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Abstract—A novel adaptive backstepping sliding mode
control (ABSMC) law with fuzzy monitoring strategy is proposed
for the tracking control of a cart-pendulum system. The proposed
ABSMC scheme combining the sliding mode control and the
backstepping technique, ensure that the occurrence of the sliding
motion in finite time and the trajectory of the tracking error
converge to equilibrium point. Furthermore, we introduce fuzzy
monitoring strategy to approximate the unknown nonlinear
functions of the system model and moreover to approximate the
switching control term of the sliding control in order to resolve
the chattering problem. Theconvergenceand stability of the
proposed control scheme are proved using Lyapunov’s method.
Finally many simulation results for the cart-Pendulum system
are given to illustrate the good tracking performances.

Keywords—Backstepping; Sliding mode control; Nonlinear
uncertain system; Fuzzy adaptive control; Lyapunov stability

I. INTRODUCTION

Controller for nonlinear systems, are widely used and
implemented in the industry, in order to improve their
performances, however there exist external disturbance,
parameter variations, and system uncertainty in harsh
environment, which consequently degrade the performance of
the control system.Various nonlinear control methods have
been proposed for solving this problem, including sliding
mode control (SMC), backstepping control, intelligent control
[5], etc. In the SMC control methodology, the controller
switches between two structures to bring the system states to a
previously defined sliding manifold [12]. In the design process
of the controller, a Lyapunov function is defined which is used
to derive the stability of the system. Also the SMC can
provide faster dynamics; it has been widely used for
controlling uncertain nonlinear systems due to its robustness
and simplicity. However, only the matched uncertainty and
disturbance can be rejected by the sliding mode controller. For
mismatched uncertainty, the controller can be effective only
under certain conditions or by combination with other
methods, but generally it fails. Also, there is no methodical
way of defining the Lyapunov function for the SMC. The
backstepping approach is a nonlinear technique widely used in
control design. The multiple advantages of this approach
include its large set of globally and asymptotically stabilizing
control laws and its capability to improve robustness and solve
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adaptive problems. This method uses a recursive procedure to
link a selected Lyapunov function with a controller design and
can suppress and synchronize nonlinear systems [9]. The
scheme in this paper allows the controlled system to be robust
to external disturbances and incorporating backstepping
design processes to allow the designer to easily and
systematically implement the controller. In order to utilize the
benefits offered by both the sliding mode and the backstepping
controller, these two have been combined to develop
backstepping sliding mode controller [12] which will be
robust to matched and mismatched uncertainties.The most
control techniques of nonlinear system are based on the
precise knowledge of the mathematical model, this latter is not
often possible, because we can be confronted with
inaccuracies due to uncertainties related to the studied
processor to neglected dynamics.To maintain the same
performances in the presence of major structural variations,
the use of the fuzzy adaptive control is necessary. As in
classical adaptive control, we can distinguish two cases: direct
and indirect.In this paper, we propose a novel adaptive
backstepping sliding mode control with fuzzy approximation
strategy for the tracking control of unknown nonlinear system
“Inverted Pendulum”. First, an appropriate sliding mode
surface is constructed, and it provides sufficient flexibility to
shape the response of position tracking error, then the ABSMC
scheme is proposed. To obtain a better perturbation rejection
property, adaptive law is employed to compensate lumped
perturbations. Thus it relaxes the requirement of the bound of
lumped perturbation. The unknown functions of the nonlinear
system are approximated by fuzzy systems, basing on the
universal approximation theorem, where the parameters of
fuzzy systems are adjusted using adaptation laws, based on the
Lyapunov synthesis in order to ensure the global stability of the
system and the convergence to zero of the tracking error. To
solve the problem of chattering, which is a major disadvantage
of the sliding mode technique; we approximate the
discontinuous control by an adaptive fuzzy system.

Our contribution consist to do the combination of the
techniques cited above, where we have chosen the sliding
surfaces as the backstepping variables, this contribution based
on the fuzzy approximation of the unknown system dynamics
and also the switching control in order to minimize the
chattering effect.



This paper is organized as follows: Section II gives a
problem formulation of a Cart-Pendulum dynamics. In the
section III, we present the synthesis of the proposed FABSM
control, at the last part; the performances of the proposed
method are shown using numerical simulation. Finally Section
IV concludes this paper.

II. PROBLEME FORMULATION

A. Presentattion of the system dynamics

The Cart-Pendulum is a nonlinear system with two degree
of freedom, is a basic model for the stability study of nonlinear
systems. Fig.1 shows the Cart-Pendulum system whose
dynamic model is presented as follows:[19]

(m, + m)¥ + mlé cos 8 —mlO?sind = F
¢ (D

¥cos@ + 16 — gsinf = 0

Where: 6,60 and 6 represent the position, velocity and
acceleration of the pendulum. x, x and Xrepresent the position,
velocity and acceleration of the cart. F is the force acting on the
cart. m and m.are the masses respectively of the pendulum
and the cart. gis the gravity. lis the half of length of the
pendulum.

In order to simplify the state space model, we take as input the
angular acceleration of the pendulum (rather than the force).

fl=r,

Fig. 1. The inverted pendulum system

The state space model of the Cart-Pendulum is given as
follows:

{5(1 = Xy )
%, = F(0) + g+ d(®) )
y(O) =, 3)

Where: u and y are respectively, the input and the output of the
system.f (x)andg(x) are nonlinear unknown continuous
smooth functions, such that:

mlx%cos(xl)sin(xl) cos(x1)

gsin(xq)-

_ me+m _ me+m
f(X) - 4 mcos?(xq) > g(X) 4 mcos?(xq)
G- m_c+m ) G- m_c+m )

d(t)is the unknown bounded external disturbance. We assume
just the upper limit of the perturbation, as |d(t)| < D.

The state space variables are the position and the velocity of
the pendulum [x;x,] = [0 6] and the output is y(t).

We assume that the system is always controllable, so g~*(x)
exists and does not equal to zero.

The control objective,of this paper is to design a fuzzy adaptive
backstepping sliding mode controller, such that the system

output y(t) follows the reference signal x;(t), under the
constraint that all signal, must be bounded and the system be
stable.

B. Fuzzy approximation
In this paper we construct the fuzzy logic system, with the
following If-Then rules:

R;:If x, is Fland ...andx, is F! theny is B}, i=1.2,..,n

The fuzzy logic system with the singleton fuzzifier, product
inference and center average defuzzifier, are expressed in the
Sita 0T i ()

j

following form: ¥ (x) =
Dl H}Llu,,g,(xj)

Where x = [xq, ..., x,]T € R™, u.i(x;) isthe membership of F}i,
]

i1 0i =g i ()

6, = maxy eq 1y (), let:f, (x) = ———L—

S [T

§(x) = [£1(6), &2 (%), ..., En(x)]"andO = 64,65, ..., 0,]"

Then the fuzzy logic system can be rewritten as follows:

P(x) =07 (x)

The following Lemmal, points out that the above fuzzy logic
systems are capable to uniformly approximating any
continuous nonlinear function, over a compact set(l,.

Lemmal:[1],[3],[8]

For any given continuous functionf (x) on a compact set(),, <
R™; there exists a fuzzy logic system Y (x) In the form (4),
such that for any given positive constant €.

Supxeq, |f () =P (x)| < e.

Then the fuzzy system in the form (4) is a universal
approximation, which can approximate the unknown nonlinear
function f(x) and g(x) is modeled by fuzzy system f(x)
andg(x) respectively. Then we have the following equations:

{ﬂ@=ﬂ@+ﬁ@%ﬂ@=ﬁam
g(x) = g0 +8g(x) (§(x) = ;¢ 4(x)
Such that: w = Af(x) + Ag(x)u, is the approximation error

IIT. DESIGN OF ADAPTIVE BACKSTEPPING SLIDING MODE LAW

The recursive nature of the propose control design is
similar to the standard backstepping methodology. However
the proposed control design uses backstepping to design
controllers with a zero order sliding surface at each step [18].
The benefit of this approach is that each actual controller can
compensate the unknown bounded termsd(t), the design
proceeds as follows:

For the first step we consider zero-order sliding surface:

S1 = X1 — X1q 4

Let the first Lyapunov function candidate:

Vi(s) = (st ()



The time derivation of (5) is given by:
Vi(s) = 5181 = 51(x; = %10) = =157 + 515, (6)

The stabilization of s;can be obtained by introducing a new

virtual control x,4, such that:
Xzq = X194 — €151, >0 (M

Where c;is the feedback gain, such that x,; has been chosen in
order to eliminate the non linearity and getting V; (s) < 0. The
term s;s,de V;(s)will be eliminated in the next step, so the
first sub system is stabilized.

For the second step we consider the following zero-order
sliding surface:

S2 =Xz = Xzq = X3 — X14 + €151 (®)
The augmented Lyapunov function is given by:

1

1 1 S~ ~m
Vo(sy,82) = Vy + (5) 5+ (E> 670, + (zug) 676, ©)
With:0; = 6; — B;andf, = 6, — 0,

Orandfjare the parameters vectors respectively of functions
flx)and g(x) , and §f, ég, are theirs estimations.

The time derivative of V, (s, s,) is then:

Vy(s1,52) = 518 + 5,8, + (H—lf) 8.0 + (i) 8,0, (10)

We have:éf = —éf and ég = —ég

Then:

Vo(s1,85) = =152 + 5[50 + 0F &, (x) + 07 &, (0w — dpq +
w+d(0)] +0F [ssz(x) - (M—lf) éf] +

~ 1\ &
07 Is28,u = ()8 (an
With:

de = _Clsz + 61251 + 5C'1d (12)

The negativity of the Lyapunov function, allows getting the
following control law:

1
U= Ueg — 5 Usw (13)
Ugy, = —ksign(s,) (14)

Ugy 1s the switching control.

So:

V,(s1,5,) = —cy52 + 5, [s1 +07E,(0)+ B7E, () (ueq -
W"W) + 0y, — C2sy — g +

d(t) + w] + 0, [Ssz(x) - (M—lf) éf] +

, [szfg(x)u - (t) ég] (15)

w is the approximation errors of functions f{x) and g(x).

The equivalent control is then:
—Cy8; — 5 — éfof(x) + &g — €15, +

cts] (16)

So the control law becomes:

Upg = z7m— |
€4 pley(x)

u [—cas; — 51— OF &, () + %10 — 15, +

Clzsl - usw] (17)

CTYNeS)

Choosing the adaptive laws as follows:

0; = prsy(x

{;\f Hrs2(X)Es (18)
0y = tgs(x)$gu

The equation (15) is developed to:

V, = —c157 — ¢85 — sy (ksign(s;) — d(t) — w) (19)

Introducing the norm, we get:

Vo < —c157 — 385 — I8l (k —y) <0 (20)
We have: |d(t) +w| <y

{c,, k}are positive constants, with k > y.

sign(.)is the usual sign function.

This proves the decreasing of Lyapunov function, which means
that the equilibrium x; = x4 is globaly asymptotically stable
and lim;_ x;(t) = x14. Thereforewe could ensure the
stability of the closed loop system.

Indeed, the value of the constantk depends on the upper
bound of the structural uncertainties and external disturbances,
which are unknown. In order to resolve this problem, we
propose in the following to modify the previous control law,
using a fuzzy adaptive system A(s) [11], having the sliding
surface as input, to approximate the term k.sign(s(x)). Thus the
fuzzy nature of this latter allows eliminating perfectly the
phenomenon of chattering, while its adaptive aspect is
designed to best approximate the constant, and therefore
enfranchise a priori knowledge about the upper bounds of the
structural uncertainties and external perturbations.

The derivative of the sliding surface given in (8), is as follows:
S, (x,t) = HITE[(x) +0,8,(0u+058,(s) +w' —

h*(s) + d(t) — %pq 21)
Ou: h(s) = 0F&,(x) and w' = Af(x) + Ag(x)u — Ah(x)
We consider the following Lyapunov function:

_ 1 1\ A7 1\ 575

1\grag
() 65 0n (22)
The derivative of this latter introducing the control law (13), is
given by:
Vo = —c;82 + sp[51 — ¢2sy + 15, — Kyq + éfof(x) +

078, ()Ueq — ugyy +w —R*(s) +d(O)] +



1

~ 1\ A ~ A
6f [ssz(x) - (;) Hf] + 6y [szg‘g(x)u — (E) Hg] +
AT _ i A
7 |s26(5) = (=) 0] (23)
1 4 ~
Where: u = uy, — WB,ffh(s)andusw =07&,(s).
Consequently the equivalent control law is given by:

1 A ~ .
ueq = W [_CZSZ — 51— efTEf(-x) + ehfh(s) + X1d +
c1(€151 — 7)1 (24)

To ensure the negativity of the Lyapunov function derivative,
we choice the following control law:

u= A [—C25, — 51 = 0585 (X) + 048R (s) + ¥1q +
c1(c181 = S2) — Uy ] (25)
The adaptation laws are given as follows:
gf = .ufsz(x)ff(x)
ég = #gsz (x)fg (x)u (26)
éh = ppS2 (X)) ()
The optimal value of A(s)is such that:
h* ()| = W'l +|dl

From equation (23), we have:

Vy < =152 — 53 + Is,|(Iw'] + Id] -

) <o @7

Which implies that: V, < 0, so the closed loop system is stable
and robust.

The block scheme of the control strategy is given by the Fig.2
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Fig. 2. Control scheme

IV. SIMULATION RESULTS

In order to verify the performance and robustness of the
proposed control law, when applied to the inverted pendulum,
these simulations were made considering different cases and
conditions. We show the results, first when applying only the
adaptive backstepping control law, secondly when applying
the adaptive backstepping sliding mode control Ilaw,
introducing a perturbation, and finally when using the fuzzy

adaptive backstepping sliding mode control law. The structure
of the inverted pendulum is shown in Fig.1.

Where m, = 1kg,m = 0.1kg,and | = 0.5m, the reference
signal is given by: x4(t) = %sin(t), and the initial conditions
are: x;(0) = %,xz(O) =0.

Considering the following membership functions for f(x)and
g()[19]

pep () = exp(=Cx; +2 /5%, g () = exp(=(xi/ 5%,

i

2
g (i) = exp <— (xi+%) ) g () = exp(=(xi = 15/5°),

pes () = exp(=(x =2 /597 5
In order to construct the fuzzy system for the signalh(S),
which approximate the switching control and eliminate the
chattering phenomenon, we divide the discourse universe (the
surfaceS) on three sets: « Positive », « Zero » and « negative »
to which are associated the following membership functions:

,upositive(s) = 1/(1 + 8.exp(S — 0-1))

.uZero(S) = 1/_(8/05)2

.unegative(s) = 1/(1 - 8. exp(s - 0-1))

Three fuzzy rules are used to deduce the signal:
R:ifSisNegativethenh(S) = —C
R%:ifSisZerothenh(S) = 0
R3:ifSisPositivethenh(S) = C

1) Results of the adaptive backstepping control
The results of the adaptive backstepping strategy without
perturbation,are shown in Fig.3, Fig.4 and Fig.5.
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Fig. 4. Tracking error
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Fig. 5. Control signal

The simulation results for the adaptive backstepping with
perturbation (parametric uncertainty in the masses and
external perturbation)are in Fig.6, Fig.7 and Fig.8.
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Fig.6. Pendulum angle tracking
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Fig.8. Control signal

From the results of the backstepping technique, we can see
that this later gives good performances, either in response time
(0.25s) or in tracking error. But this technique loses its
performance’s  characteristic  in  the  presence  of
perturbations.We can see a significant tracking error. In this
case we have thought to introduce the sliding mode control in
order to guaranty the robustness of the controller. The results
of the combination backstepping and sliding mode are given in
the next section.

2) Results of the adaptivebackstepping sliding mode
control
The results of the adaptive backstepping sliding mode control
with presence of perturbations are shown in Fig.9, Fig.10,
Fig.11.

Tk T
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-

Fig. 11. Control signal

From the figures Fig.9, Fig.10 and Fig.11 which represent the
results of the combination backstepping and sliding mode, we
can conclude an improvement in the response time of the
system (1.8s) compared to the response time in the adaptive
backstepping technique(2s), while keeping the convergence to
zero of the error, that means this combination of the two
techniques is more robust than the first one, despite that, the
backstepping sliding mode control has two problems, firstly
the chattering phenomena associated to the sliding mode
control, which presents a major drawback, because it can
excite the dynamic of the commutation in high frequency, and
secondly we can’t handle the control when we have
uncertainties in the system dynamics is. In order to overcome
these problems, we introduce the fuzzy control, where wehave
used the fuzzy systems to approximate the unknown functions
and the switching control. The results are presented in the next
section.

3) Results of the fuzzy adaptive backstepping sliding mode
control
The results of the fuzzy adaptive backstepping sliding mode
control are shown in Fig.12, Fig.13, Fig.14.
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Fig. 14. Control signal

From figures Fig. 12, Fig .13 and Fig. 14, we can see clearly
that the simulation results of the approximated model of the
inverted pendulum show that even the dynamics are unknown
and with presence of perturbations, the response of the system
tracks its reference model with a very small error (0.01) and
with a good response time. The chattering phenomenon
matched in the sliding mode control is eliminated in those
results, using the approximation of the switching control by
fuzzy systems.Those results demonstrate the efficiency and the
robustness of proposed approach, against disturbances and
parameter variations.

V. CONCLUSION

In this study, a fuzzy adaptive backstepping sliding mode
control algorithm for the nonlinear system has been
developed, which integrate a fuzzy adaptive backstepping
methodology and the sliding mode control strategy. The
combined strategies are shown to have the advantages of the
sliding mode and the backstepping approach. The adaptive
sliding mode backstepping control is proposed on the basis of
Lyapunov stability criteria, which can be applied to
uncertainties and disturbances inputs.

The objective is achieved, the output signal tracks the desired
reference model, with a best response time (=0.15s) compared
to the obtained results in other works, and the fuzzy logic

control could be applied to approximate the nonlinear
unknown dynamic of the system and to reduce the chattering
phenomena appears in the backstepping sliding mode control.
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