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This paper presents a speed and position estimation method for the permanent magnet synchronous motor (PMSM) based on
higher-order sliding mode (HOSM) observer. The back electromotive forces (EMFs) in the PMSM are treated as unknown inputs
and are estimated with the HOSM observer without the need of low-pass filter and phase compensation modules. With the
estimation of back EMFs, an accurate estimation of speed and rotor position can be obtained. Further, the proposed method
completely eliminates chattering. Experimental results with a 26W three-phase PMSM demonstrate the effectiveness of the
proposed method.

1. Introduction

The permanent magnet synchronous motor (PMSM) has
high efficiency, high torque to inertia ratio, and high power
density, and hence it is popular for high performance motion
control applications. Rotor speed estimation in a sensorless
PMSM has been extensively studied [1–3] and is mandatory
if speed control, that is, speed as a feedback, is employed.
Field oriented control has received a lot of attention [3] in
controlling the high performance PMSM drives. The objec-
tive is to control the stator currents represented by a vector to
obtain the torque. Sensorless field oriented control of PMSM
requires knowledge of the rotor position. Normally, the rotor
position can be measured with an encoder or hall sensors.
When the rotor position is available, it is straightforward to
calculate the speed of the PMSMby simply differentiating the
rotor position [4].

The presence of encoder can increase the hardware com-
plexity, size, and cost and reduce the reliability of the drive.
Also, the encoder is sensitive to environmental constraints
such as vibration and temperature [5]. Its performance
degrades under uncertain conditions and may not work
well at high speeds. Hence, several works have focused on

replacing the hardware sensor with the software sensor that
is based on the available system measurements (voltages and
currents) to estimate the rotor position and speed [2, 3].

Several methods are available for rotor position and/or
speed estimation in a sensorless PMSM drive [2, 6]. The
main concerns regarding speed estimation are related to
accuracy, magnitude and frequency of measured electrical
quantities (applied voltages and currents), dependence on
motor parameters, and dynamic behavior. An extended
Kalman filter method and the Luenberger observer based
methods are also available to construct full-order estimators
based on the machine model [7].

Sliding mode principle has been popular for estimation
and control in the presence of uncertainties [3, 8]. Recently,
sliding mode observers (SMOs) have been successful in
the estimation of unknown inputs or faults [9, 10]. Several
first-order sliding mode observers have been applied for
sensorless estimation and control of industrial drives [11–
14]. Many of the existing speed estimation techniques require
low-pass filtering and an additional position compensation
for the rotor [15, 16] for instance. A survey was recently
conducted in [17] for the implementation of the sliding mode
control. In [16], the cross-coupling terms of the 𝑑 − 𝑞 current
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dynamics are treated as unknown disturbances. Decoupling
terms with improper parameters can slightly degrade the
system’s performance. Integral sliding mode (ISM) controller
with a switching output was developed [18] to overcome these
disturbances. As a result, ISM can guarantee the robustness of
the system starting from the initial time instance. However,
the speed estimation based on ISM current control requires
an additional low-pass filter, which introduces the delay,
and which in turn reduces the system’s phase margin and
can cause instability. In [19], a high-speed SM observer is
proposed for sensorless speed estimation in a PMSM. The
selection of the boundary layer and the sliding mode gain
depends on the speed, and the method is more suitable for
constant speed applications. To further overcome the phase-
distortion, a modified SMO based is designed [12]. This
method employs a two-stage estimation process for rotor
position estimation. Both the works [12, 19] employ a sigmoid
function instead of the switching function in order to avoid
chattering phenomenon.

Higher-order SMO’s have been developed to overcome
the disadvantages of first-order SMO [20–22]. The super-
twisting algorithm (STA) (see [23]) provides finite time
and exact convergence, even in the presence of bounded
perturbations. To analyze the robustness of the STA for a
wider class of disturbances, strict Lyapunov functions are
developed in [20]. This Lyapunov function makes some
additionalmodifications of the STAby including termswhich
improves its robustness and convergence properties [20].
Also, it can reduce the well-known chattering phenomenon.
TheHOSMobserver designs in [24, 25] rely on STA for finite-
time convergence. In the above methods, the performance
was only verified through simulations in the absence of noise
and experimental validation was not performed.

In [20], the STA is able to converge in finite time and
tolerate perturbations that have a strong influence near the
origin. In the eventuality of a linearly growing perturbation,
the convergence of STA fails. In other words, it can be said
that the STA is unable to endure globally a linearly growing
perturbation. To compensate for this problem, a modified
STA is proposed. The observer gain is tuned to withstand
persistently exciting perturbation terms. It is directly respon-
sible for handling the linear perturbation which is bounded
by a value that depends on the computed derivative of
the sliding surface. A comparative analysis of the proposed
algorithm with classical STA shows a much better reduction
in estimation error, with reduced chattering effect and faster
response. Based on the above arguments, it can be concluded
that the proposed modified STA offers better performance in
comparison to the classical STA in the scenario when linearly
growing perturbations are considered.

The main contribution of this paper lies in application
of a modified version of STA to design a HOSM observer.
The performance of the proposed design is validated through
experiments on a PMSM. The motivation of this work is
to provide the HOSM observer with the properties of finite
time convergence and low chattering effect compared to the
classical equivalent control obtained with a traditional first-
order SMO that requires a low-pass filter [3]. The observer
enables the estimation of the rotor position and speed of

the PMSM in real time while reducing the well-known
chattering phenomenon. For example, in [15], cascaded SMO
is proposed for the estimation of back EMFs and rotor speed.
The method requires cascaded first-order SM observers
and uses low-pass filtering for the unknown back EMFs
estimation. The requirement of low-pass filtering results in
a delay in the back EMFs estimation and the corresponding
speed estimation has high chattering phenomenon. In the
HOSM scheme, the unknown back EMFs are estimated using
the slidingmode termsdesigned by the slidingmode observer
from current dynamics of the PMSM. With the back EMFs
accurately estimated, the rotor position and speed can be
obtained algebraically. The proposed technique does not
require any low-pass filtering and hence has no delay in the
estimation.

𝜆max(𝐴) denotes the maximum eigenvalue of a matrix
𝐴; ‖𝐴‖ denotes the 2-norm √𝜆max(𝐴

𝑇𝐴) of 𝐴. 𝜆min(𝐴)

represents its minimum singular value.

2. PMSM Modeling and Problem Statement

The model of the PMSM, in the stationary reference frame,
can be described by the following system [6]:
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The back EMF equations involve the dynamics of speed and
position. The voltages 𝑉

𝛼
and 𝑉

𝛽
and currents 𝑖

𝛼
and 𝑖
𝛽
are

the known quantities. The objective is to design an observer
to estimate the back electromotive forces (EMFs) from (1)
using the available measurements. Accurate estimation of
back EMF will result in accurate estimation of speed and
position.

3. High Order Sliding Mode Observer

Let us note that the extra terms (𝑒
𝛼
, 𝑒
𝛽
) of the plant dynamics

in (1) act like unknown inputs. The idea is to use higher-
order sliding modes on both 𝛼 and 𝛽 axes to estimate these
unknown inputs.

Applying the same design principles as for variable
structure control, the observer trajectories are constrained to
evolve after a finite time on a suitable slidingmanifold.Hence,
the sliding motion provides an estimate (asymptotically or in
finite time) of the system states. In the following, a HOSM
observer will be designed to estimate the unknown inputs.
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For the implementation of the sliding mode observer, the
following sliding surfaces are selected:

𝑠
𝛼 (𝑡) = 𝑖̂

𝛼
− 𝑖
𝛼
,

𝑠
𝛽 (𝑡) = 𝑖̂

𝛽
− 𝑖
𝛽
,

(4)

where 𝑖̂
𝛼
and 𝑖̂
𝛽
are estimated currents and 𝑖

𝛼
and 𝑖
𝛽
are actual

currents.
With the PMSMmodel defined in (1), the observer can be

designed as follows:
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(5)

The sliding mode terms are given by
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1
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2
,𝐾
3
, and𝐾

4
are appropriately designed positive

constants. Similarly, the functions 𝜙
1
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𝛽
(𝑡)) and 𝜙

2
(𝑠
𝛽
(𝑡)) can

be obtained by replacing 𝑠
𝛼
(𝑡) with 𝑠

𝛽
(𝑡) in (7).

3.1. Sliding Mode Stability. To prove the stability of the
observer system, the time derivatives of the sliding surfaces
are obtained from (1) and (5) as
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From (2) and (3), we can establish the boundedness of
back EMFs. At least locally, there are positive constants 𝜌

1
and

𝜌
2
such that the following terms are bounded as follows:
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for some positive constants 𝜌
1
and 𝜌

2
. The above condition

(9) is not restrictive since 𝜔
𝑠
, 𝑇
𝑙
, and 𝑒

𝛼
and 𝑒
𝛽
, 𝑖
𝛼
, and 𝑖
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continuous on a compact set.

Theorem 1. With the condition (9), the sliding dynamics 𝑠
𝛼

and 𝑠
𝛽
are stabilized towards zero in finite time.

Proof. See Proposition A.3 in the appendix.

Table 1: Motor parameters.

Parameters Values
Rating 26 [W]

Speed 𝜔 4000 [r/min]
Stator resistance 𝑅 2.4 [Ω]

Stator inductance 𝐿 0.65 [mH]

Back EMF constant 𝐾
𝐸

0.156 [Vs/rad]
Inertia 𝐽 0.004 × 10

−4
[Kg⋅m2

]

Viscous friction 𝑓V 0.004 × 10
−4

[Nm⋅s/rad]
Rotor flux 𝜙

𝑚
0.025

Number of pole pairs 𝑃 4

3.2. Speed and Rotor Position Estimation. According to
Theorem 1, the origin of system (8) has a finite time stable
equilibrium. In the sliding mode, we have 𝑠

𝛼
= ̇𝑠
𝛼
= 0 and

𝑠
𝛽

= ̇𝑠
𝛽

= 0. The reduced order dynamics of system (8)
becomes
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∫
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Hence a smooth estimation of the unknown back EMFs
can be obtained in finite time as follows:
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𝛼
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∫
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Using the estimated back EMF voltages, the position of
the rotor can be calculated as

𝜃
𝑠
= −tan−1 (

𝑒
𝛼

𝑒
𝛽

) . (12)

Also, with estimated back EMFs, using (2), the speed can
be computed algebraically as

𝜔̂
𝑠
=

1

𝐾
𝐸

√𝑒2
𝛼
+ 𝑒2
𝛽
. (13)

The speed estimation only uses the EMF constant𝐾
𝐸
and

the estimated back EMFs 𝑒
𝛼
and 𝑒

𝛽
. The proposed HOSM

observer provides the properties of finite time convergence
and low chattering effect compared to the classical equivalent
control obtained using a low-pass filter [15].

4. Experimental Results

Experiments are performed with the three-phase 26W
PMSM. The specifications and parameters are provided in
Table 1. The motor used in the experimental setup is a
TBL-𝑖model TS4632N2050E510 3-phase PMSM.The PMSM
is powered by a Fairchild FSB50325S smart power module
which includes 6 fast-recovery MOSFET (FRFET) inverters
and 3 half-bridge high voltage integrated circuits (HVICs)
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TMS320F2833335
CAN

SCI
Power module

JTAG emulator

PMSM

Encoder

 DC link

Figure 1: Experimental setup.

for FRFET gate driving. Since it employs FRFET as a power
switch, it has much better robustness and larger safe opera-
tion areas (SOA) than that using an IGBT-based power mod-
ule or one-chip solution. The experimental setup is shown
in Figure 1. The space vector modulation (SVM) algorithm
is used as modulation strategy and switching frequency of
the PWM inverter is 15 kHz. SMC 75 evaluation module
with TMS320F28335 DSP controller is used. It contains Texas
Instruments 32-bit floating point DSP as well as analog
interfaces and JTAG emulator port.The board has analog-to-
digital converter (A/D) with 16 channels. All the control vari-
ables are monitored using graph window of Code Composer
Studio (CCS v3.3) after being converted to analog signals
through the digital-to-analog (D/A) converter. Real motor
speed (𝜔

𝑠
) is measured using a high-resolution incremental

encoder with 2000 pulses/rotation and the estimated speed
(𝜔̂
𝑠
) is obtained with the proposed HOSM scheme.The stator

currents of the PMSM aremeasured from the current sensors
and they are sent to TMS320F28335 viaA/D converters. In the
same way, stator voltages are calculated using dc-bus voltage
sensors and duty cycles of the inverter when the switching
functions are known.

Three-phase currents and voltages are transformed to
two-phase stationary (𝛼 − 𝛽) reference frame. They are again
transformed to rotating (𝑑−𝑞) reference frame for the control.
PI (proportional and integral) controllers are used to regulate
the 𝑑, 𝑞 synchronous frame currents 𝑖

𝑞
and 𝑖
𝑑
. A functional

block diagram for the overall scheme is depicted in Figure 2.
The PMSM drive is operated in speed control mode. The
speed is also regulated using a PI controller to generate the
reference current 𝑖ref

𝑞
in the 𝑞-axis. The reference current in

the 𝑑-axis 𝑖ref
𝑑

is set to 0. For the implementation of HOSM
observer, the sliding mode gains are selected as follows:𝐾

1
=

0.7, 𝐾
2
= 60, 𝐾

3
= 35, and 𝐾

4
= 4.5. The initial conditions

for the estimator are chosen as 𝑥(0) = [0 0 0 0].
Several experiments have been performed to validate

the proposed HOSM scheme. In the first part, we present
the results performance of the proposed method under no-
load conditions for ramp change and step change and in the
later part, similar experiments are conducted under loading

PMSM

Clarke

Position

HOSM

observer

𝜃̂S

𝜔̂S

Speed

Park
𝛼𝛽

𝛼𝛽

𝛼𝛽PI PI

PI
V𝛼

id i𝛼
dq

dq

abc

iq

+

+

+ −

−

−

ia

ib

V𝛽

i𝛽

iref
d

iref
q𝜔ref

Park−1

SVM
3-phase

inverter

Figure 2: Functional block diagram for the overall scheme.

condition. For comparison, the results obtained with first-
order sliding mode observer are also presented.

4.1. Under No-Load Condition. In the first experiment, a
constant speed reference 2000 rpm is provided for the first
0.3 s; a ramp input for the next 0.4 s followed by a constant
speed of 3500 rpm as shown in Figure 3(b) is employed. The
real currents of the PMSM for the first experiment are shown
in Figure 3(a). The encoder speed and position are provided
in Figures 3(b) and 3(c). The actual speed (𝜔

𝑠
) exactly

follows the reference speed considered above. Presence of
measurement noise can be clearly observed in (𝑖

𝛼,𝛽
) and

(𝜔
𝑠
, 𝜃
𝑠
). With the proposed observer, the estimated currents

and estimation error are shown in Figures 4(a) and 4(b). Real
and estimated currents are very similar in both magnitude
and phase using the proposed method. Figure 4(c) depicts
the estimated back EMFs obtained using (11). Despite the
noisy currents, the back EMFs are relatively smooth, which
conforms the theoretical claim of the proposed approach.
The estimated speed computed analytically from back EMFs
with (13) is shown in Figure 4(d), which exactly tracks actual
speed (𝜔

𝑠
) and is shown for the comparison.The convergence

accuracy depends on the accurate estimation of the back EMF
components and the back EMF constant 𝐾

𝐸
. The HOSM

scheme enables a good reconstruction of the PMSM speed.
Figures 4(e) and 4(f) show the estimated rotor position and
estimation error. The estimated rotor position is robust with
respect to noise measurements and exactly matches with
the actual rotor position without any phase delay. So, the
estimated rotor position can be used instead of the measured
one in the vector control of PMSM drive. In usual practice,
the values of 𝑅 and 𝐿 are not accurately known. To test
the robustness, the parameters (𝑅 and 𝐿) values are varied
by ±10% and several experiments are conducted. Similar
performancewas obtained in comparison to results presented
in Figure 4.

For comparison, the results obtained with conventional
sliding mode observer [3] are shown in Figure 5. The sliding
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Figure 3: (a) Actual currents. (b) Actual speed. (c) Actual rotor position.

mode gain is set to 50 for the observer design. The presence
of noise in the estimated currents (Figure 5(a)) highly affects
the estimation of back EMFs as shown in Figure 5(c). The
estimated back EMFs which correspond to the equivalent
controls are obtained by filtering the switching functions of
the observer with a 40Hz low-pass filter. A proper boundary
layer is required to overcome the chattering phenomenon.
The speed and position estimate in Figures 5(d)–5(f) expose
the problems with the conventional sliding mode observer
for back EMF estimation. Also, the estimated speed has
more noise compared to the speed estimate with the HOSM
observer shown in Figure 4(d). The rotor position error in
Figure 5(f) compared to Figure 4(f) clearly highlights the
accuracy obtained with proposed method. Low-pass filtering
clearly affects the estimation accuracy.The parameters for the
first-order sliding mode are well-tuned to achieve the best
possible results. Errors are mainly due to filtering and the use
of sigmoid function to avoid the chattering phenomenon.

In the second experiment, a step change in speed is
provided as reference. In this experiment, the speed estimate
and position estimation error obtained with the proposed
HOSM scheme for the step reference are shown in Figure 6.
Figure 6(a) shows the estimated and actual speeds obtained
using the proposed HOSM observer and Figure 6(b) shows
the estimation error between the estimated and actual rotor
positions. It can be seen from Figure 6(b) that the estimation
has no delay with the proposed approach. For compari-
son, the results obtained with conventional first-order SMO
are shown in Figure 7. Figure 7(a) shows the estimated
and actual speeds obtained using the first-order SMO and
Figure 7(b) shows the estimation error between the estimated
and actual rotor positions. Although, the estimated speed
follows the actual speed, it contains more noise compared to

the proposedHOSMobserver.These results further highlight
the robustness of the proposed method in the presence
of noise. Further the chattering phenomenon is completely
eliminated and accurate position estimation can be obtained
even in the presence of measurement noise.

4.2. Under Loading Condition. To test the performance of the
proposed method, a mechanical load 𝐽

𝐿
= 0.07436 kg ⋅ cm2 is

connected to the motor. Same set of parameters considered
for no-load are employed for loading condition to test the
robustness of the observer to parametric variations. The
results obtained with HOSM observer for a ramp change
are shown in Figure 8. Figures 8(a) and 8(b) show the esti-
mated currents and their errors obtained using the proposed
HOSM observer. It can be observed from Figure 8(b) that
the estimated and actual currents exactly match each other.
Figure 8(c) shows the estimated unknown back EMFs which
are relatively smooth. The corresponding estimated speed
calculated using (13) and the actual speed are depicted in
Figure 8(d). The estimated rotor position and the estimation
error are shown in Figures 8(e) and 8(f). For comparison the
estimated and actual speeds obtained with first-order SMO
are shown in Figure 9(a) and the corresponding position esti-
mation error is shown in Figure 9(b). In the final experiment
under loading condition, step-like input reference is provided
for the system; the results obtained with proposed method
and first-order SMO are shown in Figure 10 and Figure 11,
respectively. Figures 10(a) and 10(b) show the estimated,
actual speeds and position estimation error obtained with
the proposed HOSM observer, while Figures 11(a) and 11(b)
show the estimated, actual speeds and position estimation
error obtained with the first-order SMO. Under loading, the
noise level is higher and the position estimation error slightly
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Figure 4: Estimation using higher-order sliding mode observer under no-load. (a) Estimated currents. (b) Estimation current error. (c)
Estimated back EMFs. (d) Estimated speed. (e) Estimated rotor position. (f) Estimation rotor position error.

increases.However, the speed andposition estimation remain
robust with the proposed observer when compared to first-
order SMO. Due to parametric uncertainty, the speed estima-
tion with proposedHOSMmethod shows a very small steady
state error at 90% of the rated speed (Figures 8(d) and 10(a)).
Under loading, the speed and position estimation with first-
order SMOare highly affected. Further tuning of the observer
parameters can overcome the problem.

From the implementation, one can conclude the follow-
ing.

(1) The HOSM method requires the proper selection of
sliding mode gains 𝐾

1
, 𝐾
2
, 𝐾
3
, and 𝐾

4
. The sliding

mode gains should satisfy the conditions given by
(A.15)-(A.16) for the desired speed range. If themotor
operates in wide speed range, the sliding mode gains
must be appropriately selected.

(2) Since the quality of the speed estimate highly depends
on the estimated back EMFs, it deteriorates when

more noisy back EMFs (obtained due to high gains)
are used in the calculation. Compared to existing
methods, the proposed scheme provides good rotor
speed and position estimation without phase delay in
the presence of noise. Further, one should note that
sensorless speed estimation methods based on back
EMFs fail at very low speeds and standstill.

(3) It should be pointed out that a chattering phe-
nomenon occurs using the conventional SM observer
[15].Therefore, in first-order SMobserver, the signum
function is used as switching function. The speed
estimate is approximated by low-pass filtering the
discontinuous switching functions. This delay should
be compensated with an additional phase compensa-
tion loop. As low-pass filtering is eliminated with the
proposed method, an additional phase compensation
loop is not required.
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î 𝛼
−
i 𝛼

,î
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Figure 5: Estimation using conventional first-order sliding mode observer under no-load. (a) Estimated currents. (b) Estimation current
error. (c) Estimated back EMFs. (d) Estimated speed. (e) Estimated rotor position. (f) Estimation rotor position error.
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Figure 7: With conventional first-order SMO under no-load: (a) Estimated speed. (b) Rotor position estimation error.
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Figure 8: With proposed HOSM method under load: (a) Estimated currents. (b) Estimation current errors. (c) Estimated back EMFs. (d)
Estimated speed. (e) Estimated rotor position. (f) Rotor position error.
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Figure 9: With conventional first-order SMO under load: (a) Estimated speed. (b) Rotor position estimation error.
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Figure 10: With proposed HOSMmethod under load. (a) Estimated speed. (b) Rotor position estimation error.

(4) Furthermore, compared to the classical first-order
SM technique, no cutoff frequency has to be tuned.
Instead, a simple integration is realized. It enables
to reduce the time delay for the estimation (which
depends on the sampling period). One should also
highlight that the discontinuous part of 𝜙

2
(depend-

ing on𝐾
4
) is usually low compared to the continuous

part of 𝜙
2
and this enables to reduce the chattering

phenomenon.
(5) Moreover, from the experiments, the proposed

method is robust to the parameter variations and the
measurement noise compared to the traditional SM
observer.

(6) It is worth to point out that the proposed method is
computationally complex compared to the traditional
SM observer. However, if properly tuned, it has more
advantages than the traditional SM observer. The
experiments conducted in this paper validate the
advantages of this method.

(7) For the same set of parameters, the speed and position
estimation remained accurate for both no-loading
and loading conditions. This further highlights the
robustness of the proposedmethod to parameter vari-
ations that occur with loading and other conditions.

5. Conclusion

This paper has presented a sensorless speed estimation
method for the PMSM drive.The HOSMmethod is based on
a modified version of super-twisting algorithm.The observer
dynamics consist of sliding mode terms which are used to
reconstruct the unknown back EMFs. The speed is then
analytically computed from back EMFs. Experimental results
validate the feasibility and effectiveness of the proposed
HOSM for estimating the rotor position and speed of the
PMSM. Compared with the traditional SMO, the proposed
higher-order SMO provides better estimation performance.

Appendix

Finite-Time Stability

For any vector 𝑧 = [𝑧
1
, . . . , 𝑧

𝑞
]
𝑇
∈ 𝑅
𝑞 and any scalar 𝛼 ∈ 𝑅,

we denote the following:

sign (𝑧) = [sign (𝑧
1
) , . . . , sign (𝑧

𝑞
)]
𝑇

,

|𝑧|
𝛼
= diag (󵄨󵄨󵄨󵄨𝑧1

󵄨󵄨󵄨󵄨
𝛼
, . . . ,

󵄨󵄨󵄨󵄨󵄨
𝑧
𝑞

󵄨󵄨󵄨󵄨󵄨

𝛼

) ,

⌈𝑧⌋
𝛼
= |𝑧|
𝛼 sign (𝑧) .

(A.1)
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Figure 11: With conventional first-order SMO under load. (a) Estimated speed. (b) Rotor position estimation error.

For ease of exposition, consider the following system:

̇𝑠 (𝑡) = − 𝑎𝑠 (𝑡) + ] (𝑡) + 𝑒 (𝑠, 𝑡)

𝑠 (𝑡
0
) = 𝑠
0
,

(A.2)

where 𝑠 ∈ R and 𝑎 is a known positive constant and 𝑒(𝑠, 𝑡) is
the unknown input/perturbation and

] (𝑡) = −𝐾
1
𝜙
1 (𝑠 (𝑡)) − 𝐾

2
∫

𝑡

0

𝜙
2 (𝑠 (𝑡)) 𝑑𝑡, (A.3)

where 𝜙
1
(𝑠(𝑡)) and 𝜙

2
(𝑠(𝑡)) are defined in (7) and𝐾

1
,𝐾
2
,𝐾
3
,

and𝐾
4
are appropriately designed positive constants.

Assumption A.1. The time derivative of the unknown
input/perturbation is upper bounded as follows:

| ̇𝑒 (𝑠, 𝑡)| ≤ 𝜌 (A.4)

for a positive constant 𝜌.

Remark A.2. The sliding dynamics 𝑠
𝛼
or 𝑠
𝛽
in (8) can be

directly expressed in the form of (A.2). Further, the condition
(9) is similar to Assumption A.1.

Proposition A.3. Under Assumption A.1, the origin of sys-
tem (A.2) is a finite time stable equilibrium point. Fur-
ther, the finite-time smooth estimation of the unknown
input/perturbation 𝑒(𝑠, 𝑡) is given by 𝐾

2
∫
𝑡

0
𝜙
2
(𝑠(𝑡))𝑑𝑡.

Proof. Proof follows the work given in [20]. Since |𝜙
2
(𝑠)| ≥

𝐾
2

4
/2, one gets:

| ̇𝑒 (𝑠, 𝑡)| ≤
󵄨󵄨󵄨󵄨𝜙2 (𝑠)

󵄨󵄨󵄨󵄨 (A.5)

if

𝐾
4
≥ √2𝜌. (A.6)

Let us select a Hurwitz matrix 𝐴
0
:

𝐴
0
= [

− (𝐾
1
+ 𝑎) 1

−𝐾
2

0
] , (A.7)

where𝐾
1
> 0 and𝐾

2
> 0.

The system (A.2), (A.3) can be equivalently represented
by the system of two first-order equations:

̇𝑠
1
= 𝑠
2
− (𝐾
1
+ 𝑎) (𝑠

1
+ 𝐾
4
⌈ 𝑠
1
⌋
1/2

) ,

̇𝑠
2
= − 𝐾

2
(𝑠
1
+
𝐾
2

4

2
sign (𝑠

1
) +

3

2
𝐾
4
⌈ 𝑠
1
⌋
1/2

) + ̇𝑒

(A.8)

with 𝑠
1
= 𝑠, 𝑠

2
= 𝑒 − 𝐾

2
∫
𝑡

0
𝜙
2
(𝑠
1
) 𝑑𝑡 and

𝐾
4
=

𝐾
1
𝐾
3

𝐾
1
+ 𝑎

. (A.9)

The solutions of the discontinuous differential equations and
inclusions are understood in the sense of Filippov.

Let us consider the new state vector:

𝜉 = [
𝜉
1

𝜉
2

] = [
𝑠
1
+ 𝐾
4
⌈ 𝑠
1
⌋
1/2

𝑠
2

] . (A.10)

The stability analysis of system (A.8) is performed using
the following candidate Lyapunov function [20]:

𝑉 (𝜉) = 𝜉
𝑇
𝑃𝜉 (A.11)

with 𝑃 = 𝑃
𝑇

= [ 𝜆+4𝜖
2
−2𝜖

−2𝜖 1
] , 𝜆 > 0 and 𝜖 > 0. It is worth

noting that the matrix 𝑃 is positive definite if 𝜆 and 𝜖 are any
real number.

Using the differential equations inclusion theory, its time
derivative along the solutions of the system is given by

𝑉̇ = (1 +
𝐾
4

2

󵄨󵄨󵄨󵄨𝑠1
󵄨󵄨󵄨󵄨
−1/2

) 𝜉
𝑇
(𝐴
𝑇

0
𝑃 + 𝑃𝐴

0
) 𝜉 + 2𝜉

𝑇
𝑃[

0

̇𝑒
] .

(A.12)
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It can be shown that

𝑉̇ ≤ (1 +
𝐾
4

2

󵄨󵄨󵄨󵄨𝑠1
󵄨󵄨󵄨󵄨
−1/2

)(𝜉
𝑇
(𝐴
𝑇

0
𝑃 + 𝑃𝐴

0
) 𝜉 + 2𝜉

𝑇
𝑃[

0

𝜉
1

])

≤ −(1 +
𝐾
4

2

󵄨󵄨󵄨󵄨𝑠1
󵄨󵄨󵄨󵄨
−1/2

) 𝜉
𝑇
𝑄𝜉

≤ −(1 +
𝐾
4

2

󵄨󵄨󵄨󵄨𝑠1
󵄨󵄨󵄨󵄨
−1/2

) 𝜆min (𝑄)
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

(A.13)
with

𝑄 = [
𝑄
1
𝑄
2

𝑄
2
𝑄
3

] ,

𝑄
1
= 2 (𝐾

1
+ 𝑎) (𝜆 + 4𝜖

2
) − 4𝜖 (𝐾

2
− 1) ,

𝑄
2
= − 2𝜖 (𝐾

1
+ 𝑎) + (𝐾

2
+ 1) − (𝜆 + 4𝜖

2
) ,

𝑄
3
= 4𝜖.

(A.14)

In order to guarantee the positive definiteness of matrix 𝑄,
one chooses

𝐾
2
= 𝜆 + 4𝜖

2
+ 2𝜖 (𝐾

1
+ 𝑎) . (A.15)

The matrix 𝑄 is positive definite if

𝐾
1
> −𝑎 +

4𝜖 + 2𝜖𝜆 + 8𝜖
3

𝜆
+

1

4𝜖𝜆
. (A.16)

From (A.10), one can deduce that
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2
= 𝜉
2

1
+ 𝜉
2

2

= 𝑠
2

1
+ 2𝐾
4

󵄨󵄨󵄨󵄨𝑠1
󵄨󵄨󵄨󵄨
3/2

+ 𝐾
2

4

󵄨󵄨󵄨󵄨𝑠1
󵄨󵄨󵄨󵄨 + 𝜉
2

2

≥ 𝐾
2

4

󵄨󵄨󵄨󵄨𝑠1
󵄨󵄨󵄨󵄨 .

(A.17)

Since𝐾
4
> 0

−
𝐾
4

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

≥ −
󵄨󵄨󵄨󵄨𝑠1

󵄨󵄨󵄨󵄨
−1/2

. (A.18)

It implies that

𝑉̇ ≤ −
𝜆min (𝑄)

𝜆
1/2

max (𝑃)

𝐾
2

4

2
𝑉
1/2

−
𝜆min (𝑄)

𝜆max (𝑃)
𝑉. (A.19)

The closed-loop system (A.8) is stabilized in finite time.
Since ‖𝜉‖ converges to zero in finite time, 𝑠

1
and 𝑠
2
converge

to 0. Therefore, the term𝐾
2
∫
𝑡

0
𝜙
2
(𝑠(𝑡))𝑑𝑡 gives in finite time a

smooth estimation of the unknown perturbation 𝑒(𝑠, 𝑡).

Nomenclature

𝜔
𝑠
: Rotor electrical speed

𝑖
𝛼
, 𝑖
𝛽
: Currents in stationary reference frame

𝑉
𝛼
, 𝑉
𝛽
: Voltages in stationary reference frame

𝑒
𝛼
, 𝑒
𝛽
: EMFs in stationary reference frame

𝑅: Stator resistance
𝐿: Synchronous inductance
𝐾
𝐸
: EMF constant

𝜃
𝑠
: Rotor position angle

𝑇
𝑙
: Load torque.
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