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Abstract: This paper deals with the problem of sampled-data gain-scheduling control design
for affine quasi-LPV systems. As the control implementation is based on sample-data and its
update occurs only at specific sampling instants, the state-dependent scheduling functions of the
controller are piecewise continuous. This characteristic causes a mismatch between the system
model and the controller parameters, namely asynchronous scheduling functions of the controller
with respect to the plant during the inter-sampling behavior. To cope with this phenomenon,
a polytopic description of the inter-sampling is constructed based on bounding assumptions on
the scheduling functions and their time derivatives. Then, regarding a time-delay approach, a
constructive and numerically implementable LMI-based synthesis condition is derived, and a
convex procedure is proposed for enlarging the estimate of the region of attraction of the origin
of the closed-loop system. The time-derivative bounds of the scheduling functions are explicitly
accounted into the local analysis to ensure the method’s implementation. A numerical example
is provided to illustrate the proposed methodology.
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1. INTRODUCTION

Sampled-data control systems are characterized by the
presence of sampling mechanisms connecting the plant
(physical system) to the controller, as in embedded and
networked control systems data is transmitted over digital
communication channels. The existing methods to tackle
digital control problems generally consider a discrete-time
counterpart of both the plant and the controller (Jungers
et al., 2017), but deriving exact discrete models for nonlin-
ear systems is still a challenging problem. For this reason,
approximate discretization of the plant (Coutinho et al.,
2020), or sampled-data models describing inter-sampling
behavior (Nešić and Postoyan, 2015) are often employed.
In the particular context of sampled-data models, aperi-
odic sampling has been considered as a modeling abstrac-
tion to describe sampling jitters, packet dropouts, or fluc-
tuations caused by real-time scheduling protocols (Hetel
et al., 2017), thus providing more appropriate results than
standard fixed sampling. The main approaches to tackle
the problem of control under aperiodic sampling are based
on the time-delay framework (Fridman, 2010; Seuret and
Gouaisbaut, 2013) and hybrid systems theory (Nesic et al.,

� This work was supported by the Brazilian agencies CNPq (grant
307933/2018-0), CAPES and FAPEMIG (grant PPM-00053-17).

2009); see (Hetel et al., 2017) for a recent survey on the
topic.

The time-delay framework has shown to be useful to
derive constructive analysis and synthesis conditions in
the form of linear matrix inequalities (LMIs) for linear
systems (Fridman, 2010; Seuret and Gouaisbaut, 2013),
Lur’e-type systems (Shang-Guan et al., 2017), nonlinear
systems under differential algebraic representations (Mor-
eira et al., 2019), and, based on gain-scheduling control
techniques, for Takagi-Sugeno (T-S) (Lopes et al., 2020)
and quasi-linear parameter-varying (quasi-LPV) models
(Palmeira et al., 2020). In the latter case, gain-scheduling
controllers are parameterized in terms of state-dependent
scheduling functions, or premise variables of T-S models.
However, as in digital control implementations the state is
available only at specific sampling instants, the parameters
of the controller often differ from those of the T-S or
quasi-LPV models of the nonlinear plant, leading to the
so-called asynchronous parameters. However, as pointed
out by Palmeira et al. (2020), most works deal with the
asynchronous phenomenon by assuming the existence of
bounds for the parameters without providing formal guar-
antees of the existence of these bounds during operation.
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behavior (Nešić and Postoyan, 2015) are often employed.
In the particular context of sampled-data models, aperi-
odic sampling has been considered as a modeling abstrac-
tion to describe sampling jitters, packet dropouts, or fluc-
tuations caused by real-time scheduling protocols (Hetel
et al., 2017), thus providing more appropriate results than
standard fixed sampling. The main approaches to tackle
the problem of control under aperiodic sampling are based
on the time-delay framework (Fridman, 2010; Seuret and
Gouaisbaut, 2013) and hybrid systems theory (Nesic et al.,

� This work was supported by the Brazilian agencies CNPq (grant
307933/2018-0), CAPES and FAPEMIG (grant PPM-00053-17).

2009); see (Hetel et al., 2017) for a recent survey on the
topic.

The time-delay framework has shown to be useful to
derive constructive analysis and synthesis conditions in
the form of linear matrix inequalities (LMIs) for linear
systems (Fridman, 2010; Seuret and Gouaisbaut, 2013),
Lur’e-type systems (Shang-Guan et al., 2017), nonlinear
systems under differential algebraic representations (Mor-
eira et al., 2019), and, based on gain-scheduling control
techniques, for Takagi-Sugeno (T-S) (Lopes et al., 2020)
and quasi-linear parameter-varying (quasi-LPV) models
(Palmeira et al., 2020). In the latter case, gain-scheduling
controllers are parameterized in terms of state-dependent
scheduling functions, or premise variables of T-S models.
However, as in digital control implementations the state is
available only at specific sampling instants, the parameters
of the controller often differ from those of the T-S or
quasi-LPV models of the nonlinear plant, leading to the
so-called asynchronous parameters. However, as pointed
out by Palmeira et al. (2020), most works deal with the
asynchronous phenomenon by assuming the existence of
bounds for the parameters without providing formal guar-
antees of the existence of these bounds during operation.

Copyright © 2018 IFAC

Local Sampled-Data Gain-Scheduling
Control of quasi-LPV Systems �

Pedro H. S. Coutinho ∗ Márcia L. C. Peixoto ∗
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Sampled-data control systems are characterized by the
presence of sampling mechanisms connecting the plant
(physical system) to the controller, as in embedded and
networked control systems data is transmitted over digital
communication channels. The existing methods to tackle
digital control problems generally consider a discrete-time
counterpart of both the plant and the controller (Jungers
et al., 2017), but deriving exact discrete models for nonlin-
ear systems is still a challenging problem. For this reason,
approximate discretization of the plant (Coutinho et al.,
2020), or sampled-data models describing inter-sampling
behavior (Nešić and Postoyan, 2015) are often employed.
In the particular context of sampled-data models, aperi-
odic sampling has been considered as a modeling abstrac-
tion to describe sampling jitters, packet dropouts, or fluc-
tuations caused by real-time scheduling protocols (Hetel
et al., 2017), thus providing more appropriate results than
standard fixed sampling. The main approaches to tackle
the problem of control under aperiodic sampling are based
on the time-delay framework (Fridman, 2010; Seuret and
Gouaisbaut, 2013) and hybrid systems theory (Nesic et al.,
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2009); see (Hetel et al., 2017) for a recent survey on the
topic.

The time-delay framework has shown to be useful to
derive constructive analysis and synthesis conditions in
the form of linear matrix inequalities (LMIs) for linear
systems (Fridman, 2010; Seuret and Gouaisbaut, 2013),
Lur’e-type systems (Shang-Guan et al., 2017), nonlinear
systems under differential algebraic representations (Mor-
eira et al., 2019), and, based on gain-scheduling control
techniques, for Takagi-Sugeno (T-S) (Lopes et al., 2020)
and quasi-linear parameter-varying (quasi-LPV) models
(Palmeira et al., 2020). In the latter case, gain-scheduling
controllers are parameterized in terms of state-dependent
scheduling functions, or premise variables of T-S models.
However, as in digital control implementations the state is
available only at specific sampling instants, the parameters
of the controller often differ from those of the T-S or
quasi-LPV models of the nonlinear plant, leading to the
so-called asynchronous parameters. However, as pointed
out by Palmeira et al. (2020), most works deal with the
asynchronous phenomenon by assuming the existence of
bounds for the parameters without providing formal guar-
antees of the existence of these bounds during operation.
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However, as in digital control implementations the state is
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of the controller often differ from those of the T-S or
quasi-LPV models of the nonlinear plant, leading to the
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out by Palmeira et al. (2020), most works deal with the
asynchronous phenomenon by assuming the existence of
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The lack of such guarantees has motivated efforts to derive
local stability and stabilization conditions for sampled-
data quasi-LPV or T-S fuzzy systems (Palmeira et al.,
2018; Lopes et al., 2020; Palmeira et al., 2020). The
importance of local analysis is the characterization of
a region in the state-space where the state-dependent
parameters satisfy bounding assumptions. Palmeira et al.
(2018) proposed local stability analysis conditions for
sampled-data quasi-LPV systems and the results have
been recently extended to the synthesis problem (Palmeira
et al., 2020). However, as this representation is based
on prescribed bounds for the time derivative of state-
dependent scheduling functions, it is difficult to employ
such a relaxation when time derivatives of scheduling
functions depend on the control input signal. To deal with
this case, Palmeira et al. (2020) proposed a particular
result that does not take the auxiliary polytope into
account. However, it introduces conservativeness since the
gain-scheduling control structure is possibly reduced to a
linear one.

This work intends to provide a less conservative condi-
tion for stabilization of sampled-data quasi-LPV control
systems. More precisely, the synthesis condition is derived
based on the time-delay approach using the Wirtinger-
based integral inequality and a methodology is provided to
deal with the case of time derivatives of scheduling func-
tions depending on the control input signal. For the latter,
the region in the state space where the prescribed time-
derivative bounds are satisfied is fully accounted in the
synthesis condition, such that estimates of the region of at-
traction are obtained under this extra constraint. As a re-
sult, the maximum allowable sampling period (MASP) can
be enlarged by adjusting the prescribed time-derivative
bounds. Moreover, a trade-off between the time-derivative
bounds and the estimate of the region of attraction can be
established.

This paper is organized as follows. In Section 2, the
sampled-data control problem for the considered class
of nonlinear systems is presented. The equivalent local
polytopic description is revisited in Section 3. The pro-
posed condition derived regarding Lyapunov-Krasovskii
and looped-functional arguments is provided in Section 4.
A numerical example illustrating the advantages of the
proposal is provided in Section 5 while conclusions and
future research directions are discussed in Section 6.

Notation: N denotes the set of natural numbers, N≤p

denotes the set of natural numbers less than or equal to
p ∈ N, N0 = {0} ∪ N, B = {0, 1} denotes the Boolean
domain, R denotes the field of real numbers, and R≥0

(R>0) denotes the set of all non-negative (positive) real
numbers. In a symmetric matrix, the symbol ‘�’ denotes
the transpose of the symmetric term and He{X} =
X + X�. diag(X1, . . . , Xn) denotes the block diagonal
matrix of matrices X1, . . . , Xn. Given a multi-index i =
(i1, . . . , ip) ∈ Bp, where Bp = {i : ij ∈ B, j ∈ N≤p}, it is
defined Bp+ = {i : ij ≤ ij+1, ij ∈ B, j ∈ N≤p−1}. P(i) is
the set of permutations of the entries of i. K is the set of
differentiable functions from [0, T ] to Rn, with T ∈ R>0.

2. PROBLEM FORMULATION

Consider nonlinear systems of the form

ẋ(t) = A(x)x(t) +B(x)u(t) (1a)

u(t) = K(xk)x(tk), ∀t ∈ [tk, tk+1) (1b)

x(tk) = xk, ∀k ∈ N0, x(0) = x0 given,

where x(t) ∈ D ⊂ Rn, u(t) ∈ Rm is the control input;
A : D �→ Rn×n and B : D �→ Rn×m are matrix-valued
functions affine in continuously differentiable functions
zj : D �→ R, for j ∈ N≤p, that is

A(x)=A0+
∑p

j=1zj(x)Aj , B(x)=B0+
∑p

j=1zj(x)Bj ,

K(xk) = K0 +
∑p

j=1zj(xk)Kj ,

with Aj ∈ Rn×n, Bj ∈ Rn×m, Kj ∈ Rm×n, j ∈ {0}∪N≤p.
The region D is a convex polytope containing the origin
that admits the following half-space representation:

D = {x ∈ Rn : b�j x ≤ 1, j ∈ N≤ne
}, (2)

where bj ∈ Rn, j ∈ N≤ne define the edges of the polytope.
As D is compact and zj(x) are continuously differentiable
functions, then there exist bounds such that

z0j ≤ zj(x) ≤ z1j , (3a)

−φj ≤ żj(x) ≤ φj , (3b)

for all x ∈ D, j ∈ N≤p, and the Jacobian matrix

J(x) = ((∇z1(x))
�, . . . , (∇zp(x))

�),

is bounded for all x ∈ D.

Based on a digital control implementation, the state x(t)
and scheduling functions z(x(t)) are transmitted to the
controller only at specific sampling instants tk ∈ R≥0

satisfying to t0 = 0, tk+1 − tk > 0, limk→∞ tk = ∞. Then,
regarding a zero-order hold mechanism, piecewise-constant
signals of x(tk) and z(x(tk)), t ∈ [tk, tk+1) are available
to the controller. Hence, the following arbitrary sampling
problem is addressed in this work.

Problem: Consider the nonlinear sampled-data control
system (1)–(3) and a bounded set T = (0, h]. Determine
the gain-scheduling control law (1b) such that the origin
of the closed-loop system (1)–(3) is locally asymptotically
stable for any arbitrary time-varying sampling interval
hk:=tk+1−tk with values in T .

The time-delay approach is considered to address this
problem, which consists in rewriting the control input as

u(t) = K(x(t− τ(t))x(t− τ(t)) (4a)

τ(t) = t− tk, ∀t ∈ [tk, tk+1), (4b)

where τ(t) is piecewise-linear satisfying to τ̇(t) = 1 for all
t �= tk, τ(tk) = 0, and τ(t) ∈ [0, h]. Thus, the arbitrary
sampling problem can be addressed by designing the gain-
scheduled controller such that the origin of the closed-loop
system

ẋ(t) = A(x)x(t) +B(x)K(xk)x(t− τ(t)), (5)

for all t ≥ 0, is asymptotically stable for all samplings
sequences with hk ≤ h, k ∈ N. In particular, it is of
interest to determine the region of attraction of the origin
of the closed-loop system (5), but analytically obtaining
that region may not be an easy task (Palmeira et al., 2018;
Coutinho et al., 2020). For this reason, to fully address
the control problem, we intend to determine the largest
possible estimate of the region of attraction Ω ⊂ D.

3. POLYTOPIC MODELING

This section presents the polytopic modeling of the nonlin-
ear sampled-data system (1a). Due to the aperiodic sam-
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local stability and stabilization conditions for sampled-
data quasi-LPV or T-S fuzzy systems (Palmeira et al.,
2018; Lopes et al., 2020; Palmeira et al., 2020). The
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a region in the state-space where the state-dependent
parameters satisfy bounding assumptions. Palmeira et al.
(2018) proposed local stability analysis conditions for
sampled-data quasi-LPV systems and the results have
been recently extended to the synthesis problem (Palmeira
et al., 2020). However, as this representation is based
on prescribed bounds for the time derivative of state-
dependent scheduling functions, it is difficult to employ
such a relaxation when time derivatives of scheduling
functions depend on the control input signal. To deal with
this case, Palmeira et al. (2020) proposed a particular
result that does not take the auxiliary polytope into
account. However, it introduces conservativeness since the
gain-scheduling control structure is possibly reduced to a
linear one.

This work intends to provide a less conservative condi-
tion for stabilization of sampled-data quasi-LPV control
systems. More precisely, the synthesis condition is derived
based on the time-delay approach using the Wirtinger-
based integral inequality and a methodology is provided to
deal with the case of time derivatives of scheduling func-
tions depending on the control input signal. For the latter,
the region in the state space where the prescribed time-
derivative bounds are satisfied is fully accounted in the
synthesis condition, such that estimates of the region of at-
traction are obtained under this extra constraint. As a re-
sult, the maximum allowable sampling period (MASP) can
be enlarged by adjusting the prescribed time-derivative
bounds. Moreover, a trade-off between the time-derivative
bounds and the estimate of the region of attraction can be
established.

This paper is organized as follows. In Section 2, the
sampled-data control problem for the considered class
of nonlinear systems is presented. The equivalent local
polytopic description is revisited in Section 3. The pro-
posed condition derived regarding Lyapunov-Krasovskii
and looped-functional arguments is provided in Section 4.
A numerical example illustrating the advantages of the
proposal is provided in Section 5 while conclusions and
future research directions are discussed in Section 6.
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Based on a digital control implementation, the state x(t)
and scheduling functions z(x(t)) are transmitted to the
controller only at specific sampling instants tk ∈ R≥0

satisfying to t0 = 0, tk+1 − tk > 0, limk→∞ tk = ∞. Then,
regarding a zero-order hold mechanism, piecewise-constant
signals of x(tk) and z(x(tk)), t ∈ [tk, tk+1) are available
to the controller. Hence, the following arbitrary sampling
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problem, which consists in rewriting the control input as
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where τ(t) is piecewise-linear satisfying to τ̇(t) = 1 for all
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sampling problem can be addressed by designing the gain-
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for all t ≥ 0, is asymptotically stable for all samplings
sequences with hk ≤ h, k ∈ N. In particular, it is of
interest to determine the region of attraction of the origin
of the closed-loop system (5), but analytically obtaining
that region may not be an easy task (Palmeira et al., 2018;
Coutinho et al., 2020). For this reason, to fully address
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ear sampled-data system (1a). Due to the aperiodic sam-
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pling, the scheduling functions in the plant (1a) and the
controller (1b) are asynchronous: in the former case they
evolve continuously, in the latter they evolve in a sample-
and-hold fashion, being piecewise-continuous signals. To
deal with this asynchronous phenomenon, consider the
following decomposition (Palmeira et al., 2020):

z(x) = z(xk) + δ(t), ∀t ∈ [tk, tk+1),

where δ(t) denotes the inter-sampling variation of z(x)
from t = tk to t ∈ (tk, tk+1). It follows from (3) that

z0j ≤ zj(xk) ≤ z1j , (6a)

−hφj ≤ δj(t) ≤ hφj , (6b)

for all x(t), x(tk) ∈ D, t ∈ [tk, tk+1). By employing the
sector-nonlinearity approach (Tanaka and Wang, 2004),
from the bounds defined in (6), each scheduling function

can be written as zj(xk) = z0jw
j
0(xk) + z1jw

j
1(xk), where

wj
0(xk) = (z1j −zj(xk))/(z

1
j −z0j ), w

j
1(xk) = 1−wj

0(xk), and

their related variations by δj(t)= − hφjv
j
0(δ) + hφjv

j
1(δ),

where vj0(δ) = (hφj − δj(t))/(2hφj), v
j
1(δ) = 1 − vj0(δ).

Then, the vectors z(xk) = (z1(xk), . . . , zp(xk)) and δ(t) =
(δ1(t), . . . , δp(t)) belong to convex polytopes with 2p ver-
tices in Rp, that is

z(xk) =
∑
i∈Bp

wi(xk)αi, δ(t) =
∑
j∈Bp

vj(δ)βj,

where αi = (zi11 , . . . , z
ip
p ) and βj = (δj11 , . . . , δ

jp
p ) and∑

i∈Bp wi(xk) = 1, wi(xk) ≥ 0,
∑

j∈Bp vj(δ) = 1, vj(δ) ≥ 0.

As a result, the matrix-valued functions in (1) can be
represented as follows:[

A(x) B(x)
]
=

∑
i∈Bp

∑
k∈Bp

wi(xk)vk(δ)
[
Aik Bik

]

K(xk)=
∑
j∈Bp

wj(xk)Kj,
(7)

where

Aik = A0+A (αi⊗I+βk⊗I) , A = [A1 A2 · · ·Ap]

Bik = B0+B (αi⊗I+βk⊗I) , B = [B1 B2 · · ·Bp]

Kj = K0+K (αj⊗I) , K = [K1 K2 · · ·Kp].

This representation provides an effective model for inter-
sampling variations that leads to asynchronous phe-
nomenon. As this polytopic model is valid only for state
trajectories inside of D, an important aspect is obtaining
an estimate of the region of attraction Ω ⊂ D ensuring the
implementation of the designed gain-scheduled controller.

Notice also that this polytopic modeling closely depends
on the existence of bounded scheduling function time
derivatives, as in (6). Thus, the subset of the state-space
in which these bounds are valid, denoted as ∆, should also
be accounted in the region of attraction estimation, such
that Ω ⊂ D∩∆. However, it can be hard to determine such
a region ∆ in the general case when scheduling functions
depend on the control input, as can be noticed with

żj(x) = ∇zj(x)(A(x)x(t) +B(x)u(t)), (8)

when ∇zj(x)B(x) �= 0, x ∈ D. In principle, unless extra
constraints are introduced into the synthesis condition
to ensure that the control input is bounded (González
et al., 2016), in this case it is not possible to a priori
establish the bounds in (6) and more conservative results
are expected to be obtained, as stated in (Palmeira et al.,
2020, Corollary 1). To conclude, the sector-nonlinearity

approach is employed to obtain the following polytopic
representation for the Jacobian matrix

J(x) =
∑
k∈Bρ

gk(x)γk, ∀x ∈ D, (9)

where γk ∈ Rp×n, k ∈ Bρ, being ρ the number of nonlinear
terms in J(x). Hereafter the 	-th row of the matrix γk is
denoted as γk(�).

4. MAIN RESULTS

4.1 Preliminary Results

The following condition is considered to study the local
stability of the origin of the closed-loop system (5).

Lemma 1. Let V : D �→ R≥0 be a continuously differen-
tiable and radially unbounded function such that

V (0) = 0 and V (x) > 0, ∀x ∈ D \ {0},
and V0 : [0, h]×K �→ R≥0 be a functional such that

V0(τ, φ) > 0, ∀τ ∈ (0, hk), ∀hk ∈ [h, h],

V0(0, φ) = V0(hk, φ) = 0, ∀φ ∈ K,

where h < h, the level set associated with the function V
be given by

Ω = {x ∈ Rn : V (x) ≤ c, c ∈ R>0}, (10)

and the region

∆ = {x ∈ Rn : żj(x) ∈ [−φj , φj ]}. (11)

If the following condition hold along the trajectories of (5):

Ẇ(τ, x) =
d

dt
[V (x) + V0(τ, x)] < 0, (12)

then the origin of (5) is asymptotically stable. In addition,
selecting c such that Ω ⊂ D ∩∆, trajectories initiating at
Ω never leave that region and converge asymptotically to
the origin, thus the bounds (3) are satisfied.

Proof. The result can be proved following similar argu-
ments as (Palmeira et al., 2020, Thm. 1).

4.2 Constructive Design Condition

Consider the following Lyapunov-Krasovskii functional
candidate:

W(τ, x) = V (x) + V0(τ, x), (13)

with V (x) = x(t)�Px(t),

V0(τ, x) = (hk − τ(t)) (x(t)− x(tk))
�
S (x(t)− x(tk))

+ 2(hk − τ(t)) (x(t)− x(tk))
�
Qx(tk)

+ (hk − τ(t))

∫ t

tk

ẋ�(s)Rẋ(s) ds

+ (hk − τ(t))(t− tk)τ(t)x
�(tk)Ux(tk),

where P,R ∈ Rn×n are symmetric and positive definite
matrices and S,Q,U ∈ Rn×n are symmetric matrices. It
can be seen that V (x) and V0(τ, x) satisfy the required
properties stated in Theorem 1. More specifically, when
τ(t) = t−tk = 0, that is, t = tk, or when τ(t) = t−tk = hk,
that is, t = tk+1, one has V0(0, x) = V0(hk, x) = 0.
Based on this functional candidate, the following result
is proposed.

Theorem 2. Let h, h, ε ∈ R>0, with h ≤ h, and φ� ∈ R≥0,

� ∈ N≤p, be given. If there exist matrices P̃ > 0, R̃ > 0,

S̃ = S̃�, Q̃ = Q̃�, Ũ > 0 and X, all belonging to Rn×n,

matrices K̃j ∈ Rm×n, j ∈ {0} ∪ N≤p, and matrices Ỹ1

and Ỹ2 belonging to Rn×4n such that inequalities (14)–
(18) are satisfied, then the sampled-data system (1), with

control gains given by Kj = K̃jX
−1, j ∈ {0} ∪ N≤p, is

asymptotically stable for all sampling sequences {hk}k∈N0

satisfying hk ∈ [h, h]. Moreover, for any initial condition
x(0) ∈ Ω, with Ω ⊂ D ∩ ∆ as defined in (10), (2), (11)
with c = 1, the bounds in (3) are satisfied.

[
Q̃ S̃� − Q̃


 Q̃− S̃ − S̃�

]
≥ 0, Ũ ≥ 0, (14)

∑
(i,j)∈P(m,n)

Θ1
ijk(hk) < 0, (15)

∑
(i,j)∈P(m,n)

Θ2
ijk(hk) < 0, (16)

for m,n ∈ Bp+, k ∈ Bp, hk ∈ {h, h},
[

1 b�j X

X�bj P̃

]
≥ 0, (17)

for j ∈ N≤ne
,

∑
(i,j)∈P(m,n)

Θ3
ijk,� ≤ 0, (18)

for m,n ∈ Bp+, k ∈ Bρ, � ∈ N≤p, where

Θ1
ijk(h) = Π̃1,ijk + h(Π̃2 + Π̃3)

Θ2
ijk(h) =



Π̃1,ijk − hΠ̃3 hỸ �

1 3hỸ �
2


 −hR̃ 0


 
 −3hR̃




Θ3
ijk,� =

[
−P̃ 


γk(�)(ÃiX + B̃iK̃j) −φ2
�

]

Π̃1,ijk = Π̃0
1 + Π̃1

1,ik + Π̃2
1,ijk −He{Ỹ �

1 W1 + 3Ỹ �
2 W2}

Π̃0
1 = He{M�

1 P̃M4−W�
1 Q̃M2−(M1+ε(M�

2 +M�
4 ))XM4}

Π̃1
1,ik = He{(M�

1 + εM�
2 + εM�

4 )AikXM1}
Π̃2

1,ijk = He{(M�
1 + εM�

2 + εM�
4 )BikK̃jM2}

Π̃2 = M�
4 R̃M4 +He{M�

4 S̃W1 +M�
4 Q̃M2}

Π̃3 = M�
2 ŨM2, Ãi = A0 +A(αi⊗I), B̃i = B0 + B(αi⊗I)

K̃j = K̃0 + K̃(αj⊗I), K̃ = [K̃1, . . . , K̃p]

M1 = [I 0 0 0], M2 = [0 I 0 0], M4 = [0 0 0 I]

W1 = [I − I 0 0], W2 = [I I − 2I 0].

Proof. Initially it is proven that if inequalities (15)–(16)
are satisfied then (12) holds. Consider the Lyapunov-
Krasovskii candidate given in (13), whose positiveness
is ensured from inequalities (14) (Palmeira et al., 2020).
Moreover, its time derivative along trajectories of (5) is
given by

Ẇ(τ, x) = 2x�(t)Pẋ(t)

− (x(t)− x(tk))
� [S(x(t)− x(tk)) + 2Qx(tk)]

+ 2(tk+1 − t) (ẋ(t)S(x(t)− x(tk)) + ẋ(t)Qx(tk))

−
∫ t

tk

ẋ�(s)Rẋ(s) ds+ (tk+1 − t)ẋ�(t)Rẋ(t)

− (t− tk)x
�(tk)Ux(tk) + (tk+1 − t)x�(tk)Ux(tk). (19)

By defining the vector ξ(t) = (x(t), x(tk), νk(τ), ẋ(t)), with

νk(τ) =
1
τ

∫ t

tk
x(s) ds, it follows from theWirtinger integral

inequality (Seuret and Gouaisbaut, 2013, Corollary 4) that

−
∫ t

tk

ẋ�(s)Rẋ(s)ds≤−1

τ
ξ�

(
W�

1 RW1+3W�
2 RW2

)
ξ. (20)

Then, it follows from the Reciprocally Convex Combina-
tion Lemma (Seuret and Gouaisbaut, 2013) that there
exist matrices Y1, Y2 ∈ Rn×4n such that

− 1
τ(t)W

�
1 RW1≤−He{Y �

1 W1}+τ(t)Y �
1 R−1Y1

− 1
τ(t)W

�
2 RW2≤−He{Y �

2 W2}+τ(t)Y �
2 R−1Y2.

(21)

Moreover, by introducing the null-term

2ξ�(t)
(
M�

1 + εM�
2 + εM�

4

)
X−�A(x)M1ξ(t)

+2ξ�(t)
(
M�

1 + εM�
2 + εM�

4

)
X−�B(x)K(xk)M2ξ(t)

−2ξ�(t)
(
M�

1 + εM�
2 + εM�

4

)
X−�M4ξ(t) = 0 (22)

it implies from (20), (21), (22) the following upper-bound
for (19):

Ẇ(τ, x) ≤ ξ�(t)Π(τ, hk, x)ξ(t), (23)

where

Π(τ, hk, x)=Π1(x)+(hk−τ)Π2+(hk−2τ)Π3 + τΠ4, (24)

with

Π1(x) = Π0
1 +Π1

1(x) + Π2
1(x)−He{Y �

1 W1 + 3Y �
2 W2}

Π0
1=He{M�

1 PM4−W�
1 QM2−(M�

1 +εM�
2 +εM�

4 )X−�M4}
Π1

1(x) = He{(M�
1 +εM�

2 +εM�
4 )X−�A(x(t))M1}

Π2
1(x) = He{(M�

1 +εM�
2 +εM�

4 )X−�B(x(t))K(x(tk))M2}
Π2 = M�

4 RM4 +He{M�
4 SW1 +M�

4 QM2}
Π3 = M�

2 UM2, Π4 = Y �
1 R−1Y1 + Y �

2 R−1Y2.

As (24) is affine with respect to τ(t) ∈ [0, hk], to ensure
that Π(τ, hk, x) < 0, it is sufficient that the following
inequalities hold

Π(0, hk, x) = Π1(x)+hkΠ2+hkΠ3 < 0 (25a)

Π(hk, hk, x) =



Π1(x)−hkΠ3 hkY

�
1 3hkY

�
2


 −hkR 0

 
 −3hkR


<0. (25b)

By pre- and post-multiplying inequality (25a) with I4⊗X�

and pre- and post-multiplying inequality (25b) with
I6⊗X�, it leads to

Θ1(hk, x) = Π̃1(x)+hkΠ̃2+hkΠ̃3 < 0 (26a)

Θ2(hk, x) =



Π̃1(x)−hkΠ̃3 hkỸ

�
1 3hkỸ

�
2


 −hkR̃ 0


 
 −3hkR̃


<0. (26b)

Based on the polytopic representation in (7), it is possible
to write
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Theorem 2. Let h, h, ε ∈ R>0, with h ≤ h, and φ� ∈ R≥0,

� ∈ N≤p, be given. If there exist matrices P̃ > 0, R̃ > 0,

S̃ = S̃�, Q̃ = Q̃�, Ũ > 0 and X, all belonging to Rn×n,

matrices K̃j ∈ Rm×n, j ∈ {0} ∪ N≤p, and matrices Ỹ1

and Ỹ2 belonging to Rn×4n such that inequalities (14)–
(18) are satisfied, then the sampled-data system (1), with

control gains given by Kj = K̃jX
−1, j ∈ {0} ∪ N≤p, is

asymptotically stable for all sampling sequences {hk}k∈N0

satisfying hk ∈ [h, h]. Moreover, for any initial condition
x(0) ∈ Ω, with Ω ⊂ D ∩ ∆ as defined in (10), (2), (11)
with c = 1, the bounds in (3) are satisfied.

[
Q̃ S̃� − Q̃


 Q̃− S̃ − S̃�

]
≥ 0, Ũ ≥ 0, (14)

∑
(i,j)∈P(m,n)

Θ1
ijk(hk) < 0, (15)

∑
(i,j)∈P(m,n)

Θ2
ijk(hk) < 0, (16)

for m,n ∈ Bp+, k ∈ Bp, hk ∈ {h, h},
[

1 b�j X

X�bj P̃

]
≥ 0, (17)

for j ∈ N≤ne
,

∑
(i,j)∈P(m,n)

Θ3
ijk,� ≤ 0, (18)

for m,n ∈ Bp+, k ∈ Bρ, � ∈ N≤p, where

Θ1
ijk(h) = Π̃1,ijk + h(Π̃2 + Π̃3)

Θ2
ijk(h) =



Π̃1,ijk − hΠ̃3 hỸ �

1 3hỸ �
2


 −hR̃ 0


 
 −3hR̃




Θ3
ijk,� =

[
−P̃ 


γk(�)(ÃiX + B̃iK̃j) −φ2
�

]

Π̃1,ijk = Π̃0
1 + Π̃1

1,ik + Π̃2
1,ijk −He{Ỹ �

1 W1 + 3Ỹ �
2 W2}

Π̃0
1 = He{M�

1 P̃M4−W�
1 Q̃M2−(M1+ε(M�

2 +M�
4 ))XM4}

Π̃1
1,ik = He{(M�

1 + εM�
2 + εM�

4 )AikXM1}
Π̃2

1,ijk = He{(M�
1 + εM�

2 + εM�
4 )BikK̃jM2}

Π̃2 = M�
4 R̃M4 +He{M�

4 S̃W1 +M�
4 Q̃M2}

Π̃3 = M�
2 ŨM2, Ãi = A0 +A(αi⊗I), B̃i = B0 + B(αi⊗I)

K̃j = K̃0 + K̃(αj⊗I), K̃ = [K̃1, . . . , K̃p]

M1 = [I 0 0 0], M2 = [0 I 0 0], M4 = [0 0 0 I]

W1 = [I − I 0 0], W2 = [I I − 2I 0].

Proof. Initially it is proven that if inequalities (15)–(16)
are satisfied then (12) holds. Consider the Lyapunov-
Krasovskii candidate given in (13), whose positiveness
is ensured from inequalities (14) (Palmeira et al., 2020).
Moreover, its time derivative along trajectories of (5) is
given by

Ẇ(τ, x) = 2x�(t)Pẋ(t)

− (x(t)− x(tk))
� [S(x(t)− x(tk)) + 2Qx(tk)]

+ 2(tk+1 − t) (ẋ(t)S(x(t)− x(tk)) + ẋ(t)Qx(tk))

−
∫ t

tk

ẋ�(s)Rẋ(s) ds+ (tk+1 − t)ẋ�(t)Rẋ(t)

− (t− tk)x
�(tk)Ux(tk) + (tk+1 − t)x�(tk)Ux(tk). (19)

By defining the vector ξ(t) = (x(t), x(tk), νk(τ), ẋ(t)), with

νk(τ) =
1
τ

∫ t

tk
x(s) ds, it follows from theWirtinger integral

inequality (Seuret and Gouaisbaut, 2013, Corollary 4) that

−
∫ t

tk

ẋ�(s)Rẋ(s)ds≤−1

τ
ξ�

(
W�

1 RW1+3W�
2 RW2

)
ξ. (20)

Then, it follows from the Reciprocally Convex Combina-
tion Lemma (Seuret and Gouaisbaut, 2013) that there
exist matrices Y1, Y2 ∈ Rn×4n such that

− 1
τ(t)W

�
1 RW1≤−He{Y �

1 W1}+τ(t)Y �
1 R−1Y1

− 1
τ(t)W

�
2 RW2≤−He{Y �

2 W2}+τ(t)Y �
2 R−1Y2.

(21)

Moreover, by introducing the null-term

2ξ�(t)
(
M�

1 + εM�
2 + εM�

4

)
X−�A(x)M1ξ(t)

+2ξ�(t)
(
M�

1 + εM�
2 + εM�

4

)
X−�B(x)K(xk)M2ξ(t)

−2ξ�(t)
(
M�

1 + εM�
2 + εM�

4

)
X−�M4ξ(t) = 0 (22)

it implies from (20), (21), (22) the following upper-bound
for (19):

Ẇ(τ, x) ≤ ξ�(t)Π(τ, hk, x)ξ(t), (23)

where

Π(τ, hk, x)=Π1(x)+(hk−τ)Π2+(hk−2τ)Π3 + τΠ4, (24)

with

Π1(x) = Π0
1 +Π1

1(x) + Π2
1(x)−He{Y �

1 W1 + 3Y �
2 W2}

Π0
1=He{M�

1 PM4−W�
1 QM2−(M�

1 +εM�
2 +εM�

4 )X−�M4}
Π1

1(x) = He{(M�
1 +εM�

2 +εM�
4 )X−�A(x(t))M1}

Π2
1(x) = He{(M�

1 +εM�
2 +εM�

4 )X−�B(x(t))K(x(tk))M2}
Π2 = M�

4 RM4 +He{M�
4 SW1 +M�

4 QM2}
Π3 = M�

2 UM2, Π4 = Y �
1 R−1Y1 + Y �

2 R−1Y2.

As (24) is affine with respect to τ(t) ∈ [0, hk], to ensure
that Π(τ, hk, x) < 0, it is sufficient that the following
inequalities hold

Π(0, hk, x) = Π1(x)+hkΠ2+hkΠ3 < 0 (25a)

Π(hk, hk, x) =



Π1(x)−hkΠ3 hkY

�
1 3hkY

�
2


 −hkR 0

 
 −3hkR


<0. (25b)

By pre- and post-multiplying inequality (25a) with I4⊗X�

and pre- and post-multiplying inequality (25b) with
I6⊗X�, it leads to

Θ1(hk, x) = Π̃1(x)+hkΠ̃2+hkΠ̃3 < 0 (26a)

Θ2(hk, x) =



Π̃1(x)−hkΠ̃3 hkỸ

�
1 3hkỸ

�
2


 −hkR̃ 0


 
 −3hkR̃


<0. (26b)

Based on the polytopic representation in (7), it is possible
to write
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Θ1(hk, x) =
∑
i∈Bp

∑
j∈Bp

∑
k∈Bp

wi(xk)wj(xk)vk(δ)Θ
1
ijk(hk)

Θ2(hk, x) =
∑
i∈Bp

∑
j∈Bp

∑
k∈Bp

wi(xk)wj(xk)vk(δ)Θ
2
ijk(hk).

Thus, based on the LMI-relaxation in Coutinho et al.
(2020), the solution of the LMIs in (15) and (16) imply
that inequalities in (26a) and (26b) hold, respectively.

Therefore, the condition (12) with Ẇ(τ, x) defined in (19)
is satisfied along the trajectories of (5) under the exact
polytopic representation (7). It follows from Lemma 1 that
the origin of the closed-loop system (5) is asymptotically
stable.

Now, to ensure that closed-loop trajectories remain in the
region in which the polytopic representation hold, one
needs to prove that Ω ⊂ D ∩∆. If inequalities (17) hold,
it is possible to show that Ω ⊂ D (Coutinho et al., 2020).
Moreover, if inequalities (18) hold, then

Θ3,�(x)=
∑
i∈Bp

∑
j∈Bp

∑
k∈Bp

wi(x0)wj(x0)gk(x0)Θ
3
ijk,�<0,

for all � ∈ N≤p, which after being pre- and post-multiplied
with diag(X−�, 1) results[

−P �
J(�)(x0) (A(x0) +B(x0)K(x0)) −φ2

�

]
< 0.

From Schur complement, it follows that

−P + φ−2
� Π�

5 (x0)Π5(x0) < 0, ∀� ∈ N≤p,

with Π5(x(0)) = J(�)(x0) (A(x0) +B(x0)K(x0)), or, equiv-

alently, φ−2
� ẋ�(0)∇z�j (x0)∇zj(x0)ẋ(0) < V (x0). For all

x0 ∈ Ω, it follows that żj(x0) ≤ φ�, ∀� ∈ N≤p, which imply
Ω ⊂ ∆0, ∆0 =

⋂p
�=1 ∆

�
0,∆

�
0 = {x ∈ Ω : |ż�(x0)| ≤ φ�}

at t = 0. As Ω is a positively invariant set, state tra-
jectories starting in Ω at t = t0 = 0 will converge to
the origin remaining in Ω. Thus, if x0 ∈ Ω ⊂ ∆0 then
xk ∈ Ω ⊂ ∆0 ⊆ ∆. Therefore, Ω ⊂ D ∩∆ and the bounds
defined in (3) are not violated, ensuring the validity of the
polytopic representation (7). This concludes the proof.

Remark 3. The result in Theorem 2 provides an effective
way of dealing with the general case in which time deriva-
tives of scheduling functions depend on the control input,
as shown in (8), by explicitly characterizing the region
∆ and enforcing that Ω ⊂ ∆. It allows describing inter-
sampling variations regarding the polytopic representa-
tion (7), possibly leading to less conservative results than
(Palmeira et al., 2020, Corollary 1).

4.3 Enlargement of the Region of Attraction Estimation

Based on the result stated in Theorem 2, the region Ω is
contained in the region of attraction of the zero equilibrium
of the closed-loop system (5). As a result, it can be used to
estimate the region of attraction. Thus, to maximize the
region Ω, the following optimization problem is considered:

minimize
ϕ

ϕ

subject to (14)–(18)[
ϕI I

I X +X� − P̃

]
> 0,




(27)

where ϕ ∈ R>0. Notice the extra constraint introduced
in (27) ensures that P < ϕI, which implies that Ω0 ⊂ Ω,

where Ω0 = {x ∈ Rn : x�x ≤ ϕ−1}. Therefore, as long as
ϕ is minimized, it tends to maximize the region Ω.

5. NUMERICAL EXAMPLE

Consider the following nonlinear system (Palmeira et al.,
2020, Example 2):

ẋ1(t) = x2(t)

ẋ2(t) = (1 + x2
1(t))x1(t) + (2 + 8x2

2(t))x2(t) + u(t),
(28)

where |x1| ≤ 1, |x2| ≤ 1 define the validity region D. By
defining z(x) = (x2

1, x
2
2), the nonlinear system (28) can be

represented as a quasi-LPV model (1a) with

A0 =

[
0 1
1 2

]
, A1 =

[
0 0
1 0

]
, A2 =

[
0 0
0 8

]
,

B0 =

[
0
1

]
, B1 = B2 =

[
0
0

]
,

with −1 ≤ z1(x) ≤ 1 and −1 ≤ z2(x) ≤ 1. As
∇z2(x)B(x) = 2x2 �= 0, ∀x2 �= 0, it is clear that the
time derivative of z2(x) depends on the control input
u(t). In this example, a comparison 1 is made between the
proposed condition in Theorem 2 and (Palmeira et al.,
2020, Corollary 1), which is the condition that can be
applied in this case. In all experiments conducted here,
it is assumed h = 0.01s. The following two aspects
are evaluated here: (i) The conservativeness reduction
measured in terms of the minimum ϕ for the largest h
that the condition (Palmeira et al., 2020, Corollary 1) is
feasible. (ii) The relation between the adjustable bounds
φ1 and φ2 in (3) with the objective function ϕ in (27) and
the maximum h that the optimization with the proposed
condition is feasible.

To address point (i), the MASP obtained for the condi-
tion (Palmeira et al., 2020, Corollary 1) is h = 31ms.
For the same h, the condition in Theorem 2 is solved
for different values of φ1 and φ2 as reported in Table 1.
It can be observed that smaller values of ϕ are attained
with the proposed condition for the different choices of
φ1 and φ2. As φ1 and φ2 are reduced the value of ϕ
increases, indicating the reduction of the region Ω in (10).
It illustrates the effect of the region ∆ in (11) over the
estimate of the region of attraction.

Table 1. Minimum ϕ for h = 31ms.

ϕ

(Palmeira et al., 2020, Cor. 1) 97.878

Theorem 2 with ε = 0.1

φ1 = φ2 = 1 4.0056

φ1 = φ2 = 2 1.3816

φ1 = φ2 = 3 1.1087

To address point (ii), the optimization problem (27) is
solved for different pairs {φ1, φ2} and, in each case, it is
computed the MASP h that the optimization is feasible 2 .
The results are depicted in Table 2. As the values of
1 The same polytope construction methodology and LMI relaxations
have been employed in all cases for a fair comparison between the
conditions. The LMI conditions were solved in Matlab environment
using the Yalmip parser and the Mosek solver.
2 The values of ε have been obtained by employing a line search
procedure in the interval ε ∈ {0.1, 0.2, . . . , } to minimize ϕ.

{φ1, φ2} decrease, the optimization problem is feasible
for larger values of h. This is closely related to the fact
that the bounds of δ1(t) and δ2(t) in (6) are reduced.
Nevertheless, to ensure that these bounds are not violated
during operation, the estimated region of attraction is
reduced due to the constraints imposed by the region ∆
in (11). It illustrates a trade-off between the MASP and
the estimate of the region of attraction.

Table 2. Minimum ϕ for the maximum h that
optimization problem (27) is feasible.

ε ϕ h (ms)

φ1 = 1

φ2 = 1 0.60 242.986 101

φ2 = 2 0.40 63.804 90

φ2 = 3 0.35 71.610 83

φ1 = 2

φ2 = 1 0.50 478.450 99

φ2 = 2 0.41 111.851 89

φ2 = 3 0.34 71.074 82

φ1 = 3

φ2 = 1 0.47 422.101 97

φ2 = 2 0.39 155.470 88

φ2 = 3 0.33 55.156 81

To conclude, consider {φ1, φ2} = {1, 1} and the MASP
of h = 50ms. In this case, the estimated region of
attraction Ω is shown in Figure 1 together with the
regions D, which constraints the states, and ∆1

0, ∆2
0,

constraining the time derivatives of scheduling functions.
The control gains are: K0 =

[
−1.2377 −2.9436

]
, K1 =[

−1.0003 0.0003
]
, K2 =

[
0.0023 −8.0022

]
. It can be

noticed that the estimate is obtained such that Ω ⊂ D∩∆,
with ∆1

0 ∩ ∆2
0 ⊂ ∆. Moreover, convergent closed-loop

trajectories initiating inside of Ω illustrates the asymptotic
stability of the closed-loop equilibrium of the sampled-data
control system.

Fig. 1. Closed-loop trajectories, in magenta, for {φ1, φ2} =
{1, 1}, ε = 0.3 and hk ∈ [10, 50]ms. The estimated
region of attraction Ω, in dashed black, is contained
in the regions D, in solid black, and ∆0 = ∆1

0 ∩ ∆2
0,

with ∆1
0 in red and ∆2

0 in blue.

6. CONCLUSION

This paper has proposed a novel synthesis condition for
stabilization of sampled-data nonlinear systems repre-
sented by quasi-LPV models. The main advantages of the
proposal are the use of a less conservative integral inequal-
ity and the possibility of describing the inter-sampling

behavior in the case of systems whose time derivatives of
scheduling functions depend on the control input signal.
A local analysis has been performed to ensure the appli-
cability of the proposed method, since it has been proved
that the gain-scheduled controller is valid for trajectories
initiating inside the estimated region of attraction.
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{φ1, φ2} decrease, the optimization problem is feasible
for larger values of h. This is closely related to the fact
that the bounds of δ1(t) and δ2(t) in (6) are reduced.
Nevertheless, to ensure that these bounds are not violated
during operation, the estimated region of attraction is
reduced due to the constraints imposed by the region ∆
in (11). It illustrates a trade-off between the MASP and
the estimate of the region of attraction.

Table 2. Minimum ϕ for the maximum h that
optimization problem (27) is feasible.

ε ϕ h (ms)

φ1 = 1

φ2 = 1 0.60 242.986 101

φ2 = 2 0.40 63.804 90

φ2 = 3 0.35 71.610 83

φ1 = 2

φ2 = 1 0.50 478.450 99

φ2 = 2 0.41 111.851 89

φ2 = 3 0.34 71.074 82

φ1 = 3

φ2 = 1 0.47 422.101 97

φ2 = 2 0.39 155.470 88

φ2 = 3 0.33 55.156 81

To conclude, consider {φ1, φ2} = {1, 1} and the MASP
of h = 50ms. In this case, the estimated region of
attraction Ω is shown in Figure 1 together with the
regions D, which constraints the states, and ∆1

0, ∆2
0,

constraining the time derivatives of scheduling functions.
The control gains are: K0 =

[
−1.2377 −2.9436

]
, K1 =[

−1.0003 0.0003
]
, K2 =

[
0.0023 −8.0022

]
. It can be

noticed that the estimate is obtained such that Ω ⊂ D∩∆,
with ∆1

0 ∩ ∆2
0 ⊂ ∆. Moreover, convergent closed-loop

trajectories initiating inside of Ω illustrates the asymptotic
stability of the closed-loop equilibrium of the sampled-data
control system.

Fig. 1. Closed-loop trajectories, in magenta, for {φ1, φ2} =
{1, 1}, ε = 0.3 and hk ∈ [10, 50]ms. The estimated
region of attraction Ω, in dashed black, is contained
in the regions D, in solid black, and ∆0 = ∆1

0 ∩ ∆2
0,

with ∆1
0 in red and ∆2

0 in blue.

6. CONCLUSION

This paper has proposed a novel synthesis condition for
stabilization of sampled-data nonlinear systems repre-
sented by quasi-LPV models. The main advantages of the
proposal are the use of a less conservative integral inequal-
ity and the possibility of describing the inter-sampling

behavior in the case of systems whose time derivatives of
scheduling functions depend on the control input signal.
A local analysis has been performed to ensure the appli-
cability of the proposed method, since it has been proved
that the gain-scheduled controller is valid for trajectories
initiating inside the estimated region of attraction.
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