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Abstract

More than 40 years after fuzzy logic control appeared as an effective tool to deal with complex processes, the research on
fuzzy control systems has constantly evolved. Mamdani fuzzy control was originally introduced as a model-free control approach
based on expert’s experience and knowledge. Due to the lack of a systematic framework to study Mamdani fuzzy systems, we
have witnessed growing interest in fuzzy model-based approaches with Takagi-Sugeno fuzzy systems and singleton-type fuzzy
systems (also called piecewise multiaffine systems) over the past decades. This paper reviews the key features of the three above
types of fuzzy systems. Through these features, we point out the historical rationale for each type of fuzzy systems and its current
research mainstreams. However, the focus is put on fuzzy model-based approaches developed via Lyapunov stability theorem and
linear matrix inequality (LMI) formulations. Finally, our personal viewpoint on the perspectives and challenges of the future fuzzy
control research is discussed.

I. INTRODUCTION

Fuzzy control was initiated by Mamdani [1] in 1974 stimulated by the Zadeh’s two seminal papers on fuzzy algorithms [2]

in 1968 and linguistic analysis [3] in 1973. In these papers, Zadeh presented a method of system modeling based on fuzzy

IF-THEN rules with linguistic variables. The first application of fuzzy logic control was performed by Mamdani and Assilian

on a laboratory steam engine [4] which led to a great impact on the fuzzy control research. Indeed, many fuzzy control systems

have been proposed since the publication of the original paper in 1975. Generally speaking, there are three types of fuzzy

systems as classified by Sugeno in [5] according to the consequent parts of IF-THEN rules. First, Mamdani-type fuzzy systems

[4] are defined by IF-THEN rules associated with linguistic variables as

Rule Ri : IF x1 is Gi1, x2 is Gi2, . . . , xm is Gim
THEN y is Hi, i = 1, 2, . . . , n

Corresponding Author: Anh-Tu Nguyen (Email: nguyen.trananhtu@gmail.com)
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where Hi and Gij , j = 1, 2, . . . ,m, are fuzzy sets, n is the number of fuzzy rules. Second, Takagi-Sugeno (T-S) fuzzy systems

[6] are with functional consequents

Rule Ri : IF x1 is Gi1, x2 is Gi2, . . . , xm is Gim
THEN y is f i(x1, x2, . . . , xm), i = 1, 2, . . . , n

The function f i(·) is usually linear as follows:

f i(x1, x2, . . . , xm) = bi + ai1x1 + ai2x2 + · · ·+ aimxm,

where the coefficients bi, aij , with j = 1, . . . ,m, are constants. Third, singleton-type fuzzy systems [5] are with fuzzy rules of

the following form:
Rule Ri : IF x1 is Gi1, x2 is Gi2, . . . , xm is Gim

THEN y is bi, i = 1, 2, . . . , n

where bi is a singleton, i.e., a real number. A singleton-type fuzzy system is recently called piecewise multiaffine (PMA) system

in [7] since its input-output relation with respect to an affine-in-control system is found to be a multiaffine function. This type

of fuzzy systems is used to be called PB (piecewise bilinear, more precisely biaffine) systems because for a two-dimensional

case, the output can be expressed as y = ax1 + bx2 + cx1x2 + d, for some scalars a, b, c and d, see [5], [8].

Mamdani-type fuzzy systems are linguistically understandable since fuzzy variables are used in both the premises and the

consequents. However, T-S fuzzy systems do not have linguistic variables since only functional membership functions (MFs)

are used without labels. PMA systems are a simplified special case of both previous types of fuzzy systems. Indeed, PMA

systems are Mamdani fuzzy systems with singleton consequents and they can be obtained from T-S fuzzy systems when only

the constant terms in the consequents are present. While Mamdani fuzzy systems are deeply concerned with fuzzy set and

logic, T-S fuzzy systems are only concerned with fuzzy set in their premises. PMA systems stand independently of fuzzy set

and logic since there is no need to use neither linguistic variables nor MFs. In the case of PMA systems, these functions in

the premises are of a triangular shape and only play roles as parameters for interpolation which are not necessarily interpreted

as membership functions in the conventional “fuzzy” sense. However, PMA systems derived from Mamdani may keep their

status in fuzzy control and linguistic labels could be assigned to singletons if necessary. Note that all three types of fuzzy

systems are known to have general approximation capability for any nonlinear functions [9]. However, compared to two other

types, T-S fuzzy modeling can drastically reduce the number of fuzzy rules, especially for high dimensional complex systems

[5].

During the first ten years since Mamdani’s successful application of fuzzy logic control, researchers were faced with a lot of

criticisms from the conventional control theorists as reported in [5], [10], [11]. The main reason is that there was no stability

analysis available for fuzzy control at that time [12]. To answer these criticisms, T-S fuzzy systems were newly introduced

in 1985. Since T-S fuzzy systems are associated with linear models in their consequents, model-based stability analysis and

control design can be performed for fuzzy systems using conventional Lyapunov-based approaches as firstly shown in [13].

T-S fuzzy modeling can be used to represent exactly a nonlinear system in a compact set of the state space, where the

nonlinearities are embedded in membership functions [14]. Therefore, it is generally impossible to make a non-conservative

stability analysis of a given nonlinear system with T-S fuzzy model-based approaches. More clearly, T-S fuzzy systems belong

to a class of polytopic uncertain systems whose uncertainties are caused by the nonlinearity of the MFs. As such, T-S fuzzy

model-based stability analysis always remains conservative [15]. PMA models were then presented to overcome this drawback

of T-S fuzzy models. As shown in [5], PMA models are fully parametric like linear systems, though they are approximate

models of nonlinear systems in their nature. Because of this advantage, it is theoretically possible to derive necessary and

sufficient stability conditions for PMA systems just as in the case of linear systems [16]. This cannot be the case of other types

of fuzzy systems. Since T-S fuzzy systems and PMA systems include linear systems as a special case, it is expected that any

theoretical framework developed for these both types of fuzzy systems would be more general than its linear counterpart.
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The intention of this paper is to provide a concise overview on the fuzzy control research since the pioneering works

performed by Mamdani’s group at Queen Mary College. Here, no attempt is made to comprehensively review the literature

which includes several excellent books [14], [17]–[20] and thousands of technical articles, see for instance [5], [10], [12],

[21]–[23] and references therein. Instead, only a selective and exemplary list of some breakthrough results is given to tracing

back the evolution of fuzzy control systems. Our primary aim is to provide a historical rationale for each type of fuzzy systems

and its current research status without excessive mathematical complexity. The emphasis is put more on the fuzzy model-based

stability analysis than model-free fuzzy one. In particular, for the sake of simplicity and illustration, only approaches based on

Lyapunov stability theory for continuous-time dynamical systems without any specific performance issue are focused in the

paper. However, it is stressed that theoretical results on stability analysis and control design with or without various performance

specifications, for instance H∞ and H2 with respect to external disturbances, robustness with respect to time delay or modeling

uncertainty, etc., and their discrete-time counterparts have also been widely reported in the fuzzy control literature [14], [22].

Finally, we present our viewpoint on the perspectives and challenges of the future fuzzy control research.

Notation: ΩN denotes the set {1, 2, . . . , N}. R is the field of real numbers. For a vector x ∈ Rn and i ∈ Ωn, xi denotes

the ith entry of x. I denotes the identity matrix of appropriate dimension. For a matrix X , X> indicates its transpose and

X(ij) denotes its element of the ith row and jth column. For any square matrix X , X > 0 indicates a symmetric positive

definite matrix, and HeX = X + X>. The symbol ? stands for matrix blocks that can be deduced by symmetry. The time

dependency of the variables is omitted when convenient.

II. MAMDANI FUZZY SYSTEMS

The basic idea of Mamdani fuzzy control (MFC) is to represent the process states by means of linguistic variables and to

exploit these variables as inputs to control rules [18]. Hence, MFC enables to incorporate the expert’s skills and experience

through a set of fuzzy IF-THEN rules [17], [19]. Thanks to this particular feature, the effectiveness of MFC has been clearly

proved in the following situations [12]. First, no acceptable mathematical model is available for the controlled plant. Second,

human operators play a crucial role in the control process and can provide qualitative control rules in terms of fuzzy logic

sentences. Moreover, as pointed out by Zadeh, MFC is task-oriented control which is in contrast to set-point-oriented feature

of conventional control approaches [24]. This allows MFC to achieve easily multi-objective goals by simply setting some fuzzy

control rules under one criterion and others under a different performance criterion. The coordination between different control

objectives can be performed by fuzzy reasoning. For these reasons, until now MFC has been successfully applied to a large

number of industrial processes, see [12], [23], [25], [26] for constructive surveys on prominent applications of MFC.

Unfortunately, except for a few exceptions, the design of MFC remains model-free and essentially heuristic. As a direct

consequence, we still lack at present a systematic framework as well as analytical tools to study rigorously the stability of

Mamdani fuzzy systems [22]. Establishing such a theoretical stability framework for Mamdani fuzzy systems is expected to

be particularly challenging due to the novelty of the fuzzy mathematics and language [7]. The mainstream idea for stability

analysis has been to consider the Mamdani fuzzy controller as a nonlinear controller, then the fuzzy control design is recast

as a nonlinear control approach using absolute stability theory, sliding mode control, adaptive fuzzy control, etc. Excellent

reviews on the stability issues of MFC systems can be found, for instance, in [5], [12], [22].

To overcome the “model-free” major drawback of MFC, fuzzy model-based control approaches were originally proposed by

Sugeno’s research group at Tokyo Institute of Technology [6], [13]. Such control approaches enable a systematic framework

to deal with the stability analysis and control design of nonlinear dynamical systems in the following general form:

ẋ(t) = f(x(t)) + g(x(t))u(t) (1)

where x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the control input. Without loss of generality, the nonlinear system (1)

satisfies the following assumption.

Assumption 1. The origin x0 = 0 ∈ Rn is an equilibrium of system (1) such that f(0) = 0. Moreover, the vector fields f(·)
and g(·) are sufficiently smooth, i.e., f ∈ C2 and g ∈ C2.
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Fuzzy model-based approches to study theoretically the nonlinear system (1) are discussed in the subsequent sections.

III. TAKAGI-SUGENO FUZZY SYSTEMS

After a brief description of T-S fuzzy models, this section reviews some key points on the stability analysis and control

design of this type of fuzzy systems.

A. System Description

The T-S fuzzy model of the continuous-time nonlinear system (1) is described in the following form [14]:

Rule Ri : IF z1(t) is Mi
1 and · · · and zp(t) is Mi

p

THEN ẋ(t) = Aix(t) +Biu(t) (2)

where Ri denotes the ith fuzzy inference rule, r is the number of inference rules, Mi
j , with i ∈ Ωr and j ∈ Ωp, are the fuzzy

sets, and (Ai, Bi) the state-space matrices of appropriate dimensions of the ith local model. The vector of premise variables

is defined as z(t) = [z1(t) · · · zp(t)]. Using the center-of-gravity method for defuzzification, the T-S fuzzy model (2) can be

represented in the following compact form:

ẋ(t) =

r∑
i=1

hi(z)(Aix(t) +Biu(t)) (3)

where the normalized MF hi(z) is defined as

hi(z) =
ωi(z)∑r
i=1 ωi(z)

, ωi(z) =

p∏
j=1

µij(zj), i ∈ Ωr.

The grades of membership of the premise variables in the respective fuzzy setsMi
j are given as µij(zj). Note that the normalized

MFs satisfy the following convex sum property:

0 ≤ hi(z) ≤ 1,

r∑
i=1

hi(z) = 1,

r∑
i=1

ḣi(z) = 0 (4)

Remark 1. Although the premise variables can represent any type of variables in nonlinear systems, most of the works in the

T-S fuzzy literature deal with the case for which the premise variables are composed of a subset of the system state x(t). This

assumption is also adopted along this paper.

Remark 2. Using the sector nonlinearity approach in [14], the T-S fuzzy model (3) can be directly derived from (1). In this

case, both representations of the affine nonlinear system are strictly equivalent in a compact set of the state space.

B. Lyapunov-Based Stability Analysis

Consider the T-S fuzzy system (3) with u(t) ≡ 0 as follows:

ẋ(t) =

r∑
i=1

hi(z)Aix(t) (5)

The first results on the stability analysis were proposed in [27] for the T-S fuzzy system (5), and in [13] for its discrete-time

counterpart. Consider a quadratic Lyapunov function (QLF) of the form

V (x) = x>Px, P > 0 (6)

The following result is readily obtained.

Theorem 1. [27] The equilibrium of the T-S fuzzy system (5) is globally asymptotically stable if there exists a common

positive definite matrix P such that

A>i P + PAi < 0, i ∈ Ωr (7)
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The three following remarks deserve particular attention.

• Conditions (7) are expressed in terms of linear matrix inequalities (LMIs). Hence, the stability analysis can be easily

checked with available numerical solvers [28].

• A common Lyapunov matrix variable P has to exist for all local linear subsystems.

• The MFs of the T-S fuzzy system (5), i.e., its nonlinearities, are considered as uncertainty. Then, the stability analysis is

embedded in the conventional robust control theory.

Concerning the first remark, the possibility to reformulate the stability analysis of T-S fuzzy systems as a convex optimization

problem has undeniably sparked the growing interest in this type of fuzzy systems [14]. This enables systematic and effective

frameworks for stability analysis and control design of general nonlinear systems, see detailed discussions on prominent results

in the 90s and in the early of 2010s in [11], [22]. Another very recent survey on this research topic can be found in [29].

The two other remarks are concerned with the conservativeness issue of T-S fuzzy control theory [15]. Currently, most

of the research effort has been focused on this issue. There are two mainstreams to reduce the conservatism of T-S fuzzy

model-based approaches, which are briefly discussed hereafter. The first one is based on the choice of different families of

Lyapunov function candidates eventually combined with slack variables introduced via robust control tools such as Finsler

lemma, S−procedure, etc. [28]. The second mainstream consists in finding ways to exploit more efficiently the information

on the MFs for stability analysis.

1) Relaxations with Different Choices of Lyapunov Functions: The conservatism of the results due to the use of a single

quadratic Lyapunov function (6) was emphasized in [30], [31]. To overcome this drawback, more general classes of Lyapunov

functions have been suggested in the T-S fuzzy literature, including piecewise Lyapunov functions (PLFs) [30], [32], [33],

fuzzy Lyapunov functions (FLFs) depending on the MFs [31], [34], [35], line integral Lyapunov functions (LILFs) [34], [36],

[37], polynomial Lyapunov functions depending on the MFs with arbitrary degree [38]–[40], multidimensional fuzzy Lyapunov

functions [41], [42], and so on.

An interesting remark when using FLFs for stability analysis of the continuous-time T-S fuzzy system (5) is that the stability

conditions depend on the time-derivatives of the MFs, thus the derivatives of the system state. This implies more numerical

and theoretical complexities and requires a much larger effort to obtain convex formulations than a quadratic Lyapunov based

framework. To overcome this difficulty, different alternatives have been proposed to consider the upper bounds of the time-

derivatives of the MFs. However, this usually leads to a local analysis setting [41]–[44]. Another alternative is to make use of

PLFs or LILFs to avoid the presence of the time-derivatives of the MFs in the stability conditions. However, in these cases

some special structures should be imposed on the Lyapunov matrices which introduce some conservatism. In addition, using

PLFs is only suitable for T-S fuzzy systems with triangular or trapezoidal MFs inducing particular state-space partitions [22],

[30], [32]. Moreover, LILFs-based approaches usually require that the premise variables are the system state, i.e., z ≡ x.

Nevertheless, this assumption can be recently avoided in [37]. Applying PLFs for the stability analysis of T-S fuzzy systems

was already discussed in detail in [22]. Hence, only the two other cases, namely FLFs and LILFs, are given below to illustrate

the above discussion.

Consider a simple example of FLFs depending explicitly on MFs as follows [31]:

V (x) = x>

(
r∑
i=1

hi(z)Pi

)
x, Pi > 0 (8)

whose time-derivative is given by

V̇ (x) =

[
x

ẋ

]> [∑r
i=1 ḣi(z)Pi ?∑r
i=1 hi(z)Pi 0

][
x

ẋ

]
.

Remark 3. When the positive definite matrices are imposed as P1 = · · · = Pr = P , then the QLF (6) is straightforwardly

recovered from (8). Therefore, the QLFs are only a special case of the FLFs. Observe also that the terms ḣi(z), i ∈ Ωr,

appear explicitly in the expression of V̇ (x). This makes the stability analysis much more involved with this choice. It should

be stressed that although the fuzzy Lyapunov function (8) belongs to a more general class of Lyapunov function candidates
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compared to the quadratic one, there is no guarantee that FLFs-based results are less conservative than those derived from

QLFs, see [45] for a counterexample. This is primarily due to the presence of a priori unknown time-derivatives of the MFs

in the theoretical developments when using FLFs [35]. Hence, the stability conservatism strongly depends on the way how

such unknown time-derivatives are handled.

For simplicity, one could exploit the ideas related to properties of the MFs to deal with their time-derivatives. For instance,

from the convex sum property (4), it follows that
∑r
i=1 ḣi(z)X = 0, for any matrix X . This implies that

r∑
i=1

ḣi(z)Pi =

r∑
i=1

ḣi(z)(X + Pi).

Assume there exist upper bounds of the time-derivatives of the MFs such that |ḣi(z)| ≤ φi, for some positive scalars φi,

i ∈ Ωr. Then, it follows that

x>

(
r∑
i=1

ḣi(z)(Pi +X)

)
x ≤ x>Pφx (9)

where Pφ =
∑r
i=1 φi(Pi +X). Using a null-term approach or Finsler lemma [28], inequality (9) can be exploited for stability

analysis as summarized in the following theorem.

Theorem 2. [34] Given a T-S fuzzy system (5), and upper bounds on the time-derivatives of the MFs as |ḣi(z)| ≤ φi, i ∈ Ωr.

If there exist positive definite matrices Pi ∈ Rn×n, with i ∈ Ωr, and matrices X ∈ Rn×n, M ∈ Rn×n, N ∈ Rn×n, satisfying

the following linear matrix inequalities:

Pi +X > 0, i ∈ Ωr (10)[
Pφ −MAi −A>i M> ?

Pi +M> −NAi N +N>

]
< 0, i ∈ Ωr (11)

with Pφ given by (9). Then, the T-S fuzzy system (5) is asymptotically stable.

Remark 4. Differently from Theorem 1, Theorem 2 only allows for local stability analysis of system (5) since the system

state has to satisfy |ḣi(z)| ≤ φi, i ∈ Ωr. Hence, an implicit goal is also to maximize the domain of attraction included inside

the state region defined by the above assumption [41]. Note that exploiting different types of properties of fuzzy MFs and

relaxing tools from robust control theory, several local stability conditions have been proposed in the FLFs literature [44]. It

is important to note also that unlike the continuous-time case, the stability analysis for discrete-time T-S fuzzy systems does

not suffer from this kind of difficulty in dealing with the time-derivatives of MFs when using FLFs [22], [46].

Remark 5. In Theorem 2, matrices X , M , N , are considered as slack variables, used for relaxation purposes. By imposing

X = 0, Pi = P > 0, for ∀i ∈ Ωr, and M = −P , it is easy to prove that the result of Theorem 2 includes that of Theorem

1. This theoretically confirms that compared to quadratic Lyapunov functions, FLFs enable less conservative stability analysis,

see also Remark 3.

For T-S fuzzy systems with zk = xk, k ∈ Ωn, i.e., the premise variables are explicitly the state variables, line integral

Lyapunov functions can be exploited to avoid dealing with the time-derivatives of the MFs [36]. Consider now a Lyapunov

function of the following form:

V (x) = 2

∫
Γ[0,x]

〈
r∑
i=1

hi(ζ)Pi ζ, dζ

〉
(12)

where Γ[0, x] is a path from the origin to the present state, dζ is an infinitesimal displacement, 〈·, ·〉 denotes the inner product.

As shown in [36], if the matrices Pi are written as

Pi = D0 +Di (13)
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where

D0 =


0 d12 · · · d1n

d12 0 · · · d2n

...
...

. . .
...

d1n d2n · · · 0

 ,

Di =


dαi1

11 0 · · · 0

0 dαi2
22 · · · 0

...
...

. . .
...

0 0 · · · dαin
nn

 ,
and αik indicating which Mk fuzzy set is used for the ith rule. Then, it follows from (12) and (13) that

∇V (x) = 2

r∑
i=1

hi(x)Pix.

Exploiting this special structure of the Lyapunov function, the following theorem can be stated.

Theorem 3. [34] Given a T-S fuzzy system (5) with z ≡ x. If there exist symmetric matrices Pi ∈ Rn×n, with i ∈ Ωr, and

matrices M ∈ Rn×n, N ∈ Rn×n such that

Pi > 0, i ∈ Ωr (14)[
−MAi −A>i M> ?

Pi +M> −NAi N +N>

]
< 0, i ∈ Ωr (15)

with Pi having the structure in (13). Then, the T-S fuzzy system (5) is globally asymptotically stable.

Remark 6. A great advantage of Theorem 3 compared to Theorem 2 is that the assumption on the upper bounds of the time-

derivatives of the MFs is not required anymore for LMI-based stability analysis. Such an assumption is not always verified,

especially in T-S fuzzy control context [35]. However, the special structure of the matrices Pi as shown in (13) may induce

some conservatism. In fact, up to now it is still hard to get a definitive answer on which approach leads to less conservative

stability conditions.

2) Exploiting the Knowledge of the Membership Functions for Stability Relaxations: The MFs used to “blend” the local

linear submodels of the T-S fuzzy system (3) represent the nonlinearity of system (1). However, these MFs have been widely

considered as system uncertainty, and only their convex sum property (4) has been exploited in most of the existing works

based on quadratic, fuzzy and polynomial Lyapunov functions [15]. Whenever the shape of the MFs and its intrinsic time-

varying characteristic are not explicitly taken into account in the stability analysis, the conservativeness issue still remains, see

further details in [29], [47]–[49].

Several approaches have been proposed to consider explicitly the shape of the MFs in the stability analysis. These approaches

can be classified into two following categories [50]. First, the membership-function-approximation approaches exploit the MF

information via alternative similar functions such as staircase MFs [51], piecewise linear MFs [52]. Second, the membership-

bound-dependent approaches exploit the bound information of MFs for stability analysis [48]. In addition, the MFs image space

and the order relations among the MFs have been also exploited, see for instance [50], [53], [54]. Note that membership-function-

approximation and image-space approaches generally lead to a higher number of convex stability constraints. Concerning

membership-bound-dependent approaches, slack variables are usually introduced into the stability conditions for relaxation

purposes. As an illustrative example, the following theorem presents the idea in [48] on using the MFs shape information

to reduce further the stability conservatism of Theorem 3 by introducing new relaxation variables. More discussions on the

membership-function-dependent stability analysis can be found in the recent survey [29].
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Theorem 4. (adapted from [48] and [34]) Given a T-S fuzzy system (5) with z ≡ x. Consider the MFs vector h(x) =[
h1(x) h2(x) . . . hr(x)

]>
such that

h(x)>Sh(x) + h(x)>w + v ≤ 0 (16)

where S ∈ Rr×r, w ∈ Rr and v ∈ R are given. If there exist symmetric matrices Pi ∈ Rn×n, i ∈ Ωr, and matrices

Z ∈ R2n×2n, M ∈ Rn×n, N ∈ Rn×n such that

Z > 0, Pi > 0, i ∈ Ωr (17)

Qi − βiiZ < 0, i ∈ Ωr (18)

Qi +Qj − (βij + βji)Z < 0, i, j ∈ Ωr, j > i (19)

with Pi having the structure in (13), βij = S(ij) + wi + v and

Qi =

[
−MAi −A>i M> ?

Pi +M> −NAi N +N>

]
.

Then, the T-S fuzzy system (5) is globally asymptotically stable.

Remark 7. The key difference between Theorems 3 and 4 lies on the extra decision variable Z. Via this slack variable, the

shape information of the MFs (16), also represented by the scalars βij , can be exploited to reduce the stability conservatism in

Theorem 4. This shape information can be used to deal with relatively complex MF shapes, i.e., with some minor modifications,

multiple constraints on the MF shapes are easily handled. However, it usually requires a preliminary optimization step to find

the tightest constraint verifying (16) that could be applied to the MFs of the studied system.

Besides the two above mainstreams, research efforts have been also devoted to reduce the stability conservatism caused by

the sufficiency of fuzzy summations, i.e., the ways how MFs are dropped out to obtain a finite set of LMI conditions. Although

numerous results have been proposed to deal with this source of conservativeness [55]–[61], the most prominent approach

relies on Pólya’s theorem. Based on checking the positiveness of multidimensional matrices, the authors in [58] applied Pólya’s

theorem to derive asymptotically necessary and sufficient LMI-based conditions for the stability and performance of T-S fuzzy

systems. It should be stressed that as the homogeneous degree of a multiple summation fuzzy Lyapunov function increases,

the conservatism of the stability conditions decreases thanks to the introduction of more degrees of freedom. However, Pólya’s

theorem based approaches are conceptual rather than implementable since the computational burden swiftly increases in a way

that most numerical solvers crash.

C. Takagi-Sugeno Fuzzy Control Design

An important application of stability theorems is to design stabilizing fuzzy controllers based on T-S fuzzy models of

nonlinear plants. The control design of T-S fuzzy models are usually addressed with the following steps: (1) choose a specific

form of the control law, (2) find the respective closed-loop T-S fuzzy representation, (3) apply a set of stability analysis

conditions to the closed-loop representation, and (4) transform these conditions into LMI-based formulations. The challenge

usually lies on the last step since without any transformation at this step, the design conditions are expressed in terms of

bilinear matrix inequalities (BMIs) instead of LMIs, leading to numerical difficulties.

Different (state or output) feedback control schemes can be applied to T-S fuzzy models [14], [22], [46]. The most commonly

used control law is based on the so-called parallel distributed compensation (PDC) concept, for which the fuzzy controller

shares the same fuzzy rules and sets as the T-S fuzzy model. As a result, a PDC controller is obtained from a convex blending

of the linear local feedback gains and the MFs of the T-S fuzzy model. Within LMI-based control framework, this control

approach was originally proposed in [62] and was named “PDC” in [55].
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For illustration, consider a PDC control law of the form

u(t) =

r∑
j=1

hj(z)Kjx(t) (20)

Then, the closed-loop T-S fuzzy system can be obtained from (3) and (20) as follows:

ẋ(t) =

r∑
i=1

r∑
j=1

hi(z)hj(z) (Ai +BiKj)x(t) (21)

The basic result is based on the quadratic Lyapunov function (6). For the closed-loop stability analysis, its time-derivative

along the trajectory of system (21) is required to be negative, i.e., V̇ (x) = ẋ>Px+ x>Pẋ < 0, which results in
r∑
i=1

r∑
j=1

hi(z)hj(z)He
[
(Ai +BiKj)

>P
]
< 0 (22)

Note that (22) is expressed in terms of BMI due to the coupling between the Lyapunov matrix P and the feedback gains Kj ,

j ∈ Ωr. However, by applying a simple congruence transformation [28] to (22), with X = P−1 > 0, it is easy to show that if

the following LMI constraint holds:
r∑
i=1

r∑
j=1

hi(z)hj(z)He[AiX +BiYj ] < 0 (23)

Then, the PDC control law (20) asymptotically stabilizes the T-S fuzzy system (3) with Kj = YjX
−1, for j ∈ Ωr.

Remark 8. A direct consequence of sharing the same MFs for the PDC control and the T-S fuzzy system is that double

convex sums appear, see for example (23). Similar to the stability analysis discussed above, several approaches are available

to reduce the design conservatism at the expense of a higher computational cost. The key difference between stability analysis

and control design is that the latter usually requires additional matrix transformations and/or matrix inversions of decision

variables to derive LMI-based formulations. Apart from some special cases, this makes the use of some classes of Lyapunov

functions with special structures on their parameter matrices, for instance LILFs and PLFs, very challenging for control design

purposes.

Remark 9. Compared to LILFs and PLFs, FLFs as given in (8) can be applied more easily to the synthesis problem [35],

[42], [63]. However, in this case, for T-S fuzzy systems (5) with z ≡ x, the time-derivatives of the MFs involve the system

dynamics, i.e., ḣi(x) =
(
∂hi

∂x

)>
ẋ, which can include the control action u(t) to be designed. Hence, it is not obvious to check

a posteriori the validity region of the designed controller [35]. This is the biggest gap between stability analysis and control

design when using fuzzy Lyapunov functions.

Remark 10. It should be stressed that various alternative control schemes with different degrees of design conservatism have

been proposed in the T-S fuzzy literature, including non-PDC control [35], [46], [64], [65], fuzzy observer-based control with

measurable premises [57], [66]–[68], with unmeasurable premises [69]–[72], fuzzy static output feedback control [73]–[77],

etc., and their numerous extensions. Since full state-information is generally not available in practice, observers are usually

designed to reconstruct the system state for state-feedback control. T-S fuzzy observer designs with or without performance

specifications have been largely developed using Lyapunov stability arguments and LMI techniques, see for instance [22],

[78]–[84] and related references. Note that in the framework of T-S fuzzy systems whose premises are state variables, two

following cases are distinguished. If the premise variables are measurable, then the approaches in [57], [66], [67], [78], [79]

can be directly applied. The second case, in which the premise variables are not measurable, is much more challenging. This is

due to a mismatch between the T-S fuzzy systems and the corresponding T-S fuzzy observers. In this situation, it is necessary

to estimate the premise variables as shown in [69]–[72], [83].

IV. PIECEWISE MULTIAFFINE SYSTEMS

This section discusses the use of PMA modeling for theoretical studies of the nonlinear system (1).
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A. Description of PMA Systems

To introduce the PMA modeling, let us first consider the nonlinear system (1) with u ≡ 0 for simplicity, which results in

the following autonomous system:

ẋ = f(x) (24)

Remark 11. It is important to stress that T-S fuzzy model-based approaches require rewriting system (24) in the form

ẋ = A(z)x, where the premise vector z regroups all nonlinear terms involved in the matrix A(·). Up to now, no systematic

procedure is available to select, among the infinite possibilities, the “best” parameterization f(x) = A(z)x guaranteeing to

achieve stability and other performance specifications. Therefore, the issue on the non-uniqueness of T-S fuzzy representation

still remains open [15]. As shown below, we do not have this source of conservatism with PMA model-based approaches since

the form (24) is directly dealt with. However, PMA modeling leads to appropriation errors. At the present stage of progress,

taking into account such errors for stability analysis of the nonlinear system (24) still remains open in PMA model-based

framework.

Without loss of generality, we assume that xi ≤ xi ≤ xi, i ∈ Ωn, where xi and xi denote respectively the upper and lower

bounds of the ith entry of x. As a consequence, the state x belongs to the set R = [x1, x1]× . . .× [xn, xn]. Let us partition

the state-space of system (24) as follows:

xj = χ
[1]
j < χ

[2]
j < . . . < χ

[Nj+1]
j = xj , j ∈ Ωn (25)

Let Kv = ΩN1+1 × . . . × ΩNn+1 be the set of multi-indexes corresponding to all the vertices induced by the partition (25)

and Kr = ΩN1 × . . . × ΩNn the set of multi-indexes corresponding to the regions. For i = (i1, . . . , in) ∈ Kr, the region[
χ

[i1]
1 , χ

[i1+1]
1

]
× . . . ×

[
χ

[in]
n , χ

[in+1]
n

]
is denoted by Ri and Ki = {i1, i1 + 1} × . . . × {in, in + 1} is the set of multi-

indexes corresponding to all vertices of Ri. For k ∈ Ki, χk is the vertex of Ri whose jth component is defined as χ[kj ]
j , for

j ∈ Ωn. For a hyper-rectangle region Ri, for i ∈ Kr, we consider the following set of fuzzy rules:

IF x1(t) is η[k1]
1 (x1) and · · · and xn(t) is η[kn]

n (xn),

THEN ẋ(t) is Fk, k ∈ Ki,

where Fk = f(χk) is the singleton vector, and the triangular membership function η[kj ]
j (xj) with respect to xj(t), for j ∈ Ωn

and kj ∈ ΩNj+1, is defined as

η
[kj ]
j (xj) =



xj − χ
[kj−1]
j

χ
[kj ]
j − χ[kj−1]

j

,
if xj ∈

[
χ

[kj−1]
j , χ

[kj ]
j

]
and j ≥ 2

χ
[kj+1]
j − xj

χ
[kj+1]
j − χ[kj ]

j

,
if xj ∈

[
χ

[kj ]
j , χ

[kj+1]
j

]
and j ≤ Nj

0, otherwise.

(26)

Note that the MFs (26) satisfy the following properties [5]:

η
[kj ]
j (xj) ≥ 0,

ij+1∑
kj=ij

η
[kj ]
j (xj) = 1, j ∈ Ωn.

Given x(t) with these membership functions, ẋ(t) can be inferred by taking the weighted average of Fk as follows:

ẋ =
∑
k∈Ki

ηk(x)Fk, ηk(x) =

n∏
j=1

η
[kj ]
j (xj) (27)

The following expression of x(t) can be derived from that of the triangular MFs [5]:

x =
∑
k∈Ki

ηk(x)χk (28)
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Based on (27) and (28), the parametric expression of PMA system on R =
⋃
i∈Kr

Ri can be expressed as follows [7]:

ẋ =
∑
k∈Kv

ηk(x)Fk, x =
∑
k∈Kv

ηk(x)χk (29)

For stability analysis, we assume that the equilibrium x ≡ 0 of system (29) corresponds to the vertex χk0 of the state-space

partition, for a given k0 ∈ Kv . Let KZ be the set of multi-indexes for regions containing the origin which is called zero-regions,

and KNZ = Kr\KZ (called non-zero regions). We denote also K∗i = Ki\{k0}, for i ∈ KZ .

Remark 12. Observe in (29) that the weights with respect to xj , j ∈ Ωn, in the premises are computed by the multiplication

of η[kj ]
j (xj), kj ∈ ΩNj+1. Therefore, the fuzzy reasoning used here is characterized by normalized membership functions,

multiplicative weights calculation, and weighted average aggregation [5]. Note also that system (24) can be approximated by

PMA model (29) with arbitrary accuracy on R by increasing the number of piecewise regions with (25).

Remark 13. PMA systems are characterized by the triangular MFs defined in (26). Other types of MFs for PMA systems, for

instance Gaussian MFs or trapezoidal MFs, could be considered. However, the parametric expression (28) of x(t) is crucial

for the stability analysis of PMA systems, which is directly derived from triangular MFs. Moreover, note also that triangular

MFs are largely employed in fuzzy control systems and in practice [85].

Consider a particular case with n = 2. Then, the resulting second-order PMA model (29) with the MFs (26) corresponds

to the parametric expressions of the singleton-type fuzzy systems studied in [5], [16]. In this case, by eliminating one of the

triangular MFs from the parametric expression (29), the following state-space representation of PMA systems can be readily

obtained: 
ẋ = Ai(x)x+ µi, x ∈ Ri, i ∈ Kr

µi =
∑
k∈Ki

ηk(0)Fk (30)

where µi = 0, for i ∈ KZ , and ηk(0) denotes the value of ηk(x) for x = 0. The state-dependent matrix is of the form

Ai(x) = η
[k1]
1 (x1)S(k1, ·) + η

[k1+1]
1 (x1)S(k1 + 1, ·) (31)

for k ∈ Ki and i ∈ Kr. The explicit expressions of S(k1, ·) and S(k1 + 1, ·), their derivations, and alternative equivalent

state-space representations of (30)-(31) can be found in [5].

Remark 14. For second-order PMA systems, both representations (29) and (30) are strictly equivalent. Note also that system

(30) is found to be a biaffine system. Moreover, with expression (31), the PMA system (30) can be viewed as a piecewise

polytopic affine system with two vertex systems: ẋ = S(k1, ·)x+ µi and ẋ = S(k1 + 1, ·)x+ µi.

B. Literature Review on PMA Systems

Many advantages of using PMA systems for control purposes were highlighted in [5]. First, a PMA model (29) is easily

obtained from the mathematical expression (24) of a nonlinear system as shown above. Second, PMA models have a general

approximation capacity of any smooth nonlinear systems. Third, PMA models are simply implemented by means of look-up

tables (LUT) which are one of the most widely used practical tools in the industry for model approximation and control

implementation, especially in automotive and aerospace engineering. Finally, PMA systems are fully parametric, i.e., both the

state vector and its rate can be expressed by parametric expressions in (29). As shown later, this enables a systematic framework

to study PMA systems.

Despite these practical and theoretical advantages, up to 1999 there was no rigorous stability framework on PMA systems.

Almost all papers had been focused on the practical applications of PMA systems rather than their theoretical studies [5]. By

fully taking into account the information of the triangular MFs as functions of state variables, Sugeno first set the theoretical

foundations on a quadratic Lyapunov stability framework for both continuous-time and discrete-time PMA systems [5]. These

results were then improved in [16] to achieve necessary and sufficient stability conditions with respect to a common quadratic
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Lyapunov function (6). The basic idea of the stability analysis in [5], [16] consists in using both parametric expressions (29)

and the state-space representation (30) to analytically set V (x) > 0, V̇ (x) < 0, for x 6= 0, as the stability conditions for each

piecewise region. Following the same line, Taniguchi and Sugeno proposed in [86] necessary and sufficient stability conditions

with respect to a piecewise Lyapunov function of the form

V (x) =
1

2
x>Pix+ q>i x+ ri, i ∈ Kr (32)

where the explicit expressions of Pi, qi and ri, for i ∈ Kr, can be found in [86]. In addition, the conditions guaranteeing that

function (32) is a proper Lyapunov function candidate are also discussed therein. Note that the Lyapunov function (32) can

be considered as a piecewise approximation of an arbitrary Lyapunov function by second-order functions. These preliminary

results of Sugeno’s group clearly show the great potential of PMA model-based approaches to get rid of the conservativeness

issue of T-S fuzzy theory, for which MFs are usually regarded as unknown parameters [15].

In parallel, without considering the knowledge on the MFs, numerical approaches were developed for stability analysis and

control design of PMA control systems in [8], [87]. Also based on Lyapunov stability arguments, there is however a fundamental

difference compared to the results in [5], [16], [86]. That is, these works essentially focused on the characteristics of PMA

controllers performed on T-S fuzzy objective systems. As such, the stability analysis of PMA control systems is embedded

into the conventional T-S fuzzy theory, which is not compatible with the original motivation of PMA control systems. Indeed,

the final goal in PMA control theory is to provide a stability analysis framework of nonlinear systems by embedding them in

PMA systems to avoid the inherent drawbacks of T-S fuzzy control systems [5].

It should be stressed that all the above-mentioned results on PMA control systems suffer from two major drawbacks [7]. First,

the proposed stability conditions are expressed in terms of nonlinear matrix inequalities, which obviously induce numerical

difficulties. Second and more importantly, these conditions are only applicable to second-order PMA systems. Note that state-

space representation (30) of PMA systems was exclusively employed to study PMA systems in [5], [8], [16], [86], [87].

However, such a representation is very challenging for theoretical study due to its piecewise polytopic affine feature [5], see

also Remark 14. As a consequence, the extensions of these results to high-dimensional PMA systems are not obvious. Due to

these restrictive drawbacks, PMA control systems have not yet received much attention from the (fuzzy) control community.

Only very recently, it is demonstrated in [7] that the specific representation of PMA via parametric expressions (29) enables a

simple and effective stability framework. The key idea relies on the fact that within a piecewise region, each of these expressions

is uniquely determined by its vertex values and its restriction to the region is a convex combination of these values. Moreover,

the piecewise feature of PMA systems is fully exploited via a piecewise Lyapunov function. This led to promising results

on stability analysis of PMA systems of any order, and has opened new research perspectives as discussed in the subsequent

sections.

C. LMI-Based Stability Analysis for General PMA Systems

Consider a piecewise quadratic Lyapunov function candidate parameterized as follows [30]:

V (x) =

 x>Pix, for x ∈ Ri, i ∈ KZ

x̂>P̂j x̂, for x ∈ Rj , j ∈ KNZ
(33)

where x̂ =
[
x> 1

]>
and  Pi = M>i TMi, for i ∈ KZ

P̂j = M̂>j TM̂j , for j ∈ KNZ
(34)

The constraint matrices are constructed as follows [30]:

L̂i =
[
Li li

]
, M̂i =

[
Mi mi

]
(35)
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such that
L̂ix̂ ≥ 0, x ∈ Ri, i ∈ Kr,

M̂ix̂ = M̂j x̂, x ∈ Ri ∩Rj , i, j ∈ Kr,
where li = 0, mi = 0, i ∈ KZ .

Remark 15. Since the Lyapunov function (33) combines the power of quadratic functions near an equilibrium point with the

flexibility of piecewise functions in the large, it can lead to less conservative results compared to those based on a common

quadratic Lyapunov function [7], [30]. Indeed, the latter can be regarded as a special case of (33) by considering Mi = I and

Li = 0.

Note that all free parameters of the Lyapunov function V (x) defined in (33) are collected in the symmetric matrix T and

the expression of Pi is linear in T . This feature allows for an LMI-based framework to study the stability of PMA systems as

shown in the following theorem.

Theorem 5. [7, Theorem 1] Given an PMA system in (29). If there exist a symmetric matrix T ∈ RN×N , symmetric matrices

with nonnegative entries Uq ∈ R2n×2n and Wq ∈ R2n×2n (for q ∈ Kr), matrices Y1i ∈ Rn×n, Y2i ∈ R1×n (for i ∈ KZ),

Ŷ1j ∈ R(n+1)×(n+1) and Ŷ2j ∈ R1×(n+1) (for j ∈ KNZ), satisfying the LMI constraints (36), (37), (38) and (39). Then, the

PMA system (29) is asymptotically stable. Moreover, the piecewise quadratic function V (x) defined in (33) is a Lyapunov

function of this system.

Pi − L>i UiLi > 0, i ∈ KZ (36)

He

[
Y1i + L>i WiLi/2 −Y1iχk + PiFk

Y2i −Y2iχk

]
< 0, i ∈ KZ , k ∈ K∗i (37)

P̂j − L̂>j UjL̂j > 0, j ∈ KNZ (38)

He

[
Ŷ1j + L̂>j WjL̂j/2 −Ŷ1jχ̂k + P̂jF̂k

Ŷ2j −Ŷ2jχ̂k

]
< 0, j ∈ KNZ , k ∈ Kj (39)

with Pi and P̂j defined in (34) and

F̂k =

[
Fk
0

]
, χ̂k =

[
χk

1

]
, k ∈ Kj , j ∈ KNZ .

Remark 16. LMI conditions (36) and (38) are imposed for each region to guarantee that (33) is a proper Lyapunov function

candidate. The set of LMIs (37) and (39) ensures that the value of the Lyapunov function decreases along any trajectory of

the PMA system (29).

Remark 17. For the stability results in Theorem 5, the parametric expressions of both x and ẋ in (28) can be fully exploited via

Finsler lemma [28], see [7] for details. Since expression (28) is equivalent to that of the triangular MFs (26), the information

on the MFs can be thus easily taken into account in the theoretical studies of PMA systems to reduce the conservatism. Note

that this is not the case of T-S fuzzy systems whose MFs are often considered as uncertainty [15].

D. Lyapunov-Based LUT Control Design

Following the same modeling procedure as in Section IV-A, the following PMA model of system (1) is straightforwardly

obtained on R:

ẋ =
∑
k∈Kv

ηk(x)(Fk + Gku), x =
∑
k∈Kv

ηk(x)χk (40)

where Gk = g(χk). Assume that the linearized system (A,B) of (1) around x = 0 is stabilizable. This means that there exists

a linear feedback gain H such that (A+BH) is Hurwitz with

A =

[
∂f

∂x

]
x=0

, B =

[
∂g

∂x

]
x=0

(41)
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This control gain H can be designed in advance by any linear control technique to guarantee some local closed-loop properties

of (1). To stabilize the PMA system (40), let us consider the state-feedback control law of the form

u(x) =
∑
k∈Kv

ηk(x)υk +Hx (42)

where the control vertex at the origin must be assigned as υ0 = 0 and other input vertices υk, with k ∈ Kv \ {0}, have to be

designed.

Remark 18. The control law (42) is composed of two parts. The parametric expression part
∑
k∈Kv

ηk(x)υk is defined in the

same way as x and ẋ, see (40). The incorporation of the linear feedback part Hx in (42) is obviously crucial to guarantee the

closed-loop stability in the case where system (1) is open-loop unstable around x = 0. Note that (42) can be easily implemented

with look-up-tables which is an outstanding feature for real-time control applications [5].

Using similar arguments as for Theorem 5, the following theorem provides sufficient conditions to design LUT controller

(42) for nonlinear systems.

Theorem 6. Given an PMA system in (40) and a stabilizing feedback gain H of the linearized system (A,B) defined

in (41). Assume there exist a symmetric matrix T ∈ RN×N , symmetric matrices with nonnegative entries Uq ∈ R2n×2n

and Wq ∈ R2n×2n (for q ∈ Kr), matrices Y1i ∈ Rn×n, Y2i ∈ Rm×n, Y3i ∈ R1×n (for i ∈ KZ), Ŷ1j ∈ R(n+1)×(n+1),

Ŷ2j ∈ Rm×(n+1), Ŷ3j ∈ R1×(n+1) (for j ∈ KNZ), and the control input vertices υk ∈ Rm×1 (for k ∈ Kv \ {0}), satisfying the

following matrix inequalities (43), (44), (45) and (46). Then, the control law (42) asymptotically stabilizes the PMA system

(40). Furthermore, the piecewise quadratic function (33) is a Lyapunov function of the closed-loop system.

Pi − L>i UiLi > 0, i ∈ KZ (43)

He


Γi PiGq −Y1iχk + PiFk +Hυk

Y2i +H −I/2 υk − Y2iχk

Y3i 0 −υ>k υl/2− Y3iχk

 < 0, i ∈ KZ , q ∈ Ki, k ∈ K∗i , l ∈ K∗i (44)

P̂j − L̂>j UjL̂j > 0, j ∈ KNZ (45)

He


Γ̂j P̂j Ĝk −Ŷ1jχ̂k + P̂jF̂k + Ĥυk

Ŷ2j + Ĥ −I/2 υk − Ŷ2jχ̂k

Ŷ3j 0 −υ>k υl/2− Ŷ3jχ̂k

 < 0, j ∈ KNZ , k ∈ Kj , l ∈ Kj (46)

where Ĥ =
[
H 0

]
and

Ĝk =

[
Gk
0

]
, k ∈ Kj , j ∈ KNZ ,

Γi = Y1i +
(
L>i WiLi +H>H

)
/2, i ∈ KZ ,

Γ̂j = Ŷ1j +
(
L̂>j WjL̂j + Ĥ>Ĥ

)
/2, j ∈ KNZ .

Remark 19. The slack matrices Uq and Wq , for q ∈ Kr, are introduced into the conditions of Theorems 5 and 6 through

the S−procedure [28]. This contributes to reduce the conservatism since the piecewise-region feature of PMA systems can be

fully exploited via the constraint matrices defined in (35).

Remark 20. The design conditions in Theorem 6 are expressed in terms of BMIs due to the product υ>k υl involved in (44)

and (46). Note that for each vertex, there are 2n associated BMI-based conditions to be verified. Hence, the value of υk, for

k ∈ Kv \{k0}, should be imposed identical for 2n conditions concerning the same vertex to avoid sliding modes and chattering

phenomena.
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V. FUTURE PERSPECTIVES OF FUZZY CONTROL SYSTEMS

This paper provides a concise discussion on the evolution of fuzzy control systems. Through a selective list of references,

we present the historical motivations and the current research progress of three types of fuzzy systems: Mamdani-type fuzzy

systems, T-S fuzzy systems and PMA (or singleton-type fuzzy) systems. Great advances on both fundamental and application

aspects of fuzzy control have been made with a huge number of available publications on the topic. However, many interesting

and important issues still remain challenging, which provide fantastic opportunities for the research on fuzzy control systems in

the future. Since we believe that within fuzzy control context, only fuzzy model-based approaches enable systematic frameworks

for stability analysis and control design of nonlinear systems, below our personal perspectives are focused on T-S fuzzy systems

and PMA systems.

A. Open Issues on Takagi-Sugeno Fuzzy Systems

A large research effort has been focused on reducing the conservativeness of stability analysis and control design. As

discussed above, this has been done by searching for more general Lyapunov function candidates and clever manipulations to

bring the problem to an LMI framework.

Although there are conditions considering the information on the shape of the MFs, see for instance [29], [47], we believe

that more powerful methodologies could arise with the use of interval type-2 T-S fuzzy modeling techniques [88]–[91]. These

fuzzy models allow to deal with uncertain grades of membership. Hence, type-2 T-S fuzzy systems are very useful in the

cases where exact MFs are difficult to be chosen and/or there is a need to cope with large amounts of uncertainties [89], [90].

However, for stability analysis and control design, the lower and upper MFs have to be simultaneously considered leading to

more elaborated manipulations and computational burden [92], [93]. Possible contributions go toward building less conservative

LMI-based conditions for interval type-2 T-S fuzzy models depending on MFs, reducing the gap between type-1 and type-2

T-S fuzzy modeling methodologies. For instance, membership-dependent stability conditions for both type-1 and type-2 T-S

fuzzy systems were recently proposed in [50]. To this end, it is considered that the MFs belong to a unified space. Then, an

extrema-based method is proposed to construct a polyhedron convex hull to enclose the membership distribution in this space.

Despite the interests of the proposed results, much research effort should be still devoted to the stabilization problem, and even

to the stability analysis to reduce further the gap between both types of fuzzy systems.

In our opinion, the design of T-S fuzzy controllers/observers that do not share the same MFs or premise variables with T-S

fuzzy models is another important topic. This topic should deserve more thorough consideration since it can greatly improve

the flexibility of the control/observer design in many cases [69]. Also, such a design scheme is involved in current research

mainstreams on T-S fuzzy model-based approaches as shown in the two following illustrative examples.

• The first example is concerned with the design of nonlinear networked control systems (NCSs) in which network-induced

imperfections, for instance network-induced delay and sampling issues, are intrinsic [70], [94]. One of the major difficulties

in this case is the fact that, when considering the network-induced delay, the information transmitted over the network to

the controller is usually delayed, causing a mismatch between the premise variables. This mismatch can be seen as extra

constraints in the design of NCSs [95]–[99]. Moreover, it can be very restrictive to assume that the premise variables

of the fuzzy systems and the fuzzy controllers/observers are synchronous if bilateral networks (controller-to-actuator and

sensor-to-controller) have to be designed [99]. Then, the asynchronous transmission issue should be considered.

• The second example is related to the fact that in any control system, fault detection, diagnosis and recovery is decisive

to have a robust and resilient system operation. In this context, control reconfiguration plays a crucial role to obtain a

fault tolerant control (FTC) that can effectively handle severe actuator/sensor faults while still guaranteeing a desired

closed-loop performance [100]. To achieve this goal, it is crucial to have effective fault detection and isolation (FDI)

schemes to support the control reconfiguration in a proper way [101]. One idea behind the control reconfiguration is to

redesign the problem for the faulty system by choosing possibly a new structure and adapting the control law to this new

scenario. A possible solution for this problem relies on the use of two-step design procedures for which FDI and FTC
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schemes are separately dealt with. To this end, virtual actuators/sensors can be used to mask the actuator/sensor faults

[102]. More specifically, an FDI scheme via T-S fuzzy virtual actuator/sensor models have to be designed to achieve the

reconfiguration goal. This requires the design of a T-S fuzzy observer-based controller, in which the T-S fuzzy controller

and the T-S fuzzy observer possibly do not share the same MFs or it is necessary to estimate their unmeasurable premise

variables.

B. Open Issues on Piecewise Multiaffine Systems

Lyapunov-based studies of PMA systems are much more limited compared to those of T-S fuzzy systems. As mentioned

previously, this is due to theoretical challenges when dealing with this type of fuzzy systems, especially for high-order systems.

Although the outstanding contributions in [5], [7], [16] throw new light on the research of PMA control systems, several

important issues need to be solved in the future.

• How to fully take into account the knowledge of triangular MFs to derive tractable necessary and sufficient stability

conditions for high-order PMA systems? Two of the authors have provided a discussion on this issue in [16], [86].

However, the stability conditions are only applicable to second-order PMA systems and expressed in terms of nonlinear

matrix inequalities.

• How to develop an effective framework to design LUT controllers from the PMA stability results? BMI-based design

conditions in Theorem 6 induce numerical difficulties and may be conservative, especially for high-order systems. PMA

systems can be also used for LUT-based control implementation of feedback error learning (FEL) scheme [103]. In FEL

control, it is crucial to build an online pseudo-inverse model of the general nonlinear plant for feedforward control purposes.

Up to now, neural networks have been intensively used for this aim. However, due to computational and overfitting reasons,

PMA systems are considered as a powerful alternative to neural networks. Despite the practical effectiveness of LUT-based

FEL control, more rigorous stability analysis is required in the future.

• How to extend the theoretical results concerning the “classical” PMA system (40) to a wider class of systems such as

time-delay PMA systems, descriptor PMA systems, switching PMA systems and so on? The research on this issue depends

obviously on the progress of the two previous ones.

• Whether does the stability of PMA system (40) imply that of the nonlinear system (1)? To solve this issue, the approxi-

mation errors should be characterized, and explicitly considered in the stability analysis as highlighted in [7].

• For a given nonlinear system, how to obtain its “best” PMA model in terms of facilitating both accurate modeling and

effective stability/performance analysis, and reducing the numerical complexity (namely the number of piecewise regions)?

The results in [104] may bring some interesting ideas to this open issue.

A part from the above open issues, many other challenges and perspectives concerning fuzzy control systems have been raised

in numerous publications, for instance [10], [11], [22], [23] and references therein. To conclude the paper, we strongly believe

that PMA model-based approaches could provide a promising future for fuzzy control, which would have great impacts on

the control community. From the theoretical viewpoint, they allow overcoming the conservativeness issue of T-S fuzzy model-

based approaches [7], [16]. From the application viewpoint, a systematic LUT-based control approach is of special interest for

real-time applications [5]. Therefore, PMA based approaches could provide a viable answer to the issue: “Only straightforward

in theory plus straightforward in practice are great solutions to change a discipline”, recently raised in [11].
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