 · 105 1.45 · 105

]T
and the initial penalty pondering coefficient εa = 1 · 1012. The obtained initial solution Y a is de-
picted in Fig. 6. The state-of-energy reaches negative values, showing that the initial guess does
not necessarily have a physical meaning.

The final conditions from Y a,
[
xa1(tf ), λa2(tf )

]T
=
[
−7.3, 5.32 · 106

]T
, are applied at the begin-

ning of Step b: ζb0 =
[
xa1(tf ), λa2(tf )

]T
. Step b allows computing a solution that reaches the expected
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Figure 6: Initial guess Y a generated in Step a for the WLTC-C3 driving cycle.
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Figure 7: Unconstrained solution to (17) for the low-temperature operation and the WLTC-C3 driving cycle. The
fuel consumption is 9.53 L/100 km. The dashed lines at the top and bottom subfigures represent the bounds on the
state-of-energy and the control input, (17e) and (17d), respectively.

final state-of-energy and the necessary final condition for the second co-state: ζbf = [x1(tf ), 0]T .

Its output Y b
N , shown in Fig. 7, is the solution to EMS (17) without constraints, since the penalty

functions are negligible: εb = εa = 1 · 1012.
The output of Step b, Y b

N , is fed into Step c: Y c
0 = Y b

N . Step c is used to activate the
penalty functions. The initial penalty pondering coefficient is set to the same value of Step b:
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Figure 8: Constrained solution to (17) for the low-temperature operation and the WLTC-C3 driving cycle. The fuel
consumption is 9.85 L/100 km. The dashed lines at the top and bottom subfigures represent the bounds on the
state-of-energy and the control input, (17e) and (17d), respectively.

ζc0 = εc0 = εb = 1 · 1012. The final penalty pondering coefficient is set to a small positive value:
εcN = 1 · 10−9. The output of Step c, Y c

N , is the solution to constrained EMS (17) and is shown in
Fig. 8. It allows computing the fuel consumption for the low-temperature operation : 9.85 L/100
km.

The constrained solution for the EMS, Fig. 8, shows a discontinuity phenomenon for λ1(t).
This phenomenon is to be expected, whenever a state makes contact with its bounds [41]. It is
worth noticing that the procedure proposed in this work does not require any a priori knowledge
about these discontinuities.

5.2. Warm versus low-temperature operation

Here, the fuel consumption of the low-temperature operation will be compared with an ideal
warm operation. The warm operation is defined as T∞ = 298.15 K (25 ◦C), with T∞ assumed
constant along the entire driving cycle. At the beginning of the driving cycle x2 = T∞ holds.
Moreover, in the warm operation, the dynamics of the battery temperature is considered to be
equal to zero; on the assumption that a cooling system is in place to keep x2 ≈ 298.15 K (25
◦C) along the entire driving cycle. The offline-EMS is solved under warm operation conditions
using the same vehicle parameters of the low-temperature operation. The fuel consumption for
each operation is shown in Table 2. The low-temperature operation increases the fuel consumption
with respect to the ideal warm operation in a 4.01%.

5.3. Comparison with DP

The optimal energy management for the low-temperature operation will be solved again using
DP. The objective is to validate the optimality of the proposed approach and to benchmark its
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Operation
Fuel consumption

(WLTC-C3)
Difference

Warm 9.47 L/100 km -

Low-temperature 9.85 L/100 km +4.01 %

Table 2: Fuel consumption results for each operating condition.

computational efficiency. As mentioned in Section 1, DP has been widely used to solve the EMS
in the literature of hybrid electric vehicles [11][12]. Its advantages are that it can solve the EMS
with mixed input-state constraints and with a guarantee of global optimality. Its main drawback
is that it has an exponential growth of memory and computational complexity with respect to the
number of states, denoted as the curse of dimensionality [10]. For this reason, its use is limited to
EMS formulations with one [11] or two states [13]. The DP algorithm is implemented using the
Matlab code from [44], together with the iterative approach described in [45]. The results of the
DP solution to (17) are displayed in Fig. 9 along with the solution computed with the proposed
approach. The fuel consumption and computation times are compared in Table 3. The proposed
approach is 46 times faster than DP but obtains +0.4% more fuel consumption as well. The small
difference in fuel consumption can be due to the limited accuracy that DP posses as a consequence
of the quantization of all variables and the Euler integration scheme in which it relies on.
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Figure 9: Solution to (17) for the low-temperature operation and the WLTC-C3 driving cycle with DP (green solid
line) and the proposed implicit Hamiltonian minimization (black solid line). The dashed lines at the top and bottom
subfigures represent the bounds on the state-of-energy and the control input, (17e) and (17d), respectively.

17



Method
Fuel DP

(WLTC-C3)
Computation time (s) Difference

DP 9.81 L/100 km 6.187 · 104 -

Implicit Hamiltonian minimization 9.85 L/100 km 1.319 · 103 + 0.4 %

Table 3: Fuel consumption and computation time for DP and the proposed implicit Hamiltonian minimization under
low-temperature conditions.

6. Conclusion

An indirect-approach method to compute the optimal offline EMS of a hybrid vehicle with
several continuous states and under input and state constraints has been proposed. The indirect-
approach method relies on exterior penalty functions and an implicit Hamiltonian minimization to
handle the constraints and solve the PMP optimality conditions. A continuation procedure and a
domain function-extension are also proposed to deal with the difficulties of computing a numerical
solution. The proposed method does not require any a priori knowledge on the optimal solution
and can be applied to EMS formulations with several inputs and states.

The proposed method is shown effective by solving the offline EMS of a hybrid vehicle under
low-temperature conditions modeled as a two-state, the battery state-of-energy and temperature,
mixed input-state constrained problem. The optimality of the solution is validated by obtaining
an slightly different solution via DP. The small difference is not surprising since in DP all variables
are quantized, which limits the accuracy of the solution. Moreover, the proposed method shows to
be up to 46 times faster than DP.

One possible extension of this work is to apply it to a more general EMS formulation, for
example, one that includes the engine and the catalytic converter temperature in order to include
the emission of pollutants in its objective function [2, 46]. Another possible extension is to derive
a real-time EMS approach based on a model predictive control scheme. The concept of an MPC
scheme based on a stochastic prediction model and the solution of the BVP obtained from the
PMP has been already explored in the literature [47].

Appendix A. Function extension with multiple variables

Let us consider fi ∈ Xi ⊂ Rni , where Xi is a convex region and fi is C∞. The Taylor series
expansion of fi around of x̃ is defined as follows:

fi(x) =fi(x̃) + (x− x̃)T ∇fi(x̃)+

+
1

2
(x− x̃)T ∇2fi(x̃) (x− x̃) + . . .

With ∇fi and ∇2fi defined as the gradient and Hessian matrix of fi, respectively. Given x̃ ∈ ∂Xi,
and y 6∈ X, the domain of fi is extended outside Xi by the following function:

gi(y) = fi(x̃) + (y − x̃)T ∇fi(x̃) +
1

2
(y − x̃)T ∇2fi(x̃) (y − x̃) , (A.1)

where x̃ is defined as the closest point on the boundary of Xi, ∂Xi, with respect to y.
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Appendix B. Piecewise polynomial approximation of the the power demand and the
On/Off signal command

The time derivatives of the power demand, ẇ(t), and the On/Off command of the APU, ϑ̇(t),
are necessary to compute the optimal control dynamics u̇∗(t), see (33e). Since these signals are
not available, a monotone piecewise cubic interpolation [48] is applied to w(t) and ϑ(t) in order to
approximate them. The interpolating polynomials of w(t) and ϑ(t), denoted as pw(t) and pϑ(t),
respectively, are guaranteed to be at least once continuously differential. The difference between
the signals and its piecewise cubic approximations can be arbitrarily reduced by increasing the
number of interpolating points at the cost of a greater computational effort.

The computation of the interpolating polynomials is carried out using a predefined Matlab
function: pchip. Once pw(t) and pϑ(t) have been computed, ṗw(t) and ṗϑ(t) are used to approximate
ẇ(t) and ϑ̇(t), respectively.
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