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Abstract

This paper proposes an original model for interpreting human errors, mainly
violations, in terms of Benefits, Costs and potential Deficits. This BCD
model is then used as an input framework to learn from human errors, and
two systems based on this model are developed: a case-based reasoning sys-
tem and an artificial neural network system. These systems are used to
predict a specific human car driving violation: not respecting the priority-
to-the-right rule, which is a decision to remove a barrier. Both prediction
systems learn from previous violation occurrences, using the BCD model and
four criteria: safety, for identifying the Deficit or the danger; and opportunity
for action, driver comfort, and time spent, for identifying the Benefits or the
Costs. The application of learning systems to predict car driving violations
gives a rate over 80% of correct prediction after 10 iterations. These results
are validated for the non-respect of priority-to-the-right rule.
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1. Introduction

Adapted from Swain and Guttmann [1], the definition of human error
must be linked to the capacity of the human operators to:

• not correctly perform their assigned tasks under given conditions during
a time-window or at a given instant, or

• perform additional tasks that may affect the human-machine system’s
operations in terms of safety, quality, production and/or workload, for
example.

This definition implies that the concept of human errors is related to uninten-
tional errors and intentional errors (called violations), as well as additional
tasks.
Methods for assessing unintentional or intentional human errors do exist, but
the results they provide are not homogeneous. Studies have shown that a
given method used by several groups or different methods used by a same
group do not produce reliable results [2]. The feedback needed to assess or
analyze human errors is sometimes insufficient. Even if quantitative or qual-
itative assessments of human errors are available, they cannot be compared
because they usually do not have homogeneous assessment unit [3].
In addition, risk analysis based on human error, done by designers and/or
users of a given human-machine system, can provide diverse results because
the people analyzing the risks have different objectives or different organi-
sational and/or individual interests [4]. Furthermore, the task analysis may
not include all the dependencies between tasks (e.g., temporal dependencies,
causal dependencies, functional dependencies) [5] [6]. Moreover, human error
analysis methods focus mainly on the negative impact of human errors, and
they usually do not take additional tasks into account and do not integrate
the learning effect of human errors.
In this paper, we present a model that remedies the above problems. This
model:

• is capable of analyzing unintentional human errors, violations and ad-
ditional tasks,

• integrates both the negative and positive impacts of human errors, and

• functions as a framework that takes learning from human errors into
account.
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Our goal is to use this model to develop systems that are able to copy hu-
man behaviour and thus learn from human errors. Human errors can be
explained as the possible consequences of erroneous behaviours with respect
to the Benefits, Costs and potential Deficits (i.e., dangers). Such a decision
support system design has to use human models in order to make human
error prediction feasible.
This paper first introduces our BCD model and then proposes several systems
that are able to predict human violations, called barrier removals because the
human operators voluntarily decide to remove (i.e., not to respect) the bar-
riers. These systems are applied to predict barrier removal in the context of
car driving. This paper does not focus on human error probability but rather
on the consequences of human errors.

2. The BCD model principles

2.1. The BCD model

Each person that uses risk assessment methods (i.e., the designers and/or
users of a given human-machine system) can define particular systems called
barriers, which protect the human-machine system from undesirable events,
or their consequences. These undesirable events may affect system criteria,
such as safety, workload, production and/or quality. Barriers can also protect
the system from undesirable events, such as human errors, or prevent them
entirely. Transport signalling systems are prevention-based barriers, whereas
protection grids, airbags and safety belts are protection-based barriers. In-
tentional deviations from the prescribed behaviour required by the system
specifications are called violations [7] [8].
Barrier removal was initially defined as the voluntary inhibition of a bar-
rier with the intention of optimizing the possible compromises between such
criteria as safety, workload, production or quality, for example [9]. Thus,
barrier removal, or the intentional misuse or non-respect of a barrier under
appropriate conditions, is an optimizing and/or exceptional violation made
without any intention to damage the human-machine system. The possible
motivation for a human operator to deviate intentionally from a given pre-
scription can be related to improving the behaviour of the human-machine
system or lessening the harmful consequences of an error. This improvement
can be assessed quantitatively or qualitatively with respect to several crite-
ria.
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The Benefit/Cost/Deficit (BCD) model uses indicators that assess the posi-
tive and negative consequences of deviate human behaviours in terms of cri-
teria measuring the machine’s or operator’s performance or state. Positive
consequences are termed Benefits, whereas negative ones are either accept-
able Costs, when the undesirable events are under control, or unacceptable
Deficits, when these events are out of control. In other words, a Cost is an
acceptable negative consequence when human behaviour is successful and a
Deficit is an unacceptable consequence when this behaviour fails and dam-
ages the human-machine system in terms of safety or some other criteria.
Whatever the deviate human behaviour state (e.g., normal or degraded be-
haviour, intentional or unintentional deviations), the corresponding human
action is assumed to be evaluated through three distinct consequences [4]:

• the expected Benefits (i.e., the B values of the BCD model) due to the
success of a performed action;

• the acceptable Costs (i.e., the C values of the BCD model) due to the
success of a performed action; these costs can be cognitive (e.g., to
control the potential Deficit or danger) or physical (e.g., to modify the
operational constraints of using a given barrier);

• the unacceptable Deficits (i.e., the D values of the BCD model) related
to a potential occurrence of a hazardous situation, due to the failure of
a performed action.

Human behaviour can thus be explained in terms of Benefits and Costs when
the behaviour is successful or in terms of Deficits when it fails. For an on-line
intentional human behaviour that is under control, the Benefits and Costs
are considered to be quasi-immediate, while the Deficits exist in the possible
future.
The BCD model uses several functions to transform qualitative (i.e., sub-
jective) data into quantitative (i.e., objective) data. This model has been
validated to analyze barrier removals in different domains:

• Barrier removals in production systems, such as industrial rotary presses
[9].

• Barrier removals in transport system control, such as car driving [5] or
railway system control [10] [11] [12].
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• Barrier removals in biomechanical systems, such as human crash be-
haviour [13].

The BCD model has also been used to assess human stability and the as-
sociated risks in terms of human state indicators [14]. The analysis of the
consequences of a nonstandard behaviour requires a frame of reference in
order to determine whether or not this deviation leads to an improvement.
The usual frame of reference is the prescribed task, which is more or less
detailed.
Two cases should be distinguished in estimating Benefits, Costs and Deficits:
using the BCD model to compare two distinct dependent or independent
situations (i.e., system state at a given time), or using the BCD model to
compare different action plans, which are successive situations. The next two
sub-sections give more details about comparing situations or action plans.

2.2. The BCD model for comparing pairs of situations

Indicators are required to compare dependent or independent situations
[15]. Two situations are dependent when the state of a situation occurring
at a given time is modified and leads to another short-term or long-term
situation. This modification may be due to the dynamic evolution of the
process or to a strategic or tactical action. Two situations are independent
when they can occur at the same time but concern two different paths to
achieve the same goals. Independent situations can thus be related to the
possible action plans of the different decisional levels of a given organization
in order to resolve the current situation.
The lower a given criterion’s severity, the more acceptable the situation. The
acceptability function, denoted TOLX,i(a) in Equation (1) is related to the
state of the severity, denoted si(a(ta)) for the evaluation criterion i of the
situation a occurring at the time ta according to the acceptability threshold
THX,i for a decision maker X:

TOLX,i(a)↔ (si(a(ta)) < THX,i) (1)

This acceptability threshold is used to compare different users’ assessments
of a situation or the assessments of several decisional levels of an organization
[15]. For instance, a given situation can be acceptable for a user (or decisional
level) but unacceptable for another user (or decisional level). The compari-
son of two dependent situation concerns two situations happening one after
the other (e.g., an action has been performed between the two situations)
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while the comparison of two independent situations concerns two situations
happening at the same time (e.g., two situations from two different action
plans).
A decrease in the severity of situation b with respect to the severity of situ-
ation a in terms of criterion i is denoted Gi(a, b) in Equation (2):

Gi(a, b)↔ (si(a(ta)) > si(b(tb))) (2)

The situations a and b can be acceptable or unacceptable. When both are
acceptable, the corresponding decrease is called a Benefit, denoted Bi(a, b)
in Equation (3):

Bi(a, b)↔ Gi(a, b) ∧ (TOLX,i(a) ∧ TOLX,i(b))↔ Gi(a, b) ∧ TOLX,i(a) (3)

For instance, this decrease can be related to a decrease in the severity of
situation b, in terms of criterion i, corresponding to a barrier removal, with
respect to the severity of situation a.
An increase in the severity of situation b with respect to the severity of
situation a is denoted Li(a, b) in Equation (4):

Li(a, b)↔ (si(a(ta)) < si(b(tb))) (4)

Situation b can thus be acceptable or unacceptable. An acceptable increase
is called a Cost, denoted Ci(a, b) in Equation (5), and requires an additional
acceptability constraint:

Ci(a, b)↔ Li(a, b) ∧ (TOLX,i(a) ∧ TOLX,i(b))↔ Li(a, b) ∧ TOLX,i(b) (5)

The definition of an acceptable Cost implies that both situations are accept-
able.
An unacceptable level of severity for both situations is called a Deficit, de-
noted Di(a, b) in Equation (6). This Deficit Di(a, b), is related to the occur-
rence of an unacceptable situation b with respect to an acceptable situation
a:

Di(a, b)↔ Li(a, b)∧ (TOLX,i(a)∧¬TOLX,i(b))↔ TOLX,i(a)∧¬TOLX,i(b)
(6)

A Deficit is called potential when it anticipates the possible unacceptable
evolution of a situation. Unacceptable situations can also be related to other
specific evolutions of severity (i.e., a degradation or an improvement of a
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Figure 1: Evaluation of the BCD model parameters for two situations.

Figure 2: Illustration of the BCD model parameters for two situations.

Deficit of the situations or the recovery process shown in Figure 1. Figure 2
provides an illustration of the BCD model parameters for two situations.
This article is limited in scope to the application of the related BCD param-
eters (i.e., Benefits, Cost, Deficits) and the improvement or the degradation
of the Deficits. The logical value of the B, C and D functions for a given
evaluation criterion i is qualitative (i.e., subjective). It can be transformed
into a numerical (i.e., objective) value by using the function KJ,i(a, b) given
in Equation (7) and (8):

KJ,i(a, b) = si(b(tb))− si(a(ta)) (7)

KJ,i(a, b) =


KB,i(a, b) if Bi(a, b)

KC,i(a, b) if Ci(a, b)

KD,i(a, b) if Di(a, b) ∨ IDi(a, b) ∨DDi(a, b)

0 otherwise

(8)

2.3. The BCD model for comparing action plans or procedures

The Benefits, Costs and Deficits can also be evaluated by comparing the
prescribed behaviour (i.e., the prescribed action plan or the prescribed pro-
cedure) and the actual deviate behaviour (i.e., the deviate action plan or
the deviate procedure). A procedure is a combination of actions, usually in
the form of a sequence. Accomplishing an action generates the occurrence
of a new situation. The existing barriers are usually related to an explicit
or an implicit decision by the human operators to perform an action plan or
a procedure that respects these barriers. Decisions to deviate from the ex-
pected behaviour may result in barrier removals. In other words, the human
operators decide to perform an action plan or a procedure that removes the
barriers that they are supposed to respect.
This paper applies the BCD model to compare two specific action plans or
procedures: the one that respects the barrier and the one that removes the
barrier. All the possible procedures can thus be compared for the same time
interval. The evaluation of the BCD parameters for the two procedures P1
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Figure 3: Evaluation of the BCD model parameters for two procedures.

Figure 4: Illustration of the BCD model parameters for two procedures.

and P2 is shown in Figure 3. Figure 4 illustrates the BCD model parame-
ters for two procedures. The severity of criterion i in each action plan or
procedure is denoted si(P1) and si(P2), respectively. The BCD evaluation
requires applying the success function instead of the tolerability function.
The success function, denoted SuccessX,i(P ), is related to the results of P
for a given criterion i for a decision-maker X with respect to the expected
results, denoted ExpectedresultsX,i, with an acceptable error ε. The quan-
titative function KJ,i becomes in Equation (9) and (10):

KJ,i(P1, P2) = si(P2)− si(P1) (9)

KJ,i(P1, P2) =


KB,i(P1, P2) if Bi(P1, P2)

KC,i(P1, P2) if Ci(P1, P2)

KD,i(P1, P2) if Di(P1, P2) ∨ IDi(P1, P2) ∨DDi(P1, P2)

0 otherwise

(10)
This paper presents a new application of the BCD model. This new appli-
cation uses the BCD model to learn from violations and to predict them by
exploiting the BCD model parameters for several performance criteria.

3. The learning systems based on the BCD model

3.1. The problem statement

The learning-based tools proposed in literature are mainly iterative. They
try to copy the cognitive learning process that humans use when they learn
from their own errors or behaviour. Such automated tools that learn from
errors are usually related to iterative learning control (ILC) and its different
mechanisms. Iterative learning control detects and minimizes tracking errors,
starting with a low initial knowledge level for the possible consequences of the
action [16] [17] [18]. After a limited number of iterations, the ILC algorithm
adjusts the learning parameters in order to reduce errors between an input
signal and an output signal. The tasks governed by ILC are usually repetitive
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activities, such as robot movements.
Two main classes of iterative learning control schemes can be identified:

• The feedforward-feedback scheme [19], or the previous cycle learning
scheme [20], is an extension of the first class of iterative learning control;
it uses the previous iterations to calculate the current one.

• The current cycle learning scheme [20], or the direct adaptive scheme
[21], integrates the previous iterations and the error between the desired
output signal and the current output signal in order to refine the input
signal evaluation.

This paper deals with the current cycle learning scheme. We use the BCD
model to take the positive and negative consequences of human behaviour
into account in order to propose predictive systems that can learn from these
consequences. Two iterative learning control implementations are developed
below: a case-based reasoning system and a neural network based system.
Both systems were tested to study the feasibility of predicting barrier re-
movals.
For a given iteration, the correct prediction evaluation compares the real
observed decision, denoted ui, with the decision predicted by a reinforced it-
erative learning tool, denoted u∗i in Figure 5. An iteration is based on input
data vectors, denoted ei, and the previous iterations that are modelled by the
previous input vectors and their associated decisions (ei−1, ui−1). The vector
ei contains a series of triplets (bk, ck, dk) for a given criterion k. FFor each
iteration, the vector contains the same number of data related to m criteria:
(b1, c1, d1, b2, c2, d2, ..., bm, cm, dm). Each parameter is defined as an interval
of values, denoted Ω = [Xmin, Xmax], and the output signal u is defined as
an interval of values, denoted Ψ = [0, 1].

Figure 5: The prediction process statement.

3.2. ILC implementation on a case-based reasoning system

The case-based reasoning is very appropriate when no formalized knowl-
edge is available. The principle is reasoning by analogy: when problems are
similar, their solutions (e.g., the actions to be performed) are also similar.
There are two kinds of case-based reasoning [22]): case-based reasoning for
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interpretation and case-based reasoning for problem solving. This paper fo-
cuses on a case-based reasoning system for interpretation.
As shown in Figure 6, case-based reasoning can be broken down into four
steps. The first step involves developing a case database. A case is repre-
sented by a vector pair < problem, solution >, and this vector pair is related
to the pair < e, u >. The second step is to find the problem in the base
that is the most similar to a new problem to be solved. This implies inter-
preting the current problem with respect to current knowledge stored in a
database. In interpretative case-based reasoning, similarity functions have to
be defined. The third and fourth steps involve adapting the solution and if
necessary, improving it. As mentioned in the previous paragraph, the case-

Figure 6: The steps for case-based reasoning [23] [24].

based reasoning system requires defining a similarity function, denoted S,
that identifies the pair (e, u) for which e is similar to the input vector ei
in the knowledge stored in the database, denoted Ei in Figure 7. Knowing
all the nth previous pairs (ei−n, ui−n), this function S finds a possible input
signal u with respect to the input vector ei. The Euclidean distance value is
used to find the vector e, as shown in Equation (11):

Figure 7: Case-based reasoning system for interpretation.

‖(ei)T − (e)T‖ = min
0≤k<n

‖(ei)T − (ek)T‖ (11)

When the vector e is found, the corresponding decision u is considered as
the prediction of ui, denoted u∗i . The learning process involves managing the
knowledge base Ei by integrating the previous pairs (ei−1, ui−1).

3.3. ILC implementation on a neural network system

Like case-based reasoning system, the neural network system requires a
similarity function, denoted S, which identifies the vector (e ∪ u), denoted
(e, u), for which e is similar to the input vector ei in the knowledge base,
denoted Ei. This database Ei is modified with respect to a reinforcement
function, denoted R, to handle the database content shown in Figure 8. To
simplify the explanation of the process, the functions that have the same
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Figure 8: The iterative learning formalism based on the BCD parameters.

purpose but a different number or type of parameter have the same name
(i.e. the S and R functions). Knowing all the previous vectors (e, u) of Ei

obtained from the previous iterations, the function S finds a possible input
signal u with respect to the input vector ei. The Euclidean distance value is
used to find the vector e, as written in Equation (12):

S : Ω3m → Ψ
ei → u∗i = S(ei), u

∗
i = u′/(e ∪ u) ∩ u′ = u,

∀ek ∈ Ei, ‖(ei)T − (e)T‖ = min ‖(ei)T − (ek)T‖
(12)

When a vector e is found, the corresponding decision u is considered as the
prediction of ui, denoted u∗i . Then, the function S is adapted and integrates
other parameters. This function tries to find the vector (e+i−1∪u+i−1), denoted
(e+i−1, u

+
i−1), which corresponds to the vector (ek, uk) in Ei with minimum

differences between the parameters of the vector (ei−1, ui−1), as written in
Equation (13):

S : Ω3m ∗Ψ→ Ω3m ∗Ψ
(ei−1, ui−1)→ (e+i−1, u

+
i−1) = S(ei−1, ui−1),

∀(ek, uk) ∈ Ei, ‖(ei−1, ui−1)T − (e+i−1, u
+
i−1)

T‖ = min ‖(ei−1, ui−1)T − (ek, uk)T‖
(13)

A written in Equation 14, the obtained error ε1 is then processed with the
function R in order to reinforce the impact of the vector (ei−1, ui−1). As
illustrated in Figure 9, this function R handles the weight parameters related
to the vector (e+i−1, u

+
i−1) with a predefined function ∆ that allocates a weight

with respect to the value ε1, such as the function developed by Kohonen [25]:

Figure 9: Allocation of a weight ∆(ε) regarding an error value ε.

R : Ω3m ∗Ψ→ Ω3m ∗Ψ
(e+i−1, u

+
i−1)→ (exi−1, u

x
i−1) = R(e+i−1, u

+
i−1),

(exi−1, u
x
i−1)

T = (e+i−1, u
+
i−1)

T + ∆[(ei−1, ui−1)
T − (e+i−1, u

+
i−1)

T ]
(14)

The error ε1 is written as shown in Equation (15):

εT1 = (ei−1, ui−1)
T − (e+i−1, u

+
i−1)

T (15)
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In a second step, the errors ε2 between the vectors (e, u) 6= (exi−1, u
x
i−1) in Ei

and the reinforced vector (exi−1, u
x
i−1) are processed with the function R in

order to obtain a new database based on the new vectors, (ex, ux) = R(e, u)
and (exi−1, u

x
i−1), as written in Equation (16).

R : Ω3m ∗Ψ→ Ω3m ∗Ψ
(e, u)→ (ex, ux) = R(e, u),

∀(e, u) 6= (e+i−1, u
+
i−1), (e

x, ux) = (e, u) + ∆[(exi−1, u
x
i−1)

T − (e, u)T ]
(16)

The error ε2 is written as shown in Equation (17):

εT2 = (exi−1, u
x
i−1)

T − (e, u)T (17)

As written in Equation (18), the obtained vectors (ex, ux) and the vector
(exi−1, u

x
i−1) are gathered into a new database, denoted Ex

i , that replaces Ei:

Ex
i = {(ex, ux)∀(e, u) 6= (e+i−1, u

+
i−1), (e

x, ux) = R(e, u)} ∪ (exi−1, u
x
i−1) (18)

4. Application to the car driving domain

4.1. The experimental protocol

Figure 10: The car driving simulator.

The experimental protocol involves using the driving simulator shown
in Figure 10. During the experiments, drivers faced different situations and
barriers (i.e., the driving rules) [26]. In this paper, we examined the priority-
to-the-right barrier presented in Figure 11. In fact, there were two priority-
to-the-right barriers examined in this study:

• A first priority-to-the-right barrier in a rural context, in which the
speed limit is 90 km/h.

• A second priority-to-the-right barrier in an urban context, in which the
speed limit is 50 km/h.

Figure 11: The priority-to-the-right barrier.
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In both situations, the driver S is approaching an intersection where another
car is arriving on the right side. Normally, he/she has to give way to this
vehicle coming from the right. Forty-four subjects participated in this experi-
ment. Out of 131 situations - 66 for first priority-to-the-right barrier situation
(4 for familiarization purposes) and 65 for the second priority-to-the-right
barrier situation (4 for familiarization purposes) - 33 barrier removals were
observed. Barrier removal means that the drivers did not give way to the
vehicle coming from their right.
In the experiment, the severity was expressed in terms of four performance
criteria: safety, opportunity for action, driver comfort and time spent [27].
It was possible to associate the situation evaluation with the BCD model
parameters and the observed behaviour (priority respected or not). In order
to compare the correct prediction rate using the systems based on the BCD
model (i.e., the case-based reasoning system and the neural network system),
the input vectors e contained the Benefits, Costs and Deficits for each barrier
removed and/or each barrier respected. The BCD model parameters were
evaluated for the four criteria stated above.

4.2. The performance criteria

Four performance criteria were chosen to analyze the barrier removal in
terms of Benefits, Costs and potential Deficits: safety, opportunity for action,
driver comfort and time spent. With respect to the actual position of the car
on the road, several points can be identified: admissible points on which the
driver is authorized to drive and potential collision points on which the driver
is not authorized to drive (Figure 12). At a given instant ti, the position and
the environment (e.g., road geometry, road limits) of the car are known.

Figure 12: Examples of admissible points and potential collision points allocated to a given
car driver.

4.2.1. Safety

The safety indicator is used to calculate the severity of the incident based
on a predictive time-window. New positions are predicted using a sampling
rate for time and steering angle (e.g., 2 seconds and 22,5◦). These predicted
positions produce a tree-like structure, in which the root is the current posi-
tion of the vehicle at instant ti, and the leaves are the predicted positions at
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instant ti + 2 seconds. In this tree-like structure, each node nj is character-
ized by a possible position on the road and an instant tj. If the position is
not a collision point, this position is judged safe (i.e., an admissible point);
otherwise, the position is judged dangerous (i.e., a potential collision point).
In the latter case, the dangerousness of a point is inversely proportional to
the time (i.e., time of collision). As written in Equation (19), the higher the
value of ssafety, the more severe (i.e., less safe) the incident.

ssafety = Card(nj|position(nj) = ”dangerous”)×
∑

(
1

tj
) (19)

Figure 13 illustrates two situations: in the situation A, ssafety (i.e., the

Figure 13: Examples of admissible points and potential collision points for a given driver,
with a time-window of 0.5s

severity of the incident in terms of safety) is 0; in the situation B, ssafety is
2 (1/0,5). It is possible to compare situations A and B in terms of Benefit
and Deficit:

• for the Benefit, Bsafety(A,B) = false;

• for the Deficit, Dsafety(A,B) = true, in that a potential collision before
1 second has elapsed is unacceptable.

4.2.2. Opportunity for action

Inside the predictive time-window, the more dangerous points that can be
reached, the less chance the driver has to choose a safe action. The incident
severity in terms of opportunity for action is given in Equation (20):

sOpportunitiesForActions = 1− Card(nj|position(nj) = ”dangerous”)

Card(nj)
(20)

4.2.3. Driver comfort

The comfort criterion is divided in several sub-criteria: the number of
braking actions, the number of accelerations, the number of steering actions
and the available space around the car. For the first three sub-criteria, the
lower the number of manoeuvres, the more comfortable the driving situation.
For the last sub-criteria, the more the available the space around the car, the
more comfortable the driving situation. An example of the evaluation of the
available space around the car is illustrated in Figure 14.
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Figure 14: Assessment of the available space to move freely.

4.2.4. Time spent

This indicator, ts, corresponds to the difference between the acceptable
time limit ta and the time really spent and measured tm in Equation (21).
The acceptable time limit ta is obtained by dividing the distance d by the
speed limitation of the road S.

ts = tm − ta (21)

After the experiments, the values of the above criteria were evaluated for
the priority-to-the-right barriers. The average values were then used as a
threshold to determine the Benefits or the Costs: a value under the average
threshold is associated to a Benefit, and a value over the average threshold
is associated to a Cost. The safety criterion is related to the occurrence
of a Deficit, an improvement of a Deficit or a decrease in a Deficit. The
other criteria are related to Benefits or Costs. These criteria were evaluated
for specific geographical zones, such as the zone where the car is located
with respect to the priority-to-the-right barrier and the zone where the car
is situated on the crossroads.

4.3. The results

The two systems based on the BCD model (case-based reasoning and
neural network) were then used to study the rate of correct predictions, by
comparing the predicted ui and the real observed u∗i (i.e., the prediction
values they produced and the real observed values). The predictions involve
determining whether or not a driver will remove a given barrier. Results
for the two systems for the first priority-to-the-right barrier situation are
reported in Figure 15. The predictions were for 66 iterations, with 4 iterations
used for familiarization purposes. Results for the second priority-to-the-right

Figure 15: Prediction results for the first priority-to-the-right barrier removal.

barrier situation are reported in Figure 16. The predictions were for 65
iterations, with 4 iterations used for familiarization purposes. The results
shown in Figure 15 and 16 prove that our systems are able to learn from
barrier removals interpreted in term of Benefits, Costs and Deficits. The
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Figure 16: Prediction results of the second priority-to-the-right barrier removal.

rate of correct predictions increases progressively for both priority-to-the-
right barrier situations and converges between 70% and 100%. Both these
systems give acceptable correct prediction rates, and they are complementary
because their prediction rates sometimes concerns different cases.

5. Conclusion

This paper described the BCD model framework in order to analyze hu-
man behaviour in terms of Benefits, Costs and Deficits, comparing the conse-
quences of situations and action plans or procedures. Using this BCD model
framework, we defined and validated both a case-based reasoning system and
a neural network system for predicting barrier removals. These systems were
applied to car driving, identifying Benefits, Costs and Deficits with respect
to four performance criteria: safety, opportunity for action, driver comfort,
and time spent. The rate of correct predictions obtained by these systems
increased with the evolving learning process based on the BCD model param-
eters. Therefore, this study has shown that it is possible to design systems
capable of learning from human errors interpreted in terms of Benefits, Costs
and Deficits in off-line experimental conditions.
The maximum obtained rate is over 80% after only 10 iterations. Further
studies aim at determining specific situations that are correctly predicted by
each learning system. The rate of correct prediction could then be increased
by merging the knowledge of each system.
Two main perspectives are possible:

• The improvement of the BCD model. Several evolution of the model
may be studied: the integration of probability of success or failure of
barrier removal, the weighting of the BCD parameters, the selection of
optimal action plan, and the integration of organizational factor such
as cooperative or competitive factors [28].

• The improvement of prediction systems. Some researches have to be
done at different levels in order to study the feasibility of several al-
ternatives: the identification of minimum relevant data in the input
framework, the extension of the application domain, the merging of
knowledge of different systems, the learning from organizational factor
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to design for instance human error tolerant barrier [29], the application
of allocation criteria such as those defined on [30] related to the pre-
diction systems, and the on-line prediction by implementing onboard
learning systems.
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