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Anatomie et biomécanique de l’articulation trapézo-métacarpienne saine et 3 

arthrosique 4 

 5 

Abstract 6 

Understanding the biomechanics of the trapeziometacarpal (TMC) or first carpometacarpal 7 

(CMC1) joint, the pathophysiology of basal thumb arthritis, the design and performance of 8 

surgical procedures require a solid anatomical basis. This review of literature summarizes 9 

the most recent data on the descriptive, functional, and comparative anatomy of healthy and 10 

arthritic TMC joints. 11 

 12 

Résumé 13 

La compréhension de la biomécanique de l’articulation trapézo-métacarpienne (ATMC), de la 14 

physiopathologie de la rhizarthrose, la conception et la réalisation des gestes chirurgicaux 15 

nécessitent de solides bases anatomiques. Cette revue de la littérature synthétise les 16 

données les plus récentes concernant l’anatomie descriptive, fonctionnelle et comparée de 17 

l’ATMC saine et arthrosique. 18 
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1. Introduction 26 

The trapeziometacarpal (TMC) or first carpometacarpal (CMC1) or basal thumb joint is 27 

crucial to providing the thumb with its large range of motion. This is particularly true when an 28 

arthrodesis has been performed at the more distal joints to address inflammatory, 29 

degenerative, or post-traumatic conditions. It is affected in basal joint arthritis for reasons that 30 

are still not well understood. Knowledge of its anatomy and biomechanics is essential to 31 

understanding the pathophysiology of basal joint arthritis and to designing surgical 32 

procedures. 33 

The following topics will be reviewed: 34 

- the thumb’s role in the hand and thumb movements 35 

- the normal TMC joint 36 

- the arthritic TMC joint 37 

- the operated TMC joint 38 

- the TMC joint in an evolutionary context. 39 

 40 

2. The thumb: its role in the hand and its movements 41 

The thumb is the shortest of our digits. Its skeleton consists of two carpal bones (scaphoid 42 

and trapezium), the first metacarpal and only two phalanges (proximal and distal). These 43 

bones are articulated by four joints: 1) scaphotrapezial, anterolateral portion of the 44 

scaphotrapeziotrapezoid (STT) joint, 2) TMC, 3) metacarpophalangeal (MCP) and 4) 45 

interphalangeal (IP). 46 

To be able to be opposed to the other fingers, while also being able to flatten the 47 

hand on a hard surface, the thumb is not located in the same plane as the other fingers. At 48 

rest, it makes an angle of nearly 45° open laterally in the frontal plane and of nearly 30° open 49 

anteriorly in the sagittal plane with the longitudinal axis of the forearm prolonged by the axis 50 

of the middle finger.  51 

Before we look at the ligaments and muscles, it is important to define the basic 52 

movements the thumb can make. We will adopt the terms typically used in the anatomical 53 



and clinical context [1], although engineers who perform biomechanical studies use Euler 54 

angles, which are harder for clinicians to grasp [2]. 55 

The movements of antepulsion and retropulsion occur at the TMC joint in the sagittal 56 

plane. They are defined relative to the plane of the palm, considered as the frontal reference 57 

plane. Antepulsion (or anteposition) bring the thumb in front of the plane of the palm. 58 

Retropulsion (or retroposition) brings the thumb behind this plane. These movements occur 59 

around an axis passing through the trapezium [3], which is angled anteriorly, laterally, and 60 

proximally (Fig. 1). Their mean amplitude of 53° ranges between 50° and 90° [4].  61 

The movements of abduction and adduction occur at the TMC joint in the frontal 62 

plane (that of the palm). Abduction spreads the thumb away from the second metacarpal 63 

while adduction brings it closer. These movements occur around an axis passing through the 64 

base of the first metacarpal [3], which is angled anteriorly, medially, and slightly distally (Fig. 65 

1). Their mean amplitude has been measured at 42° [4], 51° [5], and up to 76° [6]. 66 

The movements of flexion and extension occur in the thumb’s longitudinal plane, 67 

angled about 45° relative to the frontal plane and 30° relative to the sagittal plane; it involves 68 

the thumb’s three main joints. Flexion brings the tip of the thumb towards the palm, while 69 

extension moves it away. Their mean amplitude is between 40 and 45 degrees: 41° [5], 43° 70 

[6]. 71 

The movements of pronation and supination occur along the longitudinal axis of the 72 

bones. Relative to the plane of the thumb’s tip, we can distinguish between pronation, which 73 

turns the tip so that it opposes itself to the tips of the other fingers (internal rotation) and 74 

supination, which turns the thumb’s tip in the other direction (external rotation). These 75 

movements are a continuation of those of the forearm. Their mean amplitude is between 15 76 

and 25 degrees: 17° [4], 21° [5], 23° [6]. 77 

 Next, opposition is the ability to bring the thumb’s tip into contact with the tip of one of 78 

the other four fingers to create a pinch grip (from the Latin pollex, pollicis, which means 79 

thumb). Opposition has four elements: antepulsion and adduction, which mainly occur in the 80 

TMC joint; flexion, which mainly occurs in the MCP joint; pronation whose amplitude 81 



decreases from the base of the thumb to its distal tip (60° in the TMC, 23° in the MCP, 7° in 82 

the IP [7]). During a clinical examination, opposition is evaluated with the Kapandji score [8]. 83 

Now, counteropposition is the reverse movement; it can also be evaluated with the Kapandji 84 

score [8].  85 

 Next is apoposition (apo = spread way) has been described as the position in which 86 

the TMC is completely abducted and supinated, while one or both of the thumb’s distal 87 

articulations are flexed. Apoposition is the thumb position required for writing [9].  88 

All these basic movements are combined to achieve circumduction: flexion-extension 89 

of 27°, adduction-abduction of 37° and pronation-supination of 10° [10]. It occurs around a 90 

middle circumduction center located at the center of the trapezial articular surface [11]. It 91 

allows the tip of the thumb to move in space by an average of 103 mm in abduction-92 

adduction and 131 mm in flexion-extension; however, in common gestures, only two-thirds of 93 

this range is used (67 and 73 mm, respectively) [12]. 94 

The amplitude of all these movements varies greatly in the general population and is 95 

influenced by age and sex [13]. It is similar in the dominant or non-dominant hand, in women 96 

or men [14]. 97 

 The “reference position” of the first metacarpal, in which the reference axes of the 98 

trapezium and first metacarpal are aligned, entails 48° of antepulsion, 38° of abduction and 99 

80° of pronation relative to the axis of the third metacarpal [4]. 100 

 101 

3. The normal trapeziometacarpal joint 102 

3.1. Bones 103 

The trapezium has six faces (Fig. 2): 104 

- the palmar face has a groove for the flexor carpi radialis (FCR) tendon, which is 105 

delimited anteriorly and laterally by the tubercle of trapezium  106 

- the dorsal face has a tubercle on which the dorsal ligaments insert 107 

- the proximal face articulates with the distal pole of the scaphoid 108 



- the distal face articulates with the base of the first metacarpal; its slope in the 109 

frontal plane can be measured relative to the axis of the second metacarpal; this 110 

is the “dévers” or slope angle [15] 111 

- the rougher lateral face is the site where the muscles of the thenar compartment 112 

insert 113 

- the medial face is divided into two distinct articular surfaces, one for the trapezoid 114 

proximally and one for the second metacarpal distally [16]. 115 

The first metacarpal is the shortest of all the metacarpals. A cross-section of its canal 116 

reveals a trapezoidal medial boundary and a triangular lateral boundary. The design of 117 

metacarpal stems for TMC prostheses must take this into account. 118 

 119 

3.2. Joints 120 

The TMC is a saddle joint (or articulation by reciprocal reception), which opposes the distal 121 

surface of the trapezium to the base of the first metacarpal. Nevertheless, few joint 122 

replacement prostheses have been able to reproduce this dual saddle configuration, thus 123 

most function as a ball-and-socket joint. 124 

 125 

3.2.1. Articular surfaces 126 

The trapezium has a concave surface from front to back and a convex one from inside to 127 

outside. Its ridge guides flexion-extension movements. It is curved, not straight (like a road 128 

going over a col [1] or like the vertebral column of a scoliotic horse). For this reason, 129 

pronation always occurs with some flexion, while supination always occurs with some 130 

extension. 131 

The articular surface of the first metacarpal is larger than that of the trapezium, 132 

convex from front to back and concave from inside to outside. Its ridge guides the 133 

antepulsion and retropulsion movements. In front, it terminates as a bone beak, which gave 134 

rise to the name “beak ligament”. The magnitude of the slope is not something that we 135 

currently measure, but it contributes to poor outcomes after arthroplasty [17]. 136 



These two surfaces are not fully congruent; thus, it is not possible to characterize 137 

them by two unique radiuses of curvature and by an angle between two asymptotes [18]. 138 

 139 

3.2.2. Capsule and ligaments 140 

These soft tissue elements are responsible for the passive stability of the TMC joint. Several 141 

descriptions of the ligaments around the TMC joint exist. Although it has some inaccuracies, 142 

the most used one is by Bettinger et al. [19,20]. Among the 16 ligaments, the main ones are 143 

(Fig. 3): 144 

- The anterior oblique ligament (AOL) has two parts, a superficial one (sAOL) and a 145 

deep one (dAOL); the deep part is intra-articular and is often referred to as the 146 

"beak ligament". This ligament is taut in abduction, extension, and pronation – 147 

which it limits – while it is relaxed when the thumb is in retropulsion. Its thickness 148 

measured by ultrasonography varies between its metacarpal insertion (0.7 mm), 149 

its middle portion (0.98 mm) and its trapezial insertion (0.65 mm). Its static length 150 

actually differs between the dominant hand (10.6 mm) and the non-dominant hand 151 

(9.6 mm) [21]. Measurements taken on MRI images are less precise (thickness 152 

typically less than 2.2 mm) [22]. 153 

- The intermetacarpal ligament (IML) has a “Y” configuration. The two arms of the Y 154 

insert on the base of the second metacarpal while its common trunk inserts on the 155 

first metacarpal: the dorsal intermetacarpal ligament (DIML or dorsal first MC 156 

ulnar base-second MC radial base intermetacarpal ligament [23]) and the volar 157 

intermetacarpal ligament (VIML or volar first MC ulnar base-second MC radial 158 

base intermetacarpal ligament [23]). It is taut in abduction, which it constrains [9]. 159 

Its thickness on MRI images is 3 mm (2.9–3.1 mm) [22]. This ligament is 160 

reconstructed during trapeziectomy procedures to prevent proximal migration of 161 

the first metacarpal. 162 

- The dorsoradial ligament (DRL) extends between the dorsal tubercle of the 163 

trapezium and the base of the first metacarpal. It is taut in abduction and flexion, 164 



relaxed in antepulsion and opposition [24]; it constrains abduction. It is an 165 

important stabilizer of the TMC joint because it counters the forces directed 166 

dorsally and it is rich in proprioceptors. Based on MRI, its thickness is 1.2–1.4 mm 167 

[22]. 168 

- The posterior oblique ligament (POL) is taut is extension and relaxed in 169 

retropulsion, while it constrains supination. 170 

- The ulnar collateral ligament (UCL) has also been called the medial collateral 171 

ligament by Kuhlmann and Guérin-Surville [25]. It inserts on the medial tubercle of 172 

the metacarpal, near the distal center of rotation, but further away from the 173 

proximal center of rotation. It is more superficial and more ulnar than the AOL. 174 

The movements made around the distal center do not involve any pronation-175 

supination, while the movements occurring around the proximal center are 176 

necessarily accompanied by pronation or supination [25]. 177 

The stabilizing components of the trapezium can be added to this: 178 

- The volar and dorsal trapezio-trapezoidal ligaments, the ligaments spanning 179 

between the trapezium and second metacarpal, volar and dorsal (DT-IITM), and 180 

the ligament spanning between the trapezium and third metacarpal (TIII-MC) 181 

appear to function as stays to combat the moment arms acting on the trapezium 182 

from the first metacarpal. In this complex, the TIII-MC ligament appears to be the 183 

most important stabilizer of the trapezium [26]. 184 

- Added to this are the palmar scaphotrapezial ligament, radial scaphotrapezial 185 

ligament and the trapezoidal-capitate ligament. 186 

In addition to these main ligaments, Ladd et al. identified a central dorsal ligament 187 

[27]. Kuhlmann identified an anteromedial ligament, part of the posteromedial ligament 188 

complex, named the retinaculometacarpal ligament due to its proximal insertion, which plays 189 

a key role in the suspension and anchoring of the base of the first metacarpal. It induces 190 

slight translation of the metacarpal along the concave articular surface of the trapezium 191 

during lateral pinch grips and pronation-supination of 90° [28]. 192 



 The appearance and location of the dorsal ligaments (DTM, POL, DCL and DRL) are 193 

consistent during arthroscopy, but those of the palmar ligaments (sAOL, dAOL and UCL) 194 

vary greatly: the sAOL resembles a thin veil of membranous tissue that is draped in a 195 

variable manner on the anterior portion of the joint capsule. What is known as the AOL and 196 

UCL appears to correspond solely to a thicker portion of this veil around the volar beak, 197 

although these ligaments cannot always be identified during macroscopic dissection [29]. 198 

 Initially, several authors [19,30,31] claimed that the AOL, with its two layers 199 

(especially the dAOL) was the thicker and mechanically more important one, although it is 200 

located on the same side as the powerful thenar muscles and consider it to be the main 201 

stabilizer of the TMC joint. All these authors believe that the IML, UCL and POL are only 202 

secondary stabilizers, which fuse to form an assemblage nucleus at the base of the first 203 

metacarpal. 204 

According to Imaeda et al., the DRL does not appear to play either a primary or 205 

secondary role in stabilizing the thumb [11,32]. But many subsequent studies 206 

[27,33,34,35,36,37,38,39,40,41] showed that the DRL was in fact shorter, thicker, less 207 

extendible, stiffer, and richer in mechanoreceptors than the AOL. Thus, it appears to be the 208 

main obstacle to dorsoradial subluxation. When it is transected in experimental studies, it 209 

causes the most amount of dorsoradial subluxation of the first metacarpal [35,42]. 210 

 Similarly, in histology studies, the dorsal ligaments are significantly thicker and more 211 

robust than the palmar ligaments, with more cells and more sensory innervation than the 212 

AOL. The AOL is a thin structure that has the histological appearance of a low cellularity 213 

capsular tissue instead of a true ligament; its location and insertions vary [27].  214 

 The dorsal ligaments (DRL, DCL and POL) have significantly more nerve endings 215 

than the palmar ligaments (AOL and UCL) [38,43]. Most of the nerve endings are near the 216 

bone insertions. Ruffini corpuscles are the predominant type of mechanoreceptor, with a 217 

higher density in the metacarpal portion of each ligament. Along with their biomechanical 218 

contribution to TMC stability, their presence suggests that these ligaments have a 219 

proprioceptive function [38]. 220 



 According to Comtet et al, the intermetacarpal ligaments (26%) and the AOL (39%) 221 

are subjected to the highest loads during thumb movements in the posteromedial and 222 

posterolateral directions, while the DRL and POL are subjected to lower loads (12%) in the 223 

other directions (anteromedial, medial, anterolateral, and maximum anteposition) [33]. 224 

 225 

3.2.3. Adjacent joints 226 

Proximally, the STT joint is a planar articulation. It contributes to the thumb’s mobility, as 227 

shown by D’Agostino et al., in flexion, adduction and especially in rotation [44,45]. 228 

Distally, the MCP joint is theoretically an ellipsoid (condylar) joint with two degrees of 229 

freedom: flexion-extension and radial and ulnar deviation. However, the two sesamoid bones 230 

and two powerful collateral ligaments limit its mobility in ulnar and radial deviation to favor 231 

stability. Consequently, the thumb MCP joint functions like a joint with a single degree of 232 

freedom. The metacarpal head is asymmetric: of its two palmar tubercles, the radial one is 233 

the largest; in 25-30° of flexion, it articulates with a hollow in the base of the proximal 234 

phalanx; when the UCL is under tension, this contributes to limiting abduction and external 235 

rotation [9]. The mean flexion amplitude is 56° [46] or 77° [47], depending on the shape of 236 

the metacarpal head: up to 70° flexion can occur if the head is round, but less than 40° if the 237 

head is flat [47]. The functional mobility ranges from 10° flexion deformity to 2° flexion 238 

according to Hume et al. [46] or 7.5° of flexion deformity to 5° flexion according to Murai et al. 239 

[48]. 240 

 More distally, the IP joint is a hinge joint with a single degree of freedom associated 241 

with automatic rotation: flexion-pronation to one side and extension-supination to the other. 242 

Here again, the head of the phalanx is asymmetric: its radial lip is larger than its ulnar one; 243 

when the UCL is under tension, this contributes to limiting abduction [9]. The IP is used 244 

during all gestures of day-to-day living [49]. 245 

 246 

3.3. Muscles 247 



The muscles are responsible for active stabilization of the TMC joint. The thumb appears 248 

imbalanced since there are four extrinsic muscles (including three on the dorsal side) and 249 

five intrinsic muscles (all located on the palmar side). 250 

The following are the long or extrinsic muscles: 251 

- The abductor pollicis longus (APL) is a complex muscle with deep and superficial 252 

parts [50]. The deep part has the larger muscle body and inserts around the TMC 253 

joint. The superficial part and every component of the deep part receive a different 254 

nerve branch than the deep branch of the radial nerve destined to the APL. It has 255 

a single tendon in only 5% of cases [51]. Most often it is formed of two to six 256 

tendons distributed into two groups (Fig. 4): a lateral one ending on the base of 257 

the first metacarpal and a medial one inserting either on the base of the first 258 

metacarpal (80% on anterolateral face and 20% on lateral face), on the trapezium 259 

(70-80%), the APB (60%), the thenar fascia (40–42%), the TMC joint capsule 260 

(30%) or the opponens pollicis (20%) [51,52]. The capsular insertions may 261 

reinforce certain ligaments [53]. It is mainly an abductor while also being an 262 

extensor of the TMC joint [54]; the superficial portion is said to work with the 263 

extensor pollicis brevis (EPB). Several anatomical studies have found no 264 

correlation between the severity of osteoarthritis and the types of distal APL 265 

insertions [51,55,56,57]. 266 

- The EPB is mainly an extensor, but also a weak abductor of the TMC joint 267 

[54,58,59,60]. 268 

- The extensor pollicis longus (EPL) is both an extensor and an adductor of the 269 

TMC joint [54] acting simultaneously and in a coordinated manner on the IP and 270 

MCP joints [61]. 271 

- The flexor pollicis longus (FPL) is a pure flexor [53], acting simultaneously and in 272 

a coordinated manner on the IP and MCP joints [61]. 273 

The APL, EPB and EPL have a combined extension and supination action on the TMC joint 274 

[61]. 275 



The short or intrinsic muscles are arranged in two layers, differentiated by their 276 

position relative to the tendon of the FPL and their innervation: 277 

- The superficial thenar muscles are innervated by the recurrent branch of the 278 

median nerve and are located in front of the FPL tendon. 279 

o The abductor pollicis brevis (APB) is responsible for flexion, antepulsion 280 

and pronation (but not abduction, more likely adduction [54]) of the TMC 281 

joint. It contracts at the same time as the APL during many thumb 282 

movements, acting as a stabilizer. 283 

o The opponens pollicis is the only muscle that terminates on the first 284 

metacarpal; it is responsible for flexion, antepulsion, and pronation of the 285 

TMC joint, along with abduction [54]. 286 

o The superficial head of the flexor pollicis brevis (FPB) 287 

- The deep thenar muscles are innervated by the deep branch of the ulnar nerve 288 

and are located behind the FPL tendon: 289 

o The deep head of the flexor pollicis brevis (FPB) 290 

o The adductor pollicis is responsible for adduction, retropulsion and 291 

supination of the TMC joint, along with flexion [54]; it has two heads, 292 

transverse and oblique. 293 

- The first dorsal interosseous muscle also acts on the TMC joint; it has also been 294 

called the lateral thenar muscle. When it contracts, it reduces the subluxation of a 295 

healthy TMC joint [62]. This muscle causes the least dorsoradial translation and 296 

causes the most distal translation of the metacarpal base [63]. For this reason, 297 

there is an emphasis placed on this specific muscle during the rehabilitation for 298 

thumb basal joint arthritis. 299 

The APL and adductor pollicis form a destabilizing functional pair, responsible for the 300 

abduction and dorsolateral subluxation of the first metacarpal (APL) and closure of the first 301 

web, which is made worse by all the other intrinsic muscles. 302 

Based on their position relative to the main axis of the TMC joint, we can differentiate:  303 



- antepulsion muscles: FPL, APB, opponens pollicis and superficial head of the 304 

FPB 305 

- retropulsion muscles: EPL, EPB, first dorsal interosseous 306 

- abduction muscles: APL 307 

- adduction muscles: adductor pollicis, deep head of FPB, first dorsal interosseous. 308 

When we look at the thumb’s overall movements, the FPL is the primary driver of 309 

isometric flexion; the EPL and APL are the primary drivers of isometric extension, the 310 

adductor pollicis and EPL are the primary drivers of isometric adduction; the APB and 311 

opponens pollicis are the primary drivers of isometric abduction [64]. During pinching and 312 

power gripping, the adductor pollicis and the FPL have the same electrical activity, with 313 

secondary contributions from the first dorsal interosseous and EPL. During key pinch, power 314 

grip and jar opening, the muscle recruitment is specific to each person but varies little from 315 

one task to another. The thumb’s extrinsic muscles are significantly more active than the 316 

intrinsic muscles during these three tasks [65]. 317 

When the intrinsic muscles are absent, the action of the EPL and FPL tendons alone 318 

tends to extend the TMC joint when it is not stabilized, to extend the MCP when it is 319 

stabilized, and to flex the IP joint [66]. 320 

 321 

3.4. Vascularization 322 

The arteries of the TMC joint come from the radial artery and its branch, the main artery of 323 

the thumb. They form a vascular network around the joint, which is denser on the dorsoradial 324 

side of the joint [67]. It is essential to be aware of its vascularization and to preserve it when 325 

doing peritrapezial osteotomies [68]. 326 

 327 

3.5. Innervation and the basis for denervation 328 

The TMC is innervated by the radial and median nerves. The branches of the median nerve 329 

are more numerous and larger; they come from the palmar branch (11/15) and the recurrent 330 

branch by following a retrograde arcuate path between the APB and the opponens pollicis 331 



(13/15), and sometimes directly from the median nerve in the carpal tunnel (5/15). The 332 

participation of the lateral cutaneous nerve of the forearm and the superficial branch of the 333 

radial nerve is more modest [69]. According to Loréa, the thenar branch is divided into at 334 

least two main branches, one for the opponens pollicis and the other for the APB. Very often, 335 

the branch for the opponens pollicis courses over or inside its medial face to spread out on 336 

the palmar face of the trapezium [70,71]. The superficial branch of the radial nerve does not 337 

have an exclusive or dominating role in the TMC joint’s innervation [72]. The deep branch of 338 

the ulnar nerve also innervates the TMC, which could explain some of the potential failures of 339 

denervation [73].  340 

According to Loréa et al., two incisions are needed to transect all the articular 341 

branches coming from the superficial branch of the radial nerve, the palmar cutaneous 342 

branch of the median nerve, the recurrent branch of the median nerve and the lateral 343 

cutaneous nerve of the forearm [69,74]. 344 

 345 

3.6. Anatomical relationships 346 

The radial artery is 4 or 5 mm proximal to the dorsal arthroscopic portal, following a course 347 

4–8 mm from the joint space and 8–11 mm from the EPB. Some of the sensory branches 348 

coming from the dorsal branch of the radial nerve are close to the dorsal surgical approach. 349 

According to Espinosa Gutiérrez et al., there is a safe zone for the dorsal arthroscopy portal 350 

between the EPL and EPB [75]. 351 

 352 

3.7. Biomechanics 353 

3.7.1. Stability 354 

The contact area is the greatest during palmar abduction and the least in adduction [10]. 355 

When centered, the contact surfaces are reduced [76]. Their span is minimal, a bit less on 356 

the trapezium than the base of the first metacarpal [77]. The location and breadth of the 357 

contact areas vary by the type of movement done [78]:  358 



- latero-palmar on the trapezium and lateral on the first metacarpal in opposition, 359 

representing 53% of the articular surfaces [78] with a stress concentration on this 360 

zone during power gripping [77] 361 

- lateral (radial) on the trapezium and the first metacarpal in palmar abduction, 362 

representing 28% of the articular surfaces [78] 363 

- dorsal on the trapezium and the first metacarpal in radial abduction, representing 364 

25% of the articular surfaces [78] 365 

- central palmar for the trapezium and first metacarpal during circumduction, except 366 

in adduction [10]. 367 

In the study by Ateshian et al. [79], key pinch was responsible for contact areas primarily in 368 

the central, palmar, and ulnar portions of the trapezium and metacarpal. The TMC remains 369 

stable during key pinch, jar grasp and jar twist, with no difference between sexes [80]. 370 

 371 

3.7.2. Loads 372 

A famous study by Cooney and Chao [81] showed that the extrinsic and intrinsic tendons 373 

supported loads of up to 10 and 30 kg, respectively, during a pinch grip, producing a 5 kg 374 

load at the tip of the thumb and that tendon forces reached 50 kg during power grip. The 375 

compression loads were calculated to be 3 kg at the IP joint, 5.4 kg at the MCP joint and 12 376 

kg at the TMC joint during a pinch grip generating 1 kg (Fig. 5). They could reach 120 kg 377 

during a power grip. 378 

 379 

3.7.3. Resting position 380 

At rest, the TMC has a slight subluxation dorsally (1.8–2.0 mm) and radially (2.8–3.4 mm) 381 

[22]. 382 

 383 

3.7.4. Mobility 384 

According to Zancolli et al., the TMC is shaped to allow isolated angular movements 385 

but also associated angular and rotational movements of the first metacarpal. To accomplish 386 



this, the geometry of the joint is compartmentalized: one section has a saddle shape (central 387 

zone of the trapezial surface and metacarpal crest) where the simpler angular movements 388 

occur, while another section has a spheroid shape (palmar portion of the trapezial articular 389 

surface and the slopes of the metacarpal surfaces) where combined movements occur [82]. 390 

The two main axes of the TMC are in non-orthogonal and non-secant planes [83], 391 

which differ from the anatomical reference planes and explains why complex movements do 392 

not occur in the classical reference planes (frontal or sagittal) but in planes that are oblique to 393 

these reference planes. The flexion-extension axis passes through the trapezium while the 394 

abduction-adduction axis passes through the first metacarpal [11,84]. Thus flexion-extension 395 

and abduction-adduction movements are coupled with automatic internal and external 396 

rotation movements along with translation movements: internal rotation and ulnar translation 397 

is coupled with flexion, implying a screw-like stabilization mechanism [44,84]. The base and 398 

head of the first metacarpal shift in the same direction during flexion-extension but in 399 

opposite directions during abduction-adduction [11]. 400 

During flexion, all the ligaments are placed under tension, except for the beak 401 

ligament which becomes slack. During adduction and opposition, the POP and DIM are 402 

placed under tension, while the DRL and beak ligament slacken [37].  403 

Axial rotation of the TMC mainly occurs when the hand is used during a cylindrical or 404 

spherical grip [49]. Axial rotation is controlled by muscles; when the joint is compressed, 405 

there is not more than 3° motion [18]. During opposition, the flexion and pronation 406 

movements are coupled [7]. 407 

 408 

3.8. Sex-related variations 409 

Unsurprisingly, the bones in women are smaller than those in men, thus the articular 410 

surfaces are also. There is no difference in the width of the TMC joint space between young 411 

men and young women [24], nor any differences in joint congruency [85] or kinematics [80]. 412 

According to Schneider et al. [86], there is no difference in the shape of the metacarpal 413 

surface between men and women. According to Ateshian et al. [87], the congruency is not as 414 



good in women as it is in men: the concavity of the metacarpal surface and the convexity of 415 

the trapezial surface are less pronounced in women than in men [88,89].  416 

 417 

4. The arthritic trapeziometacarpal joint 418 

Basal joint arthritis is attributed to TMC instability/hypermobility, which is visible on stress X-419 

ray images [90] allowing lateral translation of the metacarpal on the trapezium [30,91,92]; 420 

however, this was contradicted by the study of Kraus et al. [93]. Lesions identical to the ones 421 

seen in osteoarthritis were simulated by transecting the beak ligament [94]. 422 

 423 

4.1. Incidence of basal joint arthritis by age and sex and combination with other types of 424 

arthritis 425 

In a British study, symptomatic clinical and radiological basal joint arthritis affects 2.2% of the 426 

population and isolated erosive finger osteoarthritis is found in 0.5%, although these two 427 

conditions are very often present at the same time [95]. In a Swedish study, basal joint 428 

arthritis was the reason for consultation with a general practitioner in 1.4% of patients over 429 

20 years of age (2.2% in women and 0.6% in men). The mean age at the time of consultation 430 

was 68 years, although women were seen at a younger age than men by about 10 years 431 

[96]. In post-menopausal women, the prevalence of isolated TMC arthritis, STT arthritis and 432 

peritrapezial TMC+STT arthritis was 25%, 2% and 8%, respectively. Only 28% of cases of 433 

isolated TMC arthritis and 55% of TMC + STT osteoarthritis were symptomatic [97]. In a 434 

cadaver study with 69 specimens, severe concurrent osteoarthritis was found in the TMC 435 

and STT joints of 60% of specimens. There was a correlation between the severity of the 436 

TMC arthritis and that of STT arthritis. Radiographic and macroscopic changes in the STT 437 

joint were visible in 39% of subjects [98]. Similarly, the presence of STT arthritis is highly 438 

correlated with the presence of TMC arthritis [99]. 439 

 In a cohort of 36 fresh cadaver TMC joints, Maes-Clavier et al. found that 17 joints 440 

(71% men) were stage I (no osteoarthritis) to stage III (moderate osteoarthritis) while 19 441 

joints (95% women) were stage IV (major cartilage damage) [100]. 442 



 443 

4.2. Macroscopic changes in the trapeziometacarpal joint due to basal joint arthritis 444 

Unsurprisingly, basal joint arthritis leads to narrowing of the joint space [24,88], changes in 445 

joint congruency [85] and loss of trapezial height. 446 

 The cartilage in an arthritic TMC joint is said to be thinner by 0.8 ± 0.2 mm for the 447 

trapezium and 0.7 ± 0.2 mm for the metacarpal. This affects the radial sides of the 448 

metacarpal initially, progressing towards the palmar sides and the dorsoradial side of the 449 

trapezium, progressing towards the palmar sides [88,89]. 450 

 Degenerative lesions are mainly observed in the zones loaded during joint 451 

movements, especially opposition [100]: on the radial, palmar, and ulnar facets of the 452 

trapezium [78,84,101], and the dorsal and palmar facets [84] and ulnar facet [101] of the 453 

metacarpal. The arthritic changes are less severe on the dorso-ulnar portion of the trapezium 454 

and the dorsal portion of the metacarpal, known to be the less-loaded regions [102]. As the 455 

arthritis worsens, the concavity of the trapezium become deeper while its convexity becomes 456 

flatter whereas the metacarpal’s concavity flattens, and its convexity increases [103,104]; 457 

these changes are more apparent in women than in men [89]. This results in an increase in 458 

the joint congruency, although it is less in women than in men [105]. The average ratio 459 

between the dorso-palmar diameter and the transverse diameter of the metacarpal 460 

articulating surface increases. Lengthening of the articular surface [100] in the dorso-palmar 461 

direction is related to the presence of a palmar osteophyte. 462 

 The trapezium loses proximo-distal thickness (22% according to Nufer et al. [106]), 463 

but as a reaction to the increased stresses, the thickness of the subchondral bone increases 464 

by 50%, and the bone volume increases 42% because of an increase in the number (10%), 465 

thickness (18%) and connectivity of the bone trabeculae [106,107]. These modifications are 466 

more apparent in the dorsoradial part of the joint [102,108]. The women in their study with 467 

confirmed osteoarthritis had a more pronounced radio-ulnar incurvation than the men with 468 

osteoarthritis [108]. The wear is asymmetric, resulting in an increase in the trapezial slope: 469 



42° ± 4° for hands without arthritis or with Eaton stage I or II arthritis, 50° ± 4° for hands with 470 

Eaton stage III and IV arthritis [20]. 471 

 Despite the joint space narrowing, the mean distance between the ligament insertions 472 

and the metacarpal articular surface remains greater than 2 mm, except for the metacarpal 473 

insertion of the DRL [100]. There are also soft tissue lesions that affect only the metacarpal 474 

insertion of the beak ligament [109]: degeneration of its metacarpal insertion was observed 475 

during palmar chondromalacia with complete detachment when the surfaces are eburnated 476 

[110]. The mechanical properties (resistance to stretching) of the main ligaments decrease 477 

[34] in a directly correlated manner with the condition of the TMC cartilage and with age. 478 

Slackening of the ligaments alters the mechanical balance of the musculotendinous stays, 479 

especially the APL and EPB, which may contribute to the joint deformities observed in basal 480 

joint arthritis [111]. 481 

 The centers of rotation of flexion-extension are translated more dorsally in the patient 482 

group, while the centers of rotation during abduction-adduction are not altered [112,113].  483 

 Basal joint arthritis is also accompanied by changes in the function of the thumb’s 484 

intrinsic muscles [114]: loss of APB effectiveness secondary to changes in its vector, loss of 485 

electrical activity and 50% loss in the cross-section area of the superficial portion of the FPB. 486 

 487 

4.3. Ethnic variations 488 

 The frequency and distribution of idiopathic basal joint arthritis varies greatly among 489 

different ethnic groups according to a study done on 61 Asian and 100 Caucasian cadavers 490 

[110]. Among the 35 Japanese cadavers, 23 (66%) had completely normal articular surfaces, 491 

5 (14%) had chondromalacia limited to the dorsal part of the articular surfaces, 2 (6%) had 492 

chondromalacia in the palmar portion of the articular surfaces and five (14%) had visible 493 

subchondral bone with advanced degenerative lesions. A similar distribution was found in the 494 

22 Chinese cadavers. When it was present, osteoarthritis had the same features as those 495 

observed in Caucasians. The concave-convex configuration of the articular surfaces was 496 

flatter in Asians than in Caucasians. In the latter, only 25% had normal articular surfaces, 497 



10% had dorsal chondromalacia considered as being age-related, 15% had palmar 498 

chondromalacia considered as being pre-arthritic, while 50% had visible subchondral bone 499 

with advanced arthritis.  500 

 501 

4.4. Microscopic and biological changes in basal joint arthritis 502 

 Biochemically, the palmar articular surfaces affected by chondromalacia are 503 

characterized by a loss of glycosaminoglycans, retention of collagen, and shift in the sub-504 

species of glycosaminoglycans, as evidenced by the increased chondroitin sulfate/keratan 505 

sulfate ratio. This contrasts with the dorsal articular surface that biochemically resemble the 506 

normal surfaces of the trapezium’s articular facets for the scaphoid and trapezoid [115]. 507 

 Histologically, the earliest changes are seen in the tangential surface layer and occur 508 

in the areas of chondromalacia in the volar portion of the contact areas. Progressive 509 

disruption of this superficial fibrillar layer of the articular cartilage is followed by 510 

disorganization of the chondrocytes and underlying matrix. In the palmar portion where the 511 

chondromalacia lesions are more advanced, we observe a loss of eosinophilic staining, free 512 

cellular elements, and craters 20–30 mm in diameter resembling empty chondrocytic lacuna, 513 

and an absence of any meshing of the tangential surface. In the eburnated zones where the 514 

sub-chondral bone is visible, there are no cellular nor fibrillar elements. The disruption of the 515 

protective layer of articular cartilage occurs in a spatial configuration corresponding to the 516 

contact zones where selective decomposition of the proteoglycan matrix has been observed 517 

[115]. The water content increases, the proteoglycan content decreases and the collagen 518 

content relative to dry weight does not change. Concurrently, the compression stiffness and 519 

the permeability decrease, contrary to what has been observed in the hip and knee [116]. 520 

 The collagen fibers of the beak ligament are disorganized at their metacarpal 521 

insertion. The normal fibrocartilage insertion zone is often not identifiable on the metacarpal 522 

side, and in cases of more advanced arthritis, a synovial recess appears across from the 523 

palmar beak of the metacarpal. The trapezial insertion of the beak ligament has no 524 

degenerative alterations. Severe cartilage lesions are associated with progressive and 525 



selective degeneration of the collagen network of the beak ligament at its metacarpal 526 

insertion [109]. 527 

 The decrease in ligament strength may be due to relaxin, a peptide hormone that 528 

relaxes ligaments before a woman gives birth, by the intermediary of remodeling of the 529 

extracellular matrix via the regulation of matrix metalloproteases acting on the relaxin/insulin-530 

like family peptide receptors 1 (RXFP-1). These are receptors for circulating relaxin, which 531 

are present in ligaments, cartilage, and the synovial membrane, and in higher concentrations 532 

in basal joint arthritis [117]. The DRL preserves a dense collage organization, evidence of its 533 

effectiveness, while the AOL is made of disorganized connective tissue that is low in collagen 534 

and low in mechanoreceptors [42]. 535 

 536 

4.5. Consequences of anatomical lesions on function 537 

Basal joint arthritis is accompanied by a reduction in TMC mobility. Stage II/III basal joint 538 

arthritis restricts mobility in abduction-adduction (38° in control subjects, 26° in basal joint 539 

arthritis) without restricting flexion-extension or pronation-supination. It also reduces MCP 540 

mobility in abduction-adduction by 48% (32° in control subjects, 16° in basal joint arthritis) 541 

and in pronation-supination by 42% (34° in control subjects, 20° in basal joint arthritis) [14]. In 542 

stages III and IV, relative to a healthy population, the mobility was reduced by 14° in flexion-543 

extension (mainly on the extension side), by 26° in abduction-adduction (mainly on the 544 

abduction arc), and by 13° in pronation-supination [118]. This TMC stiffness generates 545 

compensatory mobility of the trapezium in abduction [113] and requires greater force 546 

generation by the muscles and tendons to move it, especially the FPL and EPL, which may 547 

explain the difference observed between passive and active mobility [119]. 548 

 Early basal joint arthritis is accompanied by reduced strength in pinch grips, more 549 

apparent in key pinch than in tip-to-tip or tripod pinch [120], but also in cylindrical grips [121], 550 

in thumb abduction and index finger extension [122]. This measurable strength loss is 551 

correlated with the clinical impact (DASH score), especially that of tip-to-tip pinch [123] and 552 



can thus serve as an objective evaluation of the functional impact. In the presence of arthritis 553 

in other fingers, the strength loss is specifically related to the condition of the thumb [124]. 554 

 During three functional isometric tasks (gripping a key, holding a jar, and opening a 555 

jar) in 76 patients with early basal joint arthritis, the TMC was more unstable during key pinch 556 

than during the other two tasks. Sex, age, and early arthritis had no effect on TMC instability, 557 

suggesting that instability during these three tasks does not predispose one to arthritis [125]. 558 

 559 

4.6. Potential for spontaneous healing 560 

Lovati et al. found better chondrogenic potential in femoral chondrocytes than in trapezial 561 

ones. They concluded that the trapezium had a lower regenerative capacity than the femoral 562 

head [126]. 563 

 564 

4.7. Consequences of thumb basal joint arthritis on the MCP joint 565 

As the adductus of the first metacarpal worsens, the MCP joint develops hyperextension that 566 

allows large objects to be manipulated despite the closure of the first web. This 567 

hyperextension appears more likely to develop when the metacarpal head is rounded (as 568 

opposed to flat) and the first metacarpal is short, whether congenital or related to basal joint 569 

arthritis (joint narrowing, trapezium collapse, subluxation, disappearance of the palmar beak 570 

after AOL release) [127]. Hypermobility of the MCP may play a causal role in the 571 

development of primary basal joint arthritis by concentrating the loads on the palmar part of 572 

the joint, since MCP flexion unloads the most palmar part of the TMC articular surfaces, no 573 

matter the severity of the basal joint arthritis [128]. 574 

 575 

5. The operated trapeziometacarpal joint 576 

5.1. Trapeziectomy 577 

According to Goubier et al., after trapeziectomy with ligament reconstruction, the TMC 578 

motion is 50° during flexion-extension, 47° during abduction-adduction and 11° during axial 579 

rotation. There is no significant difference with the motion of healthy joints, except for 580 



circumduction that is reduced after surgery [5]. Koff et al. compared total trapeziectomy with 581 

and without LRTI, the Weilby arthroplasty and the Thomson arthroplasty. Motion was better 582 

after the Thomson arthroplasty and after LRTI, while trapeziectomy with LRTI yield results 583 

that were the closest to those of an intact thumb [129]. 584 

 585 

5.2. Arthroplasty with a prosthesis 586 

Most of the prostheses available are spheroid, with three degrees of freedom, not saddle-587 

shaped with two degrees of freedom. Under these conditions, the dislocating forces are 12 588 

times greater [130]. 589 

 This highlights how important the soft tissues are to stabilize non-retaining implants. 590 

Stabilization of spheroid implants is essentially passive and relies on 1) minimal bone cuts 591 

and the preservation or reconstruction of the main ligaments, 2) larger bone cuts and 592 

tensioning of periarticular soft tissues, 3) use of retaining or dual mobility implants. Dynamic 593 

muscular stabilization participates in passive stability; it appears to be the only mechanism to 594 

control pronation and supination. 595 

 These days, the metacarpal stem corresponds to the shape of the medullary canal. 596 

The orientation of the cup in the trapezium is more challenging. Duerinckx and Caekebeke 597 

have suggested that the cup must be placed parallel to the trapezium’s proximal articular 598 

surface (the one that articulates with the scaphoid) and that it should be combined with a 599 

metacarpal neck having 7° offset, both to optimize mobility and to minimize the risks of 600 

postoperative complications [131]. 601 

 Nevertheless, the prosthetic joint does not exactly reproduce the kinematics of the 602 

healthy TMC joint [112]. 603 

 604 

6. The trapeziometacarpal joint in an evolutionary context 605 

The saddle shape of the TMC joint is not specific to modern Man, as it has also been found 606 

in hominin fossils [132]. A study of the radius of curvature of the articular surfaces confirms 607 

that Man (Homo) derives from large African apes (Gorilla, Pan), from the Australopithecus 608 



afarensis and from the Neandertal man, with progressive flattening. The orang-outang 609 

(Pongo) lies between Man and African apes. The baboon (Papio) has surfaces that are even 610 

flatter than those of Man, which are cylindrical [133]. The TMC of Man has the same mobility 611 

as those of the chimpanzee in all movements, including coupled movements, except for 612 

extension which is greater in Man [134] and the muscular couples being greater due to 613 

longer moment arms [135]. The other notable feature of the thumb’s evolution is widening of 614 

the distal phalanx [136]. 615 

7. Conclusion 616 

Knowledge of descriptive, functional, and comparative anatomy is essential to the 617 

understanding of the causes and consequences of basal joint arthritis, while knowledge of 618 

vascularization, innervation, and relationships of the TMC joint are needed for its surgical 619 

treatment.  620 
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Figure legends 994 

Fig. 1. Distal (A) and palmar (B) view of the trapeziometacarpal after the first metacarpal has 995 

been removed. The axes around which abduction-adduction (K-wire A) and antepulsion-996 

retropulsion (K-wire B, entering the palmar beak of trapezium) occur are not completely 997 

orthogonal, are not secant and are not located in the reference planes (from Zancolli and 998 

Cozzi, Atlas of surgical anatomy of the hand. Churchill Livingston 1992). H: hook of hamate; 999 

L: anterior horn of lunate; P: pisiform; S: scaphoid; T: trapezium. 1000 

Fig. 2. Anatomy of trapezium. Palmar (A), dorsal (B), medial (C) and distal (D) views. FCR: 1001 

flexor carpi radialis; M: articular surface for 1st metacarpal; S: articular surface for scaphoid; 1002 

T: articular surface for trapezoid 1003 

Fig. 3. Anterior (A) and lateral (B) views of the trapeziometacarpal joint. APL: abductor 1004 

pollicis longus ; dAOL: deep anterior oblique ligament (visible through a window in the 1005 

sAOL); DIML: dorsal intermetacarpal ligament ; DRL: dorsoradial ligament ; FCR: flexor carpi 1006 

radialis ; IML: intermetacarpal ligament ; POL: posterior oblique ligament ; sAOL: superficial 1007 

anterior oblique ligament ; UCL: ulnar collateral ligament. 1008 

Fig. 4. The distally inserting tendons of the abductor pollicis longus (lateral view, left hand). 1009 

This dissection shows three tendons ending on the 1) muscle body of the abductor pollicis 1010 

brevis, 2) the trapeziometacarpal capsule, 3) the first metacarpal base. 1011 

Fig. 5. To generate a 1 kg pinch grip, the trapeziometacarpal joint supports 10 kg of load 1012 

(from Cooney & Chao [76]). 1013 
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