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Unknown Input Observer Based Approach for
Distributed Tube-Based Model Predictive Control

of Heterogeneous Vehicle Platoons
Qianyue Luo, Anh-Tu Nguyen, James Fleming, Hui Zhang

Abstract—This paper addresses the control problem
of heterogeneous vehicle platoons subject to disturbances
and modeling errors. The objective is to guarantee spatial-
geometry constraints of vehicles in a platoon. We deal with
the case where a predecessor-leader following (PLF) com-
munication topology is used and heterogeneous vehicle dy-
namics is subject to disturbances. To estimate the lumped
disturbance, the technique of unknown input proportional
multiple-integral (PMI) observer is employed such that both
the state and the disturbance are simultaneously estimated.
Moreover, tube-based model predictive control (TMPC) is
used and the corresponding control law is composed of
a feed-forward term, a feedback term, and a disturbance
compensation term. The gains in the integrated control
strategy are optimized by utilizing the particle swarm opti-
mization (PSO) algorithm with an H∞ performance index of
an augmented error system. It is proved that the deviations
between the actual system and the nominal system are
bounded in a robustly positively invariant (RPI) set, that is,
the main objective is guaranteed. With the proposed con-
trol strategy, simulations and comparisons are carried out.
We can see that the control performance of the proposed
strategy is significantly improved while the computational
time is reduced compared with existing methods.

Index Terms—Vehicle platoon, integrated controller,
tube-based model predictive control (TMPC), proportional
multiple-integral (PMI) observer.

I. INTRODUCTION

Intelligent transportation and multi-vehicle coordination
are becoming a promising area both from industry and aca-
demic research. Among the applications, vehicle platooning
has great advantages in terms of efficiency, safety, energy
consumption, and environmental protection [1]–[5]. The tech-
nique of vehicle platooning is based on the vehicle-to-vehicle
(V2V) communication technology. The main function is to
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make multiple vehicles driving on the same lane with a close
range and same velocity [6], [7].

Generally, vehicle platoon control is more challenging
than the traditional vehicle dynamics control. The challenges
and differences arise from the following aspects.

1) The models for controller design are different. In order
to reduce the computational burden, a simplified model is
used for platoon controller design. In the literature, there
are second-order models with speed and displacement as
two system states [8], [9], third-order models with one
more acceleration state [10]–[12], and three-state models
with lateral dynamics [13], [14].

2) Information from other vehicles is necessary for platoon
control in which each vehicle communicates with other
vehicles according to the communication topology. The
selection and the design of communication topology have
a crucial impact on platoon stability [15], [16].

3) The design objectives are different. The objective of
platoon control is not only to ensure the stability of
individual vehicle but also to ensure the platoon sta-
bility. The overall position error of the platoon should
not be amplified as the number of vehicles increased,
which is also known as string stability [17]–[19]. Due to
the energy-saving characteristics of vehicle platoons, the
energy consumption may be considered as an additional
control objective [8].

4) More constraints should be considered for platoon con-
trol. Besides original constraints of individual vehicle
control, the constraints of the platoon control should
include the position, speed and acceleration constraints
between the adjacent vehicles.

In addition to different platoon models, different control strate-
gies have been applied for platoon control. The authors in [7]
adopted a frequency-domain design method for a cooperative
adaptive cruise control. Sliding mode control strategies were
proposed in [20], [21]. An H∞ control method was employed
in [22], [23]. Moreover, distributed model predictive control
(DMPC) has been applied in various contexts [16], [24], [25].
From the application perspective, the platoon control is a
multi-objective optimization problem under multiple physical
constraints and external disturbances. Though there are consid-
erable existing control strategies for this control problem, few
results are obtained by considering simultaneously the physical
constraints and external disturbances.

Model predictive control (MPC) has been known as
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powerful tool to deal with system constraints. However, when
the system is subject to persistent disturbances, the constraints
may not be satisfied if the disturbances are not explicitly
considered in MPC design. When the system is subject to per-
sistent disturbances, Mayne and Langson proposed tube-based
model predictive control (TMPC) to solve the optimization
problem [26]–[28]. Then, it was applied to applications such as
vehicle control in [29], [30] by adding feedback terms to make
the error caused by disturbance converging to an invariant set
[31]–[33]. In this work, we employ the tube-based idea to
design a robust controller for heterogeneous vehicle platoons
subject to both modeling uncertainties and external distur-
bances. The main contributions of this paper are three-fold:
1) A proportional multiple-integral (PMI) observer is designed
to estimate both the system state and the lumped disturbance
for DMPC purposes such that the number of physical sensors
can be reduced; 2) A compensation term is integrated in the
control law to compensate the effects of disturbances such
that the conservativeness of the TMPC algorithm is reduced
and the robustness performance is improved; 3) H∞ control
performance and particle swarm optimization (PSO) algorithm
are adopted to optimally tune both the observer and controller
gains, allowing to minimizing the disturbance impacts.
Notation. R and N stand for the set of real numbers and
positive integers, respectively. For p ∈ N and a vector x ∈ Rn,
the p-norm of x is given as ‖x‖p = (

∑
|xi|p)

1/p, while
‖x‖∞ = max |xi|; for a vector x ∈ Rn and a positive semi-
definite matrix Q ∈ Rn×n, ‖x‖Q =

(
xTQx

)1/2
denotes the

weighted Euclidean norm of x. The Minkowski sum of sets
P,Q is P ⊕ Q = {x + y|x ∈ P, y ∈ Q}; the Pontryagin
difference of sets P,Q is P 	 Q = {x|x + y ∈ P, y ∈ Q}. x̄
denotes the nominal value of x, and x̂ denotes the observed
value of x. The rest of notations will be provided in the paper.

II. MODELING AND PRELIMINARY

Vehicle platoons are composed of one leading vehicle
(numbered with 0) and N following vehicles (numbered from
1 to N ) in the same lane, see Fig. 1. The vehicles in a platoon
can be heterogeneous or homogeneous. Hereafter, we discuss
the three main elements of a model-based control scheme
for vehicle platooning: longitudinal dynamics of each vehicle,
communication connection topology between vehicles, and
goals of vehicle platooning.

Fig. 1. A scenario and structure of vehicle platoons.

A. Vehicle Longitudinal Dynamics
We consider the longitudinal control of vehicles subject

to multiple resistances [16], including wind resistance, rolling
resistance, and slope resistance. The longitudinal dynamics of
ith vehicle is described as

pi(k + 1) = pi(k) + vi(k)∆t

vi(k + 1) = vi(k) +

(
ηi
miri

Ti(k)− afi(vi(k))

)
∆t

Ti(k + 1) = Ti(k) + (ui(k)− Ti(k))
∆t

τi
+ wi(k) (1)

where the vehicle pi(k) is the vehicle position, vi(k) is the
vehicle velocity, Ti(k) is the integrated driving/braking torque,
the control input ui(k) represents the desired driving/braking
torque, ∆t is the discrete time interval, ηi is the transmission
efficiency, mi is the vehicle mass, ri is the tire radius, τi is the
inertial lag of longitudinal dynamics, CAi is the coefficient of
aerodynamic drag, g is the gravity constant, fi is the coefficient
of rolling resistance, and θi is the slope angle. The disturbance
wi(k) represents the lumped disturbance that contains external
disturbances and the modeling errors [34], [35]. Assume that
the disturbance is amplitude-bounded, i.e., wi(k) ∈Wi, where
Wi is a compact interval containing the origin in its interior.
The nonlinearity afi(vi(k)) is given by

afi(vi(k)) = CAiv
2
i (k) + gfi cos(θi) + g sin(θi).

We denote the state vector xi(k) =
[
pi(k), vi(k) Ti(k)

]>
,

and the system output yi(k) = pi(k). Then, model (1) can be
reformulated in the state-space form

xi(k + 1) = Aixi(k) + gi(xi(k)) +Biui(k) +Gi +Hwi(k)

yi(k) = Cxi(k) (2)

where

Ai =

1 ∆t 0

0 1 ηi∆t
miri

0 0 1− ∆t
τi

 , Bi =

 0
0

∆t
τi

 ,
Gi =

 0
−gfi cos(θ)− g sin(θ)

0

 , H =

0
0
1

 ,
gi(xi(k)) =

 0
−CAiv2

i (k)
0

 , C =

1
0
0

> .
The system is subject to both state and control constraints as

ui ∈ Ui, xi ∈ Xi,

where Ui ∈ R1 is a compact set, Xi ∈ R3×1 is a closed set,
and each set contains the origin in its interior.

Without taking into account the bounded disturbance
wi(k), the nominal longitudinal dynamics of ith vehicle as-
sociated with system (2) is given by

x̄i(k + 1) = Aix̄i(k) + gi(x̄i(k)) +Biūi(k) +Gi

ȳi(k) = Cx̄i(k). (3)

Note that for any time-varying variable s(k) of the vehicle
system (2), s̄(k) denotes the corresponding variable of its
nominal model (3).
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B. Communication Structure of Vehicle Platoons

With the development of V2V technology, a rapid local
vehicular communication can be realized. Individual vehicles
are connected via communication to form a vehicle platoon
structure. Several communication topologies are available in
the literature [16], which are illustrated in Fig. 2.

Here, the predecessor-leader following (PLF) commu-
nication topology is adopted, which has been widely used
and discussed [36], [37]. In a PLF topology, each vehicle
can receive the information transmitted from the predecessor-
vehicle and the leader-vehicle. It has been shown that this
communication structure can help the platoon state converge to
a stable state more securely by directly using the information
from the leader-vehicle [12]. The information includes its
planned trajectory (or vehicle states) and the desired inter-
vehicle spacing.

Fig. 2. Common communication topology for vehicle platoons. (a)
predecessor-following (PF), (b) bidirectional following (BF), (c) two-
predecessor following (TPF), (d) predecessor-leader following (PLF).

C. Platooning Control Objectives

The primary goal of platooning is to maintain a desired
safe spacing between vehicles and to drive each vehicle at the
same speed on the same lane with the leading vehicle under
the effects of external disturbances and modeling errors. For
system (2) with the lumped disturbance wi(k) ∈Wi, this goal
can be mathematically represented as

lim
k→∞

pi(k)− p0(k) + i · d0

vi(k)− v0(k)
ai(xi(k))

 ∈ σi, i ∈ N, (4)

where d0 is the desired space between adjacent vehicles, v0(k)
is the desired speed and ai(xi(k)) = ηi

miri
Ti(k)−afi(vi(k)) is

the acceleration of ith vehicle, σi is an invariant set and its size
depends on the system disturbance and controller parameters
(see Section III).

To evaluate the control performance, we consider two
following variables: i) the spacing dsi(k) between the adja-
cent vehicles, ii) the platoon deviation ∆dpi(k), which are
respectively defined as

dsi(k) = pi−1(k)−pi(k), ∆dpi(k) = p0(k)−pi(k)− id0,

for i ∈ N.

III. CONTROL PROBLEM FORMULATION

To achieve the control goal specified in (4) for system (2),
we propose an integrated control scheme composed of three
components: feedback control, disturbance-compensation con-
trol and feedforward control, see Fig. 3. Then, the new
integrated control law of ith vehicle is of the form

ui(k) = ūi(k) +Ki(x̂i(k)− x̄i(k))−B†iHŵi(k), (5)

where ūi denotes the feedforward control, Ki is the feedback
gain to be designed, B†i = (B>i Bi)

−1B>i is the pseudo-
inverse of the full-collum rank matrix Bi, and x̂i and ŵi are
respectively the estimates of xi and wi. The design procedure
of the integrated control law (5) is described as follows.

xi

Disturbance

wi

ZiKi

xi

Ki

B-1H

yi

wi

xi

ui

ui

Xi ,Ui
Ki , Li

xi-1

i-1

x
0

Ki ei

B-1H wi

i

Fig. 3. Structure of the proposed integrated control scheme.

A. Design of Feedback Control and Disturbance-
Compensation Control

This section presents the design of an PMI observer to
estimate both the state xi and the disturbance wi for the
vehicle system (2). The proposed PMI observer can achieve a
high-precision estimation performance for systems with high
order time-varying disturbances. In particular, it can provide
an asymptotic estimation performance for polynomial distur-
bances [38]. This not only reduces the number of physical
vehicle sensors used for feedback control but also allows to
construct a disturbance-compensation action in the integrated
control law (5).

1) Proportional Multiple Integral Observer: For state
and disturbance estimation, we make use of the following
third-order PMI observer:

x̂i(k + 1) = Aix̂i(k) + gi(x̂i(k)) +Biui(k) +Gi

+Hŵi(k) + LPi(yi(k)− ŷi(k))

ŵi(k + 1) = ŵi(k) + ŵ1i(k)∆t+ LI1i(yi(k)− ŷi(k))

ŵ1i(k + 1) = ŵ1i(k) + ŵ2i(k)∆t+ LI2i(yi(k)− ŷi(k))

ŵ2i(k + 1) = ŵ2i(k) + LI3i(yi(k)− ŷi(k))

ŷi(k) = Cx̂i(k) (6)

where LPi, LI1i, LI2i and LI3i are the observer gains to be
determined.
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We assume that the dynamics of the time-varying lumped
disturbance wi(k) is given as follows:

wi(k + 1) = wi(k) + w1i(k)∆t

w1i(k + 1) = w1i(k) + w2i(k)∆t (7)
w2i(k + 1) = w2i(k) + wei(k)

with wei(k) ∈Wei. Then, the estimation errors are defined as

ex̂i(k) = xi(k)− x̂i(k), ewi(k) = wi(k)− ŵi(k),

ew1i(k) = w1i(k)− ŵ1i(k), ew2i(k) = w2i(k)− ŵ2i(k).

Therefore, the dynamics of the estimation errors can be
obtained from (2), (6) and (7) as

ex̂i
(k + 1) = (Ai − LPiC)ex̂i

(k) +Hewi
(k) + δĝi(k)

ewi
(k + 1) = ewi

(k) + ew1i
(k)∆t− LI1iCex̂i

(k)

ew1i
(k + 1) = ew1i

(k) + ew2i
(k)∆t− LI2iCex̂i

(k)

ew2i
(k + 1) = ew2i

(k)− LI3iCex̂i
(k) + wei(k) (8)

where δĝi(k) = gi(xi(k))− gi(x̂i(k)).
2) Analysis of Error Dynamics: Let exi

(k) = xi(k) −
x̄i(k) be the state error between the vehicle system (2) and its
nominal model (3), whose dynamics is given by

exi
(k + 1) = (Ai +BiKi)exi

(k)−BiKiex̂i
(k)

+Hewi
(k) + δḡi(k), (9)

where δḡi(k) = gi(xi(k)) − gi(x̄i(k)). Let us define the
augmented error state vector as

ei(k) =
[
exi

(k) ex̂i
(k) ewi

(k) ew1i
(k) ew2i

(k)
]>
.

It follows from (8) and (9) that

ei(k + 1) = Aeiei(k) + egi(k) +Beiwei(k), (10)

where

Aei =


Ai +BiKi −BiKi H 0 0

0 Ai − LPiC H 0 0
0 −LI1iC 1 ∆t 0
0 −LI2iC 0 1 ∆t
0 −LI3iC 0 0 1

 ,
Bei =

[
0 0 0 0 0 0 0 0 1

]>
,

egi(k) =
[
δḡi(k)> δĝi(k)> 0 0 0

]>
.

Exploiting the Lipschitz property of the nonlinear function
gi(x) over the state set Xi, it follows that [30]

‖egi‖∞ ≤ Li(Xi) max
evi∈Vi

‖evi‖2, (11)

where Li(Xi) is the Lipschitz constant of gi(·) over Xi, evi =[
0 vi − v̄i 0 0 vi − v̂i 0 0 0 0

]>
, Vi is a subset

of Xi to bound the evi.
Expression (11) allows defining the following box Bg(Vi)

to bound the nonlinear term egi(·) in system (10):

Bg(Vi) =

{
x ∈ R9×1 : ‖x‖∞ ≤ L(Xi) max

evi∈Vi

‖evi‖2
}
.

Then, the augmented error system in (10) can be rewritten as

ei(k + 1) = Aeiei(k) + w̃ei(k) (12)

where w̃ei = egi(k) + Beiwei(k), and thus w̃ei ∈ W̃ei =
Bg(Vi)⊕BeiWei.

Assume that Zi is a robustly positively invariant (RPI)
set [26] with respect to system (12), i.e.,

Aeiei(k)+ w̃ei(k) ∈ Zi, ∀ei(k) ∈ Zi, ∀w̃ei(k) ∈ W̃ei. (13)

We can infer from (13) that if the involved parameters to
be optimized are properly tuned, the feedback term and the
disturbance compensation term can make the error system (12)
tend to be stable.

B. Distributed MPC Feedforward Control
The feedforward control ūi(k) in (5) of ith vehicle

is determined using a distributed MPC algorithm with the
information transmitted from other controllers. Let x̄∗i (k|t)
is the nominal optimal trajectory of ith vehicle at time t.
To achieve multi-objective control, several specifications are
taken into account in the MPC optimization problem, including
the safety distance between ith vehicle and adjacent ones, the
stability of the vehicle platoon, the acceleration smoothness,
and the fuel economy.

1) Design of DMPC Algorithm: For each vehicle i, the
state of the nominal system (3) to be optimized is defined as

ξ̄i(t) = β · x̄i(t),

with
β =

[
1 0 0
0 1 0

]
.

Here, the same sizes of the prediction horizon Np and the
control horizon Nc are used in each local control problem.
Over any predictive horizon [t, t + Np], we denote three
following types of state trajectory:

ξ̄pi (k|t) : predicted state trajectory
ξ̄∗i (k|t) : optimal state trajectory
ξ̄ai (k|t) : assumed state trajectory

where k ∈ [0, Np]. ξ̄
p
i (k|t) is used as a trajectory variable

to parameterize the local optimal control problem. ξ̄∗i (k|t)
denotes the optimal trajectory obtained by solving the optimal
problem. ξ̄ai (k|t) is the assumed trajectory transmitted from
vehicle i to vehicle i + 1. Then, the cost function of the
distributed MPC algorithm can be defined as

Ji(t) = Ji(ξ̄i(t), ūi(t))

=

Np−1∑
k=0

Ji(ξ̄i(k|t), ūi(k|t)), (14)

where

Ji(ξ̄i(k|t), ūi(k|t)) = ‖ξ̄i(k|t)− ξ̄des,i(k|t)‖Qi

+ ‖ξ̄i(k|t)− ξ̄ai−1(k|t) + ddes‖Ri

+ ‖ξ̄i(k|t)− ξ̄ai (k|t)‖Gi

+ ‖ai(ξ̄i(k|t))‖Fi ,

and ξ̄des,i(k|t) = [ξ̄a0 (k|t) − i · ddes]
> is the desired position

for ith vehicle, ddes = [ d0, 0 ]> is the desired spacing, Qi, Ri,
Gi, Fi are the positive semi-definite weighting matrices.
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The safety constraints for vehicle platoons should be also
guaranteed with the following constraints:

|pi(k|t)− pi−1(k|t) + d0| < pb,

|vi(k|t)− vi−1(k|t)| < vb,

|ai(k|t)− ai−1(k|t)| < ab, (15)

for k = 0, 1, . . . , Np. The constraints in (15) can be rewritten
in a compact form

h(xi(k|t), ui(k|t)) ∈ Hi,

where the bounded set Hi can be easily defined with d0, pb,
vb and ab. Given an RPI set Zi for system (12), the RPI subset
Zxi corresponding to the vehicle state xi can be derived from
Zi. Then, the constraints of the nominal system (3) can be
computed as

x̄i(k|t) ∈ Xi = Xi 	 Zxi,
ūi(k|t) ∈ Ui = Ui 	KiZxi 	Wi,

h(x̄i(k|t), ūi(k|t)) ∈ Hi = Hi 	HiZxi. (16)

where Hi = diag(2, 2, 2ηi
miri

). The feedforward control design
for ith vehicle can be now formulated as the following
optimization problem:

min
ūp
i

Ji(t) (17)

such that

x̄pi (k+1|t)=Aix̄
p
i (k|t)+gi(x̄

p
i (k|t))+Biū

p
i (k|t)+Gi

ξ̄pi (k|t) = β · x̄pi (k|t)
x̄pi (k|t) ∈ Xi
ūpi (k|t) ∈ Ui, k = 0, 1, . . . , Nc − 1

ūpi (k|t) = ūpi (k − 1|t), k = Nc, . . . , Np − 1

h(x̄pi (k|t), ū
p
i (k|t)) ∈ Hi

ξ̄pi (Np|t) = ξ̄des,i(Np|t)

T̄ pi (Np|t) =
miri
ηi

afi(v̄
p
i (Np|t)).

(18)

Algorithm 1. The DMPC algorithm designed for vehicle i is
shown as follows.

Initialization: At time t < 0, all the follower vehicles
receive the new desired speed and spacing from the leader
vehicle, and solve their local optimal problem (17) with Ri =
0, Gi = 0, for time t = 0. The initial optimal trajectory of the
nominal system (3) at time t = 0 is calculated as

x̄∗i (k + 1|0) = Aix̄i(k|0) + gi (x̄i(k|0)) +Biūi(k|0) +Gi,

for k = 0, 1, . . . , Np − 1. Meanwhile, the first set of informa-
tion has been transmitted to other vehicles as

x̄ai (k|1) = x̄∗i (k + 1|0), k = 0, 1, . . . , Np − 1.

Iteration: At any time t > 0, all vehicles follow the
following steps to calculate the feedforward control.

Step 1. Apply ū∗i (0|t) for the nominal system (3).

Step 2. Compute the optimal state by using the current nom-
inal state x̄i(t) and the optimal control input ū∗i (0|t) in
prediction horizon

x̄∗i (k + 1|t) = Aix̄
∗
i (k|t) + gi (x̄∗i (k|t)) +Biū

∗
i (k|t) +Gi

k = 0, 1, . . . , Np − 1

x̄∗i (0|t) = x̄i(t)

ξ̄∗i (k|t) = β · x̄∗i (k|t).
Step 3. Compute the assumed trajectory x̄ai (k|t+ 1) and the

control input ūai (k|t+ 1) for next step

x̄ai (k|t+ 1)

=

{
x̄∗i (k + 1|t), k = 0, 1, . . . , Np − 2
x̄∗0(Np|t) + i · ddes, k = Np − 1

(19)

ūai (k|t+ 1)

=

{
ū∗i (k + 1|t), k = 0, 1, . . . , Np − 2
miri
ηi

afi(v̄
∗
i (Np|t)), k = Np − 1

(20)
Step 4. Transmit x̄ai (·|t + 1) to the follower vehicle i + 1,

and receive the assumed trajectory from the connected
vehicle (predecessor and leader vehicle).

Step 5. Solve the optimal problem (17) with the new infor-
mation to get the ū∗i (·|t+ 1).

Step 6. At the time t+ 1, select the control input u∗i (0|t+ 1)
to ith vehicle and return to Step 1 for the next iteration.

To reduce the computational burden, we adopt the Warm-
Start method in [39] for the optimization problem, which
means that the solution at time t is used as the initial solution
at time t+ 1 as indicated in (20). This method can effectively
increase the computational efficiency, especially for nominal
systems that are not affected by disturbances.

2) Recursive Feasibility Analysis of DMPC: Before
proving the recursive feasibility of the optimization problem
(17), a required condition is shown in the following theorem.

Theorem 1. [16] If the platoon system communication topol-
ogy contains a spanning tree at the leader like the topologies
shown in the Fig. 2, the terminal state in the predictive horizon
Np of the optimal problem (17) converges to the desired state
in at most N steps, that is

ξ̄pi (Np|t) = ξ̄des,i(Np|t), t ≥ N.

Hence, an initial feasible assumption needs to be stated,
which has been widely discussed in previous studies [16], [17].

Lemma 1. For the nominal system (3) of ith vehicle with
a perfect state measurement and without disturbance, the
feasibility of the open-loop optimal control problem (17) with
equation (14) subject to constrains (18) at time t = 0 implies
its feasibility for all t > 0.

Proof. It is assumed that the optimal solution ū∗i (·|t) is found
at time t. The feedforward control ū∗i (·|t) is held constant for
the nominal system (3) after the control horizon Nc. Then, we
can write ū∗i (k|t) = ūss,i, (k ≥ Nc) for this steady-state value.
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Consider the system dynamics, we define the steady-state v̄ss,i
and T̄ss,i as the (in this case, unique) solutions of

v̄ss,i = v̄ss,i +

(
ηi
miri

T̄ss,i − af (v̄ss,i)

)
∆t

T̄ss,i = T̄ss,i +
(
ūss,i − T̄ss,i

) ∆t

τi

which are T̄ss,i = ūss,i and v̄ss,i = a−1
f

(
η
mr T̄ss,i

)
. Note that

for ūss,i > 0 and hence v̄ss,i > 0, this is an asymptotically
stable equilibrium, and the domain of attraction includes all
v ∈ R, all T ∈ R. The position p̄i(k|t) will not converge to
an equilibrium, but if we change variables p̃i(k|t) = p̄i(k|t)−
kv̄ss,i∆t, we can write

p̄i(k + 1|t)− (k + 1)v̄ss,i∆t

= p̄i(k|t)− kv̄ss,i∆t+ (v̄i(k|t)− v̄ss,i) ∆t

and thus

p̃i(k + 1|t) = p̃i(k|t) + (v̄i(k|t)− v̄ss,i) ∆t.

This new position variable will also converge to a steady-
state p̃ss,i as (v̄i(k|t)− v̄ss,i) → 0. We will write h, x̃i =
[p̃i, v̄i, T̄i]

> to denote the constraint function and system state
accounting for this change of variables.

As we have shown that the system approaches the equi-
librium, for k = Nc, . . . , Np, we have the set as

Si =
x̃i ∈ R3

p̃i(k+1)= p̃i(k) + (v̄i(k)− v̄ss,i)∆t

v̄i(k+1)= v̄i(k)+
(
ηi
miri

T̄i(k)−af (v̄i(k))
)

∆t

T̄i(k+1)= T̄i(k) +
(
ūss,i − T̄i(k)

)
∆t
τi

ūi(k) = ūi(k − 1)
h (x̃i(k), ūi(k)) ∈ H


.

The set S is an invariant set with respect to the dynamics of x̃i
with the optimal solution (x̃∗i (·|t), ū∗i (·|t)) at time t. We will
construct an (x̃i(·|t+ 1), ūi(·|t+ 1)) satisfying constraints at
time t + 1. For simplicity, we first assume that ξ̃des,i has not
changed from time t to t+1, and then modify our constructed
solution to account for possible changes in ξ̃des,i.

Considering (x̃i(k|t+1), ūi(k|t+1)), for k = 0, . . . , Np−
1, all constraints in the optimisation problem at time t+ 1 are
trivially satisfied by choosing the control input as (20) because
these constraints are identical to constraints from time t. For
prediction time k = Np, we choose the control input as

ūi(Np − 1|t+ 1) = ū∗i (Np − 2|t+ 1)

=
miri
ηi

afi(v̄
∗
i (Np|t))

=
miri
ηi

afi(v̄i(Np − 1|t+ 1)). (21)

With the terminal state x̄∗i (Np|t) constrained by (18), we have

T̄i(Np − 1|t+ 1) = T̄ ∗i (Np|t)

=
miri
ηi

afi(v̄
∗
i (Np|t))

=
miri
ηi

afi(v̄i(Np − 1|t+ 1)). (22)

Then, combining equations (21) and (22), the terminal state
x̃i of the system at time t+ 1 can be obtained as

p̃i(Np|t+ 1) = p̃i(Np − 1|t+ 1) = p̃ss,i

v̄i(Np|t+ 1) = v̄i(Np − 1|t+ 1) = v̄ss,i

T̄i(Np|t+ 1) = T̄i(Np − 1|t+ 1) = T̄ss,i

The nominal system state x̄i can be obtained by choosing
p̄i(k|t) = p̃i(k|t) + kv̄ss,i. Because Si is an invariant set,
which incorporates the constraint set H, this choice satisfies
all constraints (18) on x̄i(Np|t), ūi(Np|t).

Finally, we must account for possible changes in the
communicated preceding vehicle states ξ̃des. If these states
have changed, the preceding vehicle acceleration ā(k) has
changed for some k. Defining δā(k) as this change, then let
δv̄(k + 1) = δv̄(k) + δā(k)∆t and δp̄(k + 1) = δp̄(k) +
δv̄(k)∆t, for all k. We modify our constructed x̄(k) as

ā(k) 7→ ā(k) + δā(k)

v̄(k) 7→ v̄(k) + δv̄(k)

p̄(k) 7→ p̄(k) + δp̄(k)

and choose ū(k) consistently with this change in ā(k). This
leaves the differences p̄i(k)−p̄i−1(k), v̄i(k)−v̄i−1(k), āi(k)−
āi−1(k) unchanged since the changes in ξ̃des is transmitted
from the leader to all followers (directly or indirectly). Hence,
we satisfy the constraints h (x̃(k), ū(k)) ∈ H at time t+ 1 if
they were satisfied at t.

3) Stability Analysis of DMPC: We now prove the
stability of the platoon system by analyzing the decreasing
properties of the platoon cost function. To this end, the sum
of the optimal cost functions is defined as

J ∗
Σ(t) =

N∑
i=1

J ∗
i (ξ̄∗i (·|t), ξ̄a−i(·|t), ū∗i (·|t))

=

Np−1∑
k=0

L(ξ̄∗(k|t), ξ̄a(k|t), ū∗(k|t)) (23)

where

L(ξ̄, ξ̄a, ū) =
N∑
i=1

( ‖ξ̄i − ξ̄des,i‖Qi
+ ‖ξ̄i − ξ̄ai−1 + ddes‖Ri

+ ‖ξ̄i − ξ̄ai ‖Gi + ‖ai(ξ̄i)‖Fi).

With the terminal state ξ̄pi (Np|t) = ξ̄des,i(Np|t), t ≥ N pro-
vided by Theorem 1, and the feasible control upi (·|t) = uai (·|t)
provided by Algorithm 1, the distributed optimal cost function
can be bounded as

J ∗
Σ(t+ 1) ≤

Np−1∑
k=0

L(ξ̄a(k|t+ 1), ξ̄a(k|t+ 1), ūa(k|t+ 1))

(24)

=

Np−2∑
k=0

L(ξ̄∗(k + 1|t), ξ̄∗(k + 1|t), ū∗(k + 1|t)).
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The equality holds due to the definitions of x̄ai (k|t + 1) and
ūai (k|t + 1) in (19) and (20), respectively. Subtracting the
equation (23) from (24) yields

J ∗
Σ(t+ 1)−J ∗

Σ(t)

≤
Np−1∑
k=1

L(ξ̄∗(k|t), ξ̄∗(k|t), ū∗(k|t))

−
Np−1∑
k=0

L(ξ̄∗(k|t), ξ̄a(k|t), ū∗(k|t))

= −L(ξ̄∗(0|t), ξ̄a(0|t), ū∗(0|t)) +

Np−1∑
k=1

∆k

where

∆k = L(ξ̄∗(k|t), ξ̄∗(k|t), ū∗(k|t))
− L(ξ̄∗(k|t), ξ̄a(k|t), ū∗(k|t))

=
N∑
i=1

( ‖ξ̄∗i (k|t)− ξ̄des,i(k|t)‖Qi

+ ‖ξ̄∗i (k|t)− ξ̄∗i−1(k|t) + ddes‖Ri

+ ‖ξ̄∗i (k|t)− ξ̄∗i (k|t)‖Gi + ‖ai(ξ̄∗i (k|t))‖Fi)

−
N∑
i=1

( ‖ξ̄∗i (k|t)− ξ̄des,i(k|t)‖Qi

+ ‖ξ̄∗i (k|t)− ξ̄ai−1(k|t) + ddes‖Ri

+ ‖ξ̄∗i (k|t)− ξ̄ai (k|t)‖Gi
+ ‖ai(ξ̄∗i (k|t))‖Fi

). (25)

Using the triangle inequality for vector norms with R1 = 0,
the term ∆k defined in (25) is bounded as

∆k ≤
N−1∑
i=1

(‖ξ̄∗i (k|t)− ξ̄ai (k|t)‖Ri+1
−‖ξ̄∗i (k|t)− ξ̄ai (k|t)‖Gi

).

Then, the weights of the cost function (14) can be designed
as follows:

Gi ≥ Ri+1, i = 0, 1, . . . , N − 1. (26)

It follows from (26) that the function J ∗
Σ(·) satisfies

J ∗
Σ(t+ 1)−J ∗

Σ(t) ≤ −L(ξ̄∗(0|t), ξ̄a(0|t), ū∗(0|t)). (27)

Inequality (27) shows that the platoon cost function J ∗
Σ(·)

is strictly monotonically decreasing. Thus, the asymptotic
stability of the platoon system can be guaranteed.

From the above analysis, the states of the nominal system
will asymptotically converge to the desired states as

lim
k→∞

p̄i(k)− p̄0(k) + i · d0

v̄i(k)− v̄0(k)
āi(x̄i(k))

 =

0
0
0

 .
Then, the states of the actual vehicle system will achieve the
objective (4) with a set value of σi defined as

σi =

2 0 0
0 2 0
0 0 ηi

miri

Zxi.

IV. INTEGRATED CONTROL DESIGN PROCEDURE

This section presents the design of both unknown input
observer and feedback control. The implementation of the
proposed distributed MPC control scheme is also discussed.

A. Offline Computation
Hereafter, PSO algorithm is exploited to design both

observer and feedback gains. Then, the RPI set of the extended
error system (12) and the constraints (16) of the vehicle
nominal system (3) are determined.

1) PSO-Based Control Feedback Design: The following
specifications are taken into account in the design of both
observer and control feedback gains:
• the stability of the augmented error system (12) under the

effect of bounded disturbance wei,
• the size of the RPI sets Zxi and KiZxi of system (12).

To minimize the effect of the disturbance, the H∞ perfor-
mance is taken into account in the design of both the feedback
control gain and the observer gain. To this end, we consider the
controlled output zi(k) = Exi(k) associated to system (12),
where E is selected as diag(100, 1, 0.01, 100, 1, 0.01, 0, 0, 0).
Using the bounded real lemma [40], the following theorem
provides conditions to guarantee an H∞ control performance
for the closed-loop system (12).

Theorem 2. If there exit a positive definite matrix Mi,
matrices Ki, LPi, LI1i, LI2i, LI3i, of appropriate dimensions,
and a positive scalar γi such that the following optimization
problem is achievable:

min
Pi={Ki,LPi,LI1i,LI2i,LI3i}

γi (28)

such thatA>eiMiAei −Mi A>eiMiBei E>

∗ B>eiMiBei − γ2
i I 0

∗ ∗ −I

 < 0.

Then, system (12) is stable with an H∞ performance level
less than or equal to γi.

The optimization problem (28) in Theorem 2 is non-
convex due to the nonlinear couplings between decisions
variables. Finding a solution for such a nonconvex problem
is NP hard. Here, PSO algorithm is exploited to derive the
optimal control feedback gain and the observer gains. Note
that the initial gains Pi(0) are obtained from linear quadratic
regulator (LQR) and pole assignment methods. To reduce the
computational burden, the particle position Pi and velocity Vi
are constrained

Pi,j(n) ∈ [Pmin, Pmax] , j = 1, 2, . . . , N1,

Vi,j(n) ∈ [Vmin, Vmax] , n = 0, 1, . . . , N2,

where j is the particle number, N1 is the total number
of particles, n is the iterations, N2 is the total number of
iterations. The initial state of all search particles are given by

Pi,j(0) = Pmin + ra (Pmax − Pmin) ,

Vi,j(0) = Vmin + ra (Vmax − Vmin) ,
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where ra is a random number drawn from uniform distribution
between 0 and 1. The position Pi,j and the velocity Vi,j are
updated as [41]

Pi,j(n+ 1) = Pi,j(n) + Vi,j(n+ 1),

Vi,j(n+ 1) = waVi,j(n) + c1ra1(P
pb

i,j(n)− Pi,j(n))

+ c2ra2(P gbi (n)− Pi,j(n)),

where wa is the inertia weight, P
pb

i,j(n) is the best previous
position of jth particle at iteration n, P gbi (n) is the global
best position in the swarm at iteration n, c1 and c2 are the
accelerated constant, ra1 and ra2 are random numbers drawn
from uniform distribution between 0 and 1. Note that after N2

iterations, the optimal control parameters can be obtained as
Pi = P gbi (N2).

2) Computation of Robustly Positive Invariant Set: The
RPI set can be computed following the method in [31]. To
this end, we define the following convex compact set Fs,i:

Fs,i =

s−1⊕
j=0

AjeiW̃ei, with F0,i = {0}.

Note that the minimal RPI (mRPI) set, denoted by F∞,i, is
given by

F∞,i =
∞⊕
j=0

AjeiW̃ei.

The following lemma is useful to compute the RPI set of
system (12).

Lemma 2. [42] If 0 ∈ W̃ei. Then, there exists a finite integer
s ∈ N+ and a scalar α ∈ [0, 1) satisfying

AseiW̃ei ⊆ αW̃ei. (29)

If condition (29) holds, then there exists a convex compact
RPI set

F (α, s, i) = (1− α)−1Fs,i, (30)

such that 0 ∈ F (α, s, i) and F∞,i ⊆ F (α, s, i).

As shown in [31], the set F (α, s, i) defined in (30) is
an outer approximation of the mRPI set F∞,i. Note that the
smaller values of s and α lead to a better approximation of
F∞,i. We denote the smallest values of s and α as

s◦(α, i) = min{s ∈ N+|AseiW̃ei ⊆ αW̃ei},
α◦(s, i) = min{α ∈ R|AseiW̃ei ⊆ αW̃ei}.

In this paper, selecting α = 0.05, we obtain si = s◦(0.05, i)
and αi = α◦(s◦(0.05, i)). Then, the corresponding RPI set is
computed as

Zi = F (αi, si, i) = F (α◦(s◦(0.05, i)), s◦(0.05, i), i).

The multi-parametric toolbox (MPT) [43] can be used for the
set computations.

3) Nominal Constraints Computation: After computing
the invariant set Zi, the sets of tightened constraints Xi, Ui
and Hi can be defined for the nominal vehicle system (3) from
(16). Then, the designed integrated control law (5) can ensure
the states xi and control input ui of ith vehicle to satisfy the
constraints (15).

B. Online Control Implementation

Once the offline computations are finished, the online
implementation steps are performed at the time t ≥ 0 as
follows.
Step 1. Use the output yi(t) and control input ui(t) of the

ith vehicle to compute the estimated state x̂i(t+ 1) and
disturbance ŵi(t+ 1) following (6).

Step 2. Compute the nominal system state x̄i(t+1) using the
nominal state x̄i(t) and the control input ūi(t).

Step 3. Compute the feedback control and disturbance-
compensation control from the results of Steps 1 and 2.

Step 4. Run Algorithm 1 to obtain the optimal control se-
quence

[
ū∗i (0|t+ 1), ū∗i (1|t+ 1),. . . , ū∗i (Np − 1|t+ 1)

]
for the nominal system.

Step 5. Select the first element ūi(0|t+ 1) from the optimal
control sequence to use for feedforward control ūi(t+1).
Then, compute the integrated control law ui(t + 1) for
ith vehicle by combining the results of Step 3.

ui(t+ 1) = ūi(t+ 1) +Ki(x̂i(t+ 1)− x̄i(t+ 1))

−B†iHŵi(t+ 1).

Step 6. At the time t + 1, apply the control input ui(t + 1)
to ith vehicle and return to Step 1 for the next iteration.

V. SIMULATION AND COMPARISON RESULTS

This section provides simulation results obtained with
two different scenarios and working conditions for vehicle
platoons, composed of one leading vehicle and four following
vehicles. The proposed control method is compared with the
classical DMPC control scheme [16] and tube-based robust
nonlinear MPC (RNMPC) method [30]. These algorithms
are implemented in a distributed way like Algorithm 1. The
stabilizing state feedback gain of RNMPC method for the error
system exi

= xi − x̄i between (2) and (3) will be selected as
the infinite horizon LQR solution K∞LQR,i for system (Ai, Bi).
Therefore, the RNMPC controller is designed as

uRNMPC,i = ūRNMPC,i +K∞LQR,i(xRNMPC,i − x̄RNMPC,i),

where ūRNMPC,i is the optimal control input for the nominal
system (3), which is computed by solving a constrained finite-
time optimal control problem with the cost function defined in
(14). The K∞LQR,i is also used in the computation of the robust
invariant set ZRNMPC,i:

FRNMPC(α, s, i) = (1− α)−1FRNMPC,s,i

= (1− α)−1
s−1⊕
j=0

(Ai +BiK
∞
LQR,i)

jHWi

ZRNMPC,i = FRNMPC(α◦(s◦(0.05, i)), s◦(0.05, i), i).

All controllers are implemented using MATLAB 2019a with
Intel i5-8250U and 8G RAM. The environmental settings are
described in Table I. The parameters of the heterogeneous
vehicles are randomly selected according to the passenger
vehicles. Then, the nominal vehicle model is different from
the actual vehicle model.
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TABLE I
ENVIRONMENTAL SETTINGS.

Parameters Values Parameters Values

∆ti 0.05 rni rand(0,1)

ηi 0.95 Np 12

mi (kg) 1500+300rni Nc 5

ri (m) 0.3+0.1rni pb (m) 2

τi 0.1+0.1rni vb (m/s) 5

fi 0.015+0.005rni ab (m/s2) 5

θi (◦) 5+rni Qi diag(100,1)

CAi 0.6+0.2rni Ri diag(50,0.5)

c1 2 Gi diag(100,1)

c2 2 Fi 0.5

N1 30 N2 100

vmin (m/s) 0 vmax (m/s) 35

amin (m/s2) -6 amax (m/s2) 6

Tmin (Nm) 0 Tmax (Nm) 1000

Pi {[835, 427, 0.52],[2.5, 41, 900]>,33700,24800,8300}

A. Scenario 1: Performance Under Disturbance Effects

This test allows to compare the performance of different
controllers under time-varying and time-invariant external dis-
turbances. The simulation scenario and the working condition
are specified in Table II.

TABLE II
SIMULATION CONDITIONS OF SCENARIO 1.

Parameters

Time (s)
[ 0, i− 1) [ i− 1, 24 + i) [ 24 + i, 50 ]

d0 (m) 20 20 20

v0 (m/s) 20 20 20

wi (N) 0 500sin( t−i+1
2.9

) 375

Fig. 4 shows that the proposed control scheme can
compensate effectively the effects caused by the external
disturbance. In the first 25 seconds, under the impact of the
periodic disturbance, the platoon deviation induced by both
control methods are fluctuating periodically. The amplitude of
the classical DMPC method is ±0.3 m, the RNMPC method
is ±0.13 m, while that of the proposed controller is only
±0.02 m. Under the constant disturbance after 25 seconds, the
DMPC and RNMPC algorithm leads to a static error, which is
not the case of the proposed approach. Moreover, due to the
presence of interference, the DMPC method cannot guarantee
that the platoon deviation is not amplified as the vehicle
number increased with the PLF communication topology even
if the speed of the leading vehicle remains unchanged.

The control situation of vehicle spacing under two dif-
ferent controllers is shown in Fig. 5. It can be seen more
intuitively that different static errors exist in each adjacent
spacing with traditional DMPC, while the proposed controller
has a good control effect for all vehicles. Figs. 6 and 7
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Fig. 4. Platoon deviation ∆dp. (a) Classical DMPC, (b) RNMPC in [30],
(c) Proposed controller.

present a comparison among three controllers in terms of
vehicle velocity and acceleration. We can see that the DMPC
introduces important oscillations due to disturbance effects
and chattering can be observed in both speed and acceleration
results. However, the disturbance effect is significantly mini-
mized with the proposed controller, which induces no visible
chattering phenomenon in both speed and acceleration results.
Both the RNMPC and the proposed controller ensure that
the states are within the invariant set of the nominal system.
However, RNMPC has a larger boundary, which makes the
controller unnecessarily conservative.

For illustrations, Fig. 8 depicts the estimation of external
disturbances for the first and the last following vehicles in
the platoon. We can observe a high estimation performance
can be obtained with the designed unknown input observer.
This allows for an effective disturbance-compensation control
action to improve the overall control performance of the
proposed integrated control scheme. In addition, we also
consider the comparison of different disturbance observers
in the simulation as shown in Fig. 9, which includes PMI
observers of different orders and an extended state observer
(ESO). Note that PMI observer with an n-order disturbance
model is denoted by PnIO in the figure. Furthermore, the root
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Fig. 5. Adjacent spacing ds. (a) Classical
DMPC, (b) RNMPC in [30], (c) Proposed con-
troller.
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Fig. 6. Velocity of following vehicles. (a) Clas-
sical DMPC, (b) RNMPC in [30], (c) Proposed
controller.
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Fig. 7. Acceleration of following vehicles. (a)
Classical DMPC, (b) RNMPC in [30], (c) Pro-
posed controller.
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Fig. 8. Estimation of the lumped disturbance.
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Fig. 9. Estimation of the lumped disturbance with different types of
observers.

mean square error (RMSE), defined as

RMSE =

√√√√ 1

m

m∑
t=1

[w(t)− ŵ(t)]
2
,

is adopted as the evaluation index to compare the performance
differences of the considered observers. The comparison re-
sults are shown in Table III.

TABLE III
OBSERVER PERFORMANCE COMPARISON.

ESO P2IO P3IO P4IO

RMSE (N) 24.3 13.7 10.6 10.9

As can be seen from Fig. 9, PMI observers perform better
than ESO when dealing with time-varying disturbances. The
results in Table III show that the higher-order observers P3IO
and P4IO also have a slightly better performance over P2IO
observer. However, the observer P4IO did not perform as well
as expected due to a large number of involved parameters,
which leads to difficulties in observer gain tuning.

B. Scenario 2: Performance Under Vehicle Acceleration
and Deceleration

In this scenario, we set a variable speed of the leading
vehicle in the presence of external disturbances. It is required
that the following vehicles keep the spacing unchanged under
the condition that the leading vehicle status changes, so as to
detect the control performance of the two controllers under
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acceleration/deceleration. The simulation conditions of this
test scenario are shown in Table IV.

TABLE IV
SIMULATION CONDITIONS OF SCENARIO 2.

Parameters

Time (s)
[ 0, 5) [ 5, 9) [ 9, 14) [ 14, 20) [ 20, 50 ]

d0 (m) 30 30 30 30 30

v0 (m/s) 30 30− 3t 18 18 + 2t 30

wi (N)
0, t ∈ [ 0, 1.5i− 1.5)

500 sin( t−1.5i+1.5
4

), t ∈ [ 1.5i− 1.5, 50 ]

Fig. 10 shows the comparison of the platoon deviation
∆dp obtained with three controllers. In the first 20 seconds,
all results show irregular variations in deviation. Note that the
DMPC leads to a large error range of ±0.4 m compared to
that of the proposed controller (±0.04 m). Moreover, after 20
seconds, the platoon derivation becomes very small only with
the proposed controller. Similar remarks can be done for the
spacing comparison in Fig. 11. Therefore, the state change of
the leading vehicle greatly affects the control performance, but
it is still controllable.
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Fig. 10. Platoon deviation ∆dp. (a) Classical DMPC, (b) RNMPC in [30],
(c) Proposed controller.

In this scenario, the vehicle state has a large change as
shown in Figs. 12 and 13. However, under the action of the
proposed controller, there is no visible chattering behavior in
the states of the following vehicles as in the classical DMPC.
Moreover, the vehicle state is constrained within a limited
boundary during the whole test scenario. The disturbance
estimation during the platoon mission change process is shown
in Fig. 14. It can be seen that despite the acceleration and the
deceleration conditions, the obtained estimation performance
is still satisfactory. Note that for this simulation scenario,
we also add a platoon control with different communication
topologies. The obtained results are shown in Fig. 15, which
also indicate an outperformance of the proposed controller
compared to two other ones.

Due to the presence of disturbances, the classical DMPC
method must transmit the controller information to the receiv-
ing vehicles several times in a short time, which also increases
the computational burden. The data solved by DMPC in the
proposed scheme are all from the nominal system, which can
effectively reduce the communication number of times, the
calculation time and the difficulty of solving. Moreover, the
proposed controller has a better control effect for vehicle pla-
toon as shown in Figs. 4 and 10. The test results of the above-
mentioned data for both test scenarios are summarized in Table
V. The comparative study shows a clear outperformance of the
proposed controller compared to the classical DMPC scheme
in [16].

TABLE V
SUMMARY OF COMPARISON RESULTS.

Scenario 1 Scenario 2

Classical
DMPC

Proposed
controller

Relative
improvement

Classical
DMPC

Proposed
controller

Relative
improvement

Peak platoon
deviation (m)

0.2615 0.0174 93.3% 0.3770 0.0411 89.1%

Average platoon
deviation (m)

0.1317 0.0036 97.2% 0.1244 0.0057 95.4%

Computation
time (s)

34.2 11.4 66.7% 40.9 17.3 57.7%

Communication
number (/s)

20 10 50% 20 14 30%

VI. CONCLUSIONS

An integrated controller, including feedforward control,
feedback control and disturbance-compensation control, has
been proposed. This control law combines TMPC, PMI ob-
server, and DMPC to ensure the stability of the vehicle
platoon control, and effectively compensate the influence of
lumped disturbances. The proposed control scheme exploits
the main advantages, performs their respective functions, and
complements each other. The proposed controller provides a
faster solution speed than a classical DMPC scheme with un-
known input. Moreover, our method leads to more reasonable
constraint conditions and solution environment than RNMPC
scheme, which allows obtaining a better control performance.

As a direction to extend this work, future research will
further minimize the impacts of random communication delay
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Fig. 11. Adjacent spacing ds. (a) Classical
DMPC, (b) RNMPC in [30], (c) Proposed con-
troller.
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Fig. 12. Velocity of following vehicles. (a) Clas-
sical DMPC, (b) RNMPC in [30], (c) Proposed
controller.

0 10 20 30 40 50
-6

-4

-2

0

2

4

A
cc

el
er

at
io

n
 [

m
/s

2 ] 0 1 2 3 4
Vehicle number

(a)

0 10 20 30 40 50
-6

-4

-2

0

2

4

A
cc

el
er

at
io

n
 [

m
/s

2 ]

Tube bound

(b)

0 10 20 30 40 50
Time (s)

-6

-4

-2

0

2

4

A
cc

el
er

at
io

n
 [

m
/s

2 ]

Tube bound

(c)

Fig. 13. Acceleration of following vehicles. (a)
Classical DMPC, (b) RNMPC in [30], (c) Pro-
posed controller.
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Fig. 14. Estimation of the lumped disturbances.

in vehicle platoons. Additionally, more applicable scenarios of
the proposed controller will be found in future works.
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