
HAL Id: hal-03663490
https://uphf.hal.science/hal-03663490

Submitted on 10 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application specific multi-port memory customization in
FPGAs

Gorker Alp Malazgirt, Hasan Erdem Yantir, Arda Yurdakul, Smail Niar

To cite this version:
Gorker Alp Malazgirt, Hasan Erdem Yantir, Arda Yurdakul, Smail Niar. Application specific multi-
port memory customization in FPGAs. 24th International Conference on Field Programmable Logic
and Applications (FPL) 2014, Sep 2014, Munich, Germany. pp.1-4, �10.1109/FPL.2014.6927426�.
�hal-03663490�

https://uphf.hal.science/hal-03663490
https://hal.archives-ouvertes.fr


Application Specific Multi-port Memory
Customization in FPGAs

Gorker Alp Malazgirt, Hasan Erdem Yantır and Arda Yurdakul
Computer Engineering

Bogazici University, Bebek, Istanbul
alp.malazgirt, hasanerdem.yantir, yurdakul@boun.edu.tr

Smail Niar
LAMIH

University of Valenciennes, Valenciennes, France
smail.niar@univ-valenciennes.fr

Abstract—FPGA block RAMs (BRAMs) offer speed advan-
tages compared to LUT-based memory designs but a BRAM has
only one read and one write port. Designers need to use multiple
BRAMs in order to create multi-port memory structures which
are more difficult than designing with LUT-based multiport mem-
ories. Multi-port memory designs increase overall performance
but comes with area cost. In this paper, we present a fully
automated methodology that tailors our multi-port memory from
a given application. We present our performance improvements
and area tradeoffs on state-of-the-art string matching algorithms.

I. INTRODUCTION

In FPGAs, multi-port memories are extensively used in soft
processors and custom hardware accelerators for increasing
performance. Current mainstream soft processors in FPGAs
are RISC processors but for extensive parallelism in FPGAs,
soft VLIW processors are also suggested. Although VLIW
processors allow more parallelism, they are difficult to op-
timize because of larger memory requirements than RISC
processors. This is due to increasing port numbers, code size
and register usage for supporting more parallelism. Perfor-
mance improvement through exploiting parallelism has costs.
Software designers need to parallelize sequential applications.
Hardware designers need design exploration in order to utilize
hardware resources and design hardware that suits the require-
ments of given applications.

In this paper, we present a fully automated methodology
that tailors the multi-port memory from a given application
for a generic VLIW processor that can be customized for
a given application. This method leverages instruction level
parallelism of memory and ALU operations from a sequential
algorithm’s execution trace. Given an application, we automat-
ically extract parallelism from execution traces to determine its
required input output port numbers that leverages parallelism.
Then, we reorder the traces and bundle them and simulate the
performance with the FPGA technology file that supplies the
technology characteristics such as delay, area and power for
an estimation of resource utilization and execution speed of
the application.

II. RELATED WORK

A. Extracting Instruction Level Parallelism (ILP)

Parallelism extraction and parallelizing instructions have
been applied widely in compiler domain[1][2][3] [4]. Par-

allelizing compilers for VLIW processors provides ILP by
encapsulating more than one operations in one instruction at
compile time. Software pipelining, trace scheduling, predi-
cated execution, hierarchical reduction and speculative execu-
tion have been major compiler optimizations. Trace scheduling
[1] requires additional code when operations are reordered.
Speculative execution [2] reduces the compensation code and
moves instructions past branches. Software pipelining [3]aims
at compacting loop kernels by minimizing initiation intervals.
Predicated execution [4] aims to convert branches to basic
blocks with hardware defined predicates on certain instruc-
tions. Hierarchical reduction [3] is the method to simplify
rescheduling process by compacting and representing sched-
uled program components as a single component. Approaches
that extract ILP parallelism without using execution traces re-
quire dependency analysis methods such as points-to-analysis
[5] which is computationally expensive. Our method analyzes
execution traces where all the address dependencies can be
checked via real memory addresses. Register dependencies can
be checked via register locations. Control Flow Graph (CFG)
is extracted and used to determine loop bounds and inter loop
dependencies.

B. Multi-port Memories in FPGAs

The most efficient method of designing multi-port memories
in FPGAs is using block RAMs (BRAM) that are available
in traditional FPGAs [6] [7]. However, a BRAM has only
two ports, which are not sufficient to implement a highly
parallel architecture that usually needs multiple ports. The
third method is combining on-chip BRAMs in conventional
methods to form a multi-port memory. In multi-port memory
design with BRAMs, two common methods are replication
and banking. Replication and banking can be exploited in
order to increase the number of read and write ports [8][9].
However in this method, memory is partitioned between the
banks. Multiple-read can be done from the same bank, but two
or more write operations cannot be done on the same bank. In
order to handle this problem, a set of software and hardware
methods were proposed by Anjam et al [10][11]. In this work,
we have used the multi-port memory design suggested by [9]
because it has shown to provide better multi-port performance
explained in the work.



III. APPLICATION ANALYSIS AND PARALLELISM
EXTRACTION

Execution traces are generated from the application binary
and the input data set. Our trace generation program uses PIN
[12] library and application binaries are compiled from C/C++
source files.

For parallelism analysis, we have derived rules for ex-
tracting parallelism from a sequential algorithm. These rules
reorder and bundle instructions without breaking data de-
pendencies. For preventing structural hazards, we assume
that there are sufficient number of internal registers in the
system and register renaming is employed to prevent structural
hazards. The details of parallelism extraction are explained in
our previous work [13].

Instructions that are bundled together are parallel and can be
scheduled at the same access step. This reordering extracts the
maximum parallelism which is defined as the highest number
of instructions in an access step.

Direct implementation of a multi-port memory which can
support maximum parallelism will be inefficient in terms of
area and power consumption though it provides the fastest
execution time. Our recommendation algorithm described in
[13] reduces maximum port usage and issue slot size and
keeps maximum parallelism. Hence, we gain significantly
from resource usage while keeping the performance attained
at maximum parallelism.

IV. MULTI-PORT MEMORY ARCHITECTURE

In traditional FPGA architectures, there exist dedicated
BRAMs for storage [6] [7]. These BRAMs have two ports
which are used either as write or read port depending on the
BRAM mode. In true dual port mode, each port can change its
read/write behavior during run time i.e. 2R or 1R & 1W or 2W.
In simple dual port mode, a BRAM has exactly dedicated one
read and one write port and configuration cannot be changed
during run time.

We have synthesized 64x512 bit memory with minimum
delay constraints and reported post-place and route maximum
clock period. The minimum delay constraints are reduced
iteratively by our automation tool. At each iteration, our
tool lowers the minimum delay constraint and synthesizes
the design. The process continues until the minimum delay
constraint is not met with 0.01 ns difference.

The results have been generated on Xilinx Virtex-5
XC5VLX110T and Zynq-7020. Figure 1a and Figure 1b show
that increasing number of write ports decreases memory access
speed more than increasing the number of read ports for
Virtex-5. Thus, though increasing the number of ports might
guarantee the required parallelism, it might degrade perfor-
mance due to unexpected slowdown of memory accesses.
Zynq-7020 has also shown similar behavior therefore we only
present Virtex-5 results.

V. EXPERIMENTAL RESULTS

We developed a custom simulator in order to compare
the performance of our multi-port memory and available

(a) Access speed change with respect to read port

(b) Access speed change with respect to write port

Fig. 1: Memory access speed change with respect to read and
write ports of 64x512 bit memory on Virtex-5

dual port memories on FPGAs. All multi-port and dual-port
memories are configured and synthesized automatically by our
custom tool using C# and Xilinx TCL scripting. Our tool also
generates the FPGA technology file from synthesis results.

We apply our method on string matching algorithms shown
in Table I. String matching has been used extensively and
different approaches have been developed. Nevertheless, all
of them are highly memory intensive [14]. Some of the algo-
rithms we experiment have different variations. In FSBNDMQ,
we change the q grams and the selected lookahead values.
In FAOSO, alignment numbers vary. In TVSBS, we used
different window sizes.

Input set contains one million characters of human DNA. In
this text, we search for a pattern with a length of ten thousand



Abbreviation Algorithm Type

FSBNDMQ
Forward Simplified Backward Nondeterministic

bit-parallel
DAWG Matching with q-grams

BMH-SBNDM
Backward Nondeterministic DAWG

bit-parallel
Matching with Horspool Shift

KBNDM
Factorized Backward Nondeterministic

bit-parallel
DAWG Matching

FAOSO Fast Average Optimal Shift Or bit-parallel

SEBOM Simplified Extended Backward Oracle Matching automata

FBOM Forward Backward Oracle Matching automata

SFBOM Simplified Forward Backward Oracle Matching automata

TVSBS
TVSBS: A Fast Exact Pattern Matching

comparison
Algorithm for Biological Sequences

FJS Franek Jennings Smyth String Matching comparison

GRASPM
Genomic Rapid Algorithm for

comparison
String Pattern Matching

TABLE I: String Matching Algorithms and abbreviations

characters and each character is one byte. Hence a pattern is
10kB long. The text alphabet size is four. Loading data from
external memory to FPGA memory is handled by custom logic
controller which controls a multi-paged memory architecture.
Initially, all the pages are filled with data. The number of
active pages and idle pages are determined according to the
algorithms’ behavior. Idle pages are loaded with new data. This
mechanism allows memory references to take constant amount
of cycles. In addition, we assume that the change of input data
set doesn’t affect the algorithm behavior. All our multi-port,
true dual port and simple dual port memory configurations
have 32 bits word size and depth is 4096. Each multi-port
memory with 32*4096 bit configuration allows us to store a
pattern, because this configuration can store 16KB of data.
Xilinx Zynq-7020 has 560KB of memory [15], therefore our
paged memory architecture can load up to 560KB/16KB =
35 different pages.

Performance of the string matching algorithms of multi
issue multi-port (MP) memory are compared with single issue
true dual port (TDP) and single issue simple dual port configu-
rations (SDP). The obtained execution times are represented as
eMP , eTDP and eSDP respectively in Table II. Operation costs
for non-memory operations are taken from [16]. Issue size of
non-memory operations are limited to the maximum number
of read/write port number. For example, 4R 1W configuration
is assumed to have less than or equal to five issue slots.

All of the algorithms have shown speed ups between 1.55x
to 4.25x in MP over TDP and SDP memories shown in
Table II. In addition, experiments show that algorithms with
higher average parallelism do not necessarily yield better
performance. FSBNDMQ algorithm has the least average
parallelism and least ratio of memory instructions among all
algorithms. FAOSO6 has the largest number of read/write ports
and TVSBS-w8 has the highest average parallelism. However,
they are both slower than FSBNDMQ. The average parallelism
does not seem to correlate with access step values. The average

Fig. 2: Area-Delay product of multi-port memory configura-
tion normalized to true dual port

parallelism of FJS algorithm is 4.13 whereas FSBNDMQ im-
plementations have 2.85 on average. Nevertheless, FJS has six
times more access steps than FSBNDMQ. Similarly, read/write
port numbers do not convey a hint about the recommended
access steps. GRASPM has lower number of read/write ports
than FAOSO6, but it requires more access steps to complete.

The number of read and write ports affect FPGA utilization
differently. SDP has the lowest resource usage. TDP employs
more BRAMs than SDP. Depending on the number of read
ports, MP configurations use more BRAMs than TDP and
SDP. All configurations with single write port use only one
LUT. MP with multiple write ports use more LUTs and
BRAMs than equivalent single port configurations. For exam-
ple, 3R 2W configuration consumes more BRAMs and LUTs
than 4R 1W configuration.

Figure 2 presents the area-delay product of multi-port
configurations which are normalized to true dual port configu-
rations. Results show that majority of multi-port configurations
are more efficient than dual port. However, algorithms with
multiple write ports are inefficient because the usage of
BRAM and LUT is very high compared to dual port memory
configuration.

VI. CONCLUSION

In this work, we present a method which extracts instruction
level parallelism from sequential algorithm and tailors our
multi-port memory by recommending multi-port memory size
and issue slot size. Our custom simulator perform performance
estimations comparing our multi-port memory over true dual
and simple dual port memory on FPGAs. Our method has
improved FSBDMQ algorithm by 3x with Area-Delay product
of 0.7 compared to true dual port BRAM memory.

ACKNOWLEDGMENT

This work is supported by Bogazici University Scien-
tific Research Projects (BAP) Project No: 11A01P6 and by



Benchmark

Read &

Write

Number

Average

Paral-

lelism

FPGA
Utilization

(BRAM,

LUT)

eMP

(µs)

eTDP
(µs)

eSDP
(µs)

eMP /eTDP eMP /eSDP

FSBNDMQ20 3R, 1W 2.99 (24, 1) 7437 21156 24030 2.84 3.23

FSBNDMQ21 2R, 1W 2.82 (16, 1) 7576 21098 23962 2.78 3.16

FSBNDMQ31 3R, 1W 2.82 (24, 1) 7041 18865 21514 2.68 3.06

FSBNDMQ32 3R, 1W 2.79 (24, 1) 8474 22755 25880 2.69 3.05

FSBNDMQ41 2R, 1W 2.81 (16, 1) 7931 20542 23460 2.59 2.96

FSBNDMQ42 3R, 1W 2.80 (24, 1) 7956 20606 23530 2.59 2.96

FSBNDMQ43 2R, 1W 2.83 (16, 1) 8027 20908 23876 2.60 2.97

FSBNDMQ61 3R, 1W 2.84 (24, 1) 9707 24165 27681 2.49 2.85

FSBNDMQ62 3R, 1W 2.88 (24, 1) 9711 24388 27921 2.51 2.88

FSBNDMQ64 3R, 1W 2.84 (24, 1) 9830 24422 27968 2.48 2.85

FSBNDMQ81 3R, 1W 2.88 (24, 1) 11327 27334 31417 2.41 2.77

FSBNDMQ82 3R, 1W 2.87 (24, 1) 11322 27276 31349 2.41 2.77

FSBNDMQ84 3R, 1W 2.86 (24, 1) 11338 27158 31213 2.40 2.75

FSBNDMQ86 3R, 1W 2.85 (24, 1) 12728 30017 34540 2.36 2.71

BMH-SBDNM 4R, 1W 3.25 (31, 1) 14259 42306 48287 2.97 3.39

KBNDM 4R, 1W 3.64 (31, 1) 25947 82338 94942 3.17 3.66

FAOSO2 3R, 1W 3.30 (24, 1) 25837 74215 85624 2.87 3.31

FAOSO4 2R, 6W 3.29 (96, 113) 21801 47615 54827 2.18 2.51

FAOSO6 2R, 6W 4.1 (96, 113) 56569 87688 102240 1.55 1.81

SEBOM 3R, 1W 3.54 (24, 1) 37081 111952 129271 3.02 3.49

FBOM 3R, 1W 3.52 (24, 1) 37635 114203 131507 3.03 3.49

SFBOM 3R, 1W 3.48 (24, 1) 37709 113828 131126 3.02 3.48

TVSBS-w2 4R, 1W 3.30 (31, 1) 28681 80734 93695 2.81 3.27

TVSBS-w4 5R, 1W 3.39 (40, 1) 32468 91970 106828 2.83 3.29

TVSBS-w8 3R, 2W 4.16 (48, 49) 109153 311446 353495 2.85 3.24

TSW 4R, 1W 3.26 (31, 1) 24067 76013 87815 3.16 3.65

FJS 3R, 2W 4.13 (48, 49) 45628 114203 193738 3.68 4.25

GRASPM 3R, 1W 3.70 (24, 1) 25907 74901 86501 2.89 3.34

TABLE II: R & W port sizes, average parallelism, FPGA resource utilizations and simulation time of string matching algorithms

TUBITAK given to Prof. S. NIAR under Project No: 2221.

REFERENCES

[1] J. A. Fisher, “Trace scheduling: A technique for global microcode
compaction,” IEEE Transactions on Computers, vol. 30, no. 7, pp. 478–
490, 1981.

[2] M. D. Smith, M. S. Lam, and M. A. Horowitz, Boosting beyond static
scheduling in a superscalar processor. ACM, 1990, vol. 18, no. 3a.

[3] M. Lam, “Software pipelining: An effective scheduling technique for
vliw machines,” in ACM Sigplan Notices, vol. 23, no. 7. ACM, 1988,
pp. 318–328.

[4] P. Hsu and E. S. Davidson, Highly concurrent scalar processing. IEEE
Computer Society Press, 1986, vol. 14, no. 2.

[5] R. P. Wilson and M. S. Lam, Efficient context-sensitive pointer analysis
for C programs. ACM, 1995, vol. 30, no. 6.

[6] Xilinx, IP Processor Block RAM (BRAM) Block.
[7] Altera, Internal Memory (RAM and ROM) User Guide.
[8] M. A. R. Saghir and R. Naous, “A configurable multi-ported register

file architecture for soft processor cores,” in Proceedings of the 3rd
international conference on Reconfigurable computing: architectures,
tools and applications, ser. ARC’07, 2007, pp. 14–25.

[9] H. Yantir, S. Bayar, and A. Yurdakul, “Efficient implementations of
multi-pumped multi-port register files in fpgas,” in Digital System
Design (DSD), 2013 Euromicro Conference on, Sept 2013, pp. 185–
192.

[10] F. Anjam, S. Wong, and F. Nadeem, “A multiported register file with
register renaming for configurable softcore vliw processors,” in Field-
Programmable Technology (FPT), 2010 International Conference on,
Dec., pp. 403–408.

[11] C. E. LaForest and J. G. Steffan, “Efficient multi-ported memories for
fpgas,” in Proceedings of the 18th annual ACM/SIGDA international
symposium on Field programmable gate arrays, ser. FPGA ’10, 2010,
pp. 41–50.

[12] C.-K. Luk and Cohn, “Pin: building customized program analysis tools
with dynamic instrumentation,” in Acm Sigplan Notices, vol. 40, no. 6.
ACM, 2005.

[13] G. Malazgirt, A. Yurdakul, and S. Niar, “Mipt: Rapid exploration
and evaluation for migrating sequential algorithms to multiprocessing
systems with multi-port memories,” in High Performance Computing
and Simulation (HPCS), 2014 International Conference on, July 2014.

[14] S. Faro and T. Lecroq, “The exact online string matching problem: A
review of the most recent results,” ACM Comput. Surv., vol. 45, no. 2,
pp. 13:1–13:42, Mar. 2013.

[15] Xilinx, Zynq-7000 All Programmable SoC Technical Reference Manual.
[16] Intel, Intel Software Developer Manuals. [Online]. Avail-

able: http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html


