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Abstract: This paper deals with the leader-follower consensus problem for double-integrator
multi-agent systems using sampled position data information. An observer-based output
feedback controller is designed to study this problem while taking into account intermittent
sensor failures. The non-uniformity and randomness of the sampling times due to intermittent
information lead to a µ−varying linear system on a discrete stochastic time domain for
the closed-loop system dynamics (here µ is the graininess function). Some necessary and
sufficient conditions for the observer and controller gains are derived, using positive perturbation
and Lyapunov operators on the space of symmetric matrices, to guarantee mean-square
exponential stability for the observation and tracking errors. Some simulation results illustrate
the effectiveness of the proposed observer-based output feedback controller.

Keywords: Consensus, Stochastic time scale, Multi-agent systems, Intermittent information,
Mean-square exponential stability, Sampled position data.

1. INTRODUCTION

In recent decades, the consensus problem for multi-agent
systems (MASs) has been extensively studied due to its
applications in many fields such as robots, spacecrafts and
manufacturing systems to name a few (Dorri et al., 2018;
Li et al., 2014; Defoort et al., 2016). This problem aims
at designing a control law such that the state of each
agent reaches an agreement based on available information
exchanged between neighboring agents (Ren and Beard,
2005).

Many works have investigated the consensus problem into
two different directions depending on whether the MAS
is described via continuous-time or uniform discrete-time
models (Shi and Shen, 2017; Zuo et al., 2019; Lin et al., 2016;
Su et al., 2017; Cao et al., 2017). Nevertheless, one cannot
consider, in most scenarios, continuous-time or uniform
discrete-time domains (Ding et al., 2017; Taousser et al.,
2019). Indeed, there could be some limitations on sensing
ability due to obstacles for instance or intermittent sensor
failures to name a few. In this paper, we consider the leader-
follower consensus problem for MASs under intermittent
measurements.

Recently, the consensus problem under intermittent
information has been considered using different approaches.
In (Gao and Wang, 2010; Wen et al., 2013), time delay
based approaches have been considered. In (Huang et al.,
2014; Taousser et al., 2016; Phillips and Sanfelice, 2019),
Lyapunov stability tools for hybrid systems have been

used to derive the controller. In (Ajwad et al., 2019),
a continuous-discrete time observer has been designed
for the continuous estimation of the state from discrete
measurements. However, in most of these works, the
maximum duration of the intermittent failures is known to
derive the controller gains, leading to some conservatism.

The communication topology among the agents is described
deterministically in the above mentioned works. However, it
can be represented in a stochastic way due to intermittent
information. Indeed, the time instant and duration of
intermittent sensor failures are stochastic by nature. Using
a stochastic framework, some works have studied the
consensus problem for MASs (Zhao and Park, 2014; Rezaee
and Abdollahi, 2017). These works based on Markov
chains, need the knowledge of failure probabilities for
each link and finitely many states for the sake of the
transition matrix. To remove these drawbacks, in this
paper, the consensus problem under intermittent sampled
measurements is investigated using the time scale theory.

The theory of time scales has been investigated in (Bohner
and Peterson, 2012) to study discrete-time and continuous-
time theories in an unified framework. It also enables
to study dynamical systems evolving on arbitrary time
domains (hybrid, non uniform discrete-time domains, etc.).
Some works have been derived to study the stability,
stabilization, observability and reachability on arbitrary
time scales (Bartosiewicz, 2019). Using this theory, the
consensus problem has been recently analyzed for linear
MASs (Shen and Cao, 2012; Babenko et al., 2018; Girejko
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feedback controller is designed to study this problem while taking into account intermittent
sensor failures. The non-uniformity and randomness of the sampling times due to intermittent
information lead to a µ−varying linear system on a discrete stochastic time domain for
the closed-loop system dynamics (here µ is the graininess function). Some necessary and
sufficient conditions for the observer and controller gains are derived, using positive perturbation
and Lyapunov operators on the space of symmetric matrices, to guarantee mean-square
exponential stability for the observation and tracking errors. Some simulation results illustrate
the effectiveness of the proposed observer-based output feedback controller.
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1. INTRODUCTION

In recent decades, the consensus problem for multi-agent
systems (MASs) has been extensively studied due to its
applications in many fields such as robots, spacecrafts and
manufacturing systems to name a few (Dorri et al., 2018;
Li et al., 2014; Defoort et al., 2016). This problem aims
at designing a control law such that the state of each
agent reaches an agreement based on available information
exchanged between neighboring agents (Ren and Beard,
2005).

Many works have investigated the consensus problem into
two different directions depending on whether the MAS
is described via continuous-time or uniform discrete-time
models (Shi and Shen, 2017; Zuo et al., 2019; Lin et al., 2016;
Su et al., 2017; Cao et al., 2017). Nevertheless, one cannot
consider, in most scenarios, continuous-time or uniform
discrete-time domains (Ding et al., 2017; Taousser et al.,
2019). Indeed, there could be some limitations on sensing
ability due to obstacles for instance or intermittent sensor
failures to name a few. In this paper, we consider the leader-
follower consensus problem for MASs under intermittent
measurements.

Recently, the consensus problem under intermittent
information has been considered using different approaches.
In (Gao and Wang, 2010; Wen et al., 2013), time delay
based approaches have been considered. In (Huang et al.,
2014; Taousser et al., 2016; Phillips and Sanfelice, 2019),
Lyapunov stability tools for hybrid systems have been

used to derive the controller. In (Ajwad et al., 2019),
a continuous-discrete time observer has been designed
for the continuous estimation of the state from discrete
measurements. However, in most of these works, the
maximum duration of the intermittent failures is known to
derive the controller gains, leading to some conservatism.

The communication topology among the agents is described
deterministically in the above mentioned works. However, it
can be represented in a stochastic way due to intermittent
information. Indeed, the time instant and duration of
intermittent sensor failures are stochastic by nature. Using
a stochastic framework, some works have studied the
consensus problem for MASs (Zhao and Park, 2014; Rezaee
and Abdollahi, 2017). These works based on Markov
chains, need the knowledge of failure probabilities for
each link and finitely many states for the sake of the
transition matrix. To remove these drawbacks, in this
paper, the consensus problem under intermittent sampled
measurements is investigated using the time scale theory.

The theory of time scales has been investigated in (Bohner
and Peterson, 2012) to study discrete-time and continuous-
time theories in an unified framework. It also enables
to study dynamical systems evolving on arbitrary time
domains (hybrid, non uniform discrete-time domains, etc.).
Some works have been derived to study the stability,
stabilization, observability and reachability on arbitrary
time scales (Bartosiewicz, 2019). Using this theory, the
consensus problem has been recently analyzed for linear
MASs (Shen and Cao, 2012; Babenko et al., 2018; Girejko
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and Malinowska, 2019). However, in these papers, the time
scale is deterministic and known in advance, which is often
not realistic in practice.

The stochastic time scale theory has been recently
investigated in (Poulsen et al., 2019a) where necessary
and sufficient conditions have been derived to guarantee
mean square stability for linear systems evolving on a
stochastic discrete-time domain. It has been used to study
the consensus problem under intermittent information
where both position and velocity for each agent are
measured in (Poulsen et al., 2019b). However, in practice,
agents have limited on-board measurement resources.
Therefore, it is more relevant to only consider sampled
position measurements. Hence, in this paper, we propose
an observer-based output feedback consensus protocol
for double-integrator MASs under intermittent sampled
position measurements. It should be note that the design of
an observer-based output controller is not an easy task since
the separation principle does not hold (the time domain is
stochastic) and the graininess function is unknown (µ is a
random variable).

The rest of this paper is organized as follows. Section 2
recalls some preliminaries on time scale theory. Section 3
gives the problem formulation. In Section 4, the observer-
based output feedback consensus protocol is derived and the
mean square stability of the closed-loop system is analyzed.
In Section 5, some numerical results show the effectiveness
of the proposed scheme.

2. PRELIMINARIES ON TIME SCALE THEORY

Let us briefly recall the main basics on time scale theory.
For more details, the reader is referred to (Bohner and
Peterson, 2012).

Let T be a time scale, i.e. a closed subset of R. In this
paper, it is considered unbounded above time scales, i.e.
sup{t ∈ T} = ∞. Let us define the following useful
operators:

• The forward jump operator is σ : T → T defined by
σ(t) = inf{s > t | s ∈ T}

• The graininess operator is µ : T → R defined by
µ(t) = σ(t)− t

On T, the ∆−derivative of f : T → Rn is defined by

f∆(t) =
f(σ(t))− f(t)

µ(t)
,

evaluated as µ(t) → 0 if µ(t) = 0. In particular, for
continuous-time systems, the ∆−derivative is the classical
derivative, and for discrete-time systems (i.e. T = Z), the
∆−derivative is the forward difference operator. A function
f : T → Rn is differentiable on T if its ∆−derivative exists
at every point t ∈ T.

f : T → Rn is rd-continuous on T if at points t ∈ T with
sup {s ∈ T : s < t} = t, f has finite left-sided limits and
at points t ∈ T with σ(t) = t, f is continuous. An m× n
matrix-valued function g on T is rd-continuous if each of
its entries is rd-continuous. Furthermore, when m = n, g is
regressive if I + µ(t)g(t) is invertible for all t ∈ T, where I
is the identity matrix. One can notice that every function
g on T is rd-continuous if T is purely discrete.

If g is regressive and rd-continuous, then system

X∆(t) = g(t)X(t), X(t0) = I, (1)

has a unique solution, i.e. eg(·, t0), called the generalized
exponential function on T. For x(t) ∈ R, the unique solution
of system

x∆(t) = g(t)x(t), x(t0) = x0, (2)

is given by exp
(∫ t

t0
ξs(g(τ))∆τ

)
x0 where ξh(z) =

lims→h+
Log(1+zs)

s is the cylinder transformation and Log
is the principal logarithm.

Let us briefly recall some basics on stochastic time scale
theory. For more details, the reader is referred to (Poulsen
et al., 2019a). Let us consider the initial time t0 ∈ R and
a sequence of random variables {µi}∞i=0 with range (0,∞).
The corresponding discrete stochastic time scale is

T̃ := {t0} ∪

{
t0 +

n∑
i=0

µi | n ∈ N0

}
:= {tn}∞n=0.

Let µ be a random variable. If the set of random
variables {µ} ∪ {µi}∞i=0 consists of independent, identically
distributed (i.i.d.) random variables, the corresponding
stochastic time scale is called an i.i.d. discrete stochastic
time scale generated by µ.

Let us consider T̃ a discrete stochastic time scale generated
by the random variables {µi}∞i=0. In this case, the analysis

of system (2) on T̃ is reduced to the analysis of the random
sequence defined by x(t0) = x0 and

x(tn+1) = (I + µng(tn))x(tn).

For almost all realizations of T̃, {x(tn)}∞n=0 is the unique

solution of (2) on the realization of T̃ if g is regressive almost
surely. To define the mean-square stability of system (2)

on T̃, the following norm of the solution is defined as the
L2 norm in the underlying sample space Ω, i.e.

‖x(tm)‖Ω := E
[
xT (tm)x(tm)

]
,

with E the expectation. Using this notation, one can
introduce the following definition

Definition 1. If for all ε > 0, there exists a δ > 0 such that
for each x0 ∈ Rn with ‖x0‖ < δ and all m ∈ N, one gets

‖x(tm)‖Ω < ε, then the zero solution of (2) on T̃ is mean-
square stable. If there is no dependence on δ, the zero
solution of (2) on T̃ is globally mean-square stable. If in
addition, ‖x(tm)‖Ω → 0 as m → ∞ for sufficiently small

‖x0‖, then the zero solution of (2) on T̃ is mean-square
asymptotically stable. If the convergence is exponential,
the zero solution of (2) on T̃ is mean-square exponentially
stable.

A special case worth considering is the case that the system
is time-variant only due to the disruption in timing. In this
case, (2) can be written as

x∆(t) = g(µ(t))x(t), x(t0) = x0. (3)

The mean square exponential stability of (3) on discrete,
i.i.d. stochastic time scales is equivalent to a spectral
condition on Lyapunov-like operators, as stated in the
following theorem.

Theorem 1. (Poulsen et al. (2019a)). Let T̃ be a stochas-
tic time scale and letH(n) be the space of all n×n symmet-
ric matrices. Define g := E[µg(µ)], and Π(X) = E[µg(µ)−

g)TX(µg(µ)− g)]. Define the operator Lg : H(n) → H(n)
by

Lg(P ) = (I + g)TP (I + g).

Let I be the identity operator.

Then (3) is globally exponentially mean-square stable if
and only if all eigenvalues of g + I are in the open unit
disk and

r
((

I − Lg

)−1
Π
)
< 1, (4)

where r denotes spectral radius.

3. PROBLEM STATEMENT

In this paper, we consider a group of N + 1 cooperative
agents, i.e. one leader and N followers. The dynamics of
the agents are described by

ẋi(t) = Axi(t) +Bui(t), i ∈ {1, · · · , N},
yi(t) = Cxi(t)

ẋ0(t) = Ax0(t),
y0(t) = Cx0(t)

(5)

where x0 ∈ R2 (resp. xi ∈ R2) is the leader state (resp.
state of agent i) and ui ∈ R is the control input of agent
i. y0 ∈ R (resp. yi ∈ R) is the output measurement for

the leader (resp. for agent i). A =

(
0 1
0 0

)
, B =

(
0
1

)
and

C = (1 0) are known constant real matrices.

The communication topology between the N followers is
described by the graph G = {V, E} where V = {1, 2, . . . , N}
is the set of all followers, E ⊆ V × V represents the
communication links among the followers. The adjacency
matrix [aij ] ∈ RN×N is defined by aij > 0 if (i, j) ∈ E ,
otherwise aij = 0. The Laplacian matrix of G is defined as

L = [lij ] ∈ RN×N with lii =
∑N

j=1 aij and lij = −aij
for i �= j. The sampled information of the leader is
only transmitted to some followers (not all of them).
The communication topology among all the agents (i.e.
followers and leader) is described by the graph Ḡ. This
graph is defined by the matrix P = L + M ∈ RN×N ,
where M = diag(m1, . . . ,mN ) with mi = 1 if the sampled
information of the leader is accessible by the agent i and
with mi = 0 otherwise.

Assumption 1. It is assumed that the communication
topology among all the agents Ḡ is fixed and has a directed
spanning tree (the communincation topology contains a
directed spanning tree if there is a node, called root node,
such that there is a directed path from this node to every
other node).

Assumption 2. It is considered that sampled information
is exchanged between neighboring agents regularly at each
sampling time except in the presence of an interruption
of measurement. This may occur due to the intermittent
sensor failures, for instance. Furthermore, it is assumed
that the time instant and duration of intermittent sensor
failure are stochastic and have the memoryless property.

Remark 1. Assumption 1 is classical to solve the consensus
problem for multi-agent systems. This assumption implies
that matrix P is a nonsingular M -matrix, that is, the
eigenvalues of P have nonnegative real parts. Assumption
2 is less restrictive than many existing works dealing

with intermittent information. Indeed, in (Taousser et al.,
2016), it is assumed that the maximum duration of
intermittent sensor failures is known to derive the
controller gains. In (Poulsen et al., 2019b), it is required
information on both position and velocity states of the
neighbors. However, due to limited on-board measurement
resources, it is often difficult to measure position and
velocity of the agents.

To deal with intermittent sampled position measurements,
a discrete stochastic time scale is used to represent the
time domain. Indeed, the number of time steps when the
position is measured in the case of intermittent sensor
failures is a geometric random variable due to Assumption
2. More formally, we denote p as the probability that no
sensor failure happens at a given time instant in the time
scale and h is the normal (uninterrupted) sampling time of
the system. Based on Assumption 2, the time domain can
be modeled as the i.i.d. discrete stochastic time scale T̃.
It is obtained using variable µ with the probability mass
function

f(µ) =

{
p µ = h

(1− p)γ(µ) µ > h
. (6)

In (6), γ(µ) is a probability distribution function and its
support is a subset of (h,∞).

Remark 2. In this paper, the distribution could belong
to the class of mixed probability distributions since γ
could be a continuous probability distribution. Contrary to
existing works as discussed in Remark 1, in this paper we
do not require a known maximum duration of intermittent
sensor failures.

Discretizing system (5) onto the i.i.d. discrete stochastic

time scale T̃ yields

x∆
i (t) = Adxi(t) +Bd(µ(t))ui(t), i ∈ {1, · · · , N},

yi(t) = Cxi(t)

x∆
0 (t) = Adx0(t, )

y0(t) = Cx0(t)
(7)

t ∈ T̃, with Ad =

(
0 1
0 0

)
, Bd(µ(t)) =

(
µ(t)

2
1

)
. One

should highlight that system (7) is the exact discretization
of system (5) in a sampled data setting.

The problem under investigation is to design an observer-
based output feedback controller to solve the leader-follower
consensus problem for system (7) evolving on the i.i.d.

discrete stochastic time scale T̃ due to intermittent sampled
position measurements.

4. OBSERVER-BASED OUTPUT FEEDBACK
CONSENSUS PROTOCOL

Let T̃ = {tn}∞n=0 be the sequence of sampling times
obtained using the random variable µ (i.e. distance between
sampling times which is non-uniform due to intermittent
information) which satisfies (6). Using available sampled
position data, the following discrete-time observer-based
output feedback consensus protocol is proposed, ∀i ∈
{1, · · · , N}, ∀t ∈ T̃
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g)TX(µg(µ)− g)]. Define the operator Lg : H(n) → H(n)
by

Lg(P ) = (I + g)TP (I + g).

Let I be the identity operator.

Then (3) is globally exponentially mean-square stable if
and only if all eigenvalues of g + I are in the open unit
disk and

r
((

I − Lg

)−1
Π
)
< 1, (4)

where r denotes spectral radius.

3. PROBLEM STATEMENT

In this paper, we consider a group of N + 1 cooperative
agents, i.e. one leader and N followers. The dynamics of
the agents are described by

ẋi(t) = Axi(t) +Bui(t), i ∈ {1, · · · , N},
yi(t) = Cxi(t)

ẋ0(t) = Ax0(t),
y0(t) = Cx0(t)

(5)

where x0 ∈ R2 (resp. xi ∈ R2) is the leader state (resp.
state of agent i) and ui ∈ R is the control input of agent
i. y0 ∈ R (resp. yi ∈ R) is the output measurement for

the leader (resp. for agent i). A =

(
0 1
0 0

)
, B =

(
0
1

)
and

C = (1 0) are known constant real matrices.

The communication topology between the N followers is
described by the graph G = {V, E} where V = {1, 2, . . . , N}
is the set of all followers, E ⊆ V × V represents the
communication links among the followers. The adjacency
matrix [aij ] ∈ RN×N is defined by aij > 0 if (i, j) ∈ E ,
otherwise aij = 0. The Laplacian matrix of G is defined as

L = [lij ] ∈ RN×N with lii =
∑N

j=1 aij and lij = −aij
for i �= j. The sampled information of the leader is
only transmitted to some followers (not all of them).
The communication topology among all the agents (i.e.
followers and leader) is described by the graph Ḡ. This
graph is defined by the matrix P = L + M ∈ RN×N ,
where M = diag(m1, . . . ,mN ) with mi = 1 if the sampled
information of the leader is accessible by the agent i and
with mi = 0 otherwise.

Assumption 1. It is assumed that the communication
topology among all the agents Ḡ is fixed and has a directed
spanning tree (the communincation topology contains a
directed spanning tree if there is a node, called root node,
such that there is a directed path from this node to every
other node).

Assumption 2. It is considered that sampled information
is exchanged between neighboring agents regularly at each
sampling time except in the presence of an interruption
of measurement. This may occur due to the intermittent
sensor failures, for instance. Furthermore, it is assumed
that the time instant and duration of intermittent sensor
failure are stochastic and have the memoryless property.

Remark 1. Assumption 1 is classical to solve the consensus
problem for multi-agent systems. This assumption implies
that matrix P is a nonsingular M -matrix, that is, the
eigenvalues of P have nonnegative real parts. Assumption
2 is less restrictive than many existing works dealing

with intermittent information. Indeed, in (Taousser et al.,
2016), it is assumed that the maximum duration of
intermittent sensor failures is known to derive the
controller gains. In (Poulsen et al., 2019b), it is required
information on both position and velocity states of the
neighbors. However, due to limited on-board measurement
resources, it is often difficult to measure position and
velocity of the agents.

To deal with intermittent sampled position measurements,
a discrete stochastic time scale is used to represent the
time domain. Indeed, the number of time steps when the
position is measured in the case of intermittent sensor
failures is a geometric random variable due to Assumption
2. More formally, we denote p as the probability that no
sensor failure happens at a given time instant in the time
scale and h is the normal (uninterrupted) sampling time of
the system. Based on Assumption 2, the time domain can
be modeled as the i.i.d. discrete stochastic time scale T̃.
It is obtained using variable µ with the probability mass
function

f(µ) =

{
p µ = h

(1− p)γ(µ) µ > h
. (6)

In (6), γ(µ) is a probability distribution function and its
support is a subset of (h,∞).

Remark 2. In this paper, the distribution could belong
to the class of mixed probability distributions since γ
could be a continuous probability distribution. Contrary to
existing works as discussed in Remark 1, in this paper we
do not require a known maximum duration of intermittent
sensor failures.

Discretizing system (5) onto the i.i.d. discrete stochastic

time scale T̃ yields

x∆
i (t) = Adxi(t) +Bd(µ(t))ui(t), i ∈ {1, · · · , N},

yi(t) = Cxi(t)

x∆
0 (t) = Adx0(t, )

y0(t) = Cx0(t)
(7)

t ∈ T̃, with Ad =

(
0 1
0 0

)
, Bd(µ(t)) =

(
µ(t)

2
1

)
. One

should highlight that system (7) is the exact discretization
of system (5) in a sampled data setting.

The problem under investigation is to design an observer-
based output feedback controller to solve the leader-follower
consensus problem for system (7) evolving on the i.i.d.

discrete stochastic time scale T̃ due to intermittent sampled
position measurements.

4. OBSERVER-BASED OUTPUT FEEDBACK
CONSENSUS PROTOCOL

Let T̃ = {tn}∞n=0 be the sequence of sampling times
obtained using the random variable µ (i.e. distance between
sampling times which is non-uniform due to intermittent
information) which satisfies (6). Using available sampled
position data, the following discrete-time observer-based
output feedback consensus protocol is proposed, ∀i ∈
{1, · · · , N}, ∀t ∈ T̃
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ui(t) = K




N∑
j=1

aij(x̂j(t)− x̂i(t)) +mi(x̂0(t)− x̂i(t))


 ,

(8)
where x̂j is the estimated state of agent j (j ∈ {0, · · · , N})
and K ∈ R1×2 is the control gain matrix.

An agent j estimates its own state using its measurement
yj and transmits this estimation to its neighbors. For each
agent, the discrete-time observer dynamics is given by:

x̂j(tk+1) = x̂j(tk) + Âx̂j(tk) + B̂uj(tk)
+ H(yj(tk)− ŷj(tk)),

ŷj(tk) = Cx̂j(tk)
(9)

where H ∈ R2 is the observer gain matrix, for the leader
u0 = 0, and Â and B̂ are design choices.

Remark 3. It should be noted that since µ is a random
variable, one cannot directly use µAd and µBd(µ) in Eq.

(9) (instead, we use Â and B̂). Indeed, the next sampling
time at time tk is unknown. From Eq. (8), the control input
for each agent is updated regularly at each sampling time
except in the case of an intermittent sensor failure.

Using the ∆−derivative, system (9) becomes ∀j ∈
{0, · · · , N}, ∀t ∈ T̃

x̂∆
j =

1

µ
Âx̂j +

1

µ
B̂uj +

1

µ
H(yj − ŷj),

ŷj = Cx̂j

(10)

Let us define the tracking error e = (eT1 , . . . , e
T
N )T where

ei = xi − x0,

is the difference between the state of follower i and the
leader. The estimated tracking error is denoted ê =
(êT1 , . . . , ê

T
N )T where

êi = x̂i − x̂0,

and its dynamics, obtained using (10), can be written as:

ê∆ =
1

µ
(IN ⊗ Â)ê− 1

µ
(P ⊗ B̂K)ê+

1

µ
(IN ⊗HC)(e− ê),

(11)
where IN ∈ RN×N is the identity matrix.

The tracking error dynamics can be expressed as follows:

e∆ = (IN ⊗Ad)e− (P ⊗Bd(µ)K)ê. (12)

Let us denote the error

ε = e− ê.

Its ∆−derivative is given by

ε∆ =

[
(IN ⊗ (Ad −

1

µ
Â))− (P ⊗ (Bd(µ)−

1

µ
B̂)K)

]
e

+

[
(P ⊗ (Bd(µ)−

1

µ
B̂)K) + (IN ⊗

1

µ
Â)−

1

µ
(IN ⊗HC)

]
ε

(13)

In a compact form, the tracking error dynamics can be
expressed as: (

e
ε

)∆

= Λ(µ,K,H)

(
e
ε

)
, (14)

with Λ(µ,K,H) obtained from (12)-(13).

To design the observer-based output feedback consensus
protocol for double-integrator MASs under intermittent
sampled position measurements, the following corollary to

Theorem 1, which guarantees the exponential mean-square
stability of the zero solution of (14), is introduced.

Corollary 1. Let K ∈ R1×2 and H ∈ R2 be fixed and let
Λ(µ,K,H) be as in (14). Let us introduce the operators:
LΛ(K,H) : H(2N) → H(2N) where

LΛ(K,H)(X) = (I + Λ(K,H))TX(I + Λ(K,H)),

with Λ(K,H) = E[µΛ(µ,K,H)] and Π(K,H)(X) =

E[(µΛ(µ,K,H) − Λ(K,H))TX(µΛ(µ,K,H) − Λ(K,H))].
The zero solution of (14) is globally exponentially mean-
square stable if and only if all eigenvalues of Λ(K,H) + I
are in the open unit disk and

r

((
I − LΛ(K,H)

)−1

Π(K,H)

)
< 1. (15)

where I : H(2N) → H(2N) is the identity operator and r
is the spectral radius.

Proof: The proof follows from the fact that the error
dynamics, for a fixed pair of gain matrices (K,H) are of
the form (3). Therefore Theorem 1, is applicable. �

Remark 4. Since T̃ is a discrete stochastic time scale, the
design of an observer-based output feedback controller is
not an easy task. Furthermore, it is clear that matrix Λ is
not block triangular, making the decoupling between the
observer and controller parts not possible. Nevertheless,
by choosing Â = E[µAd] and B̂ = E[µBd(µ)], we see
Λ(µ,K,H) is a block triangular matrix on average, i.e.

Λ(K,H) =

(
(IN ⊗ Â)− (P ⊗ B̂K) (P ⊗ B̂K)

0 IN ⊗ (Â−HC)

)
.

With these choices of Â and B̂, due to the block triangular
structure of Λ(K,H), the condition that all eigenvalues of
Λ(K,H) + I are in the open unit disk is equivalent to

all the eigenvalues of I2N + (IN ⊗ Â) − (P ⊗ B̂K) and

I2N + IN ⊗ (Â −HC) are in the open unit disk. Thus, a
practitioner could design the controller gain and observer
gain separately, provided controllability and observability
criteria are satisfied, then check if (15) also held for
the choice of (K,H). If the condition in (15) failed, the
practitioner could design a new pair of gain matrices.

5. EXAMPLE

In this example, let us consider a multi-agent system which
consists in two followers, denoted as 1 and 2, and one leader
denoted as 0. The communication topology Ḡ among all
the agents, defined by:

P =

(
1 0
−1 1

)
.

is fixed and has a directed spanning tree. It is
considered that sampled information is exchanged between
neighboring agents regularly at each sampling time (i.e.
the time step h is 0.1s) except in the presence of an
interruption of measurement. Hence, the time domain is
modeled as an i.i.d. discrete stochastic time scale obtained
using the probability mass function (6) with h = 0.1,
p = 5/6 and γ(µ) the discrete uniform distribution over
the values {0.2, 0.3, . . . , 1.1}.
The problem under investigation is to design an observer-
based output feedback controller to solve the leader-

follower consensus problem for system (7) evolving on the

i.i.d. discrete stochastic time scale T̃ due to intermittent
sampled position measurements.

We find that for the choices K = (1.6, 1.6), H =

(1.6, 0.6)T , Â = E[µAd], and B̂ = E[µBd(µ)], the
following inequalities are satisfied:

r(I2N + IN ⊗ (Â−HC)) < 1

r(I2N + (IN ⊗ Â)− (P ⊗ B̂K)) < 1

r

((
I − LΛ(H,K)

)−1

Π(K,H)

)
< 1.

Therefore, by Corollary 1 and Remark 4, we conclude
that the error dynamics of system (14) are mean-
square exponentially stable, and therefore mean-square
exponential consensus is achieved. We illustrate this
conclusion with simulation results.

In the following, the initial configuration of the agents is
x0(0) = (0, 1)T , x1(0) = (5, 2)T and x2(0) = (−2,−2)T .
The initial state estimations are given by x̂0(0) = (1, 2),
x̂1(0) = (4, 1) and x̂2(0) = (−1,−0.5). In all of the figures
that follow, real time is on the x-axis. One can see the
interruption in timing via the horizontal nonuniformity
between plot points. Figure 1 depicts the trajectories of
the leader x0 = (x0,1, x0,2)

T and of the two followers
xi = (xi,1, xi,2)

T , i = 1, 2. Figure 2 shows the estimated
state and actual state of follower 2 versus time. A similar
figure could be made for follower 1.

It is worth noting that the estimated state is equal to
the actual state on average, but the variance around the
mean will not converge to zero, but instead to some finite
value. When estimating the velocity, the observer uses the
position of the agent (since C has a zero in the second entry
corresponding to velocity), but the observer has no sense
of how much time has passed since the last communication
instance. The variance of the position residuals is smaller
due to the measured position being available, but the same
argument about the time step not being available leads to
some variance. Therefore, the estimated state forms a zero
mean, (in general) non-Gaussian noise about the true state
due to the timing variability. We show a histogram of the
difference between the true state and the estimated state
over 2000 seconds in Figure 3.

In spite of intermittent sampled position measurements,
it is worth noting that the consensus is achieved using
the proposed observer-based feedback control since the
tracking errors converge to zero.

6. CONCLUSION

This paper has introduced an observer-based output
feedback controller to investigate the leader-follower
consensus problem for double-integrator MASs using
sampled intermittent position data information. Using the
stochastic time scale theory, some necessary and sufficient
conditions to design the observer and controller gains
have been derived to guarantee mean-square exponential
consensus. Some simulation results have illustrated the
effectiveness of the proposed scheme.

(a)

(b)

Fig. 1. Trajectories of the leader x0 = (x0,1, x0,2)
T and

of the two followers xi = (xi,1, xi,2)
T , i = 1, 2. (a)

Evolution of the position for each agent. (b) Evolution
of the velocity for each agent.

(a)

(b)

Fig. 2. The estimated states and the actual states of
follower 2 versus time. (a) The estimated position
and actual position of follower 2. (b) The estimated
velocity and actual velocity of follower 2.
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follower consensus problem for system (7) evolving on the

i.i.d. discrete stochastic time scale T̃ due to intermittent
sampled position measurements.

We find that for the choices K = (1.6, 1.6), H =

(1.6, 0.6)T , Â = E[µAd], and B̂ = E[µBd(µ)], the
following inequalities are satisfied:

r(I2N + IN ⊗ (Â−HC)) < 1

r(I2N + (IN ⊗ Â)− (P ⊗ B̂K)) < 1

r

((
I − LΛ(H,K)

)−1

Π(K,H)

)
< 1.

Therefore, by Corollary 1 and Remark 4, we conclude
that the error dynamics of system (14) are mean-
square exponentially stable, and therefore mean-square
exponential consensus is achieved. We illustrate this
conclusion with simulation results.

In the following, the initial configuration of the agents is
x0(0) = (0, 1)T , x1(0) = (5, 2)T and x2(0) = (−2,−2)T .
The initial state estimations are given by x̂0(0) = (1, 2),
x̂1(0) = (4, 1) and x̂2(0) = (−1,−0.5). In all of the figures
that follow, real time is on the x-axis. One can see the
interruption in timing via the horizontal nonuniformity
between plot points. Figure 1 depicts the trajectories of
the leader x0 = (x0,1, x0,2)

T and of the two followers
xi = (xi,1, xi,2)

T , i = 1, 2. Figure 2 shows the estimated
state and actual state of follower 2 versus time. A similar
figure could be made for follower 1.

It is worth noting that the estimated state is equal to
the actual state on average, but the variance around the
mean will not converge to zero, but instead to some finite
value. When estimating the velocity, the observer uses the
position of the agent (since C has a zero in the second entry
corresponding to velocity), but the observer has no sense
of how much time has passed since the last communication
instance. The variance of the position residuals is smaller
due to the measured position being available, but the same
argument about the time step not being available leads to
some variance. Therefore, the estimated state forms a zero
mean, (in general) non-Gaussian noise about the true state
due to the timing variability. We show a histogram of the
difference between the true state and the estimated state
over 2000 seconds in Figure 3.

In spite of intermittent sampled position measurements,
it is worth noting that the consensus is achieved using
the proposed observer-based feedback control since the
tracking errors converge to zero.

6. CONCLUSION

This paper has introduced an observer-based output
feedback controller to investigate the leader-follower
consensus problem for double-integrator MASs using
sampled intermittent position data information. Using the
stochastic time scale theory, some necessary and sufficient
conditions to design the observer and controller gains
have been derived to guarantee mean-square exponential
consensus. Some simulation results have illustrated the
effectiveness of the proposed scheme.

(a)

(b)

Fig. 1. Trajectories of the leader x0 = (x0,1, x0,2)
T and

of the two followers xi = (xi,1, xi,2)
T , i = 1, 2. (a)

Evolution of the position for each agent. (b) Evolution
of the velocity for each agent.

(a)

(b)

Fig. 2. The estimated states and the actual states of
follower 2 versus time. (a) The estimated position
and actual position of follower 2. (b) The estimated
velocity and actual velocity of follower 2.
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