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Cooperative Trajectory Planning for Haptic
Shared Control between Driver and Automation in

Highway Driving

Amir Benloucif, Anh-Tu Nguyen∗, Member, IEEE, Chouki Sentouh, Member, IEEE, Jean-Christophe Popieul

Abstract—This paper addresses the driver-automation
shared driving control for lane keeping and obstacle avoid-
ance of automated vehicles in highway traffic. The proposed
shared control framework is established from a novel co-
operative trajectory planning algorithm and a fuzzy steering
controller. Based on polynomial functions, the cooperative
trajectory planning is formulated by judiciously exploiting
the information on the maneuver decision, the conflict man-
agement and the driver monitoring. As a result, the planned
trajectory of the vehicle is continuously adapted according
to the driver’s actions and intentions. By means of Lyapunov
stability arguments, sufficient conditions in terms of linear
matrix inequalities are given to design a Takagi-Sugeno
fuzzy model-based controller. This robust steering controller
provides a necessary assistive torque to track the vehicle
planned trajectory. The new shared driving control frame-
work allows reducing effectively the driver-automation con-
flict issue while offering the driver more freedom to swerve
within a predefined lane. The advantages of the proposed
approach are evaluated using both objective and subjective
results, experimentally obtained from several human drivers
and an advanced interactive dynamic driving simulator.

Index Terms—Human-machine cooperation, vehicle con-
trol, haptic shared control, autonomous vehicles, coopera-
tive trajectory planning, fuzzy control.

I. INTRODUCTION

Recent technological breakthroughs in actuation, perception
and artificial intelligence lead to a new dawn of driving assis-
tance and highly automated driving. However, up to now the
automation still remains imperfect and is prone to errors in the
presence of human in the loop [1]. Haptic shared driving control
has been shown as an effective scheme which allows to better
meet the design guidelines of automation [2]–[5]. Keeping
the human driver in the loop, these control schemes offer a
continuous human-machine interaction since both the driver and
the assistance driving system simultaneously control the vehicle
through the steering wheel. This special feature of haptic shared
control leads to many major advantages not only on the driver’s
workload and performance but also on the conflict management
[1]. For the latter, since the driver continually has a haptic
feedback from the automation, he/she is always able to counter
the automation’s actions in critical situations where the human-
machine conflict cannot be avoided/solved.

Haptic shared driving control is described as a continuous
spectrum extending from manual control to fully automated
driving. Hence, the management of control authority between
the driver and the automation is crucial for its successful
applications. Moreover, the need for assistance and the per-
formance of drivers strongly depend on the driving situation

Manuscript received Month xx, 2xxx; revised Month xx, xxxx; accepted
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[6]. Despite these facts, haptic shared control approaches that
allow to dynamically manage the control authority between
the driver and the assistance system have only appeared very
recently, see for instance [6], [7]. In these works, the high-
level information such as driver’s state, environment perception,
etc., is exploited to represent the driver’s control authority.
This information is then taken into account in the design of
shared steering controllers which are able to provide appropriate
assistive actions according to the driver’s driving activities.

A. Proposed Methodology
This paper proposes an alternative approach for haptic shared

driving control in highway traffic. The proposed shared control
architecture is composed of two hierarchical levels. The tactical
level is responsible for driving decision making. The operational
level aims to provide appropriate assistive actions to track the
planned vehicle trajectory. A particular feature of the proposed
shared control approach is that the driver-automation conflict
is directly managed by a novel cooperative trajectory planner.
This latter allows for a continuous adaptation of the vehicle
trajectory according to the driving conditions. To this end, the
tactical-level variables representing the control authority and the
driving activities of human drivers are explicitly incorporated to
construct the planning algorithm. As a result, the automation
can plan the vehicle trajectories that better match the driver’s
intention to solve the conflict issue. A robust steering controller
is designed at the operational level to provide a necessary
assistive torque for trajectory tracking. The control design is
based on the direct Lyapunov method and Takagi-Sugeno (T-S)
fuzzy model-based technique [8]. As a result, sufficient design
conditions are derived in terms of linear matrix inequalities
(LMIs) which can be effectively solved with numerical solvers.

B. Related Works on Vehicle Trajectory Planning
As the core element in automated driving, trajectory plan-

ning has been intensively investigated [9]. Numerous trajectory
planning techniques with different degrees of computational
complexity have been proposed [10]. Here, we adopt the so-
called hierarchical planning approach [11], [12] to construct our
cooperative trajectory planner. This is due to two main reasons.
First, this approach is effective in terms of computational com-
plexity and simple for real-time implementation [13]. Second, it
provides a high-level interaction with drivers by communicating
a finite set of feasible maneuvers [14], which corresponds to
our need of a two-level (tactical and operational) cooperation
between the driver and the automation for shared control.

Hierarchical planning is composed of a tactical-level ma-
neuver planner and an operational-level trajectory generation
algorithm. The former is in charge of maneuver decision
to determine an appropriate maneuver among a finite set of
maneuvers (lane changing, lane keeping, vehicle following,
etc.) in a dynamic driving environment [14]. The operational
planning algorithm aims at finding a solution for the selected
maneuver while taking into account the vehicle dynamics. To



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS (ACCEPTED FOR PUBLICATION 2019)

this end, numerous existing planning techniques can be applied
to generate a feasible trajectory for the vehicle [10]. Potential
field approaches [15] have been intensively studied. Based on
a discretization of the driving environment, these approaches
can be formalized as a graph-search problem, especially with
the well-known algorithms such as A∗ search and its variants
[16], [17]. The trajectory planning is formulated in [18]–[20]
as a mathematical optimization problem. Interpolation-based
approaches have also been widely applied to the geometric
computation of trajectories. Several geometric forms have been
used, including straight lines and arcs [21], clothoids [22], [23],
etc. However, polynomial trajectories remain the most used
forms in automated driving [14], [24], [25].

The proposed planning algorithm is inspired by the works
presented in [14] and [25]. These latter are based on an
exploration of polynomial trajectories which are subsequently
evaluated via cost functions. Our algorithm combines the aspect
of trajectory discretization from graph-search-based approaches
with the cost evaluation from optimization-based ones to pro-
vide a flexible and efficient planning framework. It should
be stressed that an important requirement of our cooperative
planning algorithm is the high frequency of replanning. In-
deed, it is crucial to take into account the fast variations
of the driver’s actions to avoid a long response time of the
planned trajectories. This allows to avoid confusions which may
lead to driver-automation conflict situations. For this reason,
computation-intensive planning algorithms derived from, for
instance, optimization-based approaches are not appropriate for
our shared control purpose.

C. Contributions
The proposed shared driving control approach leads to major

advantages compared to existing works. Differently from [5]–
[7] and numerous related references, the new approach offers
the driver a freedom to choose a desired position within the
road-lane, which is not always necessarily the lane centerline,
so that he/she can swerve within the lane following his/her
intention. As a consequence, the driver’s driving effort and
the driver-automation conflict can be effectively reduced. This
obviously improves the acceptability of the proposed assistance
driving system. Both objective and subjective results were
experimentally performed with several human drivers and a
dynamic driving simulator to demonstrate the effectiveness of
the proposed method. To the best of our knowledge, the results
on trajectory-planning-based shared driving control between
human drivers and automation with experimental validations
were not observed in any previous work.

The paper is organized as follows. Section II introduces
the proposed architecture for haptic shared driving control. In
Section III, we provide the details on the new cooperative
trajectory planning algorithm. Section IV presents the design
of a robust steering controller providing appropriate assistive
actions for trajectory tracking control. The effectiveness of the
new shared control approach is experimentally demonstrated in
Section V with both objective and subjective results. Concluding
remarks and future works are given in Section VI.

II. HAPTIC SHARED DRIVING CONTROL ARCHITECTURE

This work focuses on highway driving with two main tasks:
lane keeping and lane changing. The proposed architecture for
haptic shared driving control using a cooperative trajectory
planning is depicted in Fig. 1. This control architecture is
composed of a tactical level and an operational level. The
tactical level is in charge of the driving decision making which
is concerned with the maneuver decision, the driver’s intent
inference, and the control authority management. It aims at
determining the most appropriate maneuver to deal with a
given driving situation. Especially, for highway driving, this
level provides the choice of the reference lane, represented by

the lateral coordinate ytarget of the desired lane-center, and
the desired speed vtarget. The decision making is based on
an analysis of the data collected online from the driver, the
vehicle and the driving environment. The details on the tactical
level is out of the scope of this paper. The maneuver decision
making, also called behavioral planning, is discussed in [14],
[18], [26], whereas the tactical driver’s behavior prediction and
intent inference are well documented in [27], [28]. Here, the
focus is on the haptic shared steering control between human
drivers and the driving assistance system at the operational
level. To this end, we only provide in the following the details
on the two main components of this level, namely “Trajectory
planning” and “Takagi-Sugeno fuzzy steering controller”.

Fig. 1. Overview of the proposed haptic shared driving control structure.

The proposed cooperative trajectory planning algorithm is
constructed as follows. The tactical level feeds the trajectory
planner the position of the desired lane centerline ytarget and
the desired speed vtarget to compute an appropriate vehicle tra-
jectory. The driver’s torque Td applied on the steering wheel is
also used for trajectory planning to adapt the planned trajectory
according to the driver’s actions. Moreover, the control authority
management is crucial when the driver-automation conflicts
occur. To this end, the authority variable σ, given by the tactical
level, is incorporated in the trajectory planning to represent the
driver’s authority over the modification of the trajectory planned
by the driving assistance system. This prevents involuntary or
dangerous actions of drivers, especially in case of distraction
and hypovigilance. As a result, the proposed trajectory planner
generates appropriate trajectories to guide the vehicle within the
lane (i.e., lane keeping) or to execute lane-change maneuvers.
Once the trajectory of the vehicle is planned, a robust steering
controller is designed to compute a necessary assistive torque Ta
for trajectory tracking purposes. This controller simultaneously
acts on the steering wheel together with the human driver
to achieve the driving goal since the human-machine conflict
is considered upstream in the cooperative trajectory planning.
Moreover, the physical limitations of the steering torque Ta
is taken into account in the control design procedure. This
offers the human driver a possibility to override the control
actions issued from the automation in some emergency driving
situations where the conflict issue cannot be solved/avoided.
Further details on the tactical level are discussed below.

III. COOPERATIVE TRAJECTORY PLANNING ALGORITHM

We describe step-by-step the proposed trajectory planning
algorithm which is used for haptic shared driving control.

A. Trajectory Planning Based on Polynomial Functions
Trajectory planning can be formulated as a boundary condi-

tion problem aiming to find a smooth trajectory that guides the
vehicle from an initial state to a final one. The effectiveness
of using polynomials for local trajectory planning in structured
environments has been widely proved [14], [24]. It was shown in
[29] that high-order polynomials (third-order or more) enable a
simple planning formulation. Moreover, polynomial-based plan-
ning allows to compute independently lateral and longitudinal
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vehicle motions while guaranteeing trajectories with continuous
velocities, accelerations and curvatures [24].

For the lateral motion, the initial state [yr0 ẏr0 ÿr0] is
composed of the current lateral position, speed and acceleration
in the road reference frame. To define the final conditions
of the vehicle lateral motion, it is assumed that the vehicle
reaches the final target position yrf with a zero lateral speed
and acceleration. Hence, the final state of the lateral trajectory
is given as [yrf 0 0 Ty], where Ty is the lateral completion
time. Thanks to six boundary conditions, it is possible to define
a fifth-order polynomial representing the lateral motion to be
performed as follows:

yr(t) = b0 + b1t+ b2t
2 + b3t

3 + b4t
4 + b5t

5. (1)

For the longitudinal motion, note that the final target position
is unknown a priori. Hence, five boundary conditions allow
to define a fourth-order polynomial representing the vehicle
longitudinal motion from the initial state [xr0 ẋr0 ẍr0] to
the final state [ẋrf 0 Tx], where ẋrf is the final target speed
and Tx is the longitudinal completion time:

xr(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4. (2)

From (1) and (2), the coefficients of both polynomials can be
easily obtained by solving the following system of equations:

[a0 a1 a2 a3 a4]
>

= AXr (3)

[b0 b1 b2 b3 b4 b5]
>

= BYr (4)

where the matrices A, B depend on the completion times
whereas the vectors Xr, Yr depend on the initial and the final
target states as follows:

A =


1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 1 2Tx 3T 2

x 4T 3
x

0 0 2 6Tx 12T 2
x

 , Xr =


xr0
ẋr0
ẍr0
ẋrf
ẍrf

 ,

B =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
1 Ty Ty T 3

y T 4
y T 5

y

0 1 2Ty 3Ty 4T 3
y 5T 4

y

0 0 2 6Ty 12Ty 20T 3
y

 , Yr =


yr0
ẏr0
ÿr0
yrf
ẏrf
ÿrf

 .
Remark from (3)-(4) that a polynomial trajectory can be com-
pletely defined when the initial state, the final target state and
the completion time Tx and Ty are known. As shown below,
manipulating these parameters of linear equations (3)-(4), a
set of candidate trajectories can be generated. The planned
trajectory to be performed by the ego-vehicle is selected among
this trajectory set through an optimization-based evaluation
while respecting the vehicle dynamics.

B. Generation of Candidate Trajectories
At each replanning cycle Tcycle, a new set of trajectories

must be generated. To guarantee the continuity of the vehicle
trajectories, the generated trajectories share the same initial
state. This latter is chosen from the trajectory computed in the
previous cycle. Using the suffix •prev to refer to the trajectory
computed in the previous cycle, the boundary conditions for the
lateral and longitudinal motions are expressed as follows:

yr0 = yrprev (Tcycle)
ẏr0 = ẏrprev (Tcycle)
ÿr0 = ÿrprev (Tcycle)
yrf = ytarget
ẏrf = 0
ÿrf = 0

and


xr0 = xrprev (Tcycle)
ẋr0 = ẋrprev (Tcycle)
ẍr0 = ẍrprev (Tcycle)
ẋrf = vtarget
ẍrf = 0

Then, a set of lateral trajectories can be obtained by discretizing
the final target position ytarget and the completion time Ty.

In the same way, the discretization of the final target speed
vtarget and the completion time Tx allows generating a set of
longitudinal trajectories. The discretizations are performed as

ẋrfi = vtarget + ai · δt, ai ∈ [−alim, alim] (5)
yrfj = ytarget + ∆yj , ∆yj ∈ [−∆ylim, ∆ylim] (6)
Txk

= k ·∆T, Tyk = k ·∆T, k ∈ {1, ...,M} (7)

where ai corresponds to an acceleration to be applied over a
time interval δt to vary the final speed around vtarget, and
∆yj is a deviation from the target lane centerline. The set of
the final speeds is denoted by ẋrfi in (5) whereas yrfj in (6)
denotes the set of the final lateral positions. We distinguish
between the tactical level in which the target lane centerline
ytarget is planned, and the lateral errors realized within the
same lane that are associated with the operational level. Hence,
the deviations ∆yj are limited to the interval [−∆ylim, ∆ylim],
where ∆ylim ≤W/2, and W denotes the lane width.

The sets of the completion time of the longitudinal and lateral
trajectories are respectively denoted as Txk

and Tyk , which are
multiples of the time step ∆T . Remark that M represents the
maximum planning time, related to the maximum trajectory
length. Then, the set of the longitudinal trajectories, denoted by
xrik , (respectively lateral trajectories, denoted by yrjk ) results
from the combination of ẋrfi with Txk

(respectively yrfj with
Tyk ). Fig. 2 illustrates the process of generating trajectories in
which Fig. 2 (a) shows a set of longitudinal speed profiles and
Fig. 2 (b) provides an example of candidate trajectories to reach
the lane centerline associated with ytarget = 0.
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Fig. 2. Illustration of trajectories generation. (a) Set of speed profiles with
ẋr0 = 15 [m/s] and vtarget = 20 [m/s]; (b) Set of trajectories to reach
ytarget = 0 [m] from the initial state yr0 = 0.3 [m] and ẏr0 = 0.2 [m/s].

In addition to the continuity of the planned trajectories, the
choice of the initial state at each replanning cycle from the
previously computed optimal trajectory is also to ensure the
temporal consistency for each replanning cycle [25]. Indeed,
if the condition of temporal consistency is not guaranteed, the
planned trajectories can generate oscillations and overshoots.
Therefore, the choice of the replanning cycle time Tcycle and the
minimal completion time ∆T , see (7), is crucial for trajectory
planning performance. To guarantee the temporal consistency,
the replanning cycle must be a multiple of the minimal com-
pletion time as follows:

Tcycle = N ·∆T, N ≤M (8)

where N is a positive integer and M is defined in (7). The
relation (8) is justified by the uniqueness of the polynomial
that links the initial state and the final state for a given
completion time. Fig. 3 shows an example to illustrate the
notion of temporal consistency. As depicted in Fig. 3 (a), at each
replanning cycle, the newly generated trajectory is in continuity
with that previously computed. This is not the case shown in
Fig. 3 (b) for which the temporal consistency is not guaranteed
due to an inappropriate choice of ∆T and Tcycle.

C. Real-Time Evaluation of Candidate Trajectories
Once the sets of candidate trajectories are generated, a real-

time evaluation of these candidate trajectories is performed to
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Fig. 3. Illustration of temporal consistency for trajectory planning. (a)
Temporal consistency ensured with an appropriate choice of ∆T and
Tcycle; (b) Temporal inconsistency due to an inappropriate choice of ∆T
and Tcycle.

choose those that will be executed by the ego-vehicle. Here,
the evaluation process is performed according to a set of
specifications on the driving comfort, the execution time of the
maneuver, and the driver’s desired position when he/she prefers
to deviate from the planned trajectory. To this end, according
to the expressions in (5), (6) and (7), we respectively define the
cost functions related to the longitudinal and lateral motions as

Cxik
= wJxJxik

+ wTx
Txk

+ wv (ẋrfi − vtarget)
2 (9)

Cyjk = wJyJyjk + wTyTyk + wy
(
yrfj − ytarget

)2
+ Cyj (10)

with Cyj = σwd
∣∣yrfj − ydes∣∣, where the desired position ydes

of the driver and the control authority variable σ are specified
later. The weighting coefficients wJx , wJy , wTx , wTy , wv, wy,
wd, are used to parameterize the type of the planned trajectories.
The terms wJxJxik

and wJyJyjk allow to introduce the driving
comfort in the trajectory evaluation process. These jerk-based
terms are defined as

Jxik
=

Txk∫
0

...
x2
rik

(τ)dτ , Jyjk =

Tyk∫
0

...
y 2
rjk

(τ)dτ. (11)

It is important to stress that due to the polynomial trajectory
formulation as in (1) and (2), the jerk-related terms in (11) can
be analytically expressed in function of the coefficients of the
corresponding trajectories and the completion time as

Jxik
= 12Txk

(3a2
3ik

+ 12a3ika4ikTxk
+ 16a2

4ik
T 2
xk

),

Jyjk = 12Tyk(3b2
3jk

+ 12b3jkb4jkTyk + 16b2
4jk
T 2
yk

+ Ξjk),

Ξjk = 20b3jkb5jkT
2
yk

+ 60b5jkT
3
yk

(b4jk + b5jkTyk).

It should be highlighted that the above analytical expres-
sions allow avoiding an intensive sampling procedure of the
trajectories for evaluation purposes. This drastically reduces
the computational burden to improve the effectiveness of the
planning algorithm for practical use [10]. Note also that wTx

Txk

and wTyTyk are introduced into the cost functions to penalize
the trajectories whose completion time is too large. In addition,
the term wv(ẋrfi − vtarget)2 (respectively wy(yrfj − ytarget)2)
penalizes the trajectories whose final speed ẋrf (respectively
final lateral position yrf ) deviates from the target speed vtarget
(respectively target position ytarget). Finally, σwd

∣∣yrfj − ydes∣∣
is introduced to offer the driver a degree of freedom to deviate
from the target lane centerline ytarget. Weighted according to
the driver-automation control authority variable σ, this term is
particularly important to manage the conflict situations, in which
the target position ytarget and the driver’s desired position ydes
are inherently different. Hence, the driving goals of the driver
and the assistance system are also different. This is the situation,
for instance, when drivers must avoid undetected obstacles
described in Section V-A.

The control authority variable σ ∈ [0, 1], is provided by
the driving decision making in the tactical level, see Fig. 1.
This variable characterizes the control authority of the driver to
modify the vehicle trajectory. In this work, σ is constructed such
that the desired lateral position of the driver is ignored when

his/her torque is negligible or when he/she is out of his/her
driving capacity. Hence, σ is proposed in the form

σ = DS
(

1− e−ε|Td|
)

(12)

where ε is a scaling factor. The driver’s state variable DS ∈
[0, 1] is introduced in (12) to take into account the driver’s
distraction in the trajectory planning. Note that DS = 1 if
the driver is not distracted and 0 otherwise. This continuous
variable is provided by a driver monitoring system as in [7].

To determine the driver’s desired position ydes, we propose
to predict the lateral deviation that he/she desires to realize.
Note that it is hard to perform such a deviation prediction
basing only on the steering angle as in [15] since the measured
steering angle is deduced from the summation of the driver’s
and the automations’s torques. To overcome this, we predict
the trajectory that the vehicle would have achieved with only
the measured driver’s torque Td. Fig. 4 provides a detailed
view of the “Trajectory planning” module shown in Fig. 1
and illustrates our approach to determine ydes. For a given
Td, the corresponding yaw rate rd and yaw angle ψd can be
determined using the well-known vehicle model (17). Together
with the vehicle speed vx and the road heading angle ψroad, rd
and ψd are input to a vehicle kinematic model to predict the
lateral position over a time horizon, see Fig. 4. Here, we make
use of the so-called constant turn rate and velocity (CTRV)
model, depicted in Fig. 5, which has been widely exploited for
prediction and tracking applications [30], [31].

Fig. 4. Detailed view of the “Trajectory planning” module in Fig. 1.

The kinematic dynamics of the CTRV vehicle model is given
as follows [30]:

ξ(t+τp) =



xg(t) + µ(t) [sin(ψv(t) + τprd(t))− sin(ψv(t))]

yg(t) + µ(t) [sin(ψv(t))− cos(ψv(t) + τprd(t))]

ψv(t) + τprd(t)

vx(t)

rd(t)

where ξ = [xg yg ψv vx rd]
> is the state vector, xg

and yg are the coordinates of the vehicle gravity center, ψv =
ψd−ψroad is the vehicle yaw angle, and µ = vx/rd. From the
predicted lateral displacement ∆ydes(τp), see Fig. 5, the desired
lateral position of the driver is given by

ydes = yg + ∆ydes(τp). (13)

Remark 1. The value of τp is crucial to obtain an effective
trajectory planning algorithm. If the prediction horizon is too
small, then the predicted trajectory is too close to the current
trajectory which would not be useful to adapt the planned
trajectory. However, a too large horizon leads to overshoots for
the predicted trajectory and may cause instability in planned
trajectories since the planning algorithm becomes too sensitive
to the driver’s torque. In our case, the choice of τp = 1s was
done experimentally to obtain a good steering comfort.

Once a candidate trajectory is generated, its heading angle
ψ∗r with respect to the global frame is determined as

ψ∗r = ψr + ψroad, ψr = arctan

(
ẏr
ẋr

)
,
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Fig. 5. Lateral displacement prediction over a time horizon τp.

where ψr is the angle between the tangent of the candidate
trajectory and that of the lane centerline, yr and xr are re-
spectively given in (1) and (2). Note that the heading angle is
back-transformed to global frame since the adherence to most
vehicle dynamics constraints can only be verified there. Then,
the trajectory curvature can be defined as follows [25]:

κr =
dψ∗r
dsx

(14)

where sx is the covered arc length of the trajectory. The details
on the determination of the trajectory curvature in the global
frame can be found in [25]. To take into account the vehicle
dynamics in the planning algorithm, the curvature κr defined
in (14) should verify the following conditions:

|κr(t)| <
∣∣κturn

max

∣∣ , |κr(t)| <
∣∣κaccel

max

∣∣ , ∀t ≥ 0. (15)

The admissible curvature to respect the minimal Ackerman’s
steering radius is defined as follows [32]:

κturn
max =

1√
l2r + l2 cot2 (δmax)

,

where lr is the distance of the rear tire from the gravity center,
l is the vehicle wheelbase, and δmax is the maximal steering
angle at the wheels. The curvature limit to guarantee a given
maximal lateral acceleration is expressed by

κaccel
max =

almax

v2x
,

where almax is the maximal lateral acceleration to achieve a
satisfactory driving comfort.

The trajectory evaluation process is characterized by the
combination of the best longitudinal and lateral candidate
trajectories. To this end, we define the global cost function for
each combination as follows:

Cijk = Cxik
+ Cyjk (16)

where Cxik
and Cyjk are respectively given in (9) and (10).

Minimizing the cost function Cijk defined in (16) while re-
specting the vehicle dynamics constraints (15), the trajectory
executed by the ego-vehicle can be then determined.

D. Illustrative Results of Cooperative Trajectory Planning
Two experiments are performed to illustrate the results of

the proposed cooperative trajectory planning algorithm. The
objective is to show that in normal driving conditions, the
vehicle trajectory can be adaptively planned following the
driver’s intention. Moreover, in some particular situations, the
planning algorithm is able to guarantee a good tradeoff in
terms of respecting agressive driving behaviors and the vehicle
dynamics to improve the comfort of passengers. The parameters
of the cooperative planning algorithm are given in Table I.

TABLE I
PARAMETERS OF THE COOPERATIVE PLANNING ALGORITHM.

alim = 2 [m/s2] δt = 3 [s] ∆ylim = 1.75 [m]
almax = 3 [m/s2] ∆T = 0.1 [s] Tcycle = 0.1 [s]
δmax = 55 [deg] wJx = 3 [-] wJy = 0.05 [-]
wTx = 3 [-] wTy = 3 [-] wv = 1.5 [-]
wy = 2 [-] wd = 10 [-] M = 60 [-]

1) Experiment 1 [Normal Steering Behavior]: This test is
composed of two phases, see Fig. 6. From 0s to 4s (Phase 1),
the driver’s torque is negligible. During Phase 2 (from 4s to
15s), we apply to the steering wheel a sinusoidal torque of an
amplitude At = 3 [Nm] and a period Tt = 8 [s]. As observed
in Fig. 6 (a)1, the planned trajectory corresponds to the lane
centerline in Phase 1. During Phase 2, the planned trajectory
is in the direction of the applied driver’s torque to bring the
vehicle to the driver’s desired position ydes expressed in (13)
by deviating it from the lane centerline. At 8s, the driver’s
torque becomes negative and the planned trajectory returns to
the lane centerline. Remark that the planned trajectory is always
within the lane limits [−1.75, 1.75]. Figs. 6 (b) and (d) show the
corresponding planned lateral speed and acceleration. Observe
that the trajectory acceleration amplitude is quite small (less
than 2 [m/s2] during the whole experiment), which can lead to a
good driving comfort. Although there is a small lag between the
measured torque Td and other planned signals, inherently due
to the vehicle dynamics and the planning computation, we can
see that the planned trajectory adaptively follows the driver’s
intention during this experiment.
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Fig. 6. Experiment 1. (a) Planned vehicle trajectory; (b) Driver torque; (c)
Planned lateral speed; (d) Planned lateral acceleration.

2) Experiment 2 [Aggressive Steering Behavior]: This test is
also composed of two similar phases, for which we consider a
more aggressive steering behavior with a sinusoidal torque Td of
the same amplitude At = 3 [Nm] and a period Tt = 4 [s] during
Phase 2, see Fig. 7 (b). We remark that to respect the vehicle
dynamics constraints (15), the lag between the measured torque
Td and other planned signals is more important (more than 0.5s)
compared to that of the previous experiment. As shown in Figs.
7 (a), (b) and (d), the planned trajectories are much faster than
those in Experiment 1 to follow the high-frequency change of
the driver’s steering action. This leads to a higher amplitude of
the planned lateral acceleration in this case, which is however
still reasonable and less than the predefined value almax =
3 [m/s2]. Moreover, due to the consideration of this maximal
admissible lateral acceleration, the planned trajectory changes
the direction even before reaching the lane boundaries since the
driver’s torque direction has already been changed, see Figs. 7
(a), (b). Hence, there is a tradeoff between the respect for the
driver’s actions and that of the vehicle dynamics for driving
comfort reasons.

1The planned trajectories at each planning cycle are plotted in blue, and
the concatenation of the executed trajectory is plotted in black.
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From the above illustrative results, it can be seen that the
proposed planning algorithm can adaptively generate the vehicle
trajectory under different driver’s steering behaviors while being
able to guarantee a good driving comfort. The effectiveness of
this algorithm in terms of solving the driver-automation conflict
is further discussed in Section V.
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Fig. 7. Experiment 2. (a) Planned vehicle trajectory; (b) Driver torque; (c)
Planned lateral speed; (d) Planned lateral acceleration.

IV. TAKAGI-SUGENO FUZZY MODEL-BASED CONTROL

After the trajectory is planned following the driver’s intention,
the ego-vehicle should track this trajectory. This section presents
the design of a robust steering controller which produces
necessary assistive torque for trajectory tracking.

A. Driver and Vehicle Modeling
Hereafter, we briefly review the driver-vehicle modeling for

lateral control. The nomenclature is given in Table II.

TABLE II
NOMENCLATURE.

Notation Description
vx vehicle longitudinal speed [m/s]
vy vehicle lateral speed [m/s]
β vehicle sideslip angle [rad]
r vehicle yaw rate [rad/s]
ψL relative yaw angle [rad]
yL lateral offset from the centerline [m]
δd steering wheel angle at the column system [rad]
Ta assistive torque [Nm]
Td driver torque [Nm]

1) Road-Vehicle Model with Steering Assistance System:
For shared steering control purposes, the following road-vehicle
system integrating the electric power steering model is used [6]:

ẋv = Avxv +Bv(Ta + Td) + Evw (17)

where xv =
[
β r ψL yL δd δ̇d

]>
is the vehicle state.

The road curvature w represents the planned trajectory. The
state-space matrices of (17) are given by [6].

2) Driver-in-the-Loop Vehicle Model: To take into account
the driver-automation interaction at the steering wheel, a human
driver model is integrated into the road-vehicle system for
shared control purposes. To this end, the following two-point
visual model being able to reproduce the driver’s compensatory
and anticipatory behaviors is used [7]:

ẋd = Adxd +Bdud, ud = Cxv, yd = Cdxd (18)

where xd = [xd1 xd2]
>. The state xd1 represents the driver’s

perception of the steering wheel correction. The state xd2 is the
driver’s torque which is also the output, i.e., xd2 = yd = Td.

The state-space matrices of system (18) are detailed in [7]. From
(17) and (18), the driver-vehicle model can be expressed as

ẋ = A(vx)x + BTa + E(vx)w (19)

where x =
[
x>v x>d

]>
and

A(vx) =

[
Av BvCd
BdC Ad

]
, B =

[
Bv
0

]
, E(vx) =

[
Ev
0

]
.

Note that the notations A(vx) and E(vx) are to make clear that
these matrices depend on the time-varying parameter vx.

Remark 2. The driver-in-the-loop vehicle model (19) has
been identified with the driving data of nine human driver
participants, collected from the SHERPA simulator (see Section
V) in real-world driving situations. More details on this control-
based model (19) can be found in [7].

3) Control Performance Specifications: To improve the
closed-loop control performance, the controlled output of sys-
tem (19) can be defined as

z =
[
ay u>d δ̇d

]>
. (20)

The driving comfort is represented by the lateral acceleration
ay and the steering rate δ̇d. The tracking performance and the
driver’s anticipatory behavior are represented through ud. Note
also that all components of z can be expressed by those of x
in (19) as z = C(vx)x, see the details in [7].

For digital control implementation, the Euler discretization
method is used to derive the following discrete-time counterpart
of the continuous-time system (19):

Σ(vx) :

{
xκ+1 = A(vx)xκ +BTa + E(vx)wκ

zκ = C(vx)xκ
(21)

where A(vx) = I + TeA(vx), B = TeB, E(vx) = TeE(vx)
and C(vx) = C(vx). The sampling time is Te = 0.01s, and zκ
denotes the value of the signal z taken at the κ−instant.

4) T-S Fuzzy Representation of Driver-Vehicle Model:
There are three time-varying parameters involved in the state-
space matrices of system Σ(vx) defined in (21), i.e., θ∗ =[
vx

1
vx

1
v2x

]>
. Hence, using the sector nonlinearity approach

[8, Chapter 2], the corresponding T-S fuzzy representation
of model (21) has 23 = 8 linear subsystems. This leads to
conservative design results since the terms vx, 1

vx
and 1

v2x
are

considered separately though they are strongly dependent [6].
To reduce both the conservatism and the numerical complexity
for the control design, the following variable change is used:

vx =
v0v1

v1 + v0θ
⇔ 1

vx
=

1

v0
+

1

v1
θ (22)

where θmin ≤ θ ≤ θmax, with θmin = −1 and θmax = 1. The
two constants v0 and v1 are given by

v0 =
2vminvmax

vmin + vmax
, v1 =

2vminvmax

vmin − vmax
.

Note that since vx = vmin = 8 [m/s] for θ = θmin and
vx = vmax = 30 [m/s] for θ = θmax, the new premise variable
θ can be thus used to describe the variation of vx between
its lower and upper bounds. Moreover, applying the Taylor’s
approximation as in [6] to the second expression of (22) yields

vx ' v0
(

1− v0
v1
θ

)
,

1

v2x
' 1

v20

(
1 + 2

v0
v1
θ

)
. (23)

Substituting these expressions into (21) leads to the driver-in-
the-loop vehicle model Σ(θ), which is linearly dependent only
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on θ. Using the sector nonlinearity approach [8], Σ(θ) can be
exactly represented in the T-S fuzzy form

Σ(θ) :


xκ+1 =

2∑
i=1

ηi(θ) (Aixκ +Bsat(uκ) + Eiwκ)

zκ =

2∑
i=1

ηi(θ)Cixκ

(24)

where Ta = sat(u) = sign(u) min(|u|, T a). The steering
control action u is designed such that the vehicle follows
the trajectory provided by the cooperative trajectory planning
algorithm in Section III. The maximal value of the assistance
steering torque is fixed as T a = 6 [N/m] which is appropriate
for highway driving conditions. The details of these submodels
(Ai, Ei, Ci) and the corresponding membership functions ηi(θ),
i = 1, 2, of the T-S fuzzy model (24) are easily obtained and
thus omitted here for brevity.

Remark 3. The use of the variable change (22) together with
the Taylor’s approximation (23) allows to decrease the number
of linear submodels of the vehicle T-S fuzzy model from eight
to two, see (24). This leads to a great advantage in terms
of reducing not only the design conservatism but also the
numerical complexity for real-time implementation.

Remark 4. For highway driving, the amplitude of the road
curvature w is small and always satisfies

w ∈ Wρ =
{
w : R+ 7→ R, w>w ≤ ρ

}
(25)

for some scalar ρ > 0. In this study, we choose ρ = 1
R2

min
where

Rmin = 50 [m] is a reasonable minimal value of the curvature
radius for highway driving.

B. LMI-Based Takagi-Sugeno Fuzzy Control Design
The dynamics of the driver-vehicle system (24) depends on

the time-varying parameter θ. In addition, as mentioned above,
the control input saturation should be explicitly considered in
the control design to improve both the safety and the comfort
of passengers. The following theorem provides an effective
framework to handle these practical control issues. Note that
for a matrix M, M � 0 (respectively M ≺ 0) indicates that
M is symmetric positive (respectively negative) definite.

Theorem 1. Given a driver-vehicle model in the T-S fuzzy form
(24) with w satisfying (25), and a positive scalar τ1 < 1. If there
exist symmetric matrices Xi � 0, diagonal matrices Si � 0,
matrices H , Gi, Wi of appropriate dimensions, i = 1, 2, and
positive scalars τ2, γ such that

1− τ1 − τ2ρ > 0,[
H +H> −Xi ?

Gi −Wi T
2

a

]
� 0,[

H +H> −Xi ?
CiH γI

]
� 0,τ1(Xi −H −H>) ? ? ?

Wi −2Si ? ?
0 0 −τ2I ?

AiH +BGi −BSi Ei −Xk

 ≺ 0,

for i, k = 1, 2. Then, the parameter-dependent control law

u(κ) =

2∑
i=1

ηi(θ)Kix(κ), with Ki = GiH
−1 (26)

stabilizes the saturated system (24) while guaranteeing the
L∞−performance z>z ≤ γ with z defined in (20).

Proof. The proof can be completed along the similar lines of
reasoning as in [33, Theorem 2], and it is omitted here.

Remark 5. The decay rate τ1 plays an important role in the
time performance of the closed-loop system [8]. Indeed, a large
value of this tuning parameter yields a fast closed-loop conver-
gence. However, the resulting controller may induce aggressive
behaviors, especially in the presence of system disturbances. For
this study, a value of τ1 = 0.1 allows achieving a satisfactory
path following performance.

Remark 6. The control design in Theorem 1 is a simplified
version of that in [33, Theorem 2] since the input matrix B in
(24) is constant. In particular, controller (26) does not require
any matrix inversion of parameter-dependent feedback gain,
which greatly simplify the real-time control implementation.
Note that the design conditions in Theorem 1 are expressed
in terms of LMIs. Hence, the feedback gains Ki, i = 1, 2, in
(26) can be easily computed with Matlab software [33].

V. HARDWARE EXPERIMENTS WITH HUMAN DRIVERS

This section presents an evaluation study to verify the
effectiveness of the proposed cooperative trajectory planning
algorithm for driver-automation haptic shared driving.

A. Experimental Setup
1) Driving Simulator: The evaluation study was performed

with a SHERPA driving simulator. This simulator is based on a
Peugeot 206 mock-up fixed on a Stewart platform, the overall
is positioned in front of five flat panel displays providing a
visual field of 240◦, see Fig. 8. The simulator is equipped
with an active steering wheel and sensors providing the mea-
surements of steering angle, steering rate and steering torque.
It is also equipped with a force feedback gas pedal and a
driver monitoring system, both from Continental Automotive
company. Using the SCANeR environment, all planning and
control algorithms are implemented in the SHERPA simulator
through Matlab/Simulink software.

Fig. 8. SHERPA driving simulator.

2) Driver Participants: Six participants took part in the
evaluation experiment. The average age was 32± 10 years old.
All participants are experienced drivers and reported an average
annual mileage of 15.000 km.

3) Test Protocol: To illustrate the interest of the proposed
cooperative planning algorithm for haptic shared driving, a short
scenario of obstacle avoidance is considered. The experiment
takes place on a straight two-lane road of 4 km. With instruc-
tions to stay within the lane, drivers are required to avoid other
vehicles stopped and placed so as to partially block the lane.
Groups of four vehicles constitute an obstacle avoidance situa-
tion as shown in Fig. 9. Three types of situations distinguished
by the spacing between the vehicles are respectively defined
with a spacing of 150m, 100m and 50m. In total, six obstacle
avoidance situations were randomly arranged on the test track.
Here, we assume that the obstacles are undetected by the vision
system and the driver participants must perform an obstacle
avoidance maneuver to avoid the collisions at a constant speed
vx = 90 [km/h]. With the same scenario, the participants tested
the three following strategies.
• Manual Control. Only drivers performed the driving.
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• No-Shared Control. The drivers performed the driving
task with a conventional lane keeping system, i.e., the only
goal of this latter is to track the lane centerline.

• Shared Control. The drivers performed the driving with a
lane keeping system integrating the proposed cooperative
trajectory planning algorithm.

These strategies were tested in a random order. Before the
test, each participant realized a short “familiarization” phase to
perform a driving task on a free test track with these strategies.

Fig. 9. Test scenario on collision avoidance with other vehicles stopped
on both sides of the track.

4) Evaluation Criteria:
a) Objective Evaluation: This evaluation is based on

mathematical metrics to analyze the driver-automation inter-
action as well as the quality of the (shared) driving control.
Four criteria are proposed to evaluate the driver-automation
interaction: time consistency TiC, effort consistency EfC,
steering effort StE, and steering resistance StR, see also [6].
The time consistency metric is defined as follows:

TiC =
Tc
Tsc

, with Tc = {t ∈ [0, Tsc] : Td(t) · Ta(t) > 0} ,

where Tsc is the scenario duration, and Tc is the duration in
which the automation cooperatively shares the vehicle control
with the driver. The effort consistency metric is defined as

EfC =

∫
Tc T

2
a (τ)dτ∫

Tsc T
2
a (τ)dτ

.

Note that these two metrics allow to evaluate the consistency
between the driver and the automation. The total effort provided
by the driver during the test scenario is defined as

StE =

∫
Tsc

T 2
d (τ)dτ.

Finally, the total resisting effort delivered by the driving au-
tomation during the test scenario is given by

StR =

∫
Tr
T 2
a (τ)dτ, Tr = {t ∈ [0, Tsc] : Td(t) · Ta(t) < 0}.

The driving quality is evaluated using the well-known steering
wheel reversal rate (SRR), which is related to the steering
wheel instability [34]. This metric is defined by counting the
number of times that the steering wheel was reversed at a rate
of at least 15 [deg/s]. Since SRR is directly related to visual
distraction or high cognitive workload, an increased SRR could
be interpreted in terms of increased risk.

b) Subjective Evaluation: Questionnaires were provided
after each test to evaluate subjectively the driving performed
with each strategy. There are four subjective factors: the driving
control feeling (Control), the driving comfort (Comfort), the
ease of obstacle avoidance (Easiness), and a subjective eval-
uation of the overall driving performance (Performance). The
first three factors are reported over a scale of 0 (worst) to 100
(best). The last one is to simply check one of the three options:
Good, Medium or Bad. A Student’s T-test for paired samples
was used for statistical analysis of both objective and subjective
data. The threshold of significance was set at 0.05.

B. Experimental Results and Discussions
1) Objective Results: The objective results on driver-

automation interaction obtained with each driving strategy are
summarized in Fig. 10. The time consistency of the driver’s
and the automation’s actions during the test with both No-
Shared and Shared strategies is depicted in Fig. 10 (a).
The T-test reveals a significant increase in time consistency
under Shared Control compared to No-Shared Control with
p−value = 0.03. The result in Fig. 10 (b) shows a clear increase
in the effort consistency with Shared Control. The statistical
test confirms this significant increase with p−value = 0.02. As
presented in Fig. 10 (c), when the driving automation does not
cooperate with the drivers under No-Shared Control, the effort
required to steer the vehicle and to avoid the obstacles is very
large compared to that obtained with Manual Control (p−value
= 0.03). However, the T-test shows no significant difference
between Manual and Shared Control strategies for the StE
metric. It is also clearly observed in Fig. 10 (d) that using
Shared Control strategy, the automation significantly reduces
its resistance to the driver compared to No-Shared Control
(p−value = 0.02).

Fig. 10. Mean and standard deviation of: (a) Time consistency; (b) Effort
consistency; (c) Steering effort; (d) Steering resistance.

The results on SRR obtained with different driving strategies
are presented in Fig. 11. With both No-Shared Control and
Shared Control strategies, SRR increases compared to that
of Manual Control strategy. This means that the driving au-
tomation under both No-Shared Control and Shared Control
strategies leads to a slight increase in the instability of the
vehicle guidance compared to manual driving. In addition, the
difference between these two strategies is not significant with
respect to the SRR metric according to the T-test.

Fig. 11. Mean and standard deviation of SRR with three strategies.

The objective results demonstrate a clear improvement in
terms of driver-automation interaction thanks to the proposed
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trajectory planning algorithm used for Shared Control. This
is due to the fact that the automation adaptively replans the
vehicle trajectory according to the driver’s actions, which results
in an active driving assistance during obstacle avoidance. To
emphasize the interests of the proposed trajectory planning,
the results obtained with the first driver participant using three
driving strategies are presented in Fig. 12 for illustrations.

As observed in Fig. 12 (b), with No-Shared Control, the as-
sistive torque Ta is constantly opposite to the driver’s torque Td.
This is explained by the fact that without using the cooperative
planning algorithm, the driving automation only focuses on the
lane keeping task when the driver performs obstacle avoidance
maneuvers. Hence, the driver must provide a much larger Td
than Ta so that he could make necessary deviations to avoid the
obstacles. This also results in a significantly higher Td than that
provided with Manual Control strategy, see Fig. 12 (a). Remark
in Figs. 12 (a) and (c) that the driver’s torque Td required to per-
form the avoidance tasks with Shared Control is reduced and of
the same order as with Manual Control. It can be also observed
in Fig. 12 (c) that the planned trajectory yp is continuously
updated to better accommodate the driver’s steering actions,
which explains the above-mentioned increase in the driver-
automation consistency when using Shared Control strategy.
This is not the case of the results in Fig. 12 (b) with No-Shared
Control, for which the planned trajectory yp only corresponds
to the lane centerline. However, during the test scenario there
are phases where the planned trajectory yp does not match that
realized by the driver yv, especially when the avoidance tasks
must be quickly performed, see for instance the time interval
[37s, 42s] in Fig. 12 (c). This is due to the parameterization of
the proposed algorithm that favors trajectories minimizing the
lateral acceleration for comfort reasons.
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Fig. 12. Results obtained with the first driver participant. (a) Manual
Control: Driver torque Td and vehicle position yv ; (b) No-Shared Control:
Driver torque Td, assistive torque Ta and vehicle position yv , planned
position yp; (c) Shared Control: Driver torque Td, assistive torque Ta and
vehicle position yv , planned position yp.

2) Subjective Results: The subjective results obtained with
the considered test scenario are summarized in Fig. 13. Ob-
serve that the three subjective metrics Control, Comfort and

Easiness are lower with No-Shared Control strategy than to
the two other ones. Also, the feeling of driving comfort and
ease of obstacle avoidance is worse with No-Shared Control
while Shared Control allows to have a driving feeling almost
equivalent to that obtained with Manual Control. Moreover,
the results on Performance metric shown in Fig. 13 (d) confirm
that No-Shared Control strategy leads to the worst driving
performance perceived during the test scenario. On the contrary,
the subjective results show a clear improvement of the sub-
jective feeling of drivers when using the proposed cooperative
trajectory planning for Shared Control strategy. Indeed, a
significant reduction of the steering wheel resistance and an
active assistance that the driver has received during the obstacle
avoidance maneuvers have contributed to increase the vehicle
control feeling and the driving comfort in this case.

Fig. 13. Subjective results on the feeling of: (a) Driving control; (b) Driving
comfort; (c) Ease of driving; (d) Overall driving performance.

VI. CONCLUDING REMARKS

A novel cooperative trajectory planning algorithm is proposed
for haptic shared driving control. In this study, the driver-
automation conflict is characterized in the test scenario by
the presence of undetected obstacles on the trajectory that
must be performed by the automation. An active assistance
can be achieved by adaptively updating the vehicle trajectory
according to the driver’s actions. This allows the driver to
perform much more easily his/her desired trajectory, leading
to a better feeling of vehicle control and driving comfort.
The effectiveness of the proposed planning algorithm is clearly
demonstrated with both objective and subjective evaluations.
Future works focus on taking into account the obstacles in the
cooperative planning algorithm to solve the driver-automation
conflict. Moreover, as reported by participants during the post-
experimental interviews, it would be interesting to integrate a
visual feedback to display online the replanned trajectory. This
could help drivers better understand the automation’s actions to
reduce further conflicts. Furthermore, user test experiments with
an important number of driver participants will be required to
study more thoroughly the acceptability of the proposed shared
control method.
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