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Unknown Input Observers for Simultaneous
Estimation of Vehicle Dynamics and Driver Torque:

Theoretical Design and Hardware Experiments
Anh-Tu Nguyen∗, Member, IEEE, Thierry-Marie Guerra, Chouki Sentouh, Member, IEEE, and Hui Zhang, Senior

Member, IEEE

Abstract—This paper investigates a new observer design
method to estimate simultaneously both the vehicle dynamics
and the unknown driver’s torque. To take into account the time-
varying nature of the longitudinal speed, the vehicle system is
transformed into a polytopic linear parameter-varying (LPV)
model with a reduced level of numerical complexity. Based
on Lyapunov stability arguments, we prove that the estimation
errors of the system state and of the unknown input (UI) are
norm-bounded, which can be made arbitrarily small by mini-
mizing a guaranteed L∞−gain performance. The design of the
LPV unknown input observer is reformulated as an LMI-based
optimization which can be effectively solved via semidefinite
programming. Extensive hardware experiments are carried out
under various driving test scenarios to confirm the effectiveness
of the proposed observer design. In particular, a comparative
study is performed with a widely adopted observer to emphasize
the practical interests of the new estimation solution.

Index Terms—Vehicle dynamics, sideslip angle estimation,
torque estimation, driver steering intervention, unknown input
observer, L∞ observer design.

I. INTRODUCTION

A raising number of road accidents has greatly motivated
the research and development on intelligent vehicles (IVs) to
improve the ride safety and comfort [1]–[4]. As an essential
part of IVs, online driver-vehicle monitoring and active safety
control systems have gained increasing interests worldwide
[4]–[7]. Real-time information of the vehicle dynamics and
the driver-related variables is crucial to develop such feedback
control and monitoring systems. Unfortunately, the onboard
vehicle sensors are in general too expensive for commercial
automotive applications [8], [9]. Moreover, in many specific
contexts, the human driver variables cannot be directly mea-
sured by physical sensors [7]. Hence, estimation algorithms
must be developed in these situations to reconstruct driver-
vehicle variables with only measurements of low-cost sensors.

Due to its usefulness in many active safety applications
and the prohibitive cost, the sideslip angle estimation has
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attracted considerable research efforts [8], [10]–[12]. General
speaking, the sideslip angle estimation algorithms can be
classified into three categories. First, the kinematic model-
based methods [13], [14] rely on a simple vehicle model.
Without requiring vehicle or tire friction parameters, these
methods strongly depend on the sensor information, which can
lead to the drift phenomena induced by bias errors [8]. Second,
the dynamic model-based methods using Kalman filters [15]–
[17] or robust observers [8], [18], [19] can overcome this major
drawback. However, these methods usually require an accurate
information on the vehicle parameters and tire-road conditions,
especially for driving situations with high lateral acceleration
[14]. Third, fusion-data-based methods have been proposed to
exploit the advantages of the two above categories [10], [20],
[21]. Note that these methods can introduce excessive costs
and complexity to the vehicle design [14].

Model-based unknown input (UI) observers have been also
proposed to estimate the vehicle dynamics together with
UIs related to the vehicle-road characteristics. Based on a
gradient descent algorithm, the authors in [12] proposed an UI
observer to estimate the sideslip angle and the road friction.
An algebraic-based UI observer was developed in [22] to
reconstruct the lateral speed on an unknown banked road.
Using the mean value theorem, a nonlinear observer was
proposed in [23] to estimate the vehicle dynamics. Then, the
unknown normal tire forces were recovered with a dynamic
model inversion technique. Note that for simplicity, a constant
vehicle speed was considered for observer design in most
of existing works. Unfortunately, this strong assumption can
lead to a poor estimation performance under various driving
situations [8], [11]. The LPV unknown input observer, recently
proposed in [24], can be used to overcome this drawback.
However, this algebraic UI decoupling method and numerous
related designs require a differentiation of the measured output
for UI estimation, leading to a major practical issue [22].
Being able to avoid the above issues, the novel fuzzy UI
observer in [11] can be used to estimate both the sideslip
angle and the unknown steering angle of autonomous vehicles.
This UI observer may induce practical difficulties for real-time
purposes due to its important number of subsystems for fuzzy
representation and a conservative Lipschitz-like assumption.

Despite of an extensive literature, UI observer designs for a
simultaneous estimation of the sideslip angle and the human
steering torque have not been well addressed. Nevertheless,
such an estimation framework is crucial for many IVs appli-
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cations, especially shared driving control [25], [26], or take-
over control process [7], [27]. In these control situations, the
driver torque is jointly applied to the steering wheel with an
assistive torque from a driving assistance system to control the
vehicle [9]. Hence, the human driver torque cannot be always
measured by a torque sensor due to the driver-automation
coupled input [7]. Designing an UI observer to reconstruct
the driver torque is crucial to detect the human intervention
in the driving process, thus to improve the shared control
performance [26]. Surprisingly, very few works related to
this topic can be found in the open literature. Using the
dynamics of a steering wheel actuation system, the authors in
[7] developed a nonlinear disturbance observer for the driver
torque estimation. An H∞/H2 proportional multi-integral
(PMI) observer was used in [28] to estimate the driver torque
from the dynamics of an electric power steering system. Re-
mark that the vehicle dynamics, especially the sideslip angle,
cannot be reconstructed with the observers in [7], [28]. The
driver-vehicle estimation objective can be achieved with the
UI observer in [29]. Exploiting the generalized design of PMI
observers [30] for T-S fuzzy systems [31], this UI observer
was designed while further taking into account the D−stability
constraints to improve the estimation performance. Note that
for the observer designs in [7], [28]–[30], the UIs must be of
polynomial form. This assumption is not always compatible
with the driver torque signal in IVs applications [28].

This paper investigates a new UI observer design to estimate
simultaneously the vehicle dynamics and the driver torque. The
particular features of this cost-effective estimation solution can
be summarized as follows.

1) In contrast to UI decoupling approaches [22], [24], [32],
no differentiation of the measured output and/or the time-
varying parameters are needed for the UI reconstruction.
In addition, no matching conditions are explicitly im-
posed on the UIs as in [11], [22], [30] and numerous
related references. Moreover, no a priori knowledge on
the UIs is required as for the design of PMI observers
[29], [30], [33]. Note that to improve the estimation
performance, the order of PMI observers may be sig-
nificantly larger than that of the plant systems, inducing
complexities/difficulties for practical uses.

2) The proposed LPV observer enables arbitrarily small
estimation errors by minimizing an L∞−gain. Using
Lyapunov-based arguments, the estimation performance
is theoretically guaranteed. The observer design is recast
as a linear matrix inequality (LMI) based optimization
problem, which is efficiently solved with semidefinite
programming [34]. Moreover, to reduce the conservatism,
the information of both vehicle speed and acceleration
is exploited in the observer design using a parameter-
dependent Lyapunov function involving a slack variable.

3) The effectiveness of the new method is thoroughly ver-
ified through hardware experiments with an interactive
driving simulator under various driving test conditions.
Especially, a comparative study is performed with the
widely adopted PMI observer design to emphasize the
interests of the proposed estimation solution.

This paper extends our preliminary results in [19]. It provides
additional theoretical results to further reduce the complexity
and the conservatism of the design conditions through a new
treatment of the parameter-dependent Lyapunov matrix. In
particular, we include extensive experimental results and a
comparative study with a PMI observer. The paper is or-
ganized as follows. Section II recalls the vehicle modeling
and describes the observer problem. The vehicle system is
transformed into a tractable LPV model for observer design
in Section III. In Section IV, the new LMI-based observer
design is first detailed for state estimation. Then, a method to
reconstruct the UI is presented. The interests of the proposed
method is experimentally demonstrated in Section V. Section
VI provides some concluding remarks.

Notation. ΩN denotes the set of numbers {1, 2, . . . , N}. I
denotes the identity matrix of appropriate dimension. For a
matrix X , X> indicates its transpose. For any square matrix
X , X � 0 indicates a positive definite matrix, HeX =
X + X>, and λmin(X) (respectively λmax(X)) denotes the
minimal (respectively maximal) eigenvalue of X . For a vector
x ∈ Rn, we denote its 2-norm as ‖x‖ =

√
x>x. For any

bounded function f(·) : R → Rn, its L∞−norm is defined
as ‖f(·)‖∞ = supt∈R‖f(t)‖. The time dependency of the
variables is omitted when convenient.

II. VEHICLE MODELING AND PROBLEM DEFINITION

This section reviews the main features of the vehicle
dynamics. Then, the related UI observer design problem is
formulated. The vehicle parameters are given in Table I.

TABLE I
VEHICLE PARAMETERS.

Parameter Symbol Value
Distance from the CoG to front axle lf 1.3 [m]
Distance from the CoG to rear axle lr 1.6 [m]
Tire length contact ηt 0.13 [m]
Steering gear ratio Rs 16 [-]
Steering system damping Bs 5.73 [-]
Manual steering column coefficient Kp 0.5 [-]
Vehicle mass M 2052 [kg]
Inertia of vehicle yaw moment Iz 2800 [kgm2]
Inertia of steering system Is 0.05 [kgm2]
Front cornering stiffness Cf 57000 [N/rad]
Rear cornering stiffness Cr 59000 [N/rad]

A. Nonlinear Vehicle Dynamics

A nonlinear single track model is used to represent the
vehicle motions in the horizontal plane, see Fig. 1. This model
captures the essential vehicle dynamics, described as [35]

M (v̇x − rvy) = Fxf cos δ − Fyf sin δ + Fxr

M (v̇y + rvx) = Fxf sin δ + Fyf cos δ + Fyr

Iz ṙ = lf (Fxf sin δ + Fyf cos δ)− lrFyr
(1)

where vx is the longitudinal speed of the vehicle, vy is the
lateral speed, r is the yaw rate. The front/rear longitudinal
and lateral tire forces Fki, with k ∈ {x, y} and i ∈ {f, r}, are
caused by the contact between the tires and the road surface.
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Several semi-empirical models are available in the literature
to represent accurately the tire-road friction, such as Pacejka
magic formula, LuGre model, etc. [5], which are not detailed
here for brevity. The electronic power steering system can be
modeled as [9]

δ̈d =
Tsβ
Is

β +
Tsr
Is
r − Tsβ

RsIs
δd −

Bs
Is
δ̇d +

1

Is
Ts (2)

where δd is the driver’s steering angle, β is the sideslip angle
at the center of gravity (CoG) with

β = arctan

(
vy
vx

)
, Tsβ =

2KpCfηt
Rs

, Tsr =
2KpCfηt

Rs

lf
vx
.

The steering torque Ts = Ta + Td is composed of the known
electrical assistance torque and the unknown driver torque.

Fig. 1. Schematic of a two degrees-of-freedoms vehicle model.

B. Observer Problem Statement

As stated previously, despite its crucial importance to active
safety control systems, the real-time information on the vehicle
dynamics and the driver’s torque cannot be always obtained
from onboard sensors. Here, we provide a cost-effective solu-
tion to reconstruct such information though an unknown input
observer which satisfies the following requirements.

• The new UI observer can be easily designed and imple-
mented with only measurements from low-cost sensors.

• The estimation errors of both vehicle dynamics and
driver’s torque are norm-bounded which can be set ar-
bitrarily small via an LMI-based optimization problem.

• The estimation performance and the robustness with re-
spect to the time-varying vehicle speed can be guaranteed
with Lyapunov stability arguments.

To meet these specifications, we propose in Section IV a new
LPV unknown input observer design method.

III. LPV REPRESENTATION OF VEHICLE SYSTEM

We represent hereafter the vehicle system in a polytopic
LPV form which is suitable for observer design purposes.

A. Observer-Based Vehicle System

To derive the observer-based vehicle model, we assume that
[35]: (i) the vehicle speed is a time-varying parameter with a
limited variation rate; (ii) the lateral tire forces are proportional
to the slip angles of each axle; (iii) the small angle assumption
is considered. Note that these assumptions are appropriate for
normal driving under mild acceleration conditions. Then, the
lateral tire forces can be modeled as follows:

Fyf = 2Cfαf , Fyr = 2Crαr (3)

where the sideslip angles of the front and rear tires are
respectively given by

αf = δ − vy + lfr

vx
, αr =

lrr − vy
vx

.

Remark that the relation between the driver’s steering angle δd
and the vehicle steering angle δ is given as δd = Rsδ. From
(1) and (3), the vehicle lateral dynamics can be obtained in
the following form:[

β̇
ṙ

]
=

[
a11 a12

a21 a22

] [
β
r

]
+

[
b1
b2

]
δ. (4)

The elements of the system matrices in (4) are given by

a11 = −2(Cr + Cf )

Mvx
, a12 =

2(lrCr − lfCf )

Mv2
x

− 1

a21 =
2(lrCr − lfCf )

Iz
, a22 =

−2(l2rCr + l2fCf )

Izvx

b1 =
2Cf
Mvx

, b2 =
2lfCf
Iz

.

From (2) and (4), we obtain the vehicle state-space model

Σv(vx) : ẋ = A(vx)x +Bu +Dd (5)

where x =
[
β r δ δ̇

]>
is the vehicle state, u = Ta is the

known input, and d = Td is the unknown input. The system
matrices of (5) are given as follows:

A(vx) =


a11 a12 b1 0
a21 a22 b2 0
0 0 0 1
a41 a42 a43 a44

 , B = D =


0
0
0
1

RsIs


where

a41 =
Tsβ
RsIs

, a42 =
Tsr
RsIs

, a43 = − Tsβ
RsIs

, a44 = −Bs
Is
.

For the vehicle system (5), the yaw rate r can be measured
by an inertial navigation system. The steering angle δ and
the steering rate δ̇ are obtained from an optical encoder. The
sideslip angle β can be measured by a Correvit optical sensor.
However, due to the excessive cost of Correvit sensors, the
measurement of β is not available in practice. Therefore, the
output equation of system (5) is given by

y = Cx, C =

0 1 0 0
0 0 1 0
0 0 0 1

 .
For observer design, we reformulate in the sequel the vehicle
system Σv(vx) in a numerically tractable LPV representation.
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B. Polytopic LPV Representation of Vehicle System

Note that the vehicle dynamics in (5) depends on two speed-
related terms 1

vx
and 1

v2x
, which are measured and bounded.

For observer design, we consider the following bounds:

vmin ≤ vx ≤ vmax, vmin = 5 [m/s], vmax = 35 [m/s].

Let us define the parameter vector θ∗(t) =
[

1
vx

1
v2x

]>
. These

two parameters form a convex hull Θ∗ with four vertices

θv1 =
[

1
vmin

1
v2min

]>
, θv2 =

[
1

vmin

1
v2max

]>
θv3 =

[
1

vmax

1
v2max

]>
, θv4 =

[
1

vmax

1
v2min

]>
.

Such a parameter polytope Θ∗ leads to design conservatism
and numerical complexity since 1

vx
and 1

v2x
are separately con-

sidered despite its strong dependency. To avoid this drawback
and to reduce significantly the numerical complexity of the
observer structure, we make use of the following variable
change and the Taylor’s approximation [9]:

1

vx
=

1

v0
+

1

v1
θ,

1

v2
x

' 1

v2
0

(
1 + 2

v0

v1
θ

)
(6)

where v0 = 2vminvmax

vmin+vmax
and v1 = −2vminvmax

vmax−vmin
. The time-varying

parameter θ(t) in (6) verifies

θmin ≤ θ ≤ θmax, θmin = −1, θmax = 1. (7)

Since vx = vmin for θ = θmin and vx = vmax for θ = θmax,
the new parameter θ can be used to describe the variation of
vx between its lower and upper bounds.

Substituting (6) into (5), then the dynamics of the corre-
sponding vehicle model

Σv(θ) :

{
ẋ = A(θ)x +Bu +Dd

y = Cx

depends linearly on θ. Using the sector nonlinearity approach
[36, Chap. 2], the vehicle model Σv(θ) can be exactly repre-
sented in the following polytopic LPV form:

Σv(θ) :

ẋ =

2∑
i=1

ηi(θ)Aix +Bu +Dd

y = Cx

(8)

where the scalar membership functions are given by

η1(θ) =
1

2
(1− θ), η2(θ) = 1− η1(θ)

A1 = A(θmin), A2 = A(θmax).
(9)

Remark 1. Using the variable change together with the Tay-
lor’s approximation in (6), the number of vertices is reduced
from four to two. From the practical viewpoint, the induced
approximation error is expected to be small over the whole
vehicle system (5) since only a part of the element a12 of
matrix A(vx) is affected by this approximation. This is also
justified by experimental results presented in Section V.

Remark 2. To limit the theoretical kinematic centripetal
acceleration of the vehicle [37], the following bounds of
vehicle acceleration are considered:

amin ≤ ax = v̇x ≤ amax, amax = −amin = 4 [m/s2]. (10)

Then, it follows from (6) and (10) that

amin

a0
≤ θ̇ ≤ amax

a0
, a0 = −v

2
0

v1
. (11)

As shown in Remark 3, exploiting simultaneously the bounds
of both the vehicle speed (7) and the acceleration (11) in the
observer design allows reducing further the conservatism.

IV. L∞ DESIGN OF LPV UNKNOWN INPUT OBSERVERS

To estimate simultaneously the vehicle dynamics and the
driver torque, we present hereafter a set of LMIs to design UI
observers. For generality, LPV systems in a general form are
considered for theoretical development.

A. Problem Definition

Consider an LPV system with the state-space realization

ẋ = A(θ)x +B(θ)u +D(θ)d

y = C(θ)x, x(0) = x0

(12)

where x ∈ Rnx is the state, u ∈ Rnu is the known input,
d ∈ Rnd is the unknown input, and y is the measured output.
The scheduling variable θ ∈ Rp and its rate of variation θ̇ are
smooth and respectively valued in the hypercubes

Θ = {(θ1, . . . , θp)
> : θj ∈ [θj , θj ], j ∈ Ωp}

Θd = {(θ̇1, . . . , θ̇p)
> : θ̇j ∈ [υj , υj ], j ∈ Ωp}

where θj ≤ θj (respectively υj ≤ υj) are known lower and
upper bounds on θj (respectively θ̇j), for j ∈ Ωp. Assume
that the time-varying state-space matrices Π(θ) of (12), with
Π ∈ {A,B,C,D}, are continuous on the hypercube Θ. Then,
using the sector nonlinearity approach in [36, Chap. 2], these
state-space matrices can be equivalently represented by

A(θ) =

N∑
i=1

ηi(θ)Ai, B(θ) =

N∑
i=1

ηi(θ)Bi

C(θ) =

N∑
i=1

ηi(θ)Ci, D(θ) =

N∑
i=1

ηi(θ)Di

(13)

with N = 2p and Πi = Π(θ)|ηi(θ)=1, for ∀Π ∈ {A,B,C,D}.
The membership functions ηi(θ), i ∈ ΩN , in (13) satisfy

ηi(θ) ≥ 0,

N∑
i=1

ηi(θ) = 1,

N∑
i=1

η̇i(θ) = 0, ∀θ ∈ Θ.

Since (θ, θ̇) ∈ Θ × Θd, the lower bound φi1 and the upper
bound φi2 of η̇i(θ) can be easily obtained as follows:

η̇i(θ) ∈
[
φi1, φi2

]
, φi1 ≤ φi2, i ∈ ΩN . (14)

As an example, these bounds of the considered vehicle system
can be derived from (7) and (11) as

φ11 ≤ η̇1(θ) ≤ φ12, φ21 ≤ η̇2(θ) ≤ φ22
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where

φ11 =
−amax

2a0
, φ12 =

−amin

2a0
, φ21 =

amin

2a0
, φ22 =

amax

2a0
.

For the observer design, the following standard assumptions
are considered for LPV system (12).
• The pair (A(θ), C(θ)) is detectable, for ∀θ ∈ Θ.
• The matrix D(θ) is of full-column rank, for ∀θ ∈ Θ.
• The unknown input d is bounded in amplitude.

Note that these assumptions are naturally verified for the
vehicle model Σv(θ) defined in (8).

We propose a Luenberger-type observer in the form

˙̂x = A(θ)x̂ +B(θ)u +D(θ)d̂ +M(θ)(ŷ − y)

ŷ = C(θ)x̂, x̂(0) = x̂0 (15)

where x̂(t) is the estimate of the state vector x(t), and d̂(t)
is the estimate of the unknown input d(t). The parameter-
dependent observer gainM(θ) is specified in Theorem 1. Let
e = x̂−x be the sate estimation error and ed = d̂−d be the
estimation error of the UI. Then, the observer error dynamics
is represented as

ė = Â(θ)e +D(θ)ed (16)

with Â(θ) = A(θ) + M(θ)C(θ). The performance output
associated with the state estimation error is defined as

z = F (θ)e =

N∑
i=1

ηi(θ)Fie. (17)

We are now in the position to formulate the observer design
problem related to the error dynamics (16).

Problem 1. Given an LPV system (12) with (θ, θ̇) ∈ Θ×Θd,
∀t > 0. Determine an observer gain M(θ) such that the LPV
observer (15) results in an input-to-state stable error dynamics
with a guaranteed L∞−gain performance. This means that the
following closed-loop properties hold for system (16).

• If ed(t) = 0, for ∀t ∈ R+, the error dynamics (16) is
globally exponentially stable.

• If ed(t) 6= 0, for ∀t ∈ R+, the state error is uniformly
bounded for any initial condition e(0) and any bounded
input ed. Moreover, the performance output (17) satisfies

lim
t→∞

sup ‖z‖ ≤ γ‖ed‖∞, γ > 0 (18)

where the L∞−gain γ is specified in Theorem 1.

From (17) and (18), we remark that a smaller value of the
L∞−gain γ leads to a better estimation performance.

B. LMI-Based Optimization for LPV Observer Design

The following theorem provides LMI conditions to design
an UI observer (15) for LPV systems of the form (12).

Theorem 1. Given an LPV system (12) with (θ, θ̇) ∈ Θ×Θd,
and a positive scalar α. Assume there exist symmetric matrices
X ∈ Rnx×nx , Pi ∈ Rnx×nx , matrices Li ∈ Rnx×ny , for

i ∈ ΩN , and positive scalars µ, ν such that the following
optimization problem is feasible:

minimize
ξi, i∈ΩN

µ+ ν

subject to
Pi +X � 0 (19)[
Pi +X ?
Fi µI

]
� 0 (20)

Υkl
ii � 0, Υkl

ij + Υkl
ji � 0 (21)

where ξi = (µ, ν,X, Pi, Li) and i, j ∈ ΩN , i < j, k ∈ ΩN−1,
l ∈ Ω2. The quantity Υkl

ij in (21) is defined as follows:

Υkl
ij = He

[
PiAj + LiCj + αPi + 1

2Ψ (Pi +X)Dj

0 −ανI

]
(22)

Ψ = φkl(Pk +X − PN ) + φNlX + 2XAj + 2αX.

Then, the LPV observer (15) with the parameter-dependent
gain defined as M(θ) = P(θ)−1L(θ) and

P(θ) =

N∑
i=1

ηi(θ)(Pi +X), L(θ) =

N∑
i=1

ηi(θ)Li (23)

ensures that the error dynamics (16) together with its associ-
ated performance output (17) verify the closed-loop properties
given in Problem 1. Moreover, the guaranteed L∞−gain
performance is defined as γ =

√
νµ.

Proof. For stability analysis and observer design, we consider
the following parameter-dependent Lyapunov function:

V(e) = e>P(θ)e. (24)

Condition (19) guarantees that P(θ) is positive definite for
∀θ ∈ Θ. Hence, V(e) is a proper Lyapunov function candidate.

Since
∑N
i=1 η̇i(θ) = 0, for any matrix X , it follows that

Ṗ(θ) =

N−1∑
k=1

η̇k(θ)(Pk +X) + η̇N (θ)(PN +X)

=

N−1∑
k=1

η̇k(θ)(Pk +X − PN ) + η̇N (θ)X. (25)

For any φk1 ≤ η̇k(θ) ≤ φk2 in (14), it follows that

η̇k(θ) = ωk1(θ)φk1 + ωk2(θ)φk2, k ∈ ΩN (26)

where

ωk1(θ) =
φk2 − η̇k(θ)

φk2 − φk1
, ωk2(θ) =

η̇k(θ)− φk1

φk2 − φk1
. (27)

Note also that ωkl(θ) ≥ 0,
∑2
l=1 ωkl(θ) = 1, for ∀k ∈ ΩN .

From (25), (26) and (27), Ṗ(θ) can be exactly represented as

Ṗ(θ) =

N−1∑
k=1

2∑
l=1

[ωkl(θ)φklX + ωNl(θ)φNlX] (28)

with X = Pk + X − PN . Using expressions (28) and (22),
(21) implies that

Γii(θ) � 0, Γij(θ) + Γji(θ) � 0, i, j ∈ ΩN , i < j (29)
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where

Γij(θ) = He

[
PiAj + LiCj + αPi + 1

2Λ(θ) (Pi +X)Dj

0 −ανI

]
Λ(θ) = Ṗ(θ) + 2XAj + 2αX.

Since ηi(θ) ≥ 0, ∀i ∈ ΩN , it follows from (29) that
N∑
i=1

ηi(θ)
2Γii(θ) +

N∑
i=1

N∑
i<j

ηi(θ)ηj(θ) (Γij(θ) + Γji(θ))

=

N∑
i=1

N∑
j=1

ηi(θ)ηj(θ)Γij(θ) � 0. (30)

Inequality (30) can be rewritten in the following form:

He

[
W(θ) + αP(θ) + 1

2 Ṗ(θ) P(θ)D(θ)
0 −ανI

]
� 0 (31)

where W(θ) = P(θ)A(θ) + L(θ)C(θ). Pre- and postmul-
tiplying (31) with

[
e> e>d

]
and its transpose leads to the

following condition after some algebraic manipulations:

V̇(e) ≤ −2α
(
V(e)− ν‖ed‖2

)
(32)

where V̇(e) is the time-derivative of the Lyapunov function
defined in (24) along the solution of the error dynamics (16).
It is clear that (32) implies the following inequality:

V̇(e) ≤ −2α
(
V(e)− ν‖ed‖2∞

)
. (33)

Multiplying both sides of (33) by e2αt, then integrating over
[t0, t], we obtain

e2αtV(e) ≤ e2αt0V(e0) + 2αν‖ed‖2∞
∫ t

t0

e2ατdτ

= e2αt0V(e0) + ν‖ed‖2∞
(
e2αt − e2αt0

)
(34)

with e0 = x̂0 − x0. It follows from (34) that

V(e) ≤ e−2α(t−t0)V(e0) + ν‖ed‖2∞
(

1− e−2α(t−t0)
)

≤ e−2α(t−t0)V(e0) + ν‖ed‖2∞. (35)

Considering the Lyapunov function (24), one has

α1‖e‖2 ≤ V(e) ≤ α2‖e‖2 (36)

with α1 = min
i∈ΩN

λmin(Pi +X) and α2 = max
i∈ΩN

λmax(Pi +X).

It follows from (35) and (36) that

α1‖e‖2 ≤ α2e
−2α(t−t0)‖e0‖2 + ν‖ed‖2∞

which, in turn, implies that

‖e‖ ≤
√
α2

α1
e−α(t−t0)‖e0‖+

√
ν

α1
‖ed‖∞. (37)

Inequality (37) guarantees that the observer error dynamics is
globally bounded for any initial condition e0 and any bounded
unknown input d. Moreover, if ed(t) = 0, ∀t ∈ R+, then the
error dynamics is exponentially stable about the origin.

Multiplying (20) by ηi(θ) ≥ 0 and summing up for all
i ∈ ΩN , we obtain [

P(θ) ?
F (θ) µI

]
� 0. (38)

By the well-known Schur complement lemma [34], condition
(38) is shown to be equivalent to

P(θ)− µ−1F (θ)>F (θ) � 0. (39)

Pre- and postmultiplying (39) with e> and its transpose while
considering the performance output (17), we obtain

‖z‖2 ≤ µV(e). (40)

It follows from (35) and (40) that

‖z‖ ≤
√
µV(e0)e−α(t−t0) +

√
νµ‖ed‖∞. (41)

For any initial condition e0 and any bounded signal ed, it
follows from (41) that

lim
t→∞

sup ‖z‖ ≤ γ‖ed‖∞ (42)

with γ =
√
νµ. Hence, all the closed-loop properties described

in Problem 1 are now proved. This concludes the proof.

Remark 3. To reduce the design conservatism, we introduce
a slack variable X into the construction of the Lyapunov
function (24). A similar idea has been presented in [38]
for the stability analysis of Takagi-Sugeno fuzzy systems
using fuzzy Lyapunov functions. However, here the Lyapunov
matrices Pi, for ∀i ∈ ΩN , are not required to be definite
positive as in most of LPV and/or fuzzy-model-based control
and observation results in the literature [38], [39]. Moreover,
explicit information on θ and θ̇, represented by the bounds
φkl, for k ∈ ΩN , l ∈ Ω2, is exploited via using the
parameter-dependent Lyapunov function (24) to reduce further
the conservatism of the results. Indeed, if we impose X = 0,
P1 = · · · = PN = P , then the quadratic Lyapunov function
V (e) = e>Pe is recovered from (24). In addition, if (21)
is feasible for arbitrarily large values of |φkl|, then the only
possible solution is such that P1 ≈ · · · ≈ PN and X ≈ 0 to
minimize the effect of φkl(Pk + X − PN ) + φNlX involved
in (22). Hence, the proposed results include those derived
from quadratic or poly-quadratic Lyapunov functions V(e) =
e>
∑N
i=1 ηi(θ)Pie. Similar arguments on the conservatism

relaxation using parameter-dependent Lyapunov functions can
be found in [39].

Remark 4. Consider the error dynamics (16) with z = e. By
minimizing γ, it follows directly from (42) that the estimation
error e can be minimized. Moreover, if the optimization
problem in Theorem 1 is feasible with arbitrarily small values
of ν and µ, then the estimation error can be arbitrarily small.

C. Unknown Input Reconstruction with Norm-Bounded Error

From the design of LPV observer (15) in Theorem 1, we
present hereafter a method to estimate the unknown input d(t).
This method is similar to the equivalent-input-disturbance
concept discussed in [40], [41].

For a given signal z(t), let us denote its Laplace transform
as Z(s) = L[z(t)]. Then, the estimate d̂(t) of the UI can be
constructed in the Laplace domain as follows:

D̂(s) = F(s)D̃(s) (43)
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where d̃(t) is the modified UI estimate error, defined as

d̃(t) = D(θ)†M(θ)(ŷ(t)− y(t)) + d̂(t). (44)

Note that D(θ) is full column rank, then

D(θ)† =
(
D(θ)>D(θ)

)−1
D(θ)>

and D(θ)†D(θ) = I . In general, the low-pass filter F(s) in
(43) can be of any form [40]. However, here we take F(s) in
the following form for simplicity:

F(s) =
1

Tfs+ 1
. (45)

The parameter Tf regulates the angular-frequency band for
disturbance rejection which can be chosen as follows [40]:

Tf ≤
1

5 ∼ 10

1

ω
(46)

where ω is the highest angular frequency selected for distur-
bance rejection. From (43), (44) and (45), it follows that

˙̂
d =

1

Tf
D(θ)†M(θ)(ŷ − y) =

1

Tf
D(θ)†M(θ)C(θ)e. (47)

Observe that the dynamics of the UI estimate d̂ is governed
by the state estimation error. Recalling the observer error
dynamics (16), multiplying both sides by D(θ)†, we obtain

ed = D(θ)†
(
ė− Â(θ)e

)
. (48)

It follows from (48) that

‖ed‖ ≤ ‖D(θ)†‖‖ė‖+ ‖D(θ)†Â(θ)‖‖e‖.

Note that ed is bounded with respect to the 2-norm of the state
error e and its rate of variation ė. By minimizing the L∞−gain
γ, it is expected to achieve an accurate reconstruction of the
unknown input, see also Remark 4.

Remark 5. The proposed UI observer design method has
many major practical and theoretical advantages compared
to the available literature. First, remark in (47) that the
time-derivatives of the system output and/or the time-varying
parameters are not required for the UI reconstruction as in
the recent work [24]. Second, the measured output is not
required to be of the form y = C(θ)x + G(θ)d, with a full
row rank matrix G(θ), as most of UI decoupling approaches
[32]. Third, we can avoid the assumption on the k−order
time-derivative of the unknown input, i.e., d(k) ' 0, required
for the design of PMI observers [30], [33]. Note that to
improve the estimation performance, the value of k may be
significantly large which induces complexities/difficulties for
real-time purposes. Moreover, compared to the UI observer in
[11] with eight linear submodels and nonlinear membership
functions to be computed online, our observer has a simple
structure for real-time implementation with only two linear
submodels and membership functions given in (9).

Remark 6. The new UI observer design is easily performed
through LMI-based conditions in Theorem 1. Here, all numer-
ical optimizations are solved with YALMIP toolbox [42].

V. EXPERIMENTAL RESULTS AND COMPARATIVE STUDIES

To demonstrate the effectiveness of the proposed L∞
unknown input observer, this section presents experimental
results carried out with the SHERPA driving simulator under
various test scenarios. This interactive simulator is based on
a Peugeot 206 mock-up fixed on a 6-axis Bosch Rexroth
motion system, the overall is positioned in front of five flat
panel displays providing a visual field of 240◦, see Fig. 2.
The simulator is equipped with a force feedback gas pedal
to manage the vehicle speed. The SensoDrive force feedback
steering wheel provides precisely the torque from the driver’s
hands. Moreover, the SHERPA simulator is fully instrumented
to measure the vehicle dynamics. Using the SCANeRTM Stu-
dio 1.6 environment, the proposed UI observer is implemented
in the SHERPA simulator through Matlab/Simulink software.

Fig. 2. SHERPA driving simulator (upper left). Steering system (upper right).
Data acquisition system (bottom left). Active gas pedal (bottom right).

The decay rate α is related to the time performance of the
error dynamics (16). A large value of this tuning parameter
leads to a fast convergence time. However, the corresponding
observer may induce some aggressive behaviors. Here, we
select α = 5 to guarantee a satisfactory error convergence.
Note that a normal human driver produces torque input at
3 to 5 Hz on the steering wheel [7]. The value of Tf is
chosen following (46) such that the filter bandwidth of F(s)
covers the spectrum of the driver torque signal. As a result,
the UI estimation frequency is much faster than the human
input frequency, allowing to capture and estimate accurately
any changes in the driver torque.
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Taking z = e, the observer gains in (23) can be obtained
from the LMI-based optimization in Theorem 1 as follows:

P1 =


17039 −14040 20624 −60.373
−14040 24802 −45281 7.1634
20624 −45281 63790 3.5945
−60.373 7.1634 3.5945 131.5



P2 =


11766 −9277.9 18468 −58.749
−9277.9 14755 −29701 9.3613
18468 −29701 64869 1.9655
−58.749 9.3613 1.9655 131.7



X =


−2243.1 2623 509.74 1.3714

2623 −4873.1 8767.8 1.4501
509.74 8767.8 6948.5 1.4405
1.3714 1.4501 1.4405 0.10012



L1 =


−31167 71163 −944.47
−81309 −15362 77.736
−24591 −57230 147.86
390.4 −665.63 −99930



L2 =


4376.3 96980 −2028.6
−98987 1000.5 6.0984
13408 −24273 537.35
−22.816 −2098.2 −99978

 .
The corresponding L∞−gain is given by γ = 0.002. Note that
P1 is not positive definite. Solving the optimization in Theo-
rem 1 under the same setting with P1 = P2 = P and X = 0,
i.e., quadratic approach, we obtain γquad = 0.007 > γ. This
numerically illustrates the statements in Remark 3. Since γ is
very small, an accurate estimation of both vehicle dynamics
and unknown driver torque can be achieved as shown in the
following driving test scenarios.

A. Scenario 1: Manual Driving in Real-World Conditions

For this scenario, we consider a normal manual driving
condition without assistive torque, i.e., Ta = 0. To this end, the
human driver manually performs the path following task on the
Satory test track, situated at 20 km west from Paris, France,
see Fig. 3(a). The corresponding vehicle speed is managed
by the driver and depicted in Fig. 3(b). Observe that this
test track includes several tight bends which implies a high
variation in the driver torque along the track. As indicated in
Fig. 3, the proposed observer provides an excellent estimation
performance with respect to both driver torque and lateral
vehicle dynamics for normal driving situations. This is also
numerically confirmed by the small error indices summarized
in Table II. Note that Emean is the average error, Emax is the
maximal error, Std is the standard deviation of the estimation
error, and RMS is the root-mean-square error. Note also that
the unit [deg] is used here in place of [rad] to improve the
readability of the numerical error results.

B. Scenario 2: Human Take-Over Driving Control

This scenario represents a driving situation where the human
driver must punctually take over the vehicle control from a
lane-keeping assist system at a constant speed vx = 14 [m/s].
During this maneuver, the driver-automation conflict issue
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Fig. 3. Estimation performance obtained with real-world driving conditions.
(a) Satory test track. (b) Vehicle speed profile. (c) Driver steering torque. (d)
Sideslip angle. (e) Yaw rate. (f) Steering angle.

TABLE II
NUMERICAL STATISTICS ON ESTIMATION ERRORS FOR SCENARIO 1.

Error index Emean Emax Std RMS
Td [Nm] 0.1595 2.6161 0.2442 0.2471
β [deg] 0.0194 0.5889 0.0527 0.0527
r [deg/s] 0.0155 0.2350 0.0211 0.0232
δ [deg] 0.1762 1.8720 0.2739 0.2746
δ̇ [deg/s] 0.0224 0.4007 0.0447 0.0448

arises [26], which is also indicated by the opposite sign of the
driver and assistive torques in Fig. 4(a). We can see in Fig. 4
that both the driver torque and the vehicle state are accurately
estimated despite the presence of the opposite assistive torque.
The statistics data on the estimation errors given in Table III
numerically confirm the good estimation performance in this
shared control driving situation.

TABLE III
NUMERICAL STATISTICS ON ESTIMATION ERRORS FOR SCENARIO 2.

Error index Emean Emax Std RMS
Td [Nm] 0.3253 7.8076 0.6560 0.6608
β [deg] 0.0356 0.5911 0.0716 0.0716
r [deg/s] 0.0390 0.4630 0.0576 0.0589
δ [deg] 0.3011 8.1573 0.6891 0.6894
δ̇ [deg/s] 0.1855 15.7404 0.7107 0.7104

C. Scenario 3: Driving in an Extreme Situation

Aiming to test the limitations of the proposed LPV observer,
this scenario does not represent a standard driving behavior.
Here, the human driver performs a zigzag driving pattern on
the road without any assistance, i.e., Ta = 0. The time-varying
speed profile corresponding to this test is shown in Fig. 5(a).
As a result, the driver virtually creates a progressive lateral
acceleration alat as depicted in Fig. 5(b). To examine in detail
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Fig. 4. Estimation performance in case of human take-over control. (a)
Measured driver torque (solid line), estimated driver torque (dashed line),
assistance steering torque (dash-dot line). (b) Sideslip angle. (c) Yaw rate. (d)
Steering angle.

this scenario, two zooms are performed which correspond
to two operating zones of the vehicle. For the first zoom
corresponding to an operating zone with relatively small lateral
acceleration, i.e., alat < 4 [m/s2]. Observe in Figs. 5(e), (f)
that both the driver torque and the sideslip angle are accurately
reconstructed within this zone. However, we note that the
estimations are much less precise in the operating zone with
alat > 4 [m/s2]. This performance limitation is expected since
the bicycle model used for the observer design in this work
is rather valid for normal driving conditions with a reasonable
level of lateral acceleration alat. Nevertheless, the estimation
performance is globally satisfactory for this scenario test.

D. Scenario 4: Comparative Study with a PMI Observer

For this test, the vehicle is on a straight road section at a
constant speed vx = 15 [m/s]. The driver is also required to
perform a zigzag driving pattern. Differently from Scenario
3, the driver now jointly controls the vehicle with the driving
assistance system whose assistive torque Ta is presented in
Fig. 6(a). The study goal here is twofold. First, a satisfactory
estimation performance is experimentally verified with our
LPV observer given by (15) and (47) in the case of sharp
variations in the driver torque as indicated in Fig. 6. Second
and more importantly, a comparison is performed with a PMI
observer largely adopted in automotive applications [28], [29].
The D−stability concept is incorporated in the observer design
to improve the estimation performance as discussed in detail
in [29]. Observe in Fig. 6 that both LPV observers provide
almost similar performance for both the lateral dynamics and
the unknown input Td. In the case of high lateral accelerations,
the proposed solution offers a better estimation in the sideslip
angle and the driver torque as shown in Fig. 7. The numerical
comparison results given in Table IV confirm these remarks.
Note also that the particular interest of the new observer
consists in its simplicity for online purposes since it is assumed
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Fig. 5. Estimation performance obtained with an extreme driving situation.
(a) Vehicle speed profile. (b) Vehicle lateral acceleration. (c) Driver steering
torque. (d) Sideslip angle. (e) A zoom on driver torque at low lateral
acceleration (alat < 4 [m/s2]). (f) A zoom on sideslip angle at low
lateral acceleration. (g) A zoom on driver torque at high lateral acceleration
(alat > 4 [m/s2]). (h) A zoom on sideslip angle at high lateral acceleration.

that T̈d = 0 for the design of the PMI observer, which
consequently has two more dimensions compared to ours,
see Remark 5. Moreover, although both observers used for
comparison are in polytopic form, the new LPV observer (15)
only requires two linear submodels in place of four as the one
in [29].

TABLE IV
COMPARISON ON THE ESTIMATION PERFORMANCE BETWEEN TWO

OBSERVER DESIGNS.

Error index Proposed observer PMI observer [29]
Emean Td [Nm] 0.1956 0.2787
Emean β [deg] 0.0100 0.0171
Emax Td [Nm] 1.2069 2.3970
Emax β [deg] 0.0969 0.1112
Std Td [Nm] 0.3570 0.4845
Std β [deg] 0.0176 0.0291
RMS Td [Nm] 0.3640 0.4846
RMS β [deg] 0.0176 0.0291

VI. CONCLUDING REMARKS

This paper provides an effective LMI-based solution to
estimate simultaneously the vehicle dynamics and the driver
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Fig. 6. Estimation performance comparison between the proposed solution
and the PMI observer in [29]. (a) Assistance steering torque. (b) Driver torque.
(c) Sideslip angle. (d) Yaw rate. (e) Steering angle. (f) Steering rate.
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Fig. 7. Estimation errors obtained with the proposed solution and the PMI
observer in [29]. (a) Driver torque error. (b) Sideslip angle error.

torque. To this end, the vehicle system is transformed into a
polytopic LPV model with a reduced complexity to deal with
time-varying vehicle speed while keeping a simple observer
characterization. In particular, theoretical design is based on
the use of a parameter-dependent Lyapunov function to ex-
ploit the information on the vehicle speed and acceleration
bounds for conservatism reduction. The proposed unknown
input observer can lead to arbitrarily small estimation errors
by minimizing the guaranteed L∞−gain performance. The
effectiveness of the new observer design is experimentally
verified with the real-time data of the SHERPA dynamic driv-
ing simulator. The interest of our method is also highlighted
through a comparative study with respect to existing literature.
For future works, taking into account of the nonlinearity and/or
the uncertainty of the lateral tire forces should be investigated.
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