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Observer-Based Tracking design using H∞ criteria : Application to

Eco-driving in a Tramway System

Yassine Boukala, Simon Enjalberta

aUniv. Valenciennes, CNRS, UMR 8201 - LAMIH - Laboratoire d’Automatique de Mécanique et

d’Informatique Industrielles et Humaines, F-59313 Valenciennes, France

Abstract

This paper investigates an H∞ Observer-Based Controller design for tracking a tramway system

eco-driving trajectory. The model of the tramway system is given in state space form, and the

poor manoeuvres of the of the driver when following a reference trajectory are modelled as dis-

turbances with finite energy that affect the system dynamics. To minimize the impact of poor

driver manoeuvres, an H∞ Observer-Based Tracking Controller (H∞-OBTC) was designed and

its conditions of existence are given. In addition, to ensure the robust convergence of the esti-

mation and the tracking errors simultaneously, a new sufficient condition was obtained based on

the Bounded Real Lemma. Two algorithms are presented to solve the robust stability condition

obtained. The first one is based on a two-step procedure. Then a linearisation approach was

used to present the robust stability condition of the errors as a convex optimization problem

with a Linear Matrix Inequality (LMI) constraint.

The gain matrices of the H∞-OBTC can be computed by solving the LMI given, subject to

a minimization constraint.

Keywords: H∞ Observer applications, LMI, Tracking strategy, Minimization of energy

consumption, Tramway system.

1. Introduction

In recent years, many researchers have been attracted by the significant increase in the

volume of railway traffic and pollutant particle emissions, which is one of the reasons why

the issue of speed profiling has become a new problem with specific characteristics that must

be resolved. Generally, the goal is to optimize energy consumption and/or running times by
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introducing one or several objectives. The question of speed profiling is thus a specific issue that 

must be handled in the development phase of eco-aware transportation systems (see [1, 2, 3, 4, 5] 

and the references therein).

The main goal of the feedback controller design is to stabilize unstable systems or to improve 

stability in the presence of transient phenomena that do not fade quickly. From a practical 

point of view, knowledge of all states is not available all the times. This explains the interest 

of reconstructing the missing states using state observers (see [6, 7, 8, 9, 10] and the refer-

ences therein). Several studies [11, 12, 13, 14, 15] have dealt with designing different kinds of 

observers.

In [16], it was noted that taking into account certain factors such as energy efficiency and 

reducing maximum load lowers overall energy consumption. In [17, 18], the authors modelled 

train driver behaviour to facilitate the development of Advanced Driver Assistance Systems [19] 

based on the definition of a trajectory profile to reduce energy consumption. The presence of 

human/vehicle uncertainties and disturbances makes the conception and design of the control 

law more complicated [20]. These studies show the motivations and the benefits of this work, 

which is the continuity of the study initiated in [21] on the tram-driver system eco-driving 

command.

This work presents a theoretical contribution to avoid the impact of poor driver manoeu-

vres or behaviour when maintaining the reference tramway system eco-driving speed; These 

are considered as disturbances with finite energy that affect the system dynamics. To resolve 

the trajectory-tracking problem, we consider an H∞ Observer-Based Tracking Controller with 

two objectives. The first is to ensure the robust estimation of the internal state of the tramway 

system despite poor driver behaviour. The second is to generate a controller law based on 

the estimation obtained to track the reference tramway eco-driving speed. The conditions of 

existence of the proposed observer are formulated and the robust stability of the estimation 

and the tracking errors is given as an LMI problem subject to a minimization problem.

The paper is organized as follows. In section 2, we provide some definitions and useful lemmas 

for the computation of the H∞-norm of a linear system represented in state space form, or by its 

transfer function. In section 3, the state space representation of the tramway mathematical model 

is formulated. In addition, the eco-driving trajectory tracking problem is
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formulated and presented as an H∞-OBTC design. The main results are presented in section 4, 

where the problem of the existence of an OBC for the tramway system is formulated, and a 

necessary and sufficient condition for the existence of such an observer-based controller is given. 

The second part of section 4 is dedicated to the design of the H∞-OBTC, where sufficient 

conditions for robust stability of the estimation errors are presented as both BMI and LMI 

formulations. The effectiveness of the proposed method is shown in section 5 through numerical 

simulation. Moreover, the proposed method is discussed and some prospects for this work are 

given. Finally, concluding remarks regarding the results are given in section 6.

Notations: Hereinafter, Rn and Rn×m denote the n dimensional Euclidean space and the 

set of all n × m real matrices, respectively; AT denotes the transpose of matrix A; matrix A is 

symmetric positive definite if and only if AT = A and A > 0. Matrix A+ denotes the generalized 

inverse of matrix A which satisfies AA+A = A; ‖.‖2 is the L2 norm; ‖.‖∞ is the H∞ norm; I 

and 0 denote the identity matrix and zero matrix of appropriate dimensions, respectively. In is 

the identity matrix of dimensions n × n; Sym{X} is used to denote XT + X . The notation (∗) 

corresponds to the conjugate transpose of the off-diagonal part, and diag{A, B} denotes the 

diagonal matrix whose diagonal elements are matrices A and B.

2. Fundamentals

In the following, we introduce the state space representation of a disturbed linear system

as

ẋ(t) = A0x(t) +B0w(t) (1a)

z(t) = C0x(t) +D0w(t) (1b)

where x ∈ R
n denotes the state vector, w ∈ R

m is the disturbance input, and z ∈ R
p is the

controlled output. A0, B0, C0 and D0 are known constant matrices of appropriate dimensions.

The corresponding transfer matrix from w to z is defined as

Z(s) = Tzw(s)W (s) (2)

where W (s) and Z(s) are the Laplace transforms of w and z with zero initial conditions i.e

x(t) = 0, ∀t ≤ 0. Hence, we have

Tzw(s) = C0(sI −A0)
−1B0 +D0 (3)
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Definition 1. Let w be the disturbance input. The signal w is of finite energy and belongs to

L2 if the following norm is bounded:

‖w‖2 =

(∫ ∞

0

w(t)Tw(t)dt

) 1

2

(4)

This norm can be interpreted as the energy of the disturbance input w. �

Definition 2. System (1) has an H∞-norm less than a positive scalar γ, i.e. ‖Tzw(s)‖∞ < γ, if

it is stable and the following minimization problem is satisfied for any disturbances w belonging

to L2 and with zero initial conditions:

minimize
γ>0

subject to

J =

∫ ∞

0

zT (τ)z(τ) − γ2 wT (τ)w(τ)dτ < 0 (5)

�

The positive scalar γ given in Definition 2 can be interpreted as an upper bound of the

L2-gain between the disturbance input w and the output z. The solution to the problem (5)

can be obtained from the bounded real lemma [22] and is given by the following lemma

Lemma 1. [22] System (1) is asymptotically stable for w = 0 and ‖Tzw(s)‖∞ < γ, for w 6= 0,

if and only if there exists a symmetric positive definite matrix P and a positive scalar γ such

that the following LMI condition is satisfied




Sym{PA0} PB0 CT
0

⋆ −γI DT
0

∗ ⋆ −γI



< 0 (6)

Now, we can give the following standard lemma used in robust control.

Lemma 2. [23] Let D, E and F be real matrices of appropriate dimensions and F satisfies

F TF 6 I. Then for any scalar ǫ > 0 and vectors x, y ∈ R
n, we have

2xTDFEy 6 ǫ−1xTDDTx+ ǫyTETEy (7)
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3. Problem Formulation & Mathematical model

3.1. Problem Formulation

In the literature, the eco-driving problem is often considered as an optimal control problem 

where its solution leads to the definition of a speed profile that minimizes energy consumption for 

a given trip. This is only valid in the case of an autonomous vehicle. In our case, the trams are not 

autonomous systems, i.e. the presence of a driver is needed. In fact, the driver has to follow a 

speed trajectory obtained as a solution to the optimal control problem of an autonomous system.

In reality, driver control is not perfect, which leads to a higher consumption in most cases. To 

overcome this impediment, some researchers have tried to develop new approaches and concepts 

based on heuristic rules or good practices that are associated with energy-efficient driving [24]. 

Other existing concepts have also been applied to try to implement eco-driving within a more 

rigorous framework. Moreover, some of these concepts are predictive, because they are based on 

the estimation of future external behaviour, while the others are based on information collected in 

real time, generally extracted from vehicle sensors, and include approaches such as predictive 

control [25, 26], as well as driver behaviour identification [27, 28]. The disadvantage of these 

algorithms is that they are executed online, i.e. the controller parameters are computed in real-

time, while the convergence of these algorithms is not guaranteed, which represents additional 

energy consumption during the trip, because these algorithms need a lot of time and energy due to 

the high number of operations.

The main idea of this work is to adress this problem by applying an other existing approach 

that has demonstrated its effectiveness in several areas [29, 30, 31, 32, 33]: tracking based on an 

observer who estimates the states of a disturbed system. All the observer and controller 

parameters are computed offline and it is assumed that the undesirable effect of the driver is 

bounded. This makes sense since the driver must respect imposed constraints, such as the speed 

limit and road geometry.

3.2. Mathematical model

The main objective of this section is to present the mathematical model of the tramway 

system dynamics as well as the state space representation of the system that generates the 

trajectory to be tracked. The eco-driving trajectory tracking problem is then formulated as an 

H∞-OBTC design.
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The tramway system dynamics are modelled to control the tram position and speed at

any time along the defined path between two stations. This modelling requires knowledge of

some basic parameters such as the traction and brake intensities, adhesion coefficient, and track

profile, as well as weather conditions such as wind speed. Usually, the brake and traction curves

are given by the constructor.

By applying Newton’s fundamental law to the tramway system, we obtain its dynamic

equation which states the relation between the forces exerted on the system, its mass m and

acceleration v̇ = p̈

mv̇ = FT (v)− FR(v) (8)

where FT (v) is the tractive effort that the tram produces in the running phase, and FR(v)

represents the resistance which is the sum of the line FRl(v) , curve FRc(v) and vehicle FRm(v)

resistances. The latter are given as

FRl = mg sin(β) (9a)

FRc = mg
ke

rc
(9b)

FRm(v) = a0 + b0v + c0v
2 (9c)

From equations (9), we can see that the line resistance FRl(v) depends on the train mass, the

slope angle β, and the gravity constant g. Furthermore, the curve resistance FRc(v) concerns

when a tram passes through some sloping portions of track, and depends on the track gauge

coefficient ke and the curvature radius rc. In addition, due to the low value of c0 and the

relatively low velocity range [vmin; vmax], the vehicle resistance FRm(v) countering the movement

of the tram can be approximated by the following a1 + b1v(t) using the least squares method.

The tramway system dynamics can now be represented in a state space model as

ẋr(t) = Axr(t) +Buur(t) + dr (10a)

yr(t) = Cyxr(t) (10b)

where

xr(t) =


p(t)

v(t)


 , A =


0 1

0 − b1
m


 , Bu =


 0

1
m
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Cy =
[
1 0

]
, dr =




0

−
(

a1
m
+ g sin(β) + g ke

rc

)




In this work, to introduce the poor behaviour when following a reference eco-driving trajec-

tory for the tramway system (10) defined as xr(t), a new input w(t) can be considered when

modelling this kind of system. The new input w(t) is considered as disturbances with finite

energy representing poor driver behaviour that affects the the tramway system dynamics.

ẋ(t) = Ax(t) +Buu(t) + dr +Bww(t) (11a)

y(t) = Cyx(t) (11b)

where the disturbance w(t) models the poor manoeuvres or behaviour of the driver, x ∈ R
n is

a state vector, u ∈ R
m is the input vector, and y ∈ R

q is the measurement output vector. A,

Bu, Bw and Cy are known matrices of appropriate dimensions.

The main idea of this work is to avoid the impact of the new input w(t), which models the

disturbances caused by the poor tram driver manoeuvres or behaviour, by rigorously following

the reference trajectory. Therefore, an H∞-OBTC is considered and has the following form

η̇(t) = Nη(t) +Huu(t) + Jyy(t) +Mdr (12a)

x̂(t) = η(t) + Eyy(t) (12b)

u(t) = ur(t)−Ku(xr(t)− x̂(t)) (12c)

where η ∈ R
n is the internal state vector of the observer, x̂ ∈ R

n is the estimate of x, u ∈ R
m

is the feedback control law, and ur ∈ R
m is the input reference. Matrices N , Hu, Jy, M , Ey,

and Ku are unknown and of appropriate dimensions which must be determined.

The tracking problem can be summarized as finding an appropriate control input u(t) such

that the estimation error ex̂(t) = x(t)− x̂(t) and the tracking error ex(t) = xr(t)−x(t) converge

to 0 if the tram driver follows the instructions but otherwise minimizes the effect of the input

w(t) on the estimation errors.
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4. Main results

4.1. Observer-based Tracking Controller parametrization

To generate a linear feedback control law (12c), the proposed H∞ observer (12a-12b) must

ensure xr trajectory tracking despite the presence of disturbances in the system (11), where xr

is the state of the reference system (10).

The errors are defined as

e(t) =


ex(t)

ex̂(t)


 =


xr(t)− x(t)

x(t)− x̂(t)


 (13)

where ex and ex̂ represent the tracking and the estimation errors, respectively.

The error dynamics are obtained by differentiating each component of (13)

ėx(t) = ẋr(t)− ẋ(t)

= (A+BuKu)ex +BuKuex̂(t)− Bww(t) (14)

ėx̂(t) = ẋ(t)− ˙̂x(t)

= Nex̂(t) + (RA−NR − JyCy︸ ︷︷ ︸
=0

)x(t)

+ (RBu −Hu︸ ︷︷ ︸
=0

)u(t) + (R−M︸ ︷︷ ︸
=0

)dr +RBww(t) (15)

ėx̂(t) = Nex̂(t) +RBww(t)

where R = In − EyCy.

We obtain

ė(t) =


ėx(t)

ėx̂(t)


 =


(A+BuKu)ex +BuKuex̂(t)− Bww(t)

Nex̂(t) +RBww(t)




=



(A+BuKu) +BuKu

0 Nex̂(t)







 ex(t)

ex̂(t))



+



−Bw

RBw



w(t) (16)

Proposition 1. System (12) is an H∞-OBTC for system (11) with respect to Definitions 1

and 2 for any initial conditions of x and the estimated x̂ if gain matrices N , J , H, E, Ku and

Ku exist such that

i) The L2-gain of estimation error (16) is bounded by γ > 0.
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ii) NR + JyCy − RA = 0

iii) Hu = RBu

iv) M = R

where R = In −EyCy.

The design of the H∞-OBTC can be summarized as follows: find matrices N , Ey, Jy, M

and H such that conditions (i)-(iv) are satisfied.

Remark 1. Once matrix Ey is computed, the gain matrices H and M can be easily deduced

from conditions (iii) and (iv) in Proposition 1. �

Firstly, by using the definition of R, equation (ii) is rewritten as

N +KCy + EyCyA = A (17)

where K = Jy −NEy.

In addition, equation (17) can be written in a compact form as a linear system given as

[
N K Ey

]




In

Cy

CyA




︸ ︷︷ ︸
M1

=
[
A

]

︸︷︷︸
M2

(18)

which can be solved easily.

The necessary and sufficient condition for the existence of the solution to (18) is given by

the following lemma.

Lemma 3. [34] A solution to (18) exists if and only if

rank


M1

M2


 = rank

[
M1

]
. (19)

�

Remark 2. M1 is a full column rank matrix, which implies that condition (19) is always

satisfied. �

9



Then, the general solution to (18) is given by

[
N K Ey

]
= M2M

+
1 − Z(I −M1M

+
1 ) (20)

where M+
1 is a generalized inverse matrix of M1 [34] (i.e M1 = M1M

+
1 M1) and Z is an

arbitrary matrix of appropriate dimensions.

From (20), we obtain

N = AN − ZBN (21a)

K = AK − ZBK (21b)

Ey = AEy
− ZBEy

(21c)

R = AR − ZBR (21d)

where

AN = (M2M
+
1 )

[
I 0 0

]T

BN = (I −M1M
+
1 )

[
I 0 0

]T

AK = (M2M
+
1 )

[
0 I 0

]T

BK = (I −M1M
+
1 )

[
0 I 0

]T

AEy
= (M2M

+
1 )

[
0 0 I

]T

BEy
= (I −M1M

+
1 )

[
0 0 I

]T

AR = In − AEy
Cy

BR = −BEy
Cy

Matrices Jy, H and M are deduced directly from the matrix gain Ey as

Jy = K +NEy (22a)

H = (In − EyCy)Bu (22b)

M = (In − EyCy) (22c)

Now, all gain matrices of (12a-12b) can be computed from the gain matrix parameter Z,

such that all the constraints (ii), (iii) and (iv) in Proposition 1 are satisfied.

Moreover, using gain matrices (21a) and (21d), the dynamics of estimation error (16) can

be rewritten in new compact form as
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ė(t) = Ãe(t) + B̃w(t) (23)

ỹ(t) = C̃e(t) + D̃w(t) (24)

where

Ã =


(A− BuKu) −BuKu

0 (AN − ZBN)


 (25)

B̃ =



 −Bw

(AR − ZBR)Bw



 (26)

C̃ = I2n (27)

D̃ = 0 (28)

e(t) =


ex(t)

ex̂(t)


 (29)

Remark 3. In the next section, the design of H∞-OBTC (12) is reduced to find the matrix Z,

which satisfies condition (i) of Proposition 1. �

4.2. Observer-based Tracking Controller design

This section concerns the robust stability analysis problem for the dynamics of estimation

error (23) using the bounded real Lemma 1. The impact of the disturbances w(t) on the

estimation error e(t) is minimized if the cost function (5) in Definition 2 holds, where L2-gain

is given by γ.

In this theoretical part, we study the problem in a general way. That is, we propose two

algorithms to solve the matrix inequalities obtained. In addition, the observer and controller

gain matrices can be deduced from the solutions obtained.

4.2.1. Formulation of the robust stability analysis problem in a BMI form

Firstly, a sufficient condition for the robust stability of the dynamics of the estimation error

(23) is given in the following theorem.

Theorem 1. The system described by (12) is an H∞-OBTC of system (10) if there are two pos-

itive definite matrices P1 and P2, matrices Y1 and Y2, and a minimal positive scalar attenuation
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γ satisfying the following matrix inequality:



Π11 Π12 Π13

⋆ −γI 0

⋆ ⋆ −γI



< 0 (30)

Π11 = Sym







(AP1 −BuY1) −BuKu

0 (P2AN − Y2BN)









Π12 =


 −Bw

(P2AR − Y2BR)Bw




Π13 = diag{P1, In}

Y1 = KuP1

Y2 = P2Z

Moreover, the matrix parameter Z and the controller Ku gain are deduced from the expression

of Y1 and Y2, respectively. In addition, all the gain matrices of system (12) can be computed

by equations (21 and (22) . �

Proof. By letting P = diag{P−1
1 , P2}, A0 = Ã, B0 = B̃, C0 = C̃ and D0 = D̃ where the system

matrices Ã, B̃, C̃ and D̃ are given in (25), inequality (6) given in Lemma 1 can be rewritten as
[

Sym

{[

P−1

1
0

0 P2

][

(A−BuKu) −BuKu

0 (AN−ZBN )

]} [

P−1

1
0

0 P2

][

−Bw

(AR−ZBR)Bw

]

diag{In,In}

⋆ −γI 0
⋆ ⋆ −γI

]
< 0 (31)

Inequality (31) is equivalent to
[

Sym

{[

(P−1

1
A−P−1

1
BuKu) −P−1

1
BuKu

0 (P2AN−P2ZBN )

]} [

−P−1

1
Bw

(P2AR−P2ZBR)Bw

]

diag{In,In}

⋆ −γI 0
⋆ ⋆ −γI

]
< 0 (32)

Now, we can easily deduce that inequality (30) is obtained by pre- and post-multiplying in-

equality (32) by suitable matrices given as diag{P1, I, I, I, I} and diag{P1, I, I, I, I}
T .

[
Sym

{[

(AP1−BuKuP1) −BuKu

0 (P2AN−P2ZBN )

]} [

−Bw

(P2AR−P2ZBR)Bw

]

diag{P1,In}

⋆ −γI 0
⋆ ⋆ −γI

]
< 0 (33)

From the above results, we can deduce a sufficient condition ensuring that the L2-gain of system

(12) is bounded by γ as follows: if the are two positive definite matrices P1, P2, two matrices

Ku and Z, and a positive scalar γ such that the matrix inequality (30) holds then the L2-gain

is bounded by γ, which completes the proof.
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Remark 4. It is easy to remark that the H∞ observer-based control synthesis problem given by

inequality (30) is a non convex problem. This is due to the presence of the isolated variable Ku

and a new decision variable Y1, which is a product between the two decision matrices P1 and

Ku. This leads to a Bi-linear Matrix Inequality (BMI) structure. Then, inequality (30) can not

be solved for (P1, P2, Ku, Y1, Y2) at the same time.

To overcome the problem mentioned in Remark 4, a two-step algorithm procedure can

be used (see [35, 10] and references therein). We start by solving the first component of

inequality (30). In the second step, after computing matrices P1 and Y1, which satisfy the first

component of inequality (30), we replace them in inequality (30) with the numerical values

obtained resulting in an LMI formulation. Finally, the LMI obtained is solved using any free

solver.

4.2.2. Formulation of the robust stability analysis problem in LMI form

The easiest algorithm for solving matrix inequalities is to convert them to LMI. A convex

objective function can thus solved with convex constraints.

The following Theorem allows us to obtain an optimization problem given in LMI form, by

increasing the non-linear term and removing the isolated variable when analysing the robust

stability of the estimation error dynamics (23).

Theorem 2. The system described by (12) is an H∞-OBTC of system (10) if there are two

positive definite matrices P1 and P2, matrices Y1 and Y2, and a minimal positive attenuation

scalar γ satisfying the following LMI subject to an optimization problem

min (γ > 0) subject to





Ω11 Ω12

⋆ Ω22





P1Λ1

Λ2



T

⋆


−P1 0

0 −P1







< 0 (34)
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where

Ω11 =


Sym{(AP1 +BuY1)} 0

⋆ (P2AN − Y2BN )


 (35)

Ω12 =




−Bw P1 0

(P2AR − Y2BR) 0 I


 (36)

Ω22 =




−γI 0 0

⋆ −γI 0

0 −γI




(37)

Λ1 =
[
KT

u B
T
u 0 0 0 0

]
(38)

Λ2 =
[
0 I 0 0 0

]
(39)

Y1 = KuP1 (40)

Y2 = P2Z (41)

Moreover, the matrix parameter Z and the controller Ku gain are given by Z = P−1
2 Y2 and

Ku = Y1P
−1
1 , respectively. In addition, all the gain matrices of system (12) can be computed

by equations (21) and (22) . �

Proof. We start by replacing matrices A0, B0, C0, and D0 in inequality (6) by the expres-

sions given in the augmented system (23) Ã, B̃w, C̃, and D̃, respectively, and matrix P by

diag{P−1
1 , P2}. The expression of inequality (6) given in Lemma 1 can be rewritten as

[
Sym

{[

P−1

1
0

0 P2

][

(A−BuKu) −BuKu

0 (AN−ZBN )

]} [

P−1

1
0

0 P2

][

−Bw

(AR−ZBR)Bw

]

diag{In,In}

⋆ −γI 0
⋆ ⋆ −γI

]
< 0 (42)

Now, pre- and post- multiplication of inequality (42) obtained with matrices diag{P1, I, I, I, I}

and diag{P1, I, I, I, I}
T , respectively, lead to an inequality represented as the sum of a matrix

with a new decision variable Y1, which is a product between P1 andKu, and a matrix containing

the isolated variables Ku given as


Ω11 Ω12

⋆ Ω22


+ Sym{ΛT

1Λ2} < 0 (43)
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where

Ω11 =


Sym{(AP1 +BuY1)} 0

⋆ (P2AN − Y2BN )




Ω12 =




−Bw P1 0

(P2AR − Y2BR) 0 I




Ω22 =




−γI 0 0

⋆ −γI 0

0 −γI




Λ1 =
[
KT

u B
T
u 0 0 0 0

]

Λ2 =
[
0 I 0 0 0

]

Y1 = KuP1

Y2 = P2Z

Inequality (43) is not an LMI. The main idea to make this inequality linear and overcome

this problem is to use Lemma 2 to eliminate the isolated variableKu with respect to the decision

variables P1 and Y1. Consequently, we obtain

Sym{ΛT
1Λ2} ≤ −



P1Λ1

Λ2




T 

−P1 0

0 −P1




−1

P1Λ1

Λ2



 (44)

Then, from inequalities (43) and (44), and by using the Schur lemma, the following LMI is

obtained: 



Ω11 Ω12

⋆ Ω22





P1Λ1

Λ2



T

⋆


−P1 0

0 −P1







< 0 (45)

which is the same as inequality (45) given in the optimization problem of Theorem 2.

The robust stability of the estimation error and the tracking error given by (16) is satisfied

if the optimization problem (45) has a solution. This completes the proof.
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5. Numerical Simulations

5.1. Solving optimization problems with LMI or BMI constraints

Consider the following state space representation that models the tramway dynamics

ẋ(t) = Ax(t) +Buu(t) + dr +Bww(t) (46a)

y(t) = Cyx(t) (46b)

where the disturbance w(t) models the poor manoeuvres or behaviour of the driver, the com-

ponents of the state vector x ∈ R
2 are position p(t) and speed v(t), u ∈ R is the input vector

representing the traction force, and y ∈ R is the measurement output vector. A, Bu, Bw, dr

and Cy are known matrices of appropriate dimensions.

x(t) =



p(t)

v(t)



 , A =



0 1

0 − b1
m



 , Bu =



 0

1
m





Cy =
[
1 0

]
, dr =




0

−
(

a1
m
+ g sin(β) + g ke

rc

)





By applying Theorem 1, we verify the feasibility of BMI (30) by following the two-step al-

gorithm procedure to overcome the problem mentioned in Remark 4. Inequality (30) was found

to be feasible with γ = 2.746, which is considered as the minimal γ value obtained to satisfy

criterion (5). Albeit, the design methodology proposed in Theorem 2 performs successfully

by choosing the same design parameters as below. By solving LMI (45), the minimal γ value

found, which satisfies the criterion (5) is γ = 0.46079.

P1 =




0.19416 −0.072379

−0.072379 0.10574


 , P2 =



2.5114e+08 −4.804e+06

−4.804e+06 7.7736e+07




Y1 =
[
1409.2 2780

]
, Y2 =



1.4099e+08 5.469e+07 −1.4099e+08 −5.469e+07

5.469e+07 1.9654e+08 −5.469e+07 −1.9654e+08
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Therefore, we can easily compute the controller gain and the matrix parameter of the

observer as follows:

Ku = Y1P
−1
1 =

[
22903 41967

]

Z = P−1
2 Y2 =


0.57556 0.26645 −0.57556 −0.26645

0.7391 2.5447 −0.7391 −2.5447




Finally, the observer-based controller is given by

D0.5η(t) =



−0.57556 0.23355

−0.7391 −2.5466


 η(t) +




0

2.5312e−05


u(t)



0.72832

−6.303


 y(t) +



0.23355 0

−2.5428 1


 dr

(47a)

x̂(t) = η(t) +



0.76645

2.5428


 y(t) (47b)

u(t) = ur −
[
22903 41967

]
(xr(t)− x̂(t)) (47c)

The driver controls the position of the controller, which represents the traction force applied

such that the planned trajectory is never followed exactly. The error between the applied and

planned commands is represented as a disturbance w(t) plotted in figure 1.

Figures 3 to 6 show the performances of the proposed H∞ OBC in a closed loop. The robust

estimation and reference tracking errors are illustrated in figures 3 and 4.

Due to a scale effect, different time intervals in figure 5 are zoomed in figures 6 to 8 in

order to show the influence of the disturbance w on the estimation and tracking errors. Firstly,

convergence to zero of the estimation and tracking errors is ensured when the applied and

recommended control coincide perfectly, i.e. the disturbance w is equal to zero. Conversely, the

disturbance effect on the errors is minimized with respect to the magnitude of this disturbance.

Therefore, figures 1 to 6 show that the proposed H∞ OBC (12) has robustly tracked the

tramway system eco-driving trajectory, despite driver-induced disturbances, with a given dis-

turbance attenuation level γ.

5.2. Discussion

As stated previously, the main idea of the proposed method is to minimize the effect of

disturbances. In an open loop, the control law is never robust because it requires precise
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Figure 2: Evolution of the electric force uref(t)
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Figure 3: Evolution of the estimation error e(t) = v(t)− v̂(t)

knowledge of the state space model, which is complicated or even impossible in the presence

of uncertainties or disturbances. The advantage of the proposed methodology is that feedback
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Figure 6: Behaviour of the reference velocity vref (t) and the real controlled velocity v(t) for t ∈ [25, 60]

based on the estimated state is included in the control. This limits the tracking error of the

reference trajectory. In addition, the feedback control law does not allow the imposed speed
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Figure 8: Behaviour of the reference velocity vref (t) and the real controlled velocity v(t) for t ∈ [130, 155]

limit to be exceeded.

The aim of this work is to simulate the proposed methodology on the PSCHITT plat-

form (French acronym for “Hybrid and Inter-modal Collaborative Simulation Platform in Land

Transport”). The PSCHITT platform is a versatile simulator that can be fitted with differ-

ent cabins (Persons with Reduced Mobility, Rail. . . ) according to the scientific objectives and

experimental needs, for example, PSCHITT-Rail1. For this, a simulation protocol must be pre-

pared because the results obtained using the PSCHITT-Rail simulator will be of significance if

professional drivers are involved.

1https://www.youtube.com/watch?v=7lUBhcCK7hc&t=15s
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6. Conclusion

In this work, an H∞ Observer-Based Controller was designed to track a reference tramway

system eco-driving trajectory. Poor driver behaviour was modelled as disturbances with finite

energy, which must be rejected. The conditions of existence of the H∞-OBTC were obtained.

In addition, observer gain matrices parametrized with a unique gain matrix. Thanks to the

Bounded Real Lemma, the problem of the robust stability of the estimation errors and the

rejection of the effects of disturbances were formulated as an optimization problem with an

LMI constraint to guarantee the H∞ disturbance attenuation level.
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