
HAL Id: hal-03709704
https://uphf.hal.science/hal-03709704v1

Submitted on 30 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Securing Workflows Using Microservices and
Metagraphs

Loïc Miller, Pascal Mérindol, Antoine Gallais, Cristel Pelsser

To cite this version:
Loïc Miller, Pascal Mérindol, Antoine Gallais, Cristel Pelsser. Securing Workflows Using Microservices
and Metagraphs. Electronics, 2021, 10 (24), pp.3087. �10.3390/electronics10243087�. �hal-03709704�

https://uphf.hal.science/hal-03709704v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


electronics

Article

Securing Workflows Using Microservices and Metagraphs †

Loïc Miller 1,* , Pascal Mérindol 1, Antoine Gallais 2 and Cristel Pelsser 1

����������
�������

Citation: Miller, L.; Mérindol, P.;

Gallais, A.; Pelsser, C. Securing

Workflows Using Microservices and

Metagraphs. Electronics 2021, 10, 3087.

https://doi.org/10.3390/

electronics10243087

Academic Editor: Vijayakumar

Varadarajan

Received: 14 November 2021

Accepted: 8 December 2021

Published: 11 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 ICube, University of Strasbourg, 67081 Strasbourg, France; merindol@unistra.fr (P.M.);
pelsser@unistra.fr (C.P.)

2 LAMIH, CNRS, UMR 8201, Université Polytechnique Hauts-de-France, INSA Hauts-de-France,
59313 Valenciennes, France; antoine.gallais@uphf.fr

* Correspondence: loicmiller@unistra.fr
† This paper is an extended version of our paper published in IEEE 22nd International Conference on

High-Performance Switching and Routing (HPSR 2021), Paris, France, 7–10 June 2021.

Abstract: Companies such as Netflix increasingly use the cloud to deploy their business processes.
Those processes often involve partnerships with other companies, and can be modeled as workflows
where the owner of the data at risk interacts with contractors to realize a sequence of tasks on the data
to be secured. In this paper, we first show how those workflows can be deployed and enforced while
preventing data exposure. Second, this paper provides a global framework to enable the verification
of workflow policies. Following the principles of zero-trust, we develop an infrastructure using the
isolation provided by a microservice architecture to enforce owner policy. We implement a workflow
with our infrastructure in a publicly available proof of concept. This work allows us to verify that the
specified policy is correctly enforced by testing the deployment for policy violations, and find the
overhead cost of authorization to be reasonable for the benefits. In addition, this paper presents a
way to verify policies using a suite of tools transforming and checking policies as metagraphs. It is
evident from the results that our verification method is very efficient regarding the size of the policies.
Overall, this infrastructure and the mechanisms that verify the policy is correctly enforced, and then
correctly implemented, help us deploy workflows in the cloud securely.

Keywords: data leak; workflow; microservices; authorization; access control; policy verification;
metagraphs; yawl; rego

1. Introduction

Data leaks and breaches are increasingly happening. With more and more businesses
using public clouds to process data [1], and with these data being frequently moved around,
exposures are more likely to happen than ever. Those exposures are perceived as huge
losses of money for businesses such as the movie industry [2], and as a loss of user privacy
for applications dealing with user data [3].

To solve this issue, we aim to achieve a secure system enabling the exchange of data
between non-trusted agents in the context of workflows. To this end, we combine two of
our previous works [4,5] in this work. The first one describes an infrastructure to deploy a
workflow securely in the cloud using microservices and how to verify the implemented
policy is enforced, while the second details a way to verify the implementation of the policy
corresponds to its specification.

1.1. Basic Concepts

There has been a steady increase in the number of breaches reported over the past
eight years [6], 2019 being an all-time high with 5183 reported breaches as well as 7995
million records lost [6]. Malicious actors have been responsible for most incidents, but
accidental exposure of data on the Internet (e.g., misconfigured databases, backups, end
points, services) has put the most records at risk [6].

Electronics 2021, 10, 3087. https://doi.org/10.3390/electronics10243087 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4717-641X
https://doi.org/10.3390/electronics10243087
https://doi.org/10.3390/electronics10243087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10243087
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10243087?type=check_update&version=2


Electronics 2021, 10, 3087 2 of 25

Even though both data breaches and data leaks result in data being exposed to
unauthorized entities, the way these data are exposed is different. On one hand, data
breaches refer to the unauthorized access of data by exploiting flaws in the security of the
breached system. Data breaches can happen with data at rest [7] where attackers exploit a
flaw to gain access to the data, or in transport [8], where attackers exploit a vulnerability to
eavesdrop on traffic. On the other hand, data leaks refer to the exposure of data belonging
to an entity, due to the way these data are processed by this entity, by a mistake [9], or
caused by malicious behavior [10].

Preventing both forms of data exposure is a challenging problem to tackle, since an
exposure can occur in multiple circumstances, caused by hacking, misconfigured databases,
malicious insiders, etc. [3]. As attacks were generally assumed to come from a location
external to the system via north-south traffic, the traditional way to secure such a system
against those attacks was to protect it at the border via gateways, firewalls or programmable
switches [11]. The recent rise of microservices as a paradigm, and their increased use in
building large, cloud-based enterprise applications [12] has increased the attack surface,
meaning protecting the network border is no longer sufficient. To prevent data leaks, one
needs to consider attacks coming from inside the system (e.g., leaks stemming from the way
data are processed or caused by a malicious employee). The zero-trust security model [13],
where all traffic flows are required to be authenticated and authorized via fine-grained
policies, provides such protection.

As per the zero-trust model, preventing agents from exposing data requires an autho-
rization mechanism. Authorization is a key aspect of security, regulating the interactions
taking place in a given system. For example, Netflix will often interact with their partners
for some tasks, e.g., content ingestion [14,15]. Since the systems to be secured by autho-
rization can be highly complex, administrators often rely on policy-based management of
authorization. Policies define the desired behavior of a system from a high-level perspec-
tive. Hence, this form of management allows the separation of the problem of specification,
i.e., defining the desired system behavior, from the problem of implementation, i.e., the
enforcement of the desired system behavior.

Research on this topic mainly focuses on three areas: policy analysis, policy refine-
ment and policy verification. On the one hand, policy analysis deals with the fulfillment of
specific properties by a set of policies [16], e.g., detecting when two or more policies are
conflicting. On the other hand, policy refinement handles the translation from high-level
policies into low-level configurations [17].Depending on how this task is realized, the
translation can lead to incorrect and/or non-optimized policy implementations; it can
affect performance or even put the system at risk by introducing security flaws. According
to the Verizon Data Breach Investigations Report, errors were causal events in 22% of
data breaches [18]. As the risk of error increases when refinement is performed by hand,
automatic or semi-automatic assisting tools have emerged to help administrators better
translate their policies [19–21]. Lastly, policy verification is used to check whether the de-
ployment of policies actually meets their high-level specification. Policy verification plays
an important role since assisting tools are not free of errors, and deployment specificities
can lead the policy to become erroneous. An erroneous policy can lead attackers to view
files they were not authorized to see [22], access paid content free of charge [23] and even
changing access rights [24] or deleting content [25].

We aim to perform this policy verification on workflows. We define a workflow as a
sequence of tasks performed by a set of independent entities [26]. In practice, workflows
are immensely important since they model business processes and define their interac-
tions [27–29]. However, workflows can become complex and difficult to manage, especially
in the case of multi-party workflows [30], which makes the problem of access control even
more challenging. One of the most used languages to specify workflows is Yet Another
Workflow Language (YAWL) [31].



Electronics 2021, 10, 3087 3 of 25

1.2. Approach and Contributions

The data of the workflow should be secured at rest and in transport and cannot be
exposed by any agent in both cases. To meet our requirements for zero-trust and prevent data
leaks during the execution of workflows, we rely on a secured microservice architecture as
well as a system to verify policies.

The microservice architecture allows us to design a system preventing data exposures
that is simple, modular and scalable, thanks to its loosely coupled services. This is impor-
tant when considering security mechanisms become challenging to configure, manage,
scale and monitor when combined, with many actors using different IT environments.

We isolate in containers the environment in which the agents execute their tasks. Each
container is secured thanks to a proxy enforcing access control. An orchestrator, a service
mesh and policy engines are deployed to enforce the workflow along with the access
policies of the owner.

We of course need to make sure those deployed policies are reliable. Therefore, this
paper also presents a policy verification method, i.e., we check whether the deployment of
policies actually meets their high-level specification.

We propose to model policies with a generic yet rich structure: metagraphs. We use
its formal foundations to verify whether the actual deployment of a policy (i.e., its imple-
mentation) matches its initial specification.

We rely on this structure since, by design, it provides means to locate conflicts and
avoid redundancy [32]. Metagraphs provide more accurate verification process than with
other structures such as usual graphs. They belong to the rare appropriate structures able
to naturally model access control policies. Their formal foundations enable us to perform
fine-grained verification on possibly large policies. Transformations such as projections or
context metagraphs [33] can be used to help with the visualization of very large policies.

This work is merges and extends two of our previous papers [4,5] published in the
IEEE 22nd International Conference on High-Performance Switching and Routing (HPSR
2021) conference. The contributions of our paper are as follows:

1. First, we develop an infrastructure using the isolation provided by microservices to
enforce policy;

2. We implement a workflow with our infrastructure in a publicly available proof of
concept and verify that our implementation of the specified policy is correctly enforced
by testing the deployment for access control violations;

3. We measure performance of our infrastructure with policy engines and find the
overhead cost of authorization to be reasonable for the benefits;

4. Second, we rely on metagraphs to perform the verification of access control policies
(to the best of our knowledge we are the first to do so).We argue they represent one of
the most appropriate form of policy modeling enabling refinement and verification to
finely pinpoint implementation errors;

5. We then propose a suite of translation tools enabling policy verification; More specif-
ically, we introduce how to perform such verification on a workflow-like policy
specification. We rely on a policy implementation based on Rego, a high-level declar-
ative language built for expressing complex policies;

6. Finally, we conduct a thorough performance evaluation of this second contribution.
We verify that deployed policies match their specification in a very reasonable time,
even for large workflows with a substantial number of rules.

Considering the problem at hand (Section 3), we specify our threat and security models.
We describe our solution (Section 4) and its companion proof of concept (Section 5), then
evaluate the authorization overhead (Section 6). For our second part on policy verification,
we provide some background on metagraphs and describe our verification procedure
(Section 7), then evaluate its performance (Section 8). We finally review related works
(Section 2) and conclude (Section 9).



Electronics 2021, 10, 3087 4 of 25

2. Related Works

Existing works provide guidance on overall security requirements and strategies for
microservices [34], as well as guidance on more specific microservices components such as
service mesh [12,35] or containers [36,37]. Chandramouli [34] provides guidance on security
strategies for implementing core features of microservices, as well as countermeasures for
microservices-specific threats. We follow the guidelines and recommendations presented in
these works. Contrary to those works, we propose a complete infrastructure, accompanied
by a real-world deployment, as well as both a security and a performance evaluation of
this deployment.

Weever et al. [38] investigate operational control requirements for zero-trust net-
work security, and then implement zero-trust security in a microservice environment to
protect and regulate traffic between microservices. They focus on implementing deep
visibility in the service mesh, and do not propose a security or a performance evaluation.
Hussain et al. [39] propose and implement a security framework for the creation of a secure
API service mesh using Istio and Kubernetes. They then use a machine learning-based
model to automatically associate new APIs to already existing categories of service mesh.
Contrary to our work, they use a central enterprise authorization server, in opposition to
our policy sidecars. Zaheer et al. [40] propose eZTrust, a policy-driven parameterization
access control system for containerized microservices environments. They leverage eBPF
to apply per-packet tagging depending on the security context, and then use those tags to
enforce policy, in opposition to our enforcement of policy which relies on policy sidecars
local to the services.

On the side of formal analysis of data leaks in workflows, Accorsi and Wonnemann [41]
proposed a framework for the automated detection of leaks based on static flow analysis
by transforming workflows into Petri nets. Some papers propose data leak protection, by
screening data and comparing fingerprints [42–48]. Segarra et al. [49] propose an architecture
to securely stream medical data using Trusted Execution Environments, while Zuo et al.
investigate data leakage in mobile applications interaction with the cloud [50].

There exist several pieces of works on policy analysis, refinement and verification in
the literature. Policy analysis mainly deals with policy evaluation and anomaly analysis:
checking for errors such as incorrect policy specifications, conflicts and sub-optimizations
affecting either a single policy or a set of policies [16] being the primary research topic.
Works in this area use different techniques to achieve this goal, such as model check-
ing [51,52], binary decision diagrams [53], graph theory [54], Deterministic Finite State
Automata (DFSA) [55], First Order Logic (FOL) [56], geometrical models [57], answer set
programming [58], petri nets [59] and metagraphs [32].

Policy evaluation instead deals with checking whether a request is satisfied by a set
of policies. It is typically used to verify the effective impact of modifying a policy. Works
that deal with analyzing the impact of changes in a policy usually model those policies and
then analyze the obtained representation for effective impact [60,61].

Policy verification, the subject of this paper, deals with checking whether a policy is
correctly enforced in a system. There exists only a few works on policy verification [62,63],
when compared to the large body of work dealing with policy analysis, and none of them
uses metagraphs. On the one hand, Hughes and Bultan [62] as well as Bera et al. [63] pro-
pose automatic verification of access control policies against a set of properties. Verification
is achieved by translating the properties into a Boolean satisfiability problem and using a
SAT solver, whereas we use metagraphs which come with a useful visual representation of
the policies.

On the other hand, even though metagraphs have emerged as one of the most suited
tool for representing and reasoning about policies, they are still underused with only a
few existing works in the literature [32,33,64–66]. Basu and Blanning [33] compiled all
the research on metagraphs up until 2007 in a book, which is the reference for general
metagraph theory and applications.



Electronics 2021, 10, 3087 5 of 25

Ranathunga et al. [64] defined a toolkit in python to manipulate metagraphs.
Hamza et al. [65,66] used metagraphs to model policies in IoT devices to generate and
validate Manufacture Usage Descriptions (MUD) profiles—it can be used to define the ac-
cess control model and network functionality these devices need to properly function.They
also check compliance of those MUD profiles with different levels of security policies,
to determine where those devices are safe to be deployed. Closer to our contribution,
Ranathunga et al. [32] use metagraphs to model network policies for distributed fire-
walls. In particular, they use specific metagraph properties to detect redundancies and
conflicts in those policies. Contrary to our work, they do not verify deployed policies
against specifications.

3. Threat and Security Model

We define a workflow as a sequence of tasks to be performed by a set of independent
actors. The owner of the data (i.e., the instigator of the workflow) interacts with contractors
to realize such a sequence. Both the owner and the contractor have agents processing the
data, where agents can represent an employee or an automatic service.

Let us consider a simple example of workflow (Figure 1), where an owner in the
post-production stage of making a movie employs other companies to edit the video and
audio components. This example is inspired by the concepts presented by Byers et al. [2],
but simplified for the sake of the example. The owner (O) first sends its data to the company
responsible for special effects (C1_x). C1_x applies special effects to the movie sequences the
owner sent him, and then sends the result to the company responsible for coloring (C2) as
well as to another for sound mastering (C3). C2 then ships its result to the agent in charge
of High Dynamic Range (HDR) (C3) and sound mastering (C4). Finally, both C3 and C4
sends their output back to the owner.

Movie

O

VFX

C1

Color

C2

Sound
Master 

C4

HDR

C3

Figure 1. Movie workflow example. Arrows model the specified workflow, and thus represent
the communication flow of our example. The owner (O) sends its data to the first contractor (C1),
for special effects processing. C1 then sends the modified data along the workflow, for color (C2),
HDR (C3) and sound (C4) processing. The resulting data are then sent back to the owner.

We consider a threat model from the point of view of each actor. The owner wants to
avoid the leakage of the data sent to the involved contractors. The threat here is then that
an agent leaks the critical data to an unauthorized party (or that the data are accessed by
an adversary). On the other hand, a contractor does not want the other actors, including
the owner, to learn about their business intelligence.

3.1. Trust Model—Actors and Environment

From the point of view of the data owner, trusting the contractors is one thing, trusting
its agents another. In other words, if the owner trusts the organization of the contractor to
not intently bypass our system, controlling the actions of the contractor’s agents is then
possible for both the owner and the contractors. If one does not trust the contractors to
deploy the infrastructure they are required to deploy, there is no easy way to verify that
the data are actually sent to the secure environment we designed (Section 4), therefore
removing any guarantee we might have concerning data leaks.

In contrast, looking at a finer granularity, actors do not need to trust their agents
and the ones of the other actors. Even though agents are deterred from engaging in



Electronics 2021, 10, 3087 6 of 25

malicious activities, due to the nature of their relationship with their companies (internal
rules, non-disclosure agreements, ...), they can still put data and/or business intelligence
at risk through accidental exposure or malicious behavior. Actors are thus assumed to
be malicious. Our solution controls those agents to prevent owner data and business
intelligence leaks. This is consistent with our need to trust the contractors, since business
to business contracts have the same deterrents, but with much higher stakes at play.

From the point of view of a contractor, we have the same trust issues as the owner.
Other actors, including the owner, might try to reverse engineer the business intelligence
of the contractor. This reverse-engineering process requires a lot more effort than simply
having access to the data of the owner, and might prove to be very hard or even impossible
to do in some cases. This can happen in very specific cases, such as when a contractor
receives its input(s) and gives its output(s) to the same actor. As data are encrypted in
transport, only the two ends of a communication see the data. A solution would be to insert
the owner between contractors such as to limit their learning of the workflow and trust the
owner not to reverse engineer the actions of its contractors. In the same way the owner
needs to trust that contractors do not intently bypass our system, the contractors need to
trust that actors sending them data do not tamper with it. Like the owner, contractors do
not trust the agents.

Finally, both the owner and the contractors need to trust the owners of the environ-
ments involved in the workflow. Although the environment an actor is using can be owned
by this actor, meaning the added trust requirement is the same as trusting the actor, some
actors can use a third-party environment to fulfill their task(s) (e.g., a cloud provider). Since
this third-party provides (part of) the environment the workflow will be deployed on and
has admin rights to the machines supporting the workloads, it can try to gain access to
the data of the owners or the business intelligence of the contractors. We would need to
enhance our solution with Trusted Execution Environments (TEEs) to fully remove the
need for trust in those third parties. With the proposed infrastructure, one needs to trust
those potential third parties. As such, actors and environment providers are considered
honest but curious.

To summarize, from the point of view of the owner or a contractor, we trust everything
but the agents. Actors are assumed to be honest but curious, while agents are assumed to
be malicious.

3.2. Attacker Model—External Attackers and Malicious Agents

Taking into account the assets to protect and our trust model, we consider three types
of attackers in our model.

• External attacker: External to the workflow and the location of the deployed infrastruc-
ture. Such attackers try to gain access to the data or the business intelligence from
the outside.

• Co-located attacker: External to the workflow, but co-located at the deployment (e.g.,
an attacker located in one of the third-party clouds). This co-located position opens
more exploit options.

• Malicious agent: Internal to the workflow, this attacker tries to leak the data outside.

Despite the fact our model already covers most cases, it does not deal with the full
range of possible attacks. Fully protecting against some attacks (e.g., from a contractor
or a third-party cloud provider) would make the system less convenient and usable for
contractors or the owner. Protection from leaks resulting from physical attacks such as
when an employee takes a picture of his screen are not considered.

4. Infrastructure and Proof of Concept

We now present the infrastructure we propose for protecting a workflow execution
from the threats expressed in Section 3. As we need a way to prevent data leaks, we need to
control the communications an agent can engage in. To achieve this, we need to control the
environments the agents will be using, to make sure that all the actions of an agent follow



Electronics 2021, 10, 3087 7 of 25

a policy enforced by the owner. We opted to do this using the microservice architecture, for
the benefits granted by the components of the infrastructure listed below. Moreover, they
are already commonly deployed to provide many services such as automatic scaling and
isolation.

Overall Description of the Infrastructure

In this infrastructure, agents of our workflow are mapped to containers, which are
then used in conjunction with an orchestrator, a service mesh and policy engines to enforce
the policy of the owner.

Figure 2 shows the workflow we defined in Figure 1, with each actor having its own
deployment space represented by the cloud surrounding the boxes which represent the
agents of those actors (e.g., the C1_1 box represents an agent of contractor C1). The access
policies of a service are pushed in the policy sidecar associated with the service.

Movie

O

VFX_2

Proxy

C1_1

Policy

HTTP

HTTP
VFX_1

Proxy

C1_0

Policy

HTTP

HTTP

VFX_3

Proxy

C1_2

Policy

HTTP

HTTP

m
TLS

mTLS

mTLS

m
TLS

(2)

(3)

(4)

(5)

mTLS
(1)

HDR

C3

Color

C2

Sound
Master

C4

mTLS
(6)

mTLS
(7)

m
TLS
(8)

Figure 2. Secure infrastructure. Each box represents an agent. It is a pod with the appropriate containers. The container of
the color of the actor represents the service. Purple containers represent the proxies of the service mesh, and blue containers
represent the policy sidecars. The arrows stipulate whether the communications are secure (mTLS) or not (HTTP).

Figure 2 also illustrates how we use the elements of the microservice architecture.
Each agent is a pod, containing the service (i.e., the environment the agent will be using),
a proxy and a policy sidecar. The proxy sidecar will intercept all traffic coming from and
going to its respective service. The proxy will then check thanks to the policy sidecar if
the request is authorized or not. If the request is authorized, it is forwarded accordingly,
and the request is rejected otherwise. Proxies are configured by the service mesh controller
(Figure 3), providing them with identities and key pairs, as well as routing information for
them to initiate secure communications with other proxies in the mesh. Policy is pulled
periodically by the policy sidecars from a policy store, which allows for policy changes.
Since the service mesh controller and the policy store are under the control of the owner,
he is in control of the system. Thus, the owner specifies the policy to be applied to enforce
the desired workflow, preventing data from leaking outside.

The data processed by the pods is stored on mounted Persistent Volumes (PVs), which
are encrypted with a key located in a key-value store of the orchestrator, providing us
with data security at rest. We generate a key to encrypt each PV required by needs of the
workflow. Since the keys are all stored in the same key-value store, this does not really
mitigate risks against a technically skilled attacker gaining access to the key-value store,
but it can help to protect some of the data in case the attacker only gains access to a subset
of the keys through other means. Since the keys are stored in the master components of the
orchestrator, they are under the control of the owner. To enforce the workflow and make
sure the agents cannot bypass it via the PVs, each agent must have its own personal PV.



Electronics 2021, 10, 3087 8 of 25

Pods can also communicate according to the specified workflow and policy via mTLS,
providing us with data security in transport as indicated by the communications between
the pods in Figure 2. Communications inside a pod are not encrypted, but the isolation
layers protect the data against eavesdroppers.

VFX_2

Proxy

C1_1

Policy

HTTP

HTTPVFX_1

Proxy

C1_0

Policy

HTTP

HTTP
VFX_3

Proxy

C1_2

Policy

HTTP

HTTP

Policy Store

Service Mesh
Controller

Movie

Proxy

O

Policy

HTTP

HTTP

Figure 3. Representative subset of the secure infrastructure control plane (contractors C2 through
C4 are not represented). Proxies are configured by the service mesh controller, providing them with
identities and key pairs, as well as routing information for them to initiate secure communications
with other proxies in the mesh. Policy changes are enabled with periodical pull on the policy sidecars
(whose input comes from a policy store).

Once a service has completed all the tasks he was assigned to do, the associated pod
is destroyed to make sure data cannot be leaked from this service past this point in time.
To provide data security in transport, services in the service mesh are provided with an
identity in the form of a certificate, which is associated with a key pair. To make sure those
are safe to use, and that no attacker gained access to the keys or tampered with them before
they reach the appropriate service, we need to verify the key distribution process is secure.
In the case of the service mesh, this is done automatically for us.

Thanks to this infrastructure, communications can be constrained to follow a policy,
giving us a streamlined way to prevent data leaks. We show how a simple policy to prevent
data leaks can be defined.

5. Proof of Concept

We realized a proof of concept, by implementing the infrastructure described in
Section 4. We reproduce the workflow of Figure 2, with services of the workflow receiving
and sending arbitrary data to represent the data of the owner. We use Docker [67] for
our containers, Kubernetes [68] for our orchestration layer, Istio [69] as our service mesh,
using Envoy [70] for the proxy sidecars and Open Policy Agent (OPA) [71] for the policy
sidecars. We also use Kubernetes to provide the services with encrypted volumes. This
infrastructure was deployed on Google Cloud Platform (GCP), using one cluster for each
actor of the workflow, for a total of five clusters. Each cluster runs one n1-standard-2 node
(2 vCPUs, 7.5 GB of memory), on version 1.14.10-gke.36, except the cluster of the owner
which runs two of them, since running the control plane requires additional resources. The
clusters for the owner, color and VFX are in us-central1-f whereas the clusters for HDR and
sound are in us-west2-b.

The workflow we want to enforce is shown in Table 1, where each row represents the
source of a request, and each column a destination. The agents can also send GET requests,
but they are all denied by the policy.



Electronics 2021, 10, 3087 9 of 25

The complete data, code as well as guidance to realize this Proof of Concept are
publicly available (See github.com/loicmiller/secure-workflow, accessed on 10 Decem-
ber 2021).

We also developed a test framework to check that:

• Traffic is either encrypted or protected inside a pod by the isolation provided by
the pods;

• The policy, allowing or denying communications between services, is correctly enforced.

Table 1. Proof of Concept policy.

Source
Destination

Owner V FX1 V FX2 V FX3 Color Sound HDR

Owner - POST
V FX1 - POST POST
V FX2 - POST
V FX3 - POST
Color - POST
Sound POST -
HDR POST -

To do so, we capture traffic on every network interface in the service mesh and perform
each possible communication. In the general case, considering we have N services and
M types of request, we obtain the number of possible communications with the formula:
N(N − 1)M. Since we capture on each interface, and services have a loopback as well as
an external interface, we obtain the total number of required captures: N(N − 1)M(2N) =
2(N3 − N2)M. The number of required captures thus grows cubically with the number of
services and linearly with the number of requests.

Considering our previous example in Section 5, we have seven services, two possible
requests (GET and POST), which gives us a total of 1176 captures. Captures are obtained
from a tcpdump container added to the service pods as a sidecar. Since containers in the
same pod share the same network namespace, capturing traffic from the tcpdump container
on either the loopback or the external interface allows us to see traffic from the other
containers in the pod. Figure 4 shows the path a communication takes inside the service
mesh, as well as whether traffic is encrypted or not. The request is initiated by service A,
and intercepted by its associated proxy via the loopback interface. The proxy will then
check thanks to the policy sidecar if the request is authorized or not. If the request is
authorized, it is forwarded accordingly. The request is rejected otherwise. In the case where
the request is authorized, it is forwarded to the proxy of service B using mTLS. There, the
proxy forwards the request to service B, which replies by going through the same steps as
earlier. Traffic going to/coming from the loopback should be unencrypted, whereas traffic
going to/coming from the external interface should be encrypted. Our captures show that
this is indeed the case. Traffic does not need to be encrypted on the loopbacks, as all the
elements (i.e., the service and its sidecars) that have access to this loopback are in the same
trust zone. The layers of isolation provided by the pods protect the loopback traffic from
being seen by unauthorized entities.

github.com/loicmiller/secure-workflow


Electronics 2021, 10, 3087 10 of 25

Service A

Proxy

Source

Policy

HTTP

lo

eth0

Request
Response

Service C

Proxy

Bystander

Policy

HTTP

HTTP

lo

eth0

Service B

Proxy

Destination

Policy

HTTP

lo

eth0

Figure 4. Detailed view of pods and the communication flow. Traffic is unencrypted on the loopbacks,
but encrypted on the external interfaces.

Obviously, pods in the service mesh have one of three roles during a communication.
Either they are the source of the communication, the destination of the communication,
or simply a bystander that is not involved in the communication. This is important, because
the checks we need to perform depend on where traffic was captured:

• Source/Destination loopback: We need to verify that a communication between the
source and the destination is occurring (i.e., correct IP addresses and ports). We need
to verify that the request in the capture corresponds to the request we are testing for
(GET or POST). The response needs to be in accordance with the policy: in this case,
‘403 Forbidden’ if the policy was ‘deny’ and ‘200 OK’ (GET) or ‘201 OK’ (POST) if the
policy was ‘allow’.

• Source/Destination external interface: We need to verify that a communication be-
tween the source and the destination is occurring (correct IP addresses and ports).
We need to verify that the traffic is encrypted by mTLS, and not passed in clear text.

• Bystander loopback and external interface: We need to verify that no communication
between the source and the destination is occurring, whether encrypted or unencrypted.

We built a tool that automatically extracts the authorization policies from the OPA
policy configuration, generates and then tests an access control matrix. For each possible
communication in the service mesh, our tool loads all the captures relevant to this commu-
nication, identifies them to see what we should verify in each capture, and then proceeds
to check if captures are in accordance with the criteria above. It is then easy to evaluate
whether the system is compliant with the overall policy. The complete code for the test
framework is publicly available (See github.com/loicmiller/secure-workflow, accessed on
10 December 2021).

6. The Overhead of Security

In this section, we analyze the performance overhead added by the policy sidecar
enforcing security. We measure the pod startup time and the request duration (between
each couple of connected pods).

Startup time

we first evaluate the impact of having an additional container for OPA on the startup
time of pods. An independent-samples t-test was conducted to compare startup times in a
deployment of our PoC with or without OPA. We gathered 130 observations per pod and
per deployment (N = 1820 in total).

Figure 5 allows measurement of the cost on the initial deployment by comparing the
distribution of startup times (with or without OPA deployed). The group with the OPA
sidecar exhibits significantly higher startup times compared to the group without the OPA
sidecar, t(1818) = 43.19, p < 0.001. Pods with OPA have a substantial increase in startup
time of almost two seconds on average, i.e., 32.72% of the startup time. More in details,
the effect size for this analysis, d = 1.985, was found to exceed Cohen’s convention for a

github.com/loicmiller/secure-workflow


Electronics 2021, 10, 3087 11 of 25

large effect (d = 0.80). Running a post hoc power analysis also reveals a high statistical power,
1− β > 0.999.

4 5 6 7 8 9 10 11 12 14
Startup time (s)

0

50

100

150

200

250

300

350

N
u
m

b
e
r 

o
f 

o
b
s
e
rv

a
ti

o
n
s

Figure 5. Distribution of startup time in deployments with/without OPA.

Request time

To test whether the policy is scalable for more complex workflows, we measure
the influence of policy size on communications. A one-way between subjects ANOVA was
conducted for each type of communication (intra/inter-region) to compare the effect of
policy size on request duration in five increasing orders of policy size: no opa, all allow,
minimal, +100 (rules) and +1000 (rules).

The no opa policy deployment corresponds to having no OPA container at all. The all
allow policy deployment corresponds to having no rules and allowing all communications
by default. The minimal policy deployment corresponds to having the default minimal
number of rules to enforce the workflow of the PoC. The +100 and +1000 correspond to
the minimal policy being inflated respectively with 100 additional rules (+147%) and 1000
additional rules (+1470%), with additional rules being obligatorily evaluated by OPA.

For each ANOVA, we gathered 40 observations per authorized communication per
level of policy (N = 1600 in total). Figure 6 shows the distribution of request duration
for each policy size. For intra-region communications, there is a significant difference
in request duration among the five scenarios of policy deployments, F(4, 795) = 364.05,
p < 0.001, η2

p = 0.65. For inter-region communications there also exists a significant
difference (in request duration) among the five scenarios of policy deployments, albeit with
a lesser effect: F(4, 795) = 15.23, p < 0.001, η2

p = 0.07. See https://github.com/loicmiller/
secure-workflow, accessed on 10 December 2021, for full data, code and statistical analysis
in the form of jupyter notebooks.

no OPA all allow minimal +100 +1000
0

20

40

60

80

100

120

R
e
q
u
e
s
t 

d
u
ra

ti
o
n
 (

m
s
)

Figure 6. Spread of request duration in intra and inter-region communications by policy size.

Although our results suggest that a higher policy size increases request duration, it
should be noted that this size should be strongly increased to observe an effect. This effect

https://github.com/loicmiller/secure-workflow
https://github.com/loicmiller/secure-workflow


Electronics 2021, 10, 3087 12 of 25

is minor in inter-region communications. In summary, the added security provided by the
workflow enforcement costs pods two seconds of startup time on average, and either 7%
or 65% of the variance in request duration.

7. Verify the Deployment of the Access Control Policy Using Metagraphs

Having described our underlying technical infrastructure, we now tackle the issue of
checking whether the deployment of policies actually meets their high-level specification.
For this purpose, we rely on metagraphs that efficiently and finely model access control
policies. As an added benefit, metagraphs can be used to detect redundancies and solve
conflicts in such policies. We first provide a bit of background on metagraphs, which enable
us to perform our fine-grained verification.

7.1. Background: An Expressive Model

A metagraph is a generalized graph theoretic structure such as directed hypergraphs,
which is defined as a collection of directed set-to-set mappings. Each set (containing subsets
or elements) in the metagraph is a vertex, and directed edges represent the relationship
between sets. More formally, a metagraph can be defined as follows:

Definition 1 (Metagraph). A metagraph S = 〈X, E〉 is a graphical construct specified by
a generating set X and a set of edges E defined on the generating set. A generating set is a
set of elements X = {x1, x2, ..., xn}, which represent variables of interest. An edge e is a pair
e = 〈Ve, We〉 ∈ E consisting of two sets, an invertex Ve ⊂ X and an outvertex We ⊂ X.

Figure 7 illustrates a conditional metagraph. Conditional metagraphs are metagraphs
augmented by propositions, i.e., statements that can either be true or false. A proposition
attached to an edge must be true for the edge to be used in a path. Each edge may contain
zero or more propositions and each proposition may be used in multiple edges. Overall,
Figure 7 represents the necessary tasks for employees to perform a bank transfer. Edges
(e1, e2, e3) relate sets of employees (u1, u2) and tasks (create_ f orm, f ill_ f orm, review_ f orm,
trans f er_money). They contain an arbitrary number of propositions, e.g., tenure > 2 for
e1. Using an edge depends on the evaluation of its propositions, e.g., both employees
can perform the operations create_ f orm and f ill_ f orm via e1 provided they have more
than two years of experience. In Figure 8, we model the workflow of Figure 1 with added
constraints as a conditional metagraph.

u1

u2

fill_form

review_form

create_form

transfer_money

e3

e1

e2

tenure > 2

tenure > 5

Figure 7. A simple example of conditional metagraph to model the following question: what are the
necessary tasks for employees to perform a bank transfer?



Electronics 2021, 10, 3087 13 of 25

C3

Sound

Master

C4

HDR

C2

Color
Owner

Movie

C1

VFX

POST

POST AND

(user.tenure > 10

OR 8 < time < 17)

POST AND

(time < 8 OR

time > 17)

POST AND 8 <

time < 17

POST AND

(time < 8 OR

time > 17)

Figure 8. Movie workflow: special effects apply before color tuning and sound mastering. HDR is
set up last.

The notion of simple path, i.e., a sequence of edges 〈e1, e2, ..., en〉 from an element x
to an element y where x ∈ invertex(e1), y ∈ outvertex(en) and for all ei, i = 1, ..., n− 1,
outvertex(ei) ∩ invertex(ei+1) 6= ∅, does not describe all the connectivity properties exist-
ing in a metagraph. For example, in Figure 7, there are two simple paths from {u1, u2} to
{trans f er_money}, (e1, e3) and (e2, e3). However, none of them can perform trans f er_money
as they respectively do not reach either review_ f orm or f ill_ f orm, which are both neces-
sary to perform trans f er_money. Using the set consisting of all three edges (e1, e2, e3) is
necessary (and sufficient) to perform trans f er_money, but it is not a simple path: there does
not exist a simple sequence of edges consisting of these three. Such a set of edges 〈e1, e2, e3〉
is called a metapath [33].

Reachability between the source and target sets in a metagraph is defined by the
existence of (valid) metapaths between the two. Additionally, metapaths have a dominance
property which can be used to determine redundant components (edges or elements) [32].
Once identified, those components can be safely removed from the policies. A metapath is
input-dominant if no proper subset of its source is also a metapath to its target, edge-dominant
if no proper subset of its edges is also a metapath to its target, and dominant if it is both
input-dominant and edge-dominant [33].

7.2. Comparing the Specification with Its Implementation

By modeling the high-level policy specification as well as the translated policy im-
plementation as two metagraphs, we can compare both to track (distributed) deployment
errors. When specification and implementation metagraphs match, the policy implementa-
tion has been correctly translated from the policy specification. If they do not match, the
metagraphs are not equivalent: errors occurred during the refinement and/or deployment.
Figure 9 summarizes our approach.

Policy
specification

Policy
implementation

Specification
metagraph

Implementation
metagraph

Equality?

Refinement

Random spec
generator

Conflict/Redundancy
checking

Policy
design

1

2

3

4

5

Figure 9. Enabling policy verification using metagraphs. We propose 4 tools: 1 RandomWork-
flowSpecGenerator; 2 3 SpecToRego; 4 RegoToMetagraph; 5 SpecImplEquivalence.

Modeling Workflows and Their Policies

For our purposes and evaluations, we consider the verification of policies enforcing
workflows. In Figure 8, propositions on the edges constrain the communications. For exam-



Electronics 2021, 10, 3087 14 of 25

ple, C1 can only send data to C2 and C3 if the communication is a POST request, and either
the tenure of the user is greater than 10, or the request happens between 8 AM and 5 PM.

In practice, we consider Yet Another Workflow Language (YAWL) [31] as the default
language for specifying workflows. Considering YAWL [31] as the most representative tool
to specify, analyze and execute workflows today, we will show how to transform any of its
modeling components (e.g., composite tasks, conditions) into a metagraph representation.

YAWL nets

A workflow specification in YAWL is a set of extended workflow nets which form
a hierarchy [31]. Each of these nets represents a (sub-)process. The net at the top of the
hierarchy is called the root net. Tasks in a process can be either atomic or composite,
where composite tasks represent another net, but at one lower level in the hierarchy. This
separation in nets is useful when the process becomes too complex to manage, and can be
broken down in smaller pieces. For example, a process for an online store might comprise a
checkout task, but this task can be comprised of multiple tasks such as choose shipping
or choose payment mode. To model this example in YAWL, the checkout task would be
the composite task in the root net, while the other tasks are part of the checkout net at one
lower level in the hierarchy.

In a metagraph, we can model tasks as edges of the metagraph, where the inputs
(outputs) of a task correspond to the invertex (outvertex) of the edge. Using metagraphs,
we can model atomic tasks as edges, and composite tasks can be edges representing the
composite tasks, with each composite task being its own sub-metagraph, mirroring the
nets in YAWL.

Processes and workflows

A process may contain information elements which are not yet evaluated. A workflow
is an instantiation of a process for a set of particular values. Thus, a process can result
in multiple workflows. Taking into account this definition, a process can be modeled by
a conditional metagraph, with all its propositions still not evaluated. A metagraph with
no propositions, i.e., a simple metagraph, can represent a workflow, i.e., one particular
instantiation of the process [33].

Conditions and operators

Each net has one input condition and one output condition, which represent the start
and end points of the process. In addition, there is the possibility to use operators, namely
AND, OR, and XOR, which control the flow of information between tasks of the process. Each
of these operators have a split and a join variation, which indicate the behavior of the
operator. For example, an AND-split indicates the workflow executes all branches of the
split, whereas an AND-join indicates the tasks reaching the join must all be completed
for the next task to be executed. YAWL also uses conditions (besides the start and end),
which represent a state the workflow is in after finishing a task, but before starting a new
one. Those conditions are useful when users make some decisions on their own while the
workflow system cannot pre-determine their choices.

For example, let us consider the film production process represented in Figure 10. This
case study focuses on the film production process, representing the chain of information
processing realized along the shooting of the movie. This process taken from the YAWL
foundation website [29] was realized in collaboration with the Australian Film Television
and Radio School (AFTRS), with the help of domain experts.



Electronics 2021, 10, 3087 15 of 25

Condition

Input
condition

Output
condition

Atomic
task

AND-join

AND-split

XOR-join

XOR-split

OR-join

OR-split

start
production

Welcome
to Start
Process

Input
Cast
List

Input
Crew
List

Input
Location

Notes

Input
Shooting
Schedule

Create
Call

Sheet

Revise
Shooting
Schedule

Update
Call

Sheet

Distribute
Call

Sheet

Distribute
DPR

Create
DPR

Start
Another
Shoot
Day

Fill Out
Continuity

Report

Fill Out
Continuity

Daily
Report

Fill Out
Sound
Sheets

Fill Out
Camera
Sheets

Fill Out
AD

Report

end
production

Figure 10. Film production process represented in YAWL. This case study represents the chain of
information processing realized along the shooting of the movie. Although the shooting is taking
place during the day, a designated crew collects the information associated with the shooting via
production forms, which are used to produce the daily progress report. A call sheet containing all the
information concerning logistics and necessities is also created.

A condition is used with the Fill Out Sound Sheets task, indicating the need for
this information to be checked by the production manager before proceeding to task Create
DPR [29]. Those modeling elements are all represented in Figure 10.

7.3. Roadblocks of Our Model

In YAWL, a task can have any input and any output, or can even have no input or out-
put at all. At first glance, this seems to limit our model in two ways. First, since we model
tasks as edges, tasks with no input (output) have no invertex (outvertex). To overcome
this limitation, we add placeholder variables to empty vertices, which have no effect, but
extend our modeling abilities to include such tasks. Conditions are also modeled using
placeholder variables since they do not have any input or output.

Second, in YAWL, two tasks taking place sequentially in the process are not necessarily
linked by their variables. In other words, the outputs of the first task do not necessarily
correspond exactly to the inputs of the second task. This may look troublesome, since our
metagraph representation relies on those links to retain the information of the workflow
(i.e., which task should be performed next?), and makes use of paths and metapaths in its
analysis. To enforce the sequence of tasks, we need to add propositions to the metagraph
in certain cases.

There are two possibilities when considering two tasks chained sequentially, regarding
the outputs of the first, and the inputs of the second. The first possibility is that the outputs
of the first task correspond at least partially to the inputs of the second task, i.e., at least
one variable is common to the two sets. In this case, no propositions need to be added
since we have at least one shared variable, modeling the link between those two tasks.
The second possibility is that there is no correspondence between the outputs of the first
task and the inputs of the second task—the tasks are disjoint. For example, this occurs
when the outputs of the first task are not necessary to perform the second task, but we still



Electronics 2021, 10, 3087 16 of 25

want the tasks to be executed in this specific order, such as the Input Shooting Schedule
task of Figure 10. In this case, we need to create a new edge from the outputs of the first
task to a proposition signifying the first task has been completed. Once this is done, we
can add this proposition to the input of the second task, to preserve the link between the
tasks.This is shown in Figure 11, where the task Input Cast List does not share variables
with its next task, Input Shooting Schedule. If the proposition is true, the task has been
completed and the second task can start—the task becomes unavailable otherwise. Thus,
the proposition clarifies the fact that Input Cast List needs to be completed to proceed
to the Input Shooting Schedule task.

Input_Crew_List
Welcome_to_Start_Process

placeholder_1 production

castInfo

crewInfo

crewMember

locationInfo

Input
_Cas

t_Lis
t

Input_Location_Notes

Input_Cast_List_completed

Input_Crew_List_completed

Input_Location_Notes_completed

shootingSchedule

originalTiming

totalPageTime
totalScenes

shootingSchedule

production

crewInfo

Input_Shooting_Schedule

Figure 11. Film production process represented with a metagraph. Only the start of the YAWL process is represented for
brevity. The task Input Cast List does not share variables with its next task, Input Shooting Schedule, thus we add a
proposition indicating the completion of the task.

The AND-split, OR-split and XOR-split elements are handled naturally in a metagraph.
Since each task is represented by an edge, a split simply corresponds to multiple edges
sharing the same invertex. However, modeling the AND-join, OR-join and XOR-join elements
is a bit more complex.

With join operations, we cannot say it simply corresponds to multiple edges which
share the same outvertex, since, depending on the operator, we might want all or only
some of the tasks preceding the join to have been executed. The OR-join requires at least one
of the preceding tasks is executed, so no additional measures need to be taken. An AND-join
on the other hand requires all tasks preceding the join to be executed, whereas a XOR-join
requires only one of them is. To model this intent, we add completion propositions to the
metagraph, in the same way we did for disjoint tasks. Those propositions are illustrated
in Figure 11, where the tasks Input Cast List, Input Crew List and Input Location
Notes are AND-joined in the next task, Input Shooting Schedule. It follows that the AND-
join needs all propositions to be true, whereas the XOR-join needs exactly one of them to be
true. To check for the fact all other propositions are false in the case of the XOR-join, we create
non-completion propositions in addition to completion propositions. A non-completion
proposition is true if the task has not been executed, and false otherwise.

Using this metagraph representation brings us many advantages. First, it is easier
to identify and analyze workflows associated with a process, via the evaluation of the
propositions in the conditional metagraph representing the process. This representation
can also help us analyze the independence of decomposed subprocesses, as well as the
redundancy and full connectivity of composite processes via the union of metagraphs [33].
We can also identify more easily interactions between/among informational elements
and/or tasks. For example, we can simply analyze how do informational elements relate
to each other through tasks, how do tasks relate to each other, and even which tasks might
be disabled if a resource becomes unavailable.

To implement those policies, we consider Rego, a high-level declarative language built
for expressing complex policies. Once we have the policy specification and the implemen-
tation, we transform both into conditional metagraphs. For this, we develop three generic
policy translators: from specification (raw) to specification metagraph, from specification
to implementation (Rego), and from implementation-to-implementation metagraph. Those
tools enable us to go from a base specification to the implementation of a policy, and then
compare them by turning them both into metagraphs.



Electronics 2021, 10, 3087 17 of 25

Policy specification into a conditional metagraph—as denoted 2 in Figure 9

To transform this process into a conditional metagraph, we need to define the variables
set, the propositions set and the edges set defining the conditional metagraph. To this end,
we parse the YAWL file defining the process. A YAWL file is an XML file, from which
we can extract relevant information, such as the name of tasks, their inputs and outputs,
predicates used for flow control, etc.

The union of elements in the inputs and outputs of each task make up the variables set
of the conditional metagraph. The union of predicates of each task make up the propositions
set. We complete the edges set of the metagraph by iterating on all the tasks of the process.
We summarize the conditions and actions to take in Figure 12. For each task, irrespective
of their order in the YAWL process, relevant elements of the YAWL language are identified.
The inputs (outputs) of a task correspond to the invertex (outvertex) of the edge, whereas
predicates correspond to propositions in the invertex of the edge. The join code indicates
the join operation of the currently processed task, and is used to determine the specific
actions in each possible case (AND, OR, XOR). The (non-)completion edge refer to the
creation of a new edge from the outputs of the previous task to a proposition signifying the
current task has (not) been completed, as we explained earlier with disjoint tasks.

for each task

predicates propositions

starting mappings

completed
mappings

invertex

outvertex

join
code?

previous_task

and

or

xor

previous
task

disjoint?

completion edge

create task
edge

yes

no

Add proposition
to propositions

propositions_set

completion edgeyes

no

create task
edge

Add proposition
to propositions

completion edge

 completion
proposition

non-completion
proposition

completion edge

non-completion
edge

Add completion proposition
for previous task and non-
completion propositions for

other previous tasks to
propositions

create task
edge

edges_set

previous
task

disjoint?

Get YAWL
elements

Convert to
metagraph elements

Figure 12. Flowchart of transformations from YAWL to a metagraph. For each task, relevant elements of the YAWL language
are identified, and converted to metagraph elements. The join code indicates the join operation of the currently processed
task, which is then used to determine the actions to perform in each possible case (AND, OR, XOR).

Figure 11 represents a part of the transformation of our example—the film production
process (Figure 10) is translated into a conditional metagraph. Edges represent the tasks of
the process, where the invertex (outvertex) represents the inputs (outputs) of the task. As
explained in the last section, propositions are added (_completed suffix) to make sure that
we retain the information of the workflow.

In addition to the YAWL format which specifies workflows, we have also added the
possibility of specifying a workflow directly in a metagraph-like format. This form of
policy specification can be generically expressed as a list of rules: each describing an edge
of the metagraph, as a triplet of the form of 〈source, destination, policy〉.

To transform this kind of policy specification into a conditional metagraph, we also
need to define the variables set, the propositions set and the edge set. To this end, we
parse the triplets of the policy specification file. A proposition attached to an edge must
be true for the edge to be used in a metapath, thus, an OR in a proposition can be viewed
as separate edges from the same source to the same destination, with each part of the OR
becoming a sub-proposition attached to one of the newly created edges. Likewise, the
AND in a proposition means both parts need to be true for the edge to be used, so the
proposition cannot be separated. Those rules will serve as a basis to determine vertices in
the metagraph.



Electronics 2021, 10, 3087 18 of 25

In a logical formula, propositions ANDed together are part of the same metagraph
edge, whereas propositions ORed together are each part of their own metagraph edge. That
is the way conditional metagraphs handle connectivity when considering propositions.
A proposition attached to an edge must be true for the edge to be used in a metapath,
thus, an OR in a proposition can be viewed as separate edges from the same source to
the same destination, with each part of the OR becoming a sub-proposition attached to
one of the newly created edges. Considering the proposition between Color and HDR
in Figure 8, “POST AND (time < 8 OR time > 17)”, we can see the OR that separates
time < 8 and time > 17 is responsible for two different edges when we refine the metagraph
representation in Figure 13. Likewise, the AND in a proposition means both parts need to be
true for the edge to be used, so the proposition cannot be separated. Considering again the
proposition between Color and HDR in Figure 8, we can see the AND means that the POST
component of the proposition is a part of both split edges when we refine the metagraph
representation in Figure 13.

POST

user.tenure > 10

8 < time < 17

Color

Sound
time > 17

VFX

HDR

Movie
POST

POST

POST

POST

8 < time < 17

time > 17

time < 8

time < 8

Figure 13. Specification metagraph. Elements of the variable set are identified by filled rectangles, and
nodes of the metagraph by unfilled rectangles. Propositions being on the edges or in the invertices
are equivalent when dealing with conditional metagraphs.

To fill our proposition set as well as the edge set in our conditional metagraph, we
need to turn a given logical formula into its Disjunctive Normal Form (DNF). In DNF,
a logical formula is composed of ANDed propositions ORed together, i.e., smaller logical
formulas separated by ORs. We can then see that our smaller logical formulas directly
correspond to different edges in our metagraph. Take for example the logical formula from
Color to HDR in Figure 8: POST AND (time < 8 OR time > 17). We can transform this
expression into its DNF, obtaining (POST AND time < 8) OR (POST AND time > 17).
The smaller formulas inside the parentheses correspond to the sub-propositions attached
to two edges we obtain in our metagraph (Figure 13).

Then, since each of our smaller logical formulas are either singular atomic propositions
or atomic propositions ANDed together, we gather the set of atomic propositions for each
edge. Each edge in the conditional metagraph is then generated in the form of a triplet
〈source, destination, policy〉, where the policy component corresponds to one of the smaller
logical formulas obtained earlier. We complete the edge set of the metagraph by iterating
on all the triplets of the raw specification. The proposition set is simply composed of the
union of all atomic propositions, with the generating set being the union of the variable set
and the proposition set.

Figure 13 represents the transformation of our example: the movie workflow spec-
ification (Figure 8) is translated into a conditional metagraph. Elements of the variable
set are identified by filled rectangles, and nodes of the metagraph by unfilled rectangles.
Please note that as suggested in the formal definition of conditional metagraphs, we moved
the propositions from the edges of the simple workflow graph to the invertices of the



Electronics 2021, 10, 3087 19 of 25

metagraph for a correct and clearer representation on which advanced verification (e.g.,
checking for conflicts and redundancies) is also possible.

Policy implementation (i.e., Rego) into a conditional metagraph— 4 in Figure 9

We use ANTLR4, Another Tool for Language Recognition, which is a parser generator
used for translating structured files. After constructing our lexer rules and parser grammar
for Rego, we were able to generate the Abstract Syntax Tree (AST) for any Rego policy file.
From there, we can walk the AST to generate the implementation metagraph.

Comparing metagraphs—see 5

To compare metagraphs, we tag edges in one metagraph upon a match with edges in
the other metagraph. Non-tagged edges correspond to errors/mistakes in the implemented
policies, singled out by our comparison.

8. Performance Analysis: The Cost of Comparing Random Workflows

To profile our policy verification algorithm, we measure the time required to compare
the specification and implementation metagraphs.

8.1. Methodology to Build Random Workflows

We perform such comparisons by varying different elements, namely the number
of elements in the workflow, the number of edges in the workflow, the size of the policy
on each edge, and the error rate in the implemented policies. Since our verification
method compares edges, we measure the computation time as a function of the edges on
the metagraph.

To obtain general and representative results when profiling our algorithm, we chose
to generate random workflows (instead of relying on few small real cases). This allows us
to obtain a general idea of how efficient our algorithm is under various conditions. Since
the generation is random for most of the variables defining a metagraph, the generated
workflows should not exhibit specific structures or policies that may favor or not the
comparison. We thus generate random workflows in YAWL.

In practice, we generate the random workflows by varying these sets of parameters:

• Size of the workflow, i.e., number of elements in the generating set: 10, 20, 30, 50 or
100. Those correspond to variables which can be used in the input and output of tasks.

• Policy size, i.e., number of conditional propositions on each edge for the policy: 2 or 4.

The number of tasks in the workflow, i.e., the number of edges in the metagraph is
a multiple of the number of elements in the generating set, as motivated in the follow-
ing paragraphs.

Had we used simple graphs, we also would have varied the probability of having
edges between any two nodes in the graph (i.e., the graph density), as is customary for
Erdős-Rényi random graphs. However, the equivalent density property in metagraphs
would be to vary the probability of having edges between any two pairs of possible subsets
of the generating set: this leads to a combinatorial explosion of the possible number of
edges. This does not sound neither reasonable nor realistic if we compare it with common
policy density found in other papers [32,72] or in GitHub projects. Instead, we use the same
(static) ratio between the number of nodes and edges that Ranathunga et al. [32] found
when they modeled their real-world network policies as a metagraph. They have 1.5 times
more edges than the number of elements in the generating set and so do we (to generate
our set of workflows). Overall, we generate 30 random conditional metagraphs for each
combination of the generation parameters, i.e., the number of elements in the workflow
and the policy size, creating 300 different workflow specifications in total (5 generating set
sizes, 2 policy sizes, 30 repetitions).

Now that workflow specifications are generated, we need to turn them into their
workflow implementation counterparts (i.e., in Rego). As already stated, translating



Electronics 2021, 10, 3087 20 of 25

workflow specifications to their real implementations is error prone. We model this by
relying on a given percentage of the elements/propositions in the specification randomly
changed to another existing element/proposition. To do so, we consider a last parameter:

• Error rate, i.e., fraction of errors in propositions of the metagraph. A value of 0.4
means that 40% of the elements/propositions of the metagraph will be changed to
erroneous ones; we consider the following error rates: 0.0, 0.2 and 0.4.

We generate errors randomly, resulting in 30 different Rego files for each workflow
specification and for each error rate. We obtain 90 different Rego files per workflow specifica-
tion in total.

Translation is done by iterating over edges of the conditional metagraph generated
from the specification, which will generate the necessary Rego code. Finally, and overall,
we obtain 27,000 different policy implementations (300 specifications, 3 error rates, 30 rep-
etitions). The Lines of Code (LoC) of those policy implementations are between 214 and
24,729, which is in line with papers that model real-world policies in terms of LoC size; for
example, Ranathunga et al. [32] are citing 5043 for one switch configuration in their case
study and researchers in [72] are giving an average LoC size between 125 and 1360.

Now that we have the policy implementations, we can translate those into metagraphs
to finally perform the comparison. This is achieved using ANTLR.

Once both specification and implementation metagraphs are generated, we launch
our matching algorithm. This algorithm simply compares both metagraphs as two lists
of edges. First, for enabling an efficient comparison, we sort both lists by source and
destination as respectively the first and second key. Then we try to match edges by iterating
through both sorted lists. If both sets are empty after the matching is done, the metagraphs
match perfectly. The metagraphs are different otherwise, with the edges remaining in the
sets being the ones that are unmatched and the result of errors.

8.2. Evaluation: Sorting Policies and Their Edges has a Limited Cost of m · log(m)

To avoid being subject to the bias effects of peak machine load on the CPU time,
for each of the 27,000 scenarios, we measure the cumulative time of both sorting and
matching for 30 runs. We then end up with a total of 810,000 measures. We ran our
measurements on a laptop, equipped with an Intel Core CPU 3.5-GHz, 16GB of RAM and
running Ubuntu 18.04.

Among the 30 repetitions, we have a few extreme values. We checked they are due to
peak machine load and consequently removed these outliers (i.e., all values with a Z-score
superior to three); that leads to remove 9619 values out of 810,000 (1.19%).

Figure 14 represents the time required by our algorithm to detect errors according to
the set of parameters in use. As we can see, the error rate has a negligible effect on the
duration of the algorithm. On the contrary, as anticipated, the execution time increases with
the number of elements in the generating set. The number of elements in the generating set
increases the number of edges in the metagraph, by the effect of the 1.5 factor applied on
edges. This can be verified in a correlation matrix, which indicates a correlation coefficient
of 0.945 between the number of edges and the execution time, and a correlation coefficient
of 0.004 between the error rate and the execution time.



Electronics 2021, 10, 3087 21 of 25

Figure 14. Execution time of our matching algorithm according to several different parameters. The
error rate has almost no effect on the execution time, while it increases as expected with the number
of elements in the generating set.

The effect of the number of edges on the algorithm time is shown more clearly
when looking at Figure 15. It plots the execution time against the number of edges in
the metagraphs. The dots represent the mean value for a given number of edges and
the red line represents the ordinary least squares regression for the nonlinear function
y = α+ β ·m · log(m). We rely on this function as the average time complexity of our sorting
(and matching) algorithm is given by O(m · log(m)), with m the number of edges. That is
the complexity is dominated by the sorting pre-processing (relying on a binary heap for
worst cases or using a quicksort-like algorithm for improving average performance). This
stage is applied before the actual matching that is then simply linear in the number of edges.
When the algorithm time is predicted, we found that the number of edges (β = 0.0020;
p < 0.001) is a significant predictor. Indeed, the overall model fit is: R2

adj = 0.898, with the
post hoc power analysis indicating a power greater than 0.999.

In summary, we can argue that our policy verification method can be efficiently imple-
mented as long as the number of propositions in the policy is reasonable. The complete
data, code to generate the measures and results, as well as some guidance are publicly
available (See https://zenodo.org/record/4912289, accessed on 10 December 2021).

0 100 200 300 400 500 600

Number of edges

0

2

4

6

8

10

12

Al
go

 d
ur

at
io

n 
(m

s)

Figure 15. Log regression of the execution time according to the number of edges. When the algorithm
time is predicted, we found that the number of edges (β = 0.0020; p < 0.001) is a significant predictor.

https://zenodo.org/record/4912289


Electronics 2021, 10, 3087 22 of 25

9. Conclusions

In this work, we described and implemented a secure architecture that prevents data
leaks and protects business intelligence in the cloud. More specifically, in accordance with
the principles of zero-trust, we achieve a secure system that enables the exchange of data
between non-trusted agents while guaranteeing these data are secure at rest, in transport
and cannot be leaked by any agent in both cases. The workflow is defined by the owner
and enforced using policy sidecars, which controls the agents participating in the workflow.
We realized a proof of concept of our architecture to discuss its benefits and limitations, and
monitored key parts of the workflow to show how the data are secured. Our experiments
finally show that our approach scales well with increasing workflow complexity.

In addition, we investigated policy modeling and checking as implementations match-
ing their specifications is necessary. We identified metagraphs as an appropriate structure
to model those policies, and that it was feasible to transform a YAWL workflow into a meta-
graph. We detailed to what extent their formal and graphical foundations can guide the
reasoning to manipulate such policies and provide means to detect conflicts and mitigate
redundancies. This structure is a suitable modeling tool; while it enables policy analysis
and allows the search for redundancy and conflicts, we have proposed here to use them
for a practical verification of the deployed access control policy regarding its specification.
Our proposal compares the initial metagraph specification to its deployed counterpart
implementation and reveals their inconsistencies if any. We also evaluate the complexity of
our approach to show its scalability.

In the future, we plan to study how changes in the workflow impact the security of
the system. Some work could also be done on the removal of trust requirements, by adding
Trusted Execution Environments to our infrastructure, or on how to handle frequent user
interactions with the system. This would provide us with a fully secure environment, so
that even an actor with administration rights on the machine cannot peek at the data. Even
though the data in our infrastructure is encrypted at rest, this would also give us another
guarantee that the data of the owner and the business intelligence of the contractors are
secure for any processing task.

Author Contributions: Conceptualization, L.M., P.M., A.G. and C.P.; methodology, L.M., P.M., A.G.
and C.P.; software, L.M.; validation, L.M., P.M., A.G. and C.P.; formal analysis, L.M., P.M., A.G. and
C.P.; investigation, L.M., P.M., A.G. and C.P.; resources, L.M., P.M., A.G. and C.P.; data curation, L.M.;
writing—original draft preparation, L.M.; writing—review and editing, L.M., P.M., A.G. and C.P.;
visualization, L.M., P.M., A.G. and C.P.; supervision, P.M., A.G. and C.P.; project administration, L.M.,
P.M., A.G. and C.P.; funding acquisition, C.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This project has been made possible in part by a grant from the Cisco University Research
Program Fund, an advised fund of Silicon Valley Foundation grant number 1318167.

Data Availability Statement: See https://github.com/loicmiller/secure-workflow, accessed on 10
December 2021, for complete data, code as well as guidance to realize our Proof of Concept, test
framework, as well as full data, code and statistical analysis in the form of jupyter notebooks. See
https://zenodo.org/record/4912289, accessed on 10 December 2021, for complete data, code to
generate the measures and results, as well as some guidance on policy verification.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Galov, N. Cloud Adoption Statistics for 2021. 2021. Available online: https://hostingtribunal.com/blog/cloud-adoption-

statistics/ (accessed on 10 December 2021).
2. Byers, S.; Cranor, L.; Korman, D.; McDaniel, P.; Cronin, E. Analysis of security vulnerabilities in the movie production and

distribution process. In Proceedings of the 3rd ACM Workshop on Digital Rights Management, Washington, DC, USA, 27
October 2003; ACM: New York, NY, USA, 2003; pp. 1–12.

3. Clearinghouse, P.R. Chronology of Data Breaches. 2021. Available online: https://privacyrights.org/data-breaches (accessed on
10 December 2021).

https://github.com/loicmiller/secure-workflow
https://zenodo.org/record/4912289
https://zenodo.org/record/4912289
https://hostingtribunal.com/blog/cloud-adoption-statistics/
https://hostingtribunal.com/blog/cloud-adoption-statistics/
https://privacyrights.org/data-breaches


Electronics 2021, 10, 3087 23 of 25

4. Miller, L.; Mérindol, P.; Gallais, A.; Pelsser, C. Towards Secure and Leak-Free Workflows Using Microservice Isolation. In Pro-
ceedings of the 2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR), Paris, France,
7–10 June 2021; pp. 1–5.

5. Miller, L.; Mérindol, P.; Gallais, A.; Pelsser, C. Verification of Cloud Security Policies. In Proceedings of the 2021 IEEE 22nd
International Conference on High Performance Switching and Routing (HPSR), Paris, France, 7–10 June 2021; pp. 1–5.

6. Security, R.B. Data Breach Quickview Report 2019 Q3 Trends. 2019. Available online: https://library.cyentia.com/report/report_
003207.html (accessed on 10 December 2021).

7. Stempel, J.; Finkle, J. Yahoo Says All Three Billion Accounts Hacked in 2013 Data Theft. 2017. Available online: https://www.
reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1 (ac-
cessed on 10 December 2021).

8. Seals, T. Thousands of MikroTik Routers Hijacked for Eavesdropping. 2018. Available online: https://threatpost.com/thousands-
of-mikrotik-routers-hijacked-for-eavesdropping/137165/ (accessed on 10 December 2021).

9. KrebsonSecurity. First American Financial Corp. Leaked Hundreds of Millions of Title Insurance Records. 2019. Available
online: https://krebsonsecurity.com/2019/05/first-american-financial-corp-leaked-hundreds-of-millions-of-title-insurance-
records (accessed on 10 December 2021).

10. Lecher, C. Google Reportedly Fires Staffer in Media Leak Crackdown. 2019. Available online: https://www.theverge.com/2019
/11/12/20962028/google-staff-firing-media-leak-suspension-employee-termination (accessed on 10 December 2021).

11. Jin, C.; Srivastava, A.; Zhang, Z.L. Understanding security group usage in a public iaas cloud. In Proceedings of the IEEE
INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA,
10–14 April 2016; pp. 1–9.

12. Chandramouli, R.; Butcher, Z. Building Secure Microservices-Based Applications Using Service-Mesh Architecture; Technical Report;
National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020.

13. Gilman, E.; Barth, D. Zero Trust Networks; O’Reilly Media, Incorporated: Newton, MA, USA, 2017.
14. Blog, N.T. Netflix Conductor: A Microservices Orchestrator. 2016. Available online: https://netflixtechblog.com/netflix-

conductor-a-microservices-orchestrator-2e8d4771bf40 (accessed on 10 December 2021).
15. Blog, N.T. Evolution of Netflix Conductor: v2.0 and beyond. 2019. Available online: https://netflixtechblog.com/evolution-of-

netflix-conductor-16600be36bca (accessed on 10 December 2021).
16. Valenza, F.; Basile, C.; Canavese, D.; Lioy, A. Classification and analysis of communication protection policy anomalies. IEEE/ACM

Trans. Netw. 2017, 25, 2601–2614. [CrossRef]
17. Moffett, J.D.; Sloman, M.S. Policy hierarchies for distributed systems management. IEEE J. Sel. Areas Commun. 1993, 11, 1404–1414.

[CrossRef]
18. Enterprise, V. Data Breach Investigations Report. 2020. Available online: https://www.verizon.com/business/resources/

reports/2020/2020-data-breach-investigations-report.pdf (accessed on 10 December 2021).
19. Amazon. AWS Policy Generator. 2020. Available online: https://awspolicygen.s3.amazonaws.com/policygen.html (accessed on

10 December 2021).
20. Dohndorf, O.; Kruger, J.; Krumm, H.; Fiehe, C.; Litvina, A.; Luck, I.; Stewing, F.J. Tool-supported refinement of high-level

requirements and constraints into low-level policies. In Proceedings of the 2011 IEEE International Symposium on Policies for
Distributed Systems and Networks, Pisa, Italy, 6–8 June 2011; pp. 97–104.

21. Klinbua, K.; Vatanawood, W. Translating tosca into docker-compose yaml file using antlr. In Proceedings of the 2017 8th
IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 24–26 November 2017;
pp. 145–148.

22. vulners. Razer US: Database Credentials Leak. 2017. Available online: https://vulners.com/hackerone/H1:293470 (accessed on
10 December 2021).

23. Cimpanu, C. Steam Bug Could Have Given You Access to All the CD Keys of Any Game. 2018. Available online: https://www.
zdnet.com/article/steam-bug-could-have-given-you-access-to-all-the-cd-keys-of-any-game/ (accessed on 10 December 2021).

24. Muthiyah, L. Hacking Facebook Pages. 2018. Available online: https://thezerohack.com/hacking-facebook-pages (accessed on
10 December 2021).

25. Aboul-Ela, A. Delete Credit Cards from any Twitter Account. 2014. Available online: https://hackerone.com/reports/27404
(accessed on 10 December 2021).

26. Miller, L.; Mérindol, P.; Gallais, A.; Pelsser, C. Towards Secure and Leak-Free Workflows Using Microservice Isolation. arXiv
Prepr. 2020, arXiv:2012.06300.

27. Ter Hofstede, A.H.; Van der Aalst, W.M.; Adams, M.; Russell, N. Modern Business Process Automation: YAWL and Its Support
Environment; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009.

28. Model, B.P. Notation (bpmn) Version 2.0; OMG Specification, Object Management Group: Milford, MA, USA, 2011; pp. 22–31.
29. Foundation, Y. YAWL4Film. 2010. Available online: http://yawlfoundation.org/pages/casestudies/yawl4film.html (accessed

on 10 December 2021).
30. Blockchain, V. The Future of Business: Multi-Party Business Networks. 2020. Available online: https://octo.vmware.com/the-

future-of-business/ (accessed on 10 December 2021).
31. Van Der Aalst, W.M.; Ter Hofstede, A.H. YAWL: Yet another workflow language. Inf. Syst. 2005, 30, 245–275. [CrossRef]

https://library.cyentia.com/report/report_003207.html
https://library.cyentia.com/report/report_003207.html
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://threatpost.com/thousands-of-mikrotik-routers-hijacked-for-eavesdropping/137165/
https://threatpost.com/thousands-of-mikrotik-routers-hijacked-for-eavesdropping/137165/
https://krebsonsecurity. com/2019/05/first-american-financial-corp-leaked-hundreds-of-mil lions-of-title-insurance-records
https://krebsonsecurity. com/2019/05/first-american-financial-corp-leaked-hundreds-of-mil lions-of-title-insurance-records
https://www.theverge.com/2019/11/12/20962028/google-staff-firing-media-leak-suspension-employee-termination
https://www.theverge.com/2019/11/12/20962028/google-staff-firing-media-leak-suspension-employee-termination
https://netflixtechblog.com/netflix-conductor-a-microservices-orchestrator-2e8d4771bf40
https://netflixtechblog.com/netflix-conductor-a-microservices-orchestrator-2e8d4771bf40
https://netflixtechblog.com/evolution-of-netflix-conductor-16600be36bca
https://netflixtechblog.com/evolution-of-netflix-conductor-16600be36bca
http://doi.org/10.1109/TNET.2017.2708096
http://dx.doi.org/10.1109/49.257932
https://www.verizon.com/business/resources/reports/2020/2020-data-breach-investigations-report.pdf
https://www.verizon.com/business/resources/reports/2020/2020-data-breach-investigations-report.pdf
https://awspolicygen.s3.amazonaws.com/policygen.html
https://vulners.com/hackerone/H1:293470
https://www.zdnet.com/article/steam-bug-could-have-given-you-access-to-all-the-cd-keys-of-any-game/
https://www.zdnet.com/article/steam-bug-could-have-given-you-access-to-all-the-cd-keys-of-any-game/
https://thezerohack.com/hacking-facebook-pages
https://hackerone.com/reports/27404
http://yawlfoundation.org/pages/casestudies/yawl4film.html
https://octo.vmware.com/the-future-of-business/
https://octo.vmware.com/the-future-of-business/
http://dx.doi.org/10.1016/j.is.2004.02.002


Electronics 2021, 10, 3087 24 of 25

32. Ranathunga, D.; Roughan, M.; Nguyen, H. Verifiable Policy-Defined Networking using Metagraphs. IEEE Trans. Dependable
Secur. Comput. 2020. [CrossRef]

33. Basu, A.; Blanning, R.W. Metagraphs and Their Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany,
2007; Volume 15.

34. Chandramouli, R. Security Strategies for Microservices-Based Application Systems; Technical Report; National Institute of Standards
and Technology: Gaithersburg, MD, USA, 2019.

35. El Malki, A.; Zdun, U. Guiding Architectural Decision Making on Service Mesh Based Microservice Architectures. In European
Conference on Software Architecture; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–19.

36. Souppaya, M.; Morello, J.; Scarfone, K. Application Container Security Guide (2nd Draft); Technical Report; National Institute of
Standards and Technology: Gaithersburg, MD, USA, 2017.

37. Chandramouli, R.; Chandramouli, R. Security Assurance Requirements for Linux Application Container Deployments; US Department
of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.

38. de Weever, C.; Andreou, M. Zero Trust Network Security Model in Containerized Environments; University of Amsterdam: Amsterdam,
The Netherlands, 2020.

39. Hussain, F.; Li, W.; Noye, B.; Sharieh, S.; Ferworn, A. Intelligent Service Mesh Framework for API Security and Management.
In Proceedings of the 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference
(IEMCON), Vancouver, BC, Canada, 17–19 October 2019; pp. 735–742.

40. Zaheer, Z.; Chang, H.; Mukherjee, S.; Van der Merwe, J. eZTrust: Network-Independent Zero-Trust Perimeterization for
Microservices. In Proceedings of the 2019 ACM Symposium on SDN Research, San Jose, CA, USA, 3–4 April 2019; pp. 49–61.

41. Accorsi, R.; Wonnemann, C. Strong non-leak guarantees for workflow models. In Proceedings of the 2011 ACM Symposium on
Applied Computing, TaiChung, Taiwan, 21–24 March 2011; pp. 308–314.

42. Shu, X.; Yao, D.D. Data leak detection as a service. In International Conference on Security and Privacy in Communication Systems;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 222–240.

43. Farhatullah, M. ALP: An authentication and leak prediction model for Cloud Computing privacy. In Proceedings of the 2013 3rd
IEEE International Advance Computing Conference (IACC), Ghaziabad, India, 22–23 February 2013; pp. 48–51.

44. Shu, X.; Yao, D.; Bertino, E. Privacy-preserving detection of sensitive data exposure. IEEE Trans. Inf. Forensics Secur. 2015,
10, 1092–1103. [CrossRef]

45. Liu, F.; Shu, X.; Yao, D.; Butt, A.R. Privacy-preserving scanning of big content for sensitive data exposure with MapReduce. In
Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, San Antonio, TX, USA, 2–4 March 2015;
pp. 195–206.

46. Shu, X.; Zhang, J.; Yao, D.D.; Feng, W.C. Fast detection of transformed data leaks. IEEE Trans. Inf. Forensics Secur. 2015,
11, 528–542.

47. Shu, X.; Zhang, J.; Yao, D.; Feng, W.C. Rapid screening of transformed data leaks with efficient algorithms and parallel computing.
In Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, San Antonio, TX, USA, 2–4 March
2015; pp. 147–149.

48. LeVasseur, T.; Richard, P. Data Leak Protection System and Processing Methods Thereof. US Patent 9,754,217, 5 September 2017.
49. Segarra, C.; Delgado-Gonzalo, R.; Lemay, M.; Aublin, P.L.; Pietzuch, P.; Schiavoni, V. Using trusted execution environments for

secure stream processing of medical data. In IFIP International Conference on Distributed Applications and Interoperable Systems;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 91–107.

50. Zuo, C.; Lin, Z.; Zhang, Y. Why does your data leak? Uncovering the data leakage in cloud from mobile apps. In Proceedings of
the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019; pp. 1296–1310.

51. Jayaraman, K.; Ganesh, V.; Tripunitara, M.; Rinard, M.; Chapin, S. Automatic error finding in access-control policies. In
Proceedings of the 18th ACM Conference on Computer and Communications Security, Chicago, IL, USA, 17–21 October 2011;
pp. 163–174.

52. Khurat, A.; Suntisrivaraporn, B.; Gollmann, D. Privacy policies verification in composite services using OWL. Comput. Secur.
2017, 67, 122–141. [CrossRef]

53. Hu, H.; Ahn, G.J.; Kulkarni, K. Discovery and resolution of anomalies in web access control policies. IEEE Trans. Dependable
Secur. Comput. 2013, 10, 341–354. [CrossRef]

54. Koch, M.; Mancini, L.V.; Parisi-Presicce, F. Conflict detection and resolution in access control policy specifications. In International
Conference on Foundations of Software Science and Computation Structures; Springer: Berlin/Heidelberg, Germany, 2002; pp. 223–238.

55. Schneider, F.B. Enforceable security policies. ACM Trans. Inf. Syst. Secur. (TISSEC) 2000, 3, 30–50. [CrossRef]
56. Cheminod, M.; Durante, L.; Valenza, F.; Valenzano, A. Toward attribute-based access control policy in industrial networked

systems. In Proceedings of the 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Imperia,
Italy, 13–15 June 2018; pp. 1–9.

57. Basile, C.; Canavese, D.; Pitscheider, C.; Lioy, A.; Valenza, F. Assessing network authorization policies via reachability analysis.
Comput. Electr. Eng. 2017, 64, 110–131. [CrossRef]

58. Rezvani, M.; Rajaratnam, D.; Ignjatovic, A.; Pagnucco, M.; Jha, S. Analyzing XACML policies using answer set programming. Int.
J. Inf. Secur. 2019, 18, 465–479. [CrossRef]

http://dx.doi.org/10.1109/TDSC.2020.2974727
http://dx.doi.org/10.1109/TIFS.2015.2398363
http://dx.doi.org/10.1016/j.cose.2017.02.015
http://dx.doi.org/10.1109/TDSC.2013.18
http://dx.doi.org/10.1145/353323.353382
http://dx.doi.org/10.1016/j.compeleceng.2017.02.019
http://dx.doi.org/10.1007/s10207-018-0421-5


Electronics 2021, 10, 3087 25 of 25

59. Attia, H.B.; Kahloul, L.; Benhazrallah, S.; Bourekkache, S. Using Hierarchical Timed Coloured Petri Nets in the formal study of
TRBAC security policies. Int. J. Inf. Secur. 2020, 19, 163–187. [CrossRef]

60. Liu, A.X.; Chen, F.; Hwang, J.; Xie, T. Xengine: A fast and scalable XACML policy evaluation engine. ACM Sigmetrics Perform.
Eval. Rev. 2008, 36, 265–276. [CrossRef]

61. Liu, A.X.; Chen, F.; Hwang, J.; Xie, T. Designing fast and scalable XACML policy evaluation engines. IEEE Trans. Comput. 2010,
60, 1802–1817. [CrossRef]

62. Hughes, G.; Bultan, T. Automated verification of access control policies using a SAT solver. Int. J. Softw. Tools Technol. Transf.
2008, 10, 503–520. [CrossRef]

63. Bera, P.; Ghosh, S.K.; Dasgupta, P. Policy based security analysis in enterprise networks: A formal approach. IEEE Trans. Netw.
Serv. Manag. 2010, 7, 231–243. [CrossRef]

64. Ranathunga, D.; Nguyen, H.; Roughan, M. MGtoolkit: A python package for implementing metagraphs. SoftwareX 2017, 6, 91–93.
[CrossRef]

65. Hamza, A.; Ranathunga, D.; Gharakheili, H.H.; Roughan, M.; Sivaraman, V. Clear as MUD: Generating, validating and applying
IoT behavioral profiles. In Proceedings of the 2018 Workshop on IoT Security and Privacy, Budapest, Hungary, 20 August 2018;
pp. 8–14.

66. Hamza, A.; Ranathunga, D.; Gharakheili, H.H.; Benson, T.A.; Roughan, M.; Sivaraman, V. Verifying and monitoring iots network
behavior using mud profiles. IEEE Trans. Dependable Secur. Comput. 2020. [CrossRef]

67. Docker. Docker. 2019. Available online: https://www.docker.com/ (accessed on 10 December 2021).
68. Kubernetes. Kubernetes. 2020. Available online: https://kubernetes.io/ (accessed on 10 December 2021).
69. Istio. Istio. 2020. Available online: https://istio.io/ (accessed on 10 December 2021).
70. Envoy. Envoy. 2020. Available online: https://www.envoyproxy.io/ (accessed on 10 December 2021).
71. Open Policy Agent. Open Policy Agent. 2020. Available online: https://www.openpolicyagent.org/ (accessed on 10 December

2021).
72. Ranathunga, D.; Roughan, M.; Nguyen, H.; Kernick, P.; Falkner, N. Case studies of scada firewall configurations and the

implications for best practices. IEEE Trans. Netw. Serv. Manag. 2016, 13, 871–884. [CrossRef]

http://dx.doi.org/10.1007/s10207-019-00448-9
http://dx.doi.org/10.1145/1384529.1375488
http://dx.doi.org/10.1109/TC.2010.274
http://dx.doi.org/10.1007/s10009-008-0087-9
http://dx.doi.org/10.1109/TNSM.2010.1012.0365
http://dx.doi.org/10.1016/j.softx.2017.04.001
http://dx.doi.org/10.1109/TDSC.2020.2997898
https://www.docker.com/
https://kubernetes.io/
https://istio.io/
https://www.envoyproxy.io/
https://www.openpolicyagent.org/
http://dx.doi.org/10.1109/TNSM.2016.2597245

	Introduction
	Basic Concepts
	Approach and Contributions

	Related Works
	Threat and Security Model
	Trust Model—Actors and Environment
	Attacker Model—External Attackers and Malicious Agents

	Infrastructure and Proof of Concept
	Proof of Concept
	The Overhead of Security
	Verify the Deployment of the Access Control Policy Using Metagraphs
	Background: An Expressive Model
	Comparing the Specification with Its Implementation
	Roadblocks of Our Model

	Performance Analysis: The Cost of Comparing Random Workflows
	Methodology to Build Random Workflows
	Evaluation: Sorting Policies and Their Edges has a Limited Cost of m log(m)

	Conclusions
	References

