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 1 

Abstract 2 

Introduction: This study investigated self-paced voluntary oscillations of scoliotic and 3 

non-scoliotic girls. Temporal variables and frequency coherence were calculated for the 4 

overall, low and high frequency bandwidths of the center of pressure excursions and free-5 

moment to identify which variables best describe sway balance modalities in both groups. 6 

Methods: Twenty-three girls with adolescent idiopathic moderate scoliosis (spinal curves 7 

to the right) formed the scoliotic group and 19 matched able-bodied girls formed the non-8 

scoliotic group. Each girl performed self-paced voluntary medio-lateral and antero-9 

posterior sways while standing on a force platform. Center of pressure displacements, out 10 

of plane deviation and free-moment were measured and their frequency content 11 

calculated. The magnitude of the coherence was calculated for each signal pairs for three 12 

frequency ranges. 13 

Results: In both sway conditions, the center of pressure excursion parameters were on 14 

average 28% higher for the scoliotic group. Factor analysis revealed that balance 15 

modalities were essentially based on frequency coherence pair interactions whereas 16 

temporal parameters play a secondary role. However, these balance modalities were 17 

altered in the scoliotic group. They relied essentially on 2 additional principal 18 

components and 3 additional variables reflecting a fine tuning of the control mechanism 19 

to maintain dynamic balance. 20 

Interpretation: Scoliotic girls appear to be performing a wide ellipsoidal trajectory when 21 

performing whole body oscillations. Superfluous variables could be related to the 22 
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difficulty in preserving balance during body sway tasks and could parasitize the scoliotic 23 

dynamic control balance modalities. Self-paced voluntary sways could be an appropriate 24 

complementary balance test for untreated scoliotic girls. 25 

 26 

Key Words: balance; oscillations; scoliosis 27 
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Text 28 

Untreated adolescent idiopathic scoliotic girls display altered balance modalities during 29 

self-paced voluntary body sways compared to able-bodied girls 30 

 31 

1. Introduction 32 

Scoliosis is characterized by a three-dimensional spine and rib cage distortion (Koreska et 33 

al., 1978) which unsettles standing balance (Gauchard et al., 2001; Nault et al., 2002) and 34 

shifts backward the body center of mass (CoM) position and increases its excursion 35 

(Dalleau et al., 2011; Damavandi et al., 2009). Spinal deformity not only modifies body 36 

segment spatial orientation and their interdependency (Goldberg et al., 2001), but 37 

modifies gait initiation strategies (Bruyneel et al., 2009; 2008) as well as walking patterns 38 

(Mahaudens et al., 2009; Park et al., 2015; Wu et al., 2019). An expected body 39 

perturbation while standing accentuates postural control compensations (Klous et al., 40 

2012). The focus of the attention is then on body sways to maintain postural balance by 41 

increasing active intervention to maintain upright steadiness. Voluntary postural sway 42 

displacement is a simple approach (Tucker et al., 2010) that could highlight new dynamic 43 

balance modalities unreported to this day in adolescent idiopathic scoliosis (AIS), 44 

especially as postural rehabilitation of scoliotic patients suffers from a lack of knowledge 45 

about the relation between posture and proprioception. 46 

During standing, the body oscillates and causes its center of pressure (CoP) to migrate in 47 

both the antero-posterior (AP) and medio-lateral (ML) directions. Though it can be 48 

modelled as a three-dimensional inverse pendulum rotating about the ankles (Barbier et 49 
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al., 2003), medio-lateral control is achieved by the hips and trunk while antero-posterior 50 

balance occurs at the ankles (Shumway-Cook and Woollacott, 2012). The excursion of 51 

the CoP is as well associated with an effort from the free moment acting about the 52 

vertical axis for postural stabilization (Dalleau et al., 2007; Esposti et al., 2010). When a 53 

whole-body action is performed such as in gait initiation, postural adjustments are 54 

detected (Klous et al., 2012; Wang et al., 2005). Voluntarily shifting of the body CoM 55 

within the standing base of support also occurs in daily activities and is link to falls 56 

(Robinovitch et al., 2013). A decrease in stability reduces the performance in these tasks 57 

and disturbs balance reactions produced when the CoM is shifted towards the limits of 58 

standing stability (Cleworth et al., 2018). However, in daily activities subjects use a range 59 

of control balance strategies, not limited to the ankles (Runge et al., 1999). This allows 60 

for changes in balance strategies under a critical margin of stability (Lorenzo and 61 

Vanrenterghem, 2015). Voluntary body sway needs to be tested since its direction can 62 

favor either a hip strategy or stimulates an ankle strategy in association with the free 63 

moment compensations. It is reasonable to assume that changes in dynamic balance could 64 

be present in a self-paced voluntary body sway along medio-lateral and antero-posterior 65 

directions while standing and is exacerbated by a spinal deformation. 66 

To estimate if subjects with multiple sclerosis (MS) alter the use of the ankle and hip 67 

strategy to manage antero-posterior postural sway at different frequencies, body segment 68 

interactions were assessed during quiet standing (Huisinga et al., 2018). Frequency 69 

coherence analyses performed on trunk and legs accelerations revealed that MS subjects 70 

utilize a mixed ankle-hip sway modality. This method was also applied to characterize 71 

the interaction between the CoP displacement and the free moment in able-women and 72 
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men (Hay and Wachowiak, 2017) and later in adolescent idiopathic scoliosis (Leteneur et 73 

al., 2019) during quiet standing. Such a method could be used to describe dynamic 74 

balance modalities during self-paced voluntary body oscillations. 75 

The general purpose of this study is to determine, if during an imposed activity, 76 

particularly self-paced voluntary body sways, there is an organized balanced modality 77 

and if it is affected by the sway direction. Specifically, the first objective is to test if the 78 

temporal parameters of the body sway and the frequency coherences calculated for the 79 

overall, low and high frequency bandwidths between the CoP excursion and its 80 

corresponding free moment observed during self-paced voluntary oscillations of scoliotic 81 

and non-scoliotic girls are similar. The effect of the direction of the voluntary sway also 82 

needs to be tested since medio-lateral and antero-posterior oscillations favors different 83 

balance modalities. Finally, we wish to identify which of the temporal and frequency 84 

coherence variables best describe sway balance modalities in the scoliotic and non-85 

scoliotic girls during the body sways. It was hypothesized that untreated adolescent 86 

idiopathic scoliotic girls display altered balance modalities during self-paced voluntary 87 

body sways compared to able-bodied girls. This approach could lead to new advances in 88 

proprioception and postural retraining programs for the rehabilitation of scoliotic 89 

patients. This study should allow to characterize the balance modalities related to the 90 

control mechanisms used by scoliotic patients to maintain their dynamic standing balance 91 

despite their postural troubles. 92 

2. Materials and methods 93 
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A group of 23 girls diagnosed with moderate adolescent idiopathic scoliosis according to 94 

the criteria defined by Bunnel (Bunnel, 1986) participated in this study (named SCO in 95 

the figures and tables). Their mean age was 12.9 years (SD 1.8 years) while their height 96 

and body mass were 155.2 cm (SD 10.0 cm) and 43.2 kg (SD 10.3 kg), respectively. The 97 

scoliotic girls were recruited by an orthopedic surgeon from the hospital scoliosis clinic. 98 

The average Cobb angle was 26.2° (SD 11.8°) and ranged between 11° and 49° and all 99 

spinal curves were to the right. No patient was under active treatment at the time of this 100 

study. All of the recruited girls completed the experiments and were included for data 101 

analysis. A group of 19 able-bodied girls, matched in age, height and body mass with the 102 

scoliotic girls, formed the non-scoliotic group (named AB in the figures and tables) and 103 

were recruited from family members and friends. This able-bodied group was comparable 104 

in age (13.0 years, SD 1.4 years, P=0.897), height (156.1 cm, SD 7.1 cm, P=0.761) and 105 

body mass (45.5 kg, SD 7.7 kg, P=0.430) to the scoliotic group. No girl had any form of 106 

scoliosis and all were in general good health. Any subject with a limb length discrepancy 107 

of more than 1 cm, wearing a foot orthosis or who displayed any signs of postural, 108 

orthopedic or neurological disorders was excluded from the study (it concerned 2 of the 109 

initially eligible able-bodied girls). All the girls and their parents signed the informed 110 

assent form approved by the institutional ethics committee. All the experiments were 111 

conducted in a motion capture laboratory by the same researcher expert in the field, 112 

between January and March 2018. Prior to the experimentation, all procedures were 113 

explained to each subject and data acquisition took approximately an hour. 114 

Subjects were asked to perform self-paced voluntary medio-lateral and antero-posterior 115 

sways while standing on an AMTI force platform (Model OR6-5, Newton, MA, USA). 116 
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Self-paced oscillations were preferred to conditioned by visual or acoustic cues given by 117 

a metronome because these could perturb the dynamic balance in scoliotic girls (Herman 118 

et al., 1985). With the feet barefoot, they positioned themselves with the midline of their 119 

heels spaced by 15 cm with the arms positioned loosely along their sides (McIlroy and 120 

Maki, 1997). They stood with the feet parallel to each other as not to unduly increase the 121 

base of support during the lateral oscillation condition. 122 

The girls were requested to perform a whole-body sway completing half a cycle to reach 123 

their maximal forward lean. This was followed by a maximal backward body lean. These 124 

maximally forward and backward sways were repeated until at least 5 complete cycles 125 

were performed at the girls own rhythm to complete a trial. Similarly, subjects were 126 

instructed to sway sideways as far as possible to reach their maximal right or left lean 127 

followed by a maximal lateral lean in the opposite direction at their own pace. At least 5 128 

maximal back and forth lateral sways were required. A trial was rejected if a subject 129 

either took a forward or lateral step to regain balance, if the trunk leaned rather than the 130 

whole-body or if subjects rotated their trunk or shoulders during the self-imposed 131 

voluntary sways.  A minimum of 10 second rest was given between trials to reduce 132 

fatigue. Data were sampled at a frequency of 64 Hz (Nault et al., 2002) and lasted about 133 

60 s. Prior to experimentation, participants were given verbal directives and examples on 134 

how to perform the ML and AP body sways. Then, they completed a series of practice 135 

trials to become familiar with oscillations conditions. 136 

For all trials, the AP and ML center of pressure positions were calculated with respect to 137 

the center of the force plate at each time instant. The free moment (Tz) acting at the CoP 138 

was calculated from the vertical moment and the moments resulting from the antero-139 
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posterior and medio-lateral forces (Dalleau et al., 2007). Tz represents the vertical torque 140 

on the feet that reflects the oscillation around the vertical axis associated to the standing 141 

imbalance. From the AP and ML CoP displacements, 6 temporal parameters were 142 

calculated for each sway directions. The sway ratio corresponds to the ratio of the time to 143 

oscillate in a particular direction such as forward over the time taken to return 144 

(backwards). It is expressed in percentage. For a given sway direction, the mean range of 145 

the CoP in the AP and ML directions and the mean range of the free moment were 146 

calculated. The out of plane deviation is the total CoP excursion perpendicular to the 147 

direction of the sway. In other words, the ML deviation is calculated during the voluntary 148 

AP sway. Similarly, the RMS CoP value is calculated along the perpendicular axis of the 149 

sway direction and represents the variability of the displacement along a given axis. 150 

To obtain the frequency coherence pairs, the CoP excursion in the AP and ML directions 151 

and their corresponding free moments were processed as individual signals as shown in 152 

Fig. 1 A to C. These signals were filtered with a zero-lag 4th order Butterworth low-pass 153 

filter having a 20 Hz cut-off frequency. Then, each signal was divided into epochs of 154 

variable duration according to the maximum of the oscillations. The number of extracted 155 

epochs was variable across the participants; however, no group difference was revealed 156 

during ML oscillations (8.38 ± 2.13 epochs; t50 = 0.33; P = 0.74; Cohen’s d = 0.09) or AP 157 

oscillations (8.85 ± 2.04 epochs; t50 = 0.19; P = 0.85; Cohen’s d = 0.05). Each signal was 158 

then normalized over time using spline interpolation to obtain epochs of similar number 159 

of observations. The reader is referred to (Fauvet et al., 2019) for further details on this 160 

procedure. Finally, the average value was removed to each signal to obtain zero-centered 161 

epochs of CoPAP, CoPML and Tz signals as shown in Fig. 1 D to F. 162 
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 163 

PLEASE INSERT FIG 1 ABOUT HERE 164 

 165 

The wavelet auto-spectrum of each zero-centered epoched signal is depicted in Fig. 2 A 166 

to C and the wavelet cross-spectrum between each zero-centered epoched signal are 167 

shown Fig. 2 D to F. They were obtained with a Morlet wavelet transform (Gasq et al., 168 

2015; Leteneur et al., 2019) yielding a 0.97 Hz to 9.68 Hz frequency band in 0.04 Hz 169 

steps. The wavelet magnitude-squared coherences, ��,�� ��, �	, are shown in Fig. 2. The 170 

wavelet cross-spectrum normalized by the wavelet auto-spectrum of each signal was 171 

obtained by  172 

��,�� ��, �	 =
���,���, �	�

�

����, �	����, �	′
 173 

where ��,���, �	 is the wavelet cross-spectrum between X and Y signals (either COPAP, 174 

COPML and TZ signals) and ����, �	 and ����, �	 are the wavelet auto-spectrum of each 175 

X and Y signals at frequency � and time �. 176 

To properly quantify the magnitude of the CoPML-CoPAP, CoPML-Tz and CoPAP-Tz 177 

coherence pairs, values were averaged only where significant correlations between two 178 

signals were detected as significant on the wavelet cross-spectrum (Bigot et al., 2011; 179 

Fauvet et al., 2019). For each signal pairs, the magnitude of the coherence was averaged 180 

over the entire time period for three frequency bands: overall frequency band (1.00-181 

8.00 Hz), low frequency band (1.00-3.00 Hz) and high frequency band (3.00-8.00 Hz). In 182 
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comparison to previous studies (Hay and Wachowiak, 2017; Leteneur et al., 2019) the 183 

lowest frequency bound was higher due to the short epoch duration (4.05 ± 1.19 s ranging 184 

from 2.21 s to 9.56 s for ML oscillations; 3.82 ± 0.98 s ranging from 2.35 s to 7.68 s for 185 

AP oscillations) constraining the lowest frequency bound to 1/d (~0.45 Hz) where d is the 186 

time period. 187 

 188 

PLEASE INSERT FIG 2 ABOUT HERE 189 

 190 

An independent one-way ANOVA was performed on the sway ratio, the mean range of 191 

the CoP in the AP and ML directions and Tz, the out of plane deviation or the 192 

displacement in the perpendicular direction of the sway and the RMS CoP along the 193 

perpendicular axis of the sway direction for each voluntary sway conditions as well as the 194 

9 coherence values (3 pairs and 3 frequencies) to compare the able-bodied and the 195 

scoliotic groups. Another one-way ANOVA was performed to compare the magnitude of 196 

the coherence values between the medio-lateral and antero-posterior voluntary sway 197 

conditions for each signal pairs. A Bonferroni correction procedure was applied to 198 

control Type 1 error by adjusting the P values in the analysis (Holland and Copenhaver, 199 

1988) and a P value of 0.05 or smaller was considered statistically significant. Finally, a 200 

factor analysis was carried out for each subject to estimate the relative contribution of the 201 

coherence relationships for the able-bodied and scoliotic girls for values measured in the 202 

ML and AP sway conditions. Factors with an eigenvalue greater than 1 and variables 203 

with a loading factor of 0.7 or above were considered as statistically significant (Leteneur 204 
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et al., 2019; Sadeghi, 2000). Finally, Cohen’s d coefficient was calculated for statistically 205 

significant parameters to estimate size effect. The threshold was set at 0.8 (Cohen, 1992; 206 

1988). 207 

3. Results 208 

The average Cohen’s d coefficient was 1.16 for all statistically significant parameters. 209 

Results for the medio-lateral and antero-posterior self-paced voluntary oscillations in the 210 

time domain are presented in Fig. 3. In both subject groups, the mean sway ratio was not 211 

statistically significant at about 86% (P>0.364). For the ML sway condition, the AP 212 

deviation (P=0.011), the range ML (P=0.008) and the range AP (P=0.037) were 213 

significantly higher for the scoliosis group by 38%, 24% and 21% respectively. For the 214 

antero-posterior sway, the ML deviation (P=0.002) and the range ML (P=0.005) were 215 

statistically higher for the scoliotic group by 25% and 30% respectively. 216 

 217 

PLEASE INSERT FIG 3 ABOUT HERE 218 
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 219 

There was no significant difference in the coherence values between the able-bodied and 220 

scoliotic groups. It appears that regardless of the spinal deformity similar modalities were 221 

used to maintain sway balance in both groups. However statistical differences were noted 222 

when comparing the medio-lateral and antero-posterior self-paced sway conditions for 223 

each subject groups as shown in Fig. 4. Significant coherence values appear only in the 224 

overall and the low frequency ranges. 225 

For the able-bodied subjects, the All CoPAP-Tz (P =0.004) and the Low CoPAP-Tz 226 

(P=0.002) were much higher during the medio-lateral sway condition whereas the All 227 

CoPML-Tz (P=0.001) and Low CoPML-Tz (P=0.001) have higher coherence values in the 228 

antero-posterior self-imposed oscillations. Similar results were obtained for the scoliotic 229 

girls. During the ML sway condition, the All CoPAP-Tz (P=0.001) and the Low CoPAP-Tz 230 

(P=0.001) were much higher while the All CoPML-Tz (P<0.000) and Low CoPML-Tz 231 

(P<0.001) have higher coherence values during the antero-posterior voluntary sway.  232 

 233 

PLEASE INSERT FIG 4 ABOUT HERE 234 

 235 

Factor analysis results for the ML and AP sway conditions are presented in Tables 1 and 236 

2 respectively. For the self-paced ML oscillations two principal components (PC) on both 237 

the temporal and coherence values were necessary to explain 90% of the variance in the 238 

able-bodied girls whereas three PCs were needed to describe 90% of the variance in the 239 
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scoliotic girls. For the able-bodied girls, medio-lateral sway is mostly characterized by 240 

coherence values associated with the free moment or proprioception in the PC1 while it is 241 

mainly related to the CoP positions coherence pairs or posture in PC2. The first three PCs 242 

of the scoliotic group contains a complex mix of coherence pairs involving the free 243 

moment and the CoP positions. The scoliotic girls assume an adaptive balance modality 244 

based on proprioception but requires an additional number of PCs and variables in a 245 

disorganized grouping of variables. 246 

 247 

PLEASE INSERT TABLE 1 ABOUT HERE 248 

 249 

The variables and their factor loading for the antero-posterior sway condition of the able-250 

bodied and scoliotic girls are shown in Table 2. Five principal components values were 251 

necessary to explain 85% of the variance in the able-bodied girls whereas six were 252 

needed to describe the same variance in the scoliotic girls. This reflects the difficulty as 253 

well as the complexity to perform voluntary antero-posterior sways in both subject 254 

groups. The first three PCs of the non-scoliotic group are structured into a ranked sway 255 

balance modality. The first PC emphasizes the role of the frequency coherence pairs 256 

whereas the second PC is associated with the temporal variables. PC3 underlines the 257 

frequency coherence between Tz and the CoP positions. The remaining two PCs which 258 

explain about 9% of the variability consist of a combination coherence pairs and temporal 259 

parameters. 260 
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The first three PCs for the scoliotic girls mainly consist of coherence frequency pairs. 261 

The significant factors loading of the temporal variables are present in the fourth to the 262 

six PCs. These results showed that the able-bodied group favored a well-ordered sway 263 

balance modality while performing self-paced antero-posterior sway whereas the 264 

scoliotic girls rely on the interaction between sway position and free moment to maintain 265 

their dynamic balance. 266 

 267 

PLEASE INSERT TABLE 2 ABOUT HERE 268 

 269 

4. Discussion 270 

The first objective was to determine if scoliotic and non-scoliotic girls display similar 271 

temporal and frequency coherence patterns during self-paced voluntary medio-lateral and 272 

antero-posterior body sways. Scoliotic girls appear to be performing a wide ellipsoidal 273 

trajectory when executing whole body oscillations and that in both sway conditions 274 

(Figure 3). Their CoP excursions exhibit a longer out of plane deviation than that of able-275 

bodied girls. This can be explained in part by the difficulty in achieving whole body 276 

sways with a center of mass located closer to their heels (Nault et al., 2002) favoring a 277 

backward trunk lean compared to non-scoliotic girls (Leteneur et al., 2017). 278 

Body sway of scoliotic girls was under a greater control of the free moment than in able-279 

bodied girls (Dalleau et al., 2007) in quiet standing. This interaction between the free 280 

moment and the antero-posterior CoP displacements was reported in adults (Hay and 281 

Wachowiak, 2017) as well as in scoliotic girls during standing balance (Leteneur et al., 282 
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2019). Since trunk rotation was shown to alter standing balance (Pau et al., 2018), self-283 

paced voluntary sways combined with out of plane deviation further disrupt body 284 

postural compensations. In the present study, the spinal deformity did not sufficiently 285 

solicit the frequency coherence pair interactions during the voluntary body sway 286 

conditions, since no significant difference was found between the subject groups (Figure 287 

4): the significant differences concerned the same pairs in both groups (All CoP ML-Tz, 288 

All CoP AP-Tz, Low CoP ML-Tz, Low CoP AP-Tz). However, there were significant 289 

differences in the frequency coherence pairs when comparing medio-lateral to antero-290 

posterior voluntary body sway conditions. All significant differences were related to the 291 

dependence of the free moment on the out of plane deviation rather than on the sway 292 

direction (Figure 4). It seems that in pursuing a unidirectional sway, the path followed by 293 

the center of mass to keep it within the safety margins of the base of support for fear of 294 

falling (Adkin et al., 2002) prevailed over the dynamic balance control modalities. The 295 

latter could be related to non-statistically significant compensatory actions to maintain 296 

steadiness when comparing both subject groups. 297 

The final objective was to identify which of the temporal and frequency coherence 298 

variables best identify balance modalities according to the scoliotic and non-scoliotic 299 

groups and sway directions. Only a few PCs were required to describe medio-lateral (2 300 

for able-bodied and 3 for AIS group) voluntary sway compared to antero-posterior (5 for 301 

able-bodied and 6 for AIS group) oscillations (Tables 1 and 2). This could be explained 302 

by a number of reasons. During the antero-posterior oscillations, the center of mass 303 

excursion is longer; the whole-body inclination is more pronounced and the trunk being 304 

the dominant body segments produces larger external forces (Gillet et al., 2003) and the 305 
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forward excursion is greater than the backward since the trunk CoM is closer to the heels, 306 

especially in scoliotic girls (Allard et al., 2004). Furthermore during standing, 307 

stabilization is under the control of an ankle intrinsic stiffness which increases quickly as 308 

the center of pressure moves toward the toes and the limits of stability (Amiri and 309 

Kearney, 2019). The ankle intrinsic stiffness could be a major contributing control factor 310 

in AP sways but absent during medio-lateral oscillations. All these factors increase the 311 

demand on postural control balance and could account for a greater number of PCs as 312 

well as variables in explaining antero-posterior voluntary sway (Tables 1 and 2). These 313 

reflect the difficulty, but also a fine tuning in the control mechanism to maintain dynamic 314 

balance. 315 

Generally, physical treatments for scoliosis concentrate either on posture (Penha et al., 316 

2017) or proprioception (Hazime et al., 2012; Pialasse et al., 2016). To our knowledge, 317 

no one as yet addressed self-paced voluntary ML and AP sways as a means to assess 318 

dynamic balance in able-bodied and untreated scoliotic girls. During voluntary body 319 

sway, dynamic balance modalities are similar between subject groups. Factor analysis 320 

identified that they were essentially based on frequency coherence pair interactions 321 

whereas temporal parameters play a secondary role (Tables 1 and 2). However, these 322 

balance modalities are altered in AIS for both sway conditions. The scoliotic group relies 323 

on more PCs (3 for ML and 6 for AP) than able-bodied girls (2 for ML and 5 for AP) but 324 

also on additional variables. Superfluous modalities could be related to the difficulty in 325 

preserving balance during body sway tasks and could parasitize the scoliotic dynamic 326 

control balance modalities. This was suggested by Lorenzo and Vanrenterghem, 2015 in 327 

a study on the effect of antero-posterior body sway frequency and verbal restraint on 328 
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mechanical and perceived postural stability. No clear effect on perceived instability was 329 

reported while noticeable alterations in mechanical indicators of stability were observed 330 

with increase in voluntary sway frequency. Results of the present study suggest that such 331 

balance parasites associated to sway balance should be subdued in retraining the motor 332 

program in AIS rehabilitation. 333 

Our results are limited to untreated scoliotic girls with right thoracic curves only. In 334 

literature the scoliotic population could consist of a variety of curve types (Schmid et al., 335 

2016) and a wide range of severity in the spinal deformity (Park et al., 2015). Moreover 336 

many studies concerned boys and girls (Ma et al., 2020) ; (Patel et al., 2018) or different 337 

forms of scoliosis (Roy et al., 2020). A particular care was given to have a homogenous 338 

scoliotic group considering that the type of curvature and its location was found to 339 

modify upright balance control (Pasha and Baldwin, 2018). The methodology used in the 340 

present study may be reinvested in further studies about specific or pathologic 341 

populations, such as in people who present spine deformities resulting from traumatic 342 

injuries or in chronic low back pain sufferers. Other experimental protocols could also 343 

determine if the present observations are only of mechanical origin or if they present also 344 

a neurological component. 345 

 346 

5. Conclusions 347 

Self-paced voluntary body sway is a challenging task in keeping the center of mass 348 

within the safety margins of the base of support for fear of losing balance. Scoliotic girls 349 

appear to be performing a wide ellipsoidal trajectory when performing whole body 350 
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oscillations and that in both sway directions. Yet, the dynamic balance modalities 351 

characterized by the frequency coherence pairs during body sway are similar between 352 

subject groups. AP voluntary sways appear to be more demanding than ML sway and 353 

differences could be attributed to a longer CoM excursion and the presence of an ankle 354 

intrinsic stiffness. A greater number of PCs and variables were reported for the AP 355 

oscillations in scoliotic girls for both sway conditions. This could reflect variability or a 356 

fine tuning of the control mechanism to maintain dynamic balance. Self-paced voluntary 357 

oscillations intensify this imbalance and could lead AIS girls to resort to superfluous or 358 

supplementary variables to those associated with proprioception that parasite their 359 

dynamic balance. It appears that self-paced voluntary medio-lateral and antero-posterior 360 

sway conditions could be an appropriate complementary balance test for untreated 361 

scoliotic girls. 362 

6. Clinical relevance 363 

• Self-paced voluntary sways could be an appropriate balance test for untreated 364 

scoliotic girls. 365 

• Scoliotic girls performed a wide ellipsoidal trajectory when executing whole body 366 

oscillations. 367 

• Balance parasites should be subdued in retraining the motor program in AIS 368 

rehabilitation.369 
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Table 1 Significant factors and their respective loading values for a self-paced voluntary medio-lateral sway are given for the able bodied (AB) and scoliotic 523 

(SCO) groups. The statistically significant principal components of the factor analysis are presented. Values equal or above 0.7 are in bold. ML and 524 

AP represent the medio-lateral and antero-posterior axes respectively, TZ the free moment. All: overall frequency band (1.00-8.00 Hz), Low: low 525 

frequency band (1.00-3.00 Hz), High: high frequency band (3.00-8.00 Hz). 526 

AB 
Principal components 

SCO 
Principal components 

1 2   1 2 3 

All CoPAP-TZ   0,955 0,292 
 

Sway ratio   -0,984 0,036 0,126 

Low CoPAP-TZ   0,954 0,297 
 

Low CoPML-CoPAP  0,962 -0,096 0,128 

All CoPML-TZ   0,940 0,182 
 

All CoPML-CoPAP   0,962 -0,096 0,128 

Low CoPML-TZ   0,940 0,182 
 

AP deviation 0,947 -0,127 0,244 

Range TZ   0,790 -0,220 
 

All CoPAP-TZ   0,905 -0,170 -0,384 

High CoPML-TZ   0,171 0,985 
 

Low CoPAP-TZ   0,905 -0,170 -0,384 

High CoPML-CoPAP  -0,171 -0,985 
 

All CoPML-TZ   -0,309 0,819 0,274 

Low CoPML-CoPAP  0,166 0,894 
 

Low CoPML-TZ   -0,309 0,819 0,274 

All CoPML-CoPAP   0,166 0,894 
 

High CoPML-TZ   -0,452 -0,799 0,372 

Range ML   0,649 0,718 
 

High CoPML-CoPAP   0,337 -0,754 -0,105 

    High CoPAP-TZ   0,035 0,021 -0,954 

    Range TZ   -0,003 0,204 0,951 
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Table 2 Significant factors and their respective loading values for a self-paced voluntary antero-posterior sway are given for the able bodied 527 

(AB) and scoliotic (SCO) groups. The statistically significant principal components of the factor analysis are presented. Values equal or 528 

above 0.7 are in bold. ML and AP represent the medio-lateral and antero-posterior axes respectively, TZ the free moment. All: overall 529 

frequency band (1.00-8.00 Hz), Low: low frequency band (1.00-3.00 Hz), High: high frequency band (3.00-8.00 Hz). 530 

AB Principal components 
 SCO Principal components 
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 531 

 532 

1 2 3 4 5   1 2 3 4 5 6 

Low CoPML-CoPAP  0,933 -0,053 0,268 0,012 -0,103 All CoPAP-TZ   0,869 -0,146 0,108 -0,134 -0,094 0,265 

All CoPML-CoPAP 0,933 -0,053 0,268 0,012 -0,103 Low CoPAP-TZ   0,869 -0,146 0,108 -0,134 -0,094 0,265 

Low CoPAP-TZ   0,794 0,448 -0,309 0,047 0,113 All CoPML-CoPAP 0,829 -0,231 -0,044 0,234 0,094 -0,237 

All CoPAP-TZ   0,794 0,448 -0,309 0,047 0,113 Low CoPML-CoPAP  0,829 -0,231 -0,044 0,234 0,094 -0,237 

RMS ML   0,098 0,923 0,034 0,139 -0,009 Range ML   0,583 0,205 0,019 0,235 -0,175 0,440 

Range ML   0,144 0,833 0,070 0,234 0,061 Low CoPML-TZ   -0,204 0,937 -0,081 0,103 0,012 -0,080 

Range TZ   0,007 0,602 0,535 0,104 -0,315 All CoPML-TZ  -0,229 0,934 -0,082 0,087 0,148 -0,097 

High CoPAP-TZ   -0,059 -0,029 -0,851 0,224 0,047 High CoPAP-TZ   0,010 -0,031 0,990 -0,046 -0,014 0,021 

High CoPML-TZ   0,054 0,078 0,754 0,206 -0,087 High CoPML-CoPAP  0,066 -0,107 0,986 0,003 0,048 0,011 

ML deviation -0,002 0,328 -0,100 0,879 -0,066 Range TZ   0,286 -0,034 0,138 0,795 -0,328 -0,172 

Range AP   0,279 0,369 0,010 0,718 -0,029 Range AP -0,164 0,149 -0,235 0,760 0,189 0,305 

Low CoPML-TZ   -0,385 -0,360 0,230 0,585 0,539 ML deviation 0,169 0,332 0,028 0,611 0,456 0,252 

All CoPML-TZ   -0,379 -0,357 0,252 0,563 0,559 Sway ratio   -0,097 0,069 -0,034 -0,081 -0,863 0,022 

High CoPML-CoPAP  0,074 -0,071 -0,083 -0,094 0,897 High CoPML-TZ   -0,185 0,203 -0,006 -0,074 0,768 -0,116 

Sway ratio   0,048 -0,286 0,401 -0,071 -0,696 RMS ML   0,068 -0,179 0,022 0,096 -0,059 0,814 
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 533 

 534 

Fig. 1  Displacements of the CoPML (A, D) and CoPAP (B, E) and free moment acting at the CoP 535 

around the vertical axis (C, F) for a representative able-bodied participant performing a 536 

voluntary antero-posterior oscillation. In (B), the red triangles indicate the local maxima 537 

of the CoPAP used to define the oscillation epochs. In (D, E, F), the black lines depict 538 

each epoch of the latter signals after zero-centering and time normalization. 539 
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 540 

 541 

Fig. 2  First row: Wavelet auto-spectra of the CoPML (A), CoPAP (B) and free moment (Tz) (C) 542 

signals of one representative able-bodied participant. Second row: significant wavelet 543 

magnitude-squared coherence between CoPML and CoPAP (D), CoPML and free moment 544 

(E) CoPAP and free moment (F) signals depicted in the first row. All non-significant 545 

values are whitened. The magnitude of the coherence for each pair was quantified as the 546 

mean of significant magnitude-squared coherence over the entire time range in three 547 

different frequency ranges (1-8.00 Hz, 1-3.00 Hz, 3.00-8.00 Hz) respectively representing 548 

the overall, low and high frequency ranges. 549 
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 550 

 551 

Fig. 3 Mean of the temporal parameters for able-bodied (AB) and scoliotic girls (SCO) for 552 

medio-lateral (A) and antero-posterior (B) voluntary sway conditions. ML: medio-lateral, 553 

AP: antero-posterior, TZ: free moment. Note: for display purpose only, range TZ values 554 

were multiplied by a 10 factor. *: P<0.05. 555 
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 556 

 557 

Fig. 4 Means and their corresponding standard deviation of the coherence values for able-bodied subjects (AB) and scoliotic girls (SCO). CoP: 558 

Center of Pressure, ML: medio-lateral, AP: antero-posterior, TZ: free moment, All: overall frequency band (1.00-8.00 Hz), Low: low 559 

frequency band (1.00-3.00 Hz), High: high frequency band (3.00-8.00 Hz). *: P<0.05. 560 




