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Abstract-This paper investigates a new observer design method to estimate simultaneously both the vehicle dynamics and the unknown driver's torque. To take into account the timevarying nature of the longitudinal speed, the vehicle system is transformed into a polytopic linear parameter-varying (LPV) model with a reduced level of numerical complexity. Based on Lyapunov stability arguments, we prove that the estimation errors of the system state and of the unknown input (UI) are norm-bounded, which can be made arbitrarily small by minimizing a guaranteed L∞-gain performance. The design of the LPV unknown input observer is reformulated as an LMI-based optimization which can be effectively solved via semidefinite programming. Extensive hardware experiments are carried out under various driving test scenarios to confirm the effectiveness of the proposed observer design. In particular, a comparative study is performed with a widely adopted observer to emphasize the practical interests of the new estimation solution.
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I. INTRODUCTION

A raising number of road accidents has greatly motivated the research and development on intelligent vehicles (IVs) to improve the ride safety and comfort [START_REF] Li | Cognitive cars: A new frontier for ADAS research[END_REF]- [START_REF] Guo | A review of estimation for vehicle tire-road interactions toward automated driving[END_REF]. As an essential part of IVs, online driver-vehicle monitoring and active safety control systems have gained increasing interests worldwide [START_REF] Guo | A review of estimation for vehicle tire-road interactions toward automated driving[END_REF]- [START_REF] Wang | Online sensing of human steering intervention torque for autonomous driving actuation systems[END_REF]. Real-time information of the vehicle dynamics and the driver-related variables is crucial to develop such feedback control and monitoring systems. Unfortunately, the onboard vehicle sensors are in general too expensive for commercial automotive applications [START_REF] Zhang | Robust energy-topeak sideslip angle estimation with applications to ground vehicles[END_REF], [START_REF] Nguyen | Sensor reduction for driver-automation shared steering control via an adaptive authority allocation strategy[END_REF]. Moreover, in many specific contexts, the human driver variables cannot be directly measured by physical sensors [START_REF] Wang | Online sensing of human steering intervention torque for autonomous driving actuation systems[END_REF]. Hence, estimation algorithms must be developed in these situations to reconstruct drivervehicle variables with only measurements of low-cost sensors.

Due to its usefulness in many active safety applications and the prohibitive cost, the sideslip angle estimation has attracted considerable research efforts [START_REF] Zhang | Robust energy-topeak sideslip angle estimation with applications to ground vehicles[END_REF], [START_REF] Piyabongkarn | Development and experimental evaluation of a slip angle estimator for vehicle stability control[END_REF]- [START_REF] Chen | Vehicle sideslip angle and road friction estimation using online gradient descent algorithm[END_REF]. General speaking, the sideslip angle estimation algorithms can be classified into three categories. First, the kinematic modelbased methods [START_REF] Bevly | The use of GPS based velocity measurements for measurement of sideslip and wheel slip[END_REF], [START_REF] Selmanaj | Vehicle sideslip estimation: A kinematic based approach[END_REF] rely on a simple vehicle model. Without requiring vehicle or tire friction parameters, these methods strongly depend on the sensor information, which can lead to the drift phenomena induced by bias errors [START_REF] Zhang | Robust energy-topeak sideslip angle estimation with applications to ground vehicles[END_REF]. Second, the dynamic model-based methods using Kalman filters [START_REF] Doumiati | Onboard real-time estimation of vehicle lateral tire-road forces and sideslip angle[END_REF]- [START_REF] Gadola | Development and validation of a Kalman filter-based model for vehicle slip angle estimation[END_REF] or robust observers [START_REF] Zhang | Robust energy-topeak sideslip angle estimation with applications to ground vehicles[END_REF], [START_REF] Du | Sideslip angle estimation and stability control for a vehicle with a non-linear tyre model and a varying speed[END_REF], [START_REF] Nguyen | Simultaneous estimation of vehicle lateral dynamics and driver torque using LPV unknown input observer[END_REF] can overcome this major drawback. However, these methods usually require an accurate information on the vehicle parameters and tire-road conditions, especially for driving situations with high lateral acceleration [START_REF] Selmanaj | Vehicle sideslip estimation: A kinematic based approach[END_REF]. Third, fusion-data-based methods have been proposed to exploit the advantages of the two above categories [START_REF] Piyabongkarn | Development and experimental evaluation of a slip angle estimator for vehicle stability control[END_REF], [START_REF] Li | A reliable fusion methodology for simultaneous estimation of vehicle sideslip and yaw angles[END_REF], [START_REF] Cheng | Fusion algorithm design based on adaptive SCKF and integral correction for side-slip angle observation[END_REF]. Note that these methods can introduce excessive costs and complexity to the vehicle design [START_REF] Selmanaj | Vehicle sideslip estimation: A kinematic based approach[END_REF].

Model-based unknown input (UI) observers have been also proposed to estimate the vehicle dynamics together with UIs related to the vehicle-road characteristics. Based on a gradient descent algorithm, the authors in [START_REF] Chen | Vehicle sideslip angle and road friction estimation using online gradient descent algorithm[END_REF] proposed an UI observer to estimate the sideslip angle and the road friction. An algebraic-based UI observer was developed in [START_REF] Imsland | On non-linear unknown input observers-applied to lateral vehicle velocity estimation on banked roads[END_REF] to reconstruct the lateral speed on an unknown banked road. Using the mean value theorem, a nonlinear observer was proposed in [START_REF] Phanomchoeng | Real-time estimation of rollover index for tripped rollovers with a novel unknown input nonlinear observer[END_REF] to estimate the vehicle dynamics. Then, the unknown normal tire forces were recovered with a dynamic model inversion technique. Note that for simplicity, a constant vehicle speed was considered for observer design in most of existing works. Unfortunately, this strong assumption can lead to a poor estimation performance under various driving situations [START_REF] Zhang | Robust energy-topeak sideslip angle estimation with applications to ground vehicles[END_REF], [START_REF] Zhang | A novel observer design for simultaneous estimation of vehicle steering angle and sideslip angle[END_REF]. The LPV unknown input observer, recently proposed in [START_REF] Mammar | On unknown input observers for LPV systems[END_REF], can be used to overcome this drawback. However, this algebraic UI decoupling method and numerous related designs require a differentiation of the measured output for UI estimation, leading to a major practical issue [START_REF] Imsland | On non-linear unknown input observers-applied to lateral vehicle velocity estimation on banked roads[END_REF]. Being able to avoid the above issues, the novel fuzzy UI observer in [START_REF] Zhang | A novel observer design for simultaneous estimation of vehicle steering angle and sideslip angle[END_REF] can be used to estimate both the sideslip angle and the unknown steering angle of autonomous vehicles. This UI observer may induce practical difficulties for real-time purposes due to its important number of subsystems for fuzzy representation and a conservative Lipschitz-like assumption.

Despite of an extensive literature, UI observer designs for a simultaneous estimation of the sideslip angle and the human steering torque have not been well addressed. Nevertheless, such an estimation framework is crucial for many IVs appli-cations, especially shared driving control [START_REF] Nguyen | Driver-automation cooperative approach for shared steering control under multiple system constraints: Design and experiments[END_REF], [START_REF] Sentouh | Driverautomation cooperation oriented approach for shared control of lane keeping assist systems[END_REF], or takeover control process [START_REF] Wang | Online sensing of human steering intervention torque for autonomous driving actuation systems[END_REF], [START_REF] Lv | A novel control framework of haptic take-over system for automated vehicles[END_REF]. In these control situations, the driver torque is jointly applied to the steering wheel with an assistive torque from a driving assistance system to control the vehicle [START_REF] Nguyen | Sensor reduction for driver-automation shared steering control via an adaptive authority allocation strategy[END_REF]. Hence, the human driver torque cannot be always measured by a torque sensor due to the driver-automation coupled input [START_REF] Wang | Online sensing of human steering intervention torque for autonomous driving actuation systems[END_REF]. Designing an UI observer to reconstruct the driver torque is crucial to detect the human intervention in the driving process, thus to improve the shared control performance [START_REF] Sentouh | Driverautomation cooperation oriented approach for shared control of lane keeping assist systems[END_REF]. Surprisingly, very few works related to this topic can be found in the open literature. Using the dynamics of a steering wheel actuation system, the authors in [START_REF] Wang | Online sensing of human steering intervention torque for autonomous driving actuation systems[END_REF] developed a nonlinear disturbance observer for the driver torque estimation. An H ∞ /H 2 proportional multi-integral (PMI) observer was used in [START_REF] Yamamoto | Driver torque estimation in electric power steering system using an H∞/H 2 proportional integral observer[END_REF] to estimate the driver torque from the dynamics of an electric power steering system. Remark that the vehicle dynamics, especially the sideslip angle, cannot be reconstructed with the observers in [START_REF] Wang | Online sensing of human steering intervention torque for autonomous driving actuation systems[END_REF], [START_REF] Yamamoto | Driver torque estimation in electric power steering system using an H∞/H 2 proportional integral observer[END_REF]. The driver-vehicle estimation objective can be achieved with the UI observer in [START_REF] Soualmi | Both vehicle state and driver's torque estimation using unknown input proportional multiintegral T-S observer[END_REF]. Exploiting the generalized design of PMI observers [START_REF] Lendek | Adaptive observers for TS fuzzy systems with unknown polynomial inputs[END_REF] for T-S fuzzy systems [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF], this UI observer was designed while further taking into account the D-stability constraints to improve the estimation performance. Note that for the observer designs in [START_REF] Wang | Online sensing of human steering intervention torque for autonomous driving actuation systems[END_REF], [START_REF] Yamamoto | Driver torque estimation in electric power steering system using an H∞/H 2 proportional integral observer[END_REF]- [START_REF] Lendek | Adaptive observers for TS fuzzy systems with unknown polynomial inputs[END_REF], the UIs must be of polynomial form. This assumption is not always compatible with the driver torque signal in IVs applications [START_REF] Yamamoto | Driver torque estimation in electric power steering system using an H∞/H 2 proportional integral observer[END_REF].

This paper investigates a new UI observer design to estimate simultaneously the vehicle dynamics and the driver torque. The particular features of this cost-effective estimation solution can be summarized as follows.

1) In contrast to UI decoupling approaches [START_REF] Imsland | On non-linear unknown input observers-applied to lateral vehicle velocity estimation on banked roads[END_REF], [START_REF] Mammar | On unknown input observers for LPV systems[END_REF], [START_REF] Chadli | Robust observer design for unknown inputs Takagi-Sugeno models[END_REF],

no differentiation of the measured output and/or the timevarying parameters are needed for the UI reconstruction.

In addition, no matching conditions are explicitly imposed on the UIs as in [START_REF] Zhang | A novel observer design for simultaneous estimation of vehicle steering angle and sideslip angle[END_REF], [START_REF] Imsland | On non-linear unknown input observers-applied to lateral vehicle velocity estimation on banked roads[END_REF], [START_REF] Lendek | Adaptive observers for TS fuzzy systems with unknown polynomial inputs[END_REF] and numerous related references. Moreover, no a priori knowledge on the UIs is required as for the design of PMI observers [START_REF] Soualmi | Both vehicle state and driver's torque estimation using unknown input proportional multiintegral T-S observer[END_REF], [START_REF] Lendek | Adaptive observers for TS fuzzy systems with unknown polynomial inputs[END_REF], [START_REF] Youssef | Actuator and sensor faults estimation based on proportional integral observer for T-S fuzzy model[END_REF]. Note that to improve the estimation performance, the order of PMI observers may be significantly larger than that of the plant systems, inducing complexities/difficulties for practical uses.

2) The proposed LPV observer enables arbitrarily small estimation errors by minimizing an L ∞ -gain. Using Lyapunov-based arguments, the estimation performance is theoretically guaranteed. The observer design is recast as a linear matrix inequality (LMI) based optimization problem, which is efficiently solved with semidefinite programming [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]. Moreover, to reduce the conservatism, the information of both vehicle speed and acceleration is exploited in the observer design using a parameterdependent Lyapunov function involving a slack variable.

3) The effectiveness of the new method is thoroughly verified through hardware experiments with an interactive driving simulator under various driving test conditions. Especially, a comparative study is performed with the widely adopted PMI observer design to emphasize the interests of the proposed estimation solution.

This paper extends our preliminary results in [START_REF] Nguyen | Simultaneous estimation of vehicle lateral dynamics and driver torque using LPV unknown input observer[END_REF]. It provides additional theoretical results to further reduce the complexity and the conservatism of the design conditions through a new treatment of the parameter-dependent Lyapunov matrix. In particular, we include extensive experimental results and a comparative study with a PMI observer. The paper is organized as follows. Section II recalls the vehicle modeling and describes the observer problem. The vehicle system is transformed into a tractable LPV model for observer design in Section III. In Section IV, the new LMI-based observer design is first detailed for state estimation. Then, a method to reconstruct the UI is presented. The interests of the proposed method is experimentally demonstrated in Section V. Section VI provides some concluding remarks.

Notation. Ω N denotes the set of numbers {1, 2, . . . , N }. I denotes the identity matrix of appropriate dimension. For a matrix X, X indicates its transpose. For any square matrix X, X 0 indicates a positive definite matrix, HeX = X + X , and λ min (X) (respectively λ max (X)) denotes the minimal (respectively maximal) eigenvalue of X. For a vector x ∈ R n , we denote its 2-norm as x =

√

x x. For any bounded function f (•) : R → R n , its L ∞ -norm is defined as f (•) ∞ = sup t∈R f (t) . The time dependency of the variables is omitted when convenient.

II. VEHICLE MODELING AND PROBLEM DEFINITION

This section reviews the main features of the vehicle dynamics. Then, the related UI observer design problem is formulated. The vehicle parameters are given in Table I. 

A. Nonlinear Vehicle Dynamics

A nonlinear single track model is used to represent the vehicle motions in the horizontal plane, see Fig. 1. This model captures the essential vehicle dynamics, described as [START_REF] Nguyen | Fuzzy steering control for autonomous vehicles under actuator saturation: Design and experiments[END_REF] M ( vx

-rv y ) = F xf cos δ -F yf sin δ + F xr M ( vy + rv x ) = F xf sin δ + F yf cos δ + F yr I z ṙ = l f (F xf sin δ + F yf cos δ) -l r F yr (1)
where v x is the longitudinal speed of the vehicle, v y is the lateral speed, r is the yaw rate. The front/rear longitudinal and lateral tire forces F ki , with k ∈ {x, y} and i ∈ {f, r}, are caused by the contact between the tires and the road surface.

Several semi-empirical models are available in the literature to represent accurately the tire-road friction, such as Pacejka magic formula, LuGre model, etc. [START_REF] Li | Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control[END_REF], which are not detailed here for brevity. The electronic power steering system can be modeled as [START_REF] Nguyen | Sensor reduction for driver-automation shared steering control via an adaptive authority allocation strategy[END_REF] 

δd = T sβ I s β + T sr I s r - T sβ R s I s δ d - B s I s δd + 1 I s T s (2)
where δ d is the driver's steering angle, β is the sideslip angle at the center of gravity (CoG) with

β = arctan v y v x , T sβ = 2K p C f η t R s , T sr = 2K p C f η t R s l f v x .
The steering torque T s = T a + T d is composed of the known electrical assistance torque and the unknown driver torque. 

B. Observer Problem Statement

As stated previously, despite its crucial importance to active safety control systems, the real-time information on the vehicle dynamics and the driver's torque cannot be always obtained from onboard sensors. Here, we provide a cost-effective solution to reconstruct such information though an unknown input observer which satisfies the following requirements.

• The new UI observer can be easily designed and implemented with only measurements from low-cost sensors. • The estimation errors of both vehicle dynamics and driver's torque are norm-bounded which can be set arbitrarily small via an LMI-based optimization problem. • The estimation performance and the robustness with respect to the time-varying vehicle speed can be guaranteed with Lyapunov stability arguments.

To meet these specifications, we propose in Section IV a new LPV unknown input observer design method.

III. LPV REPRESENTATION OF VEHICLE SYSTEM

We represent hereafter the vehicle system in a polytopic LPV form which is suitable for observer design purposes.

A. Observer-Based Vehicle System

To derive the observer-based vehicle model, we assume that [START_REF] Nguyen | Fuzzy steering control for autonomous vehicles under actuator saturation: Design and experiments[END_REF]: (i) the vehicle speed is a time-varying parameter with a limited variation rate; (ii) the lateral tire forces are proportional to the slip angles of each axle; (iii) the small angle assumption is considered. Note that these assumptions are appropriate for normal driving under mild acceleration conditions. Then, the lateral tire forces can be modeled as follows:

F yf = 2C f α f , F yr = 2C r α r (3) 
where the sideslip angles of the front and rear tires are respectively given by

α f = δ - v y + l f r v x , α r = l r r -v y v x .
Remark that the relation between the driver's steering angle δ d and the vehicle steering angle δ is given as δ d = R s δ. From ( 1) and ( 3), the vehicle lateral dynamics can be obtained in the following form:

β ṙ = a 11 a 12 a 21 a 22 β r + b 1 b 2 δ. ( 4 
)
The elements of the system matrices in ( 4) are given by

a 11 = - 2(C r + C f ) M v x , a 12 = 2(l r C r -l f C f ) M v 2 x - 1 
a 21 = 2(l r C r -l f C f ) I z , a 22 = -2(l 2 r C r + l 2 f C f ) I z v x b 1 = 2C f M v x , b 2 = 2l f C f I z .
From ( 2) and ( 4), we obtain the vehicle state-space model

Σ v (v x ) : ẋ = A(v x )x + Bu + Dd (5) 
where x = β r δ δ is the vehicle state, u = T a is the known input, and d = T d is the unknown input. The system matrices of ( 5) are given as follows:

A(v x ) =     a 11 a 12 b 1 0 a 21 a 22 b 2 0 0 0 0 1 a 41 a 42 a 43 a 44     , B = D =     0 0 0 1 RsIs    
where

a 41 = T sβ R s I s , a 42 = T sr R s I s , a 43 = - T sβ R s I s , a 44 = - B s I s .
For the vehicle system (5), the yaw rate r can be measured by an inertial navigation system. The steering angle δ and the steering rate δ are obtained from an optical encoder. The sideslip angle β can be measured by a Correvit optical sensor. However, due to the excessive cost of Correvit sensors, the measurement of β is not available in practice. Therefore, the output equation of system ( 5) is given by

y = Cx, C =   0 1 0 0 0 0 1 0 0 0 0 1   .
For observer design, we reformulate in the sequel the vehicle system Σ v (v x ) in a numerically tractable LPV representation.

B. Polytopic LPV Representation of Vehicle System

Note that the vehicle dynamics in (5) depends on two speedrelated terms 1 vx and 1 v 2

x , which are measured and bounded. For observer design, we consider the following bounds:

v min ≤ v x ≤ v max , v min = 5 [m/s], v max = 35 [m/s].
Let us define the parameter vector θ

* (t) = 1 vx 1 v 2 x
. These two parameters form a convex hull Θ * with four vertices

θ v1 = 1 vmin 1 v 2 min , θ v2 = 1 vmin 1 v 2 max θ v3 = 1 vmax 1 v 2 max , θ v4 = 1 vmax 1 v 2 min .
Such a parameter polytope Θ * leads to design conservatism and numerical complexity since 1 vx and 1 v 2

x are separately considered despite its strong dependency. To avoid this drawback and to reduce significantly the numerical complexity of the observer structure, we make use of the following variable change and the Taylor's approximation [START_REF] Nguyen | Sensor reduction for driver-automation shared steering control via an adaptive authority allocation strategy[END_REF]:

1 v x = 1 v 0 + 1 v 1 θ, 1 v 2 x 1 v 2 0 1 + 2 v 0 v 1 θ (6) 
where v 0 = 2vminvmax vmin+vmax and v 1 = -2vminvmax vmax-vmin . The time-varying parameter θ(t) in ( 6) verifies

θ min ≤ θ ≤ θ max , θ min = -1, θ max = 1. (7) 
Since v x = v min for θ = θ min and v x = v max for θ = θ max , the new parameter θ can be used to describe the variation of v x between its lower and upper bounds. Substituting (6) into (5), then the dynamics of the corresponding vehicle model

Σ v (θ) : ẋ = A(θ)x + Bu + Dd y = Cx
depends linearly on θ. Using the sector nonlinearity approach [36, Chap. 2], the vehicle model Σ v (θ) can be exactly represented in the following polytopic LPV form:

Σ v (θ) :      ẋ = 2 i=1 η i (θ)A i x + Bu + Dd y = Cx (8) 
where the scalar membership functions are given by

η 1 (θ) = 1 2 (1 -θ), η 2 (θ) = 1 -η 1 (θ) A 1 = A(θ min ), A 2 = A(θ max ). (9) 
Remark 1. Using the variable change together with the Taylor's approximation in [START_REF] Hashemi | Opinion dynamics-based vehicle velocity estimation and diagnosis[END_REF], the number of vertices is reduced from four to two. From the practical viewpoint, the induced approximation error is expected to be small over the whole vehicle system (5) since only a part of the element a 12 of matrix A(v x ) is affected by this approximation. This is also justified by experimental results presented in Section V.

Remark 2. To limit the theoretical kinematic centripetal acceleration of the vehicle [START_REF] Nguyen | LPV static output feedback for constrained direct tilt control of narrow tilting vehicles[END_REF], the following bounds of vehicle acceleration are considered:

a min ≤ a x = vx ≤ a max , a max = -a min = 4 [m/s 2 ]. (10)
Then, it follows from ( 6) and ( 10) that

a min a 0 ≤ θ ≤ a max a 0 , a 0 = - v 2 0 v 1 . (11) 
As shown in Remark 3, exploiting simultaneously the bounds of both the vehicle speed [START_REF] Wang | Online sensing of human steering intervention torque for autonomous driving actuation systems[END_REF] and the acceleration [START_REF] Zhang | A novel observer design for simultaneous estimation of vehicle steering angle and sideslip angle[END_REF] in the observer design allows reducing further the conservatism.

IV. L ∞ DESIGN OF LPV UNKNOWN INPUT OBSERVERS

To estimate simultaneously the vehicle dynamics and the driver torque, we present hereafter a set of LMIs to design UI observers. For generality, LPV systems in a general form are considered for theoretical development.

A. Problem Definition

Consider an LPV system with the state-space realization

ẋ = A(θ)x + B(θ)u + D(θ)d y = C(θ)x, x(0) = x 0 (12) 
where x ∈ R nx is the state, u ∈ R nu is the known input, d ∈ R n d is the unknown input, and y is the measured output.

The scheduling variable θ ∈ R p and its rate of variation θ are smooth and respectively valued in the hypercubes

Θ = {(θ 1 , . . . , θ p ) : θ j ∈ [θ j , θ j ], j ∈ Ω p } Θ d = {( θ1 , . . . , θp ) : θj ∈ [υ j , υ j ], j ∈ Ω p }
where θ j ≤ θ j (respectively υ j ≤ υ j ) are known lower and upper bounds on θ j (respectively θj ), for j ∈ Ω p . Assume that the time-varying state-space matrices Π(θ) of ( 12), with Π ∈ {A, B, C, D}, are continuous on the hypercube Θ. Then, using the sector nonlinearity approach in [36, Chap. 2], these state-space matrices can be equivalently represented by

A(θ) = N i=1 η i (θ)A i , B(θ) = N i=1 η i (θ)B i C(θ) = N i=1 η i (θ)C i , D(θ) = N i=1 η i (θ)D i (13) 
with N = 2 p and

Π i = Π(θ)| ηi(θ)=1 , for ∀Π ∈ {A, B, C, D}.
The membership functions η i (θ), i ∈ Ω N , in (13) satisfy

η i (θ) ≥ 0, N i=1 η i (θ) = 1, N i=1 ηi (θ) = 0, ∀θ ∈ Θ.
Since (θ, θ) ∈ Θ × Θ d , the lower bound φ i1 and the upper bound φ i2 of ηi (θ) can be easily obtained as follows:

ηi (θ) ∈ φ i1 , φ i2 , φ i1 ≤ φ i2 , i ∈ Ω N . (14) 
As an example, these bounds of the considered vehicle system can be derived from ( 7) and [START_REF] Zhang | A novel observer design for simultaneous estimation of vehicle steering angle and sideslip angle[END_REF] as

φ 11 ≤ η1 (θ) ≤ φ 12 , φ 21 ≤ η2 (θ) ≤ φ 22
where

φ 11 = -a max 2a 0 , φ 12 = -a min 2a 0 , φ 21 = a min 2a 0 , φ 22 = a max 2a 0 .
For the observer design, the following standard assumptions are considered for LPV system [START_REF] Chen | Vehicle sideslip angle and road friction estimation using online gradient descent algorithm[END_REF].

• The pair (A(θ), C(θ)) is detectable, for ∀θ ∈ Θ.

• The matrix D(θ) is of full-column rank, for ∀θ ∈ Θ.

• The unknown input d is bounded in amplitude. Note that these assumptions are naturally verified for the vehicle model Σ v (θ) defined in [START_REF] Zhang | Robust energy-topeak sideslip angle estimation with applications to ground vehicles[END_REF].

We propose a Luenberger-type observer in the form

ẋ = A(θ)x + B(θ)u + D(θ) d + M(θ)(ŷ -y) ŷ = C(θ)x, x(0) = x0 (15) 
where x(t) is the estimate of the state vector x(t), and d(t) is the estimate of the unknown input d(t). The parameterdependent observer gain M(θ) is specified in Theorem 1. Let e = xx be the sate estimation error and e d = dd be the estimation error of the UI. Then, the observer error dynamics is represented as

ė = Â(θ)e + D(θ)e d (16) 
with Â(θ) = A(θ) + M(θ)C(θ). The performance output associated with the state estimation error is defined as

z = F (θ)e = N i=1 η i (θ)F i e. (17) 
We are now in the position to formulate the observer design problem related to the error dynamics [START_REF] Nam | Estimation of sideslip and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches[END_REF].

Problem 1. Given an LPV system [START_REF] Chen | Vehicle sideslip angle and road friction estimation using online gradient descent algorithm[END_REF] with (θ, θ) ∈ Θ × Θ d , ∀t > 0. Determine an observer gain M(θ) such that the LPV observer [START_REF] Doumiati | Onboard real-time estimation of vehicle lateral tire-road forces and sideslip angle[END_REF] results in an input-to-state stable error dynamics with a guaranteed L ∞ -gain performance. This means that the following closed-loop properties hold for system [START_REF] Nam | Estimation of sideslip and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches[END_REF].

• If e d (t) = 0, for ∀t ∈ R + , the error dynamics ( 16) is globally exponentially stable.

• If e d (t) = 0, for ∀t ∈ R + , the state error is uniformly bounded for any initial condition e(0) and any bounded input e d . Moreover, the performance output [START_REF] Gadola | Development and validation of a Kalman filter-based model for vehicle slip angle estimation[END_REF] satisfies

lim t→∞ sup z ≤ γ e d ∞ , γ > 0 ( 18 
)
where the L ∞ -gain γ is specified in Theorem 1.

From ( 17) and ( 18), we remark that a smaller value of the L ∞ -gain γ leads to a better estimation performance.

B. LMI-Based Optimization for LPV Observer Design

The following theorem provides LMI conditions to design an UI observer [START_REF] Doumiati | Onboard real-time estimation of vehicle lateral tire-road forces and sideslip angle[END_REF] for LPV systems of the form [START_REF] Chen | Vehicle sideslip angle and road friction estimation using online gradient descent algorithm[END_REF].

Theorem 1. Given an LPV system [START_REF] Chen | Vehicle sideslip angle and road friction estimation using online gradient descent algorithm[END_REF] with (θ, θ) ∈ Θ×Θ d , and a positive scalar α. Assume there exist symmetric matrices X ∈ R nx×nx , P i ∈ R nx×nx , matrices L i ∈ R nx×ny , for i ∈ Ω N , and positive scalars µ, ν such that the following optimization problem is feasible:

minimize ξi, i∈Ω N µ + ν subject to P i + X 0 (19) P i + X F i µI 0 (20) 
Υ kl ii 0, Υ kl ij + Υ kl ji 0 (21) 
where ξ i = (µ, ν, X, P i , L i ) and i, j

∈ Ω N , i < j, k ∈ Ω N -1 , l ∈ Ω 2 .
The quantity Υ kl ij in ( 21) is defined as follows:

Υ kl ij = He

P i A j + L i C j + αP i + 1 2 Ψ (P i + X)D j 0 -ανI (22) 
Ψ = φ kl (P k + X -P N ) + φ N l X + 2XA j + 2αX.
Then, the LPV observer [START_REF] Doumiati | Onboard real-time estimation of vehicle lateral tire-road forces and sideslip angle[END_REF] with the parameter-dependent gain defined as M(θ) = P(θ) -1 L(θ) and

P(θ) = N i=1 η i (θ)(P i + X), L(θ) = N i=1 η i (θ)L i (23)
ensures that the error dynamics ( 16) together with its associated performance output ( 17) verify the closed-loop properties given in Problem 1. Moreover, the guaranteed L ∞ -gain performance is defined as γ = √ νµ.

Proof. For stability analysis and observer design, we consider the following parameter-dependent Lyapunov function:

V(e) = e P(θ)e.

Condition [START_REF] Nguyen | Simultaneous estimation of vehicle lateral dynamics and driver torque using LPV unknown input observer[END_REF] guarantees that P(θ) is positive definite for ∀θ ∈ Θ. Hence, V(e) is a proper Lyapunov function candidate. Since N i=1 ηi (θ) = 0, for any matrix X, it follows that

Ṗ(θ) = N -1 k=1 ηk (θ)(P k + X) + ηN (θ)(P N + X) = N -1 k=1 ηk (θ)(P k + X -P N ) + ηN (θ)X. (25) 
For any φ k1 ≤ ηk (θ) ≤ φ k2 in ( 14), it follows that

ηk (θ) = ω k1 (θ)φ k1 + ω k2 (θ)φ k2 , k ∈ Ω N (26) 
where

ω k1 (θ) = φ k2 -ηk (θ) φ k2 -φ k1 , ω k2 (θ) = ηk (θ) -φ k1 φ k2 -φ k1 . (27) 
Note also that ω kl (θ) ≥ 0, 2 l=1 ω kl (θ) = 1, for ∀k ∈ Ω N . From ( 25), ( 26) and [START_REF] Lv | A novel control framework of haptic take-over system for automated vehicles[END_REF], Ṗ(θ) can be exactly represented as

Ṗ(θ) = N -1 k=1 2 l=1 [ω kl (θ)φ kl X + ω N l (θ)φ N l X] (28)
with X = P k + X -P N . Using expressions ( 28) and ( 22), [START_REF] Cheng | Fusion algorithm design based on adaptive SCKF and integral correction for side-slip angle observation[END_REF] implies that

Γ ii (θ) 0, Γ ij (θ) + Γ ji (θ) 0, i, j ∈ Ω N , i < j (29)
where

Γ ij (θ) = He P i A j + L i C j + αP i + 1 2 Λ(θ) (P i + X)D j 0 -ανI Λ(θ) = Ṗ(θ) + 2XA j + 2αX. Since η i (θ) ≥ 0, ∀i ∈ Ω N , it follows from (29) that N i=1 η i (θ) 2 Γ ii (θ) + N i=1 N i<j η i (θ)η j (θ) (Γ ij (θ) + Γ ji (θ)) = N i=1 N j=1 η i (θ)η j (θ)Γ ij (θ) 0. (30) 
Inequality ( 30) can be rewritten in the following form:

He W(θ) + αP(θ) + 1 2 Ṗ(θ) P(θ)D(θ) 0 -ανI 0 (31) 
where W(θ) = P(θ)A(θ) + L(θ)C(θ). Pre-and postmultiplying [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF] with e e d and its transpose leads to the following condition after some algebraic manipulations:

V(e) ≤ -2α V(e) -ν e d 2 [START_REF] Chadli | Robust observer design for unknown inputs Takagi-Sugeno models[END_REF] where V(e) is the time-derivative of the Lyapunov function defined in [START_REF] Mammar | On unknown input observers for LPV systems[END_REF] along the solution of the error dynamics [START_REF] Nam | Estimation of sideslip and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches[END_REF]. It is clear that [START_REF] Chadli | Robust observer design for unknown inputs Takagi-Sugeno models[END_REF] implies the following inequality:

V(e) ≤ -2α V(e) -ν e d 2 ∞ . (33) 
Multiplying both sides of ( 33) by e 2αt , then integrating over [t 0 , t], we obtain 

e 2αt V(
V(e) ≤ e -2α(t-t0) V(e 0 ) + ν e d 2 ∞ 1 -e -2α(t-t0) ≤ e -2α(t-t0) V(e 0 ) + ν e d 2 ∞ . (35) 
Considering the Lyapunov function [START_REF] Mammar | On unknown input observers for LPV systems[END_REF], one has

α 1 e 2 ≤ V(e) ≤ α 2 e 2 (36) 
with

α 1 = min i∈Ω N λ min (P i + X) and α 2 = max i∈Ω N λ max (P i + X).
It follows from ( 35) and ( 36) that

α 1 e 2 ≤ α 2 e -2α(t-t0) e 0 2 + ν e d 2 ∞
which, in turn, implies that

e ≤ α 2 α 1 e -α(t-t0) e 0 + ν α 1 e d ∞ . (37) 
Inequality [START_REF] Nguyen | LPV static output feedback for constrained direct tilt control of narrow tilting vehicles[END_REF] guarantees that the observer error dynamics is globally bounded for any initial condition e 0 and any bounded unknown input d. Moreover, if e d (t) = 0, ∀t ∈ R + , then the error dynamics is exponentially stable about the origin. Multiplying (20) by η i (θ) ≥ 0 and summing up for all i ∈ Ω N , we obtain

P(θ) F (θ) µI 0. ( 38 
)
By the well-known Schur complement lemma [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], condition [START_REF] Mozelli | Reducing conservativeness in recent stability conditions of ts fuzzy systems[END_REF] is shown to be equivalent to

P(θ) -µ -1 F (θ) F (θ) 0. (39) 
Pre-and postmultiplying ( 39) with e and its transpose while considering the performance output [START_REF] Gadola | Development and validation of a Kalman filter-based model for vehicle slip angle estimation[END_REF], we obtain

z 2 ≤ µV(e). ( 40 
)
It follows from ( 35) and ( 40) that

z ≤ µV(e 0 )e -α(t-t0) + √ νµ e d ∞ . (41) 
For any initial condition e 0 and any bounded signal e d , it follows from (41) that

lim t→∞ sup z ≤ γ e d ∞ ( 42 
)
with γ = √ νµ. Hence, all the closed-loop properties described in Problem 1 are now proved. This concludes the proof.

Remark 3. To reduce the design conservatism, we introduce a slack variable X into the construction of the Lyapunov function [START_REF] Mammar | On unknown input observers for LPV systems[END_REF]. A similar idea has been presented in [START_REF] Mozelli | Reducing conservativeness in recent stability conditions of ts fuzzy systems[END_REF] for the stability analysis of Takagi-Sugeno fuzzy systems using fuzzy Lyapunov functions. However, here the Lyapunov matrices P i , for ∀i ∈ Ω N , are not required to be definite positive as in most of LPV and/or fuzzy-model-based control and observation results in the literature [START_REF] Mozelli | Reducing conservativeness in recent stability conditions of ts fuzzy systems[END_REF], [START_REF] Nguyen | Gain-scheduled static output feedback control for saturated LPV systems with bounded parameter variations[END_REF]. Moreover, explicit information on θ and θ, represented by the bounds φ kl , for k ∈ Ω N , l ∈ Ω 2 , is exploited via using the parameter-dependent Lyapunov function [START_REF] Mammar | On unknown input observers for LPV systems[END_REF] to reduce further the conservatism of the results. Indeed, if we impose X = 0, P 1 = • • • = P N = P , then the quadratic Lyapunov function V (e) = e P e is recovered from [START_REF] Mammar | On unknown input observers for LPV systems[END_REF]. In addition, if [START_REF] Cheng | Fusion algorithm design based on adaptive SCKF and integral correction for side-slip angle observation[END_REF] is feasible for arbitrarily large values of |φ kl |, then the only possible solution is such that P 1 ≈ • • • ≈ P N and X ≈ 0 to minimize the effect of φ kl (P k + X -P N ) + φ N l X involved in [START_REF] Imsland | On non-linear unknown input observers-applied to lateral vehicle velocity estimation on banked roads[END_REF]. Hence, the proposed results include those derived from quadratic or poly-quadratic Lyapunov functions V(e) = e N i=1 η i (θ)P i e. Similar arguments on the conservatism relaxation using parameter-dependent Lyapunov functions can be found in [START_REF] Nguyen | Gain-scheduled static output feedback control for saturated LPV systems with bounded parameter variations[END_REF].

Remark 4. Consider the error dynamics ( 16) with z = e. By minimizing γ, it follows directly from (42) that the estimation error e can be minimized. Moreover, if the optimization problem in Theorem 1 is feasible with arbitrarily small values of ν and µ, then the estimation error can be arbitrarily small.

C. Unknown Input Reconstruction with Norm-Bounded Error

From the design of LPV observer [START_REF] Doumiati | Onboard real-time estimation of vehicle lateral tire-road forces and sideslip angle[END_REF] in Theorem 1, we present hereafter a method to estimate the unknown input d(t). This method is similar to the equivalent-input-disturbance concept discussed in [START_REF] She | Equivalent-input-disturbance approach-Analysis and application to disturbance rejection in dual-stage feed drive control system[END_REF], [START_REF] Chen | Disturbance-observer-based control and related methods-An overview[END_REF].

For a given signal z(t), let us denote its Laplace transform as Z(s) = L[z(t)]. Then, the estimate d(t) of the UI can be constructed in the Laplace domain as follows:

D(s) = F(s) D(s) ( 43 
)
where d(t) is the modified UI estimate error, defined as

d(t) = D(θ) † M(θ)(ŷ(t) -y(t)) + d(t). ( 44 
)
Note that D(θ) is full column rank, then

D(θ) † = D(θ) D(θ) -1 D(θ)
and D(θ) † D(θ) = I. In general, the low-pass filter F(s) in ( 43) can be of any form [START_REF] She | Equivalent-input-disturbance approach-Analysis and application to disturbance rejection in dual-stage feed drive control system[END_REF]. However, here we take F(s) in the following form for simplicity:

F(s) = 1 T f s + 1 . ( 45 
)
The parameter T f regulates the angular-frequency band for disturbance rejection which can be chosen as follows [START_REF] She | Equivalent-input-disturbance approach-Analysis and application to disturbance rejection in dual-stage feed drive control system[END_REF]:

T f ≤ 1 5 ∼ 10 1 ω ( 46 
)
where ω is the highest angular frequency selected for disturbance rejection. From ( 43), ( 44) and ( 45), it follows that

ḋ = 1 T f D(θ) † M(θ)(ŷ -y) = 1 T f D(θ) † M(θ)C(θ)e. ( 47 
)
Observe that the dynamics of the UI estimate d is governed by the state estimation error. Recalling the observer error dynamics ( 16), multiplying both sides by D(θ) † , we obtain

e d = D(θ) † ė -Â(θ)e . (48) 
It follows from ( 48) that

e d ≤ D(θ) † ė + D(θ) † Â(θ) e .
Note that e d is bounded with respect to the 2-norm of the state error e and its rate of variation ė. By minimizing the L ∞ -gain γ, it is expected to achieve an accurate reconstruction of the unknown input, see also Remark 4.

Remark 5. The proposed UI observer design method has many major practical and theoretical advantages compared to the available literature. First, remark in (47) that the time-derivatives of the system output and/or the time-varying parameters are not required for the UI reconstruction as in the recent work [START_REF] Mammar | On unknown input observers for LPV systems[END_REF]. Second, the measured output is not required to be of the form y = C(θ)x + G(θ)d, with a full row rank matrix G(θ), as most of UI decoupling approaches [START_REF] Chadli | Robust observer design for unknown inputs Takagi-Sugeno models[END_REF]. Third, we can avoid the assumption on the k-order time-derivative of the unknown input, i.e., d (k) 0, required for the design of PMI observers [START_REF] Lendek | Adaptive observers for TS fuzzy systems with unknown polynomial inputs[END_REF], [START_REF] Youssef | Actuator and sensor faults estimation based on proportional integral observer for T-S fuzzy model[END_REF]. Note that to improve the estimation performance, the value of k may be significantly large which induces complexities/difficulties for real-time purposes. Moreover, compared to the UI observer in [START_REF] Zhang | A novel observer design for simultaneous estimation of vehicle steering angle and sideslip angle[END_REF] with eight linear submodels and nonlinear membership functions to be computed online, our observer has a simple structure for real-time implementation with only two linear submodels and membership functions given in [START_REF] Nguyen | Sensor reduction for driver-automation shared steering control via an adaptive authority allocation strategy[END_REF].

Remark 6. The new UI observer design is easily performed through LMI-based conditions in Theorem 1. Here, all numerical optimizations are solved with YALMIP toolbox [START_REF] Löfberg | Yalmip: A toolbox for modeling and optimization in Matlab[END_REF].

V. EXPERIMENTAL RESULTS AND COMPARATIVE STUDIES

To demonstrate the effectiveness of the proposed L ∞ unknown input observer, this section presents experimental results carried out with the SHERPA driving simulator under various test scenarios. This interactive simulator is based on a Peugeot 206 mock-up fixed on a 6-axis Bosch Rexroth motion system, the overall is positioned in front of five flat panel displays providing a visual field of 240 • , see Fig. 2. The simulator is equipped with a force feedback gas pedal to manage the vehicle speed. The SensoDrive force feedback steering wheel provides precisely the torque from the driver's hands. Moreover, the SHERPA simulator is fully instrumented to measure the vehicle dynamics. Using the SCANeR TM Studio 1.6 environment, the proposed UI observer is implemented in the SHERPA simulator through Matlab/Simulink software. The decay rate α is related to the time performance of the error dynamics [START_REF] Nam | Estimation of sideslip and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches[END_REF]. A large value of this tuning parameter leads to a fast convergence time. However, the corresponding observer may induce some aggressive behaviors. Here, we select α = 5 to guarantee a satisfactory error convergence. Note that a normal human driver produces torque input at 3 to 5 Hz on the steering wheel [START_REF] Wang | Online sensing of human steering intervention torque for autonomous driving actuation systems[END_REF]. The value of T f is chosen following (46) such that the filter bandwidth of F(s) covers the spectrum of the driver torque signal. As a result, the UI estimation frequency is much faster than the human input frequency, allowing to capture and estimate accurately any changes in the driver torque.

Taking z = e, the observer gains in ( 23) can be obtained from the LMI-based optimization in Theorem 1 as follows: The corresponding L ∞ -gain is given by γ = 0.002. Note that P 1 is not positive definite. Solving the optimization in Theorem 1 under the same setting with P 1 = P 2 = P and X = 0, i.e., quadratic approach, we obtain γ quad = 0.007 > γ. This numerically illustrates the statements in Remark 3. Since γ is very small, an accurate estimation of both vehicle dynamics and unknown driver torque can be achieved as shown in the following driving test scenarios.
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A. Scenario 1: Manual Driving in Real-World Conditions

For this scenario, we consider a normal manual driving condition without assistive torque, i.e., T a = 0. To this end, the human driver manually performs the path following task on the Satory test track, situated at 20 km west from Paris, France, see Fig. 3(a). The corresponding vehicle speed is managed by the driver and depicted in Fig. 3(b). Observe that this test track includes several tight bends which implies a high variation in the driver torque along the track. As indicated in Fig. 3, the proposed observer provides an excellent estimation performance with respect to both driver torque and lateral vehicle dynamics for normal driving situations. This is also numerically confirmed by the small error indices summarized in Table II. Note that E mean is the average error, E max is the maximal error, Std is the standard deviation of the estimation error, and RMS is the root-mean-square error. Note also that the unit [deg] is used here in place of [rad] to improve the readability of the numerical error results.

B. Scenario 2: Human Take-Over Driving Control

This scenario represents a driving situation where the human driver must punctually take over the vehicle control from a lane-keeping assist system at a constant speed v x = 14 [m/s]. During this maneuver, the driver-automation conflict issue arises [START_REF] Sentouh | Driverautomation cooperation oriented approach for shared control of lane keeping assist systems[END_REF], which is also indicated by the opposite sign of the driver and assistive torques in Fig. 4(a). We can see in Fig. 4 that both the driver torque and the vehicle state are accurately estimated despite the presence of the opposite assistive torque. The statistics data on the estimation errors given in Table III numerically confirm the good estimation performance in this shared control driving situation. 

C. Scenario 3: Driving in an Extreme Situation

Aiming to test the limitations of the proposed LPV observer, this scenario does not represent a standard driving behavior. Here, the human driver performs a zigzag driving pattern on the road without any assistance, i.e., T a = 0. The time-varying speed profile corresponding to this test is shown in Fig. 5(a). As a result, the driver virtually creates a progressive lateral acceleration a lat as depicted in Fig. 5(b). To examine in detail For this test, the vehicle is on a straight road section at a constant speed v x = 15 [m/s]. The driver is also required to perform a zigzag driving pattern. Differently from Scenario 3, the driver now jointly controls the vehicle with the driving assistance system whose assistive torque T a is presented in Fig. 6(a). The study goal here is twofold. First, a satisfactory estimation performance is experimentally verified with our LPV observer given by ( 15) and (47) in the case of sharp variations in the driver torque as indicated in Fig. 6. Second and more importantly, a comparison is performed with a PMI observer largely adopted in automotive applications [START_REF] Yamamoto | Driver torque estimation in electric power steering system using an H∞/H 2 proportional integral observer[END_REF], [START_REF] Soualmi | Both vehicle state and driver's torque estimation using unknown input proportional multiintegral T-S observer[END_REF]. The D-stability concept is incorporated in the observer design to improve the estimation performance as discussed in detail in [START_REF] Soualmi | Both vehicle state and driver's torque estimation using unknown input proportional multiintegral T-S observer[END_REF]. Observe in Fig. 6 that both LPV observers provide almost similar performance for both the lateral dynamics and the unknown input T d . In the case of high lateral accelerations, the proposed solution offers a better estimation in the sideslip angle and the driver torque as shown in Fig. 7. The numerical comparison results given in Table IV confirm these remarks. Note also that the particular interest of the new observer consists in its simplicity for online purposes since it is assumed that Td = 0 for the design of the PMI observer, which consequently has two more dimensions compared to ours, see Remark 5. Moreover, although both observers used for comparison are in polytopic form, the new LPV observer [START_REF] Doumiati | Onboard real-time estimation of vehicle lateral tire-road forces and sideslip angle[END_REF] only requires two linear submodels in place of four as the one in [START_REF] Soualmi | Both vehicle state and driver's torque estimation using unknown input proportional multiintegral T-S observer[END_REF]. torque. To this end, the vehicle system is transformed into a polytopic LPV model with a reduced complexity to deal with time-varying vehicle speed while keeping a simple observer characterization. In particular, theoretical design is based on the use of a parameter-dependent Lyapunov function to exploit the information on the vehicle speed and acceleration bounds for conservatism reduction. The proposed unknown input observer can lead to arbitrarily small estimation errors by minimizing the guaranteed L ∞ -gain performance. The effectiveness of the new observer design is experimentally verified with the real-time data of the SHERPA dynamic driving simulator. The interest of our method is also highlighted through a comparative study with respect to existing literature. For future works, taking into account of the nonlinearity and/or the uncertainty of the lateral tire forces should be investigated.
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 1 Fig. 1. Schematic of a two degrees-of-freedoms vehicle model.

= e 2αt0 V(e 0 ) + ν e d 2 ∞

 2 e) ≤ e 2αt0 V(e 0 ) + 2αν e d e 2αt -e 2αt0 (34) with e 0 = x0 -x 0 . It follows from (34) that
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 2 Fig. 2. SHERPA driving simulator (upper left). Steering system (upper right). Data acquisition system (bottom left). Active gas pedal (bottom right).

Fig. 3 .

 3 Fig. 3. Estimation performance obtained with real-world driving conditions. (a) Satory test track. (b) Vehicle speed profile. (c) Driver steering torque. (d) Sideslip angle. (e) Yaw rate. (f) Steering angle.

Fig. 4 .

 4 Fig. 4. Estimation performance in case of human take-over control. (a) Measured driver torque (solid line), estimated driver torque (dashed line), assistance steering torque (dash-dot line). (b) Sideslip angle. (c) Yaw rate. (d) Steering angle.

Fig. 5 .

 5 Fig. 5. Estimation performance obtained with an extreme driving situation. (a) Vehicle speed profile. (b) Vehicle lateral acceleration. (c) Driver steering torque. (d) Sideslip angle. (e) A zoom on driver torque at low lateral acceleration (a lat < 4 [m/s 2 ]). (f) A zoom on sideslip angle at low lateral acceleration. (g) A zoom on driver torque at high lateral acceleration (a lat > 4 [m/s 2 ]). (h) A zoom on sideslip angle at high lateral acceleration.
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 6 Fig. 6. Estimation performance comparison between the proposed solution and the PMI observer in [29]. (a) Assistance steering torque. (b) Driver torque. (c) Sideslip angle. (d) Yaw rate. (e) Steering angle. (f) Steering rate.

Fig. 7 .

 7 Fig. 7. Estimation errors obtained with the proposed solution and the PMI observer in [29]. (a) Driver torque error. (b) Sideslip angle error.

TABLE II NUMERICAL

 II STATISTICS ON ESTIMATION ERRORS FOR SCENARIO 1.

	Error index	Emean	Emax	Std	RMS
	T d [Nm]	0.1595 2.6161 0.2442 0.2471
	β [deg]	0.0194 0.5889 0.0527 0.0527
	r [deg/s]	0.0155 0.2350 0.0211 0.0232
	δ [deg]	0.1762 1.8720 0.2739 0.2746
	δ [deg/s]	0.0224 0.4007 0.0447 0.0448

TABLE III NUMERICAL

 III STATISTICS ON ESTIMATION ERRORS FORSCENARIO 2. 

	Error index	Emean	Emax	Std	RMS
	T d [Nm]	0.3253	7.8076	0.6560 0.6608
	β [deg]	0.0356	0.5911	0.0716 0.0716
	r [deg/s]	0.0390	0.4630	0.0576 0.0589
	δ [deg]	0.3011	8.1573	0.6891 0.6894
	δ [deg/s]	0.1855 15.7404 0.7107 0.7104

  this scenario, two zooms are performed which correspond to two operating zones of the vehicle. For the first zoom corresponding to an operating zone with relatively small lateral acceleration, i.e., a lat < 4 [m/s 2 ]. Observe in Figs. 5(e), (f) that both the driver torque and the sideslip angle are accurately reconstructed within this zone. However, we note that the estimations are much less precise in the operating zone with a lat > 4 [m/s 2 ]. This performance limitation is expected since the bicycle model used for the observer design in this work is rather valid for normal driving conditions with a reasonable level of lateral acceleration a lat . Nevertheless, the estimation performance is globally satisfactory for this scenario test.

D. Scenario 4: Comparative Study with a PMI Observer
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