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 answer positively. Our study does not allow to give a definite answer yet. The only presence of these cables may not to be enough. Some physical parameters have to be chosen carefully.

Introduction

In this paper, we consider the same problem as in [START_REF] Liu | A Method of Reinforcement and Vibration Reduction of Girder Bridges Using Shape Memory Alloy Cables[END_REF] which is rewritten for simplicity:

∂ 2 u ∂t 2 (x, t) + a ∂ 4 u ∂x 4 (x, t) + b ∂u ∂t (x, t) + α ∂u ∂t (ξ, t)δ ξ = 0 for (x, t) in (0, 1) × (0, ∞) (1) u(0, t) = u(1, t) = ∂ 2 u ∂x 2 (0, t) = ∂ 2 u ∂x 2 (1, t) = 0 for t in (0, ∞) (2) u(x, 0) = u 0 (x), ∂u ∂t (x, 0) = u 1 (x) for x in (0, 1) (3) 
where a, b and α are strictly positive constants.

In this problem the function u denotes the transverse displacement of the bridge deck represented by a beam with a uniform section, δ ξ is the Dirac mass concentrated in the point ξ ∈ (0; 1).

Denote by ρ the mass density of the beam, A the area of the cross section of the beam, EI the second moment of area of the cross-section and c the damping of the beam. Then (1)-(3) coincides with the system in [START_REF] Liu | A Method of Reinforcement and Vibration Reduction of Girder Bridges Using Shape Memory Alloy Cables[END_REF] with

a = (EI) ρA , b = c ρA , α = c SMA ρA and k SMA = 0.
The values k SMA and c SMA are respectively the equivalent stiffness and equivalent damping of a damper which represents the Shape Memory Alloy (SMA) cable at the position x. They are calculated by (26) and (27) of [START_REF] Liu | A Method of Reinforcement and Vibration Reduction of Girder Bridges Using Shape Memory Alloy Cables[END_REF].

In fact, the problem considered in [START_REF] Liu | A Method of Reinforcement and Vibration Reduction of Girder Bridges Using Shape Memory Alloy Cables[END_REF] is more precisely the following one with β > 0:

∂ 2 u ∂t 2 (x, t) + a ∂ 4 u ∂x 4 (x, t) + b ∂u ∂t (x, t) + α ∂u ∂t (ξ, t) + βu(ξ, t) δ ξ = 0 for (x, t) in (0, 1) × (0, ∞) (4)

u(0, t) = u(1, t) = ∂ 2 u ∂x 2 (0, t) = ∂ 2 u ∂x 2 (1, t) = 0 for t in (0, ∞) (5) 
u(x, 0) = u 0 (x), ∂u ∂t (x, 0) = u 1 (x) for x in (0, 1) (6) Indeed A-R. Liu, C-H. Liu, J-Y. Fu, Y-L. Pi, Y-H. Huang and J-P. Zhang have realized experiments in which the value k SMA (equivalent stiffness of the damper) does not vanish. We start here with a simpler problem but we conjecture that the result will not change since the term we keep is the most important one for the stabilization. In this paper, β = 0. The most important results are generalized to the case β > 0 in remarks (see Remarks 4.4 and 4.7).

Note that the case a = 1, b > 0 and α = 0 is treated in [START_REF] Ammari | The rate at which energy decays in a viscously damped hinged Euler-Bernoulli beam[END_REF]. They even consider L ∞ (0; 1) functions for b, which are positive and non-negative on an open subset of (0; 1). For a constant b, the energy is proved to decrease exponentially and the fastest decay rate is given by the supremum of the real part of the spectrum of the infinitesimal generator of the underlying semigroup.

The case a = 1, b = 0 and α > 0 is treated in [START_REF] Ammari | Stabilization of Bernouilli-Euler beams by means of a pointwise feedback force[END_REF] with two types of boundary conditions. They study the energy decay of a Bernoulli-Euler beam which is subject to a pointwise feedback force (given by the Dirac term). They show that both uniform and non uniform energy decay may occur depending on the boundary conditions. In the case of non uniform decay in the energy space (which is the case we are interested in), they give explicit polynomial decay estimates valid for regular initial data. Their method consists of deducing the decay estimates from observability inequalities for the associated undamped problem via sharp trace regularity results. The same problem is studied by the same authors in [START_REF] Ammari | Stabilization of second order evolution equations by a class of unbounded feedbacks[END_REF] one year later. It is the second example of the applications given in Section 5. The estimates are unchanged for this example but the paper gives more general results: under a regularity assumption, the authors show that observability properties for the undamped problem imply decay estimates for the damped problem.

Let u be a regular solution of system (1)- [START_REF] Akil | Energy decay of some boundary coupled systems involving wave Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping[END_REF]. Its associated total energy is defined by ( 7)

E(t) = 1 2 1 0 (|u t (x, t)| 2 + a|u xx (x, t)| 2 )dx.
Then a classical computation using parts integration gives:

(8) d dt E(t) = -b 1 0 |u t (x, t)| 2 dx -α|u t (ξ, t)| 2 ≤ 0.
Hence system (1)-( 3) is dissipative in the sense that its associated energy is non increasing with respect to time.

A lot of studies have been performed by many authors in the stabilization of Euler-Bernoulli beams. Some of them can be found in the bibliography of the already cited papers : [START_REF] Ammari | The rate at which energy decays in a viscously damped hinged Euler-Bernoulli beam[END_REF], [START_REF] Ammari | Stabilization of Bernouilli-Euler beams by means of a pointwise feedback force[END_REF] and [START_REF] Ammari | Stabilization of second order evolution equations by a class of unbounded feedbacks[END_REF].

The control of networks of Euler-Bernoulli or Timoshenko beams were studied in [START_REF] Dekoninck | Control of networks of Euler-Bernoulli beams[END_REF], [START_REF] Castro | Exact boundary controllability of two Euler-Bernoulli beams connected by a point mass[END_REF], [START_REF] Mercier | Spectrum of a network of Euler-Bernoulli beams[END_REF], [START_REF] Mercier | Control of a network of Euler-Bernoulli beams[END_REF], [START_REF] Mercier | Boundary controllability of a chain of serially connected Euler-Bernoulli beams with interior masses[END_REF] and [START_REF] Akil | Stability and Exact Controllability of a Timoshenko System with Only One Fractional Damping on the Boundary[END_REF] for example. Spectral methods are used like in this paper. More recently, Euler-Bernoulli beams are coupled with wave equations with a Kelvin-Voigt damping in [START_REF] Akil | Energy decay of some boundary coupled systems involving wave Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping[END_REF] for example. See also the references of this paper.

The main goal of this work is to obtain the energy decay rate of the damped Euler-Bernoulli beam subject to a pointwise feedback force representing a Shape Memory Alloy (SMA) cable described by (1) to (3). First we establish the well-posedness and strong stability of the problem. Then an explicit expression for the resolvent is given as well as the eigenvalues and eigenfunctions of the associated dissipative operator. We study the localization of the eigenvalues of the operator for small values of α > 0. We prove that the eigenfunctions are quadratically close to those of the case α = 0. Thus they form a Riesz basis using a result of [START_REF] Pöschel | Inverse Spectral Theory[END_REF].

At last, we give the explicit exponential decay estimate of the energy for regular initial data. The presence of a SMA cable (α > 0) with a weak damping (small value for α) may not restrain the vibrations of girder bridges. Our modelization does not take into account the stiffness term considered in [START_REF] Liu | A Method of Reinforcement and Vibration Reduction of Girder Bridges Using Shape Memory Alloy Cables[END_REF] (β = 0 here). The term which contributes most to the damping is αu t . That is why we start with this situation. See Remark 5.2 which confirms this intuition. The stiffness term (βδ ξ u) even seems to diminish the decay rate of the energy.

Note that the results were not obvious. One may think that adding a damping term (α > 0 versus α = 0) always leads to a better decay rate of the energy. This is not so clear. What we already know (cf. the conclusion of this paper) is that, if α = 0, increasing the value of b does not always lead to a higher decay rate of the energy, which is rather counterintuitive.

This paper does not confirm the results of [START_REF] Liu | A Method of Reinforcement and Vibration Reduction of Girder Bridges Using Shape Memory Alloy Cables[END_REF]. Nor does it refute them. The situation is more complicated. First they have an additional stiffness term but we conjecture that the results will be analogous. Indeed the eigenfunctions are unchanged and the characteristic equation is similar (cf. Remarks 4.4 and 4.7). Moreover the large eigenvalues of the case α > 0 and β = 0 are proved to be close to those of the case α = 0 and β = 0 (see Proposition 4.5) and Remark 5.2 proves that adding the stiffness term (β > 0) leads to some eigenvalues with a real part larger than the supremum of the real part of the eigenvalues with β = 0. All that is not necessarily in contradiction with the experiments of [START_REF] Liu | A Method of Reinforcement and Vibration Reduction of Girder Bridges Using Shape Memory Alloy Cables[END_REF], since we have excluded some values for ξ (cf. Theorem 4.2). As it is said in the conclusion of this paper, some more work is required to give a definite answer to the question in its title.

Well-posedness and strong stability

In this section we study the existence, uniqueness and strong stability of the solution of system (1)-(3).

The energy space H is defined as follows

(9) H = [H 2 (0; 1) ∩ H 1 0 (0; 1)] × L 2 (0; 1)
with the inner product defined by

(U 1 , U 2 ) H = 1 0 (au 1,xx u 2,xx + v 1 v 2 )dx, ( 10 
)
for all U 1 = (u 1 , v 1 ), U 2 = (u 2 , v 2 ) ∈ H.
Here again a is a strictly positive constant (as in the introduction). H induced by [START_REF] Cox | The rate at which energy decays in a damped string[END_REF] is equivalent to the usual norm of H.

For shortness we denote by . the L 2 (Ω)-norm. Now, we define a linear unbounded operator A : D(A) → H by: (3) x (ξ + ) -u (3) x (ξ -) = -

D(A) = U ∈ H : (u, v) ∈ [H 4 (0, ξ) ∩ H 4 (ξ, 1) ∩ H 2 (0; 1)] × H 2 (0; 1), u(0) = v(0) = u(1) = v(1) = 0 (11) u xx (0) = u xx (1) = 0, u xx (ξ -) = u xx (ξ + ), u
α a v(ξ) (12) 
A(u, v) = v, -au (4) x -bv -αv(ξ)δ ξ , ∀ U = (u, v) ∈ D(A).

Then we rewrite formally System (1)-( 3) into the evolution equation ( 13)

U t = AU, U (0) = U 0 , U 0 ∈ H with U = (u, u t ).

Proposition 2.2

The operator A is m-dissipative in the energy space H.

Proof. On the first hand, the dissipativeness holds since we can check using integrations by parts:

(14) ℜ(AU, U ) H = -b 1 0 |u t | 2 dx -α|u t (ξ, t)| 2 ≤ 0, ∀ U = (u, v) ∈ D(A).
On the other end, the maximality is proved in the following way. Let f := (f 1 ; f 2 ) ∈ H. We look for U := (u; v) ∈ D(A) solution of (15) -AU = f or equivalently [START_REF] Mercier | Boundary controllability of a chain of serially connected Euler-Bernoulli beams with interior masses[END_REF])

f 1 = -v f 2 = -au (4) 
x -bv -αv(ξ)

δ ξ ⇔ v = -f 1 au (4) x = f 2 + bf 1 -αf 1 (ξ)δ ξ
Assume that such a solution u exists, then multiplying the second identity by a function φ ∈ V := H 2 (0; 1) ∩ H 1 0 (0; 1), integrating in space and using integration by parts, it follows, since U ∈ D(A)

1 0 au (2) x φ (2) x dx = 1 0

(f 2 + bf 1 )φdx.
This problem has a unique solution u ∈ V = H 2 (0; 1) ∩ H 1 0 (0; 1) by Lax-Milgram's lemma, because the left-hand side of ( 17) is coercive on V . If we consider φ ∈ (D(0, ξ)) ∩ D(ξ, 1) ⊂ V , then u satisfies au (4) x = f 2 + bf 1 -αf 1 (ξ)δ ξ in the distributional sense. This directly implies that u ∈ H 4 (0; ξ) ∩ H 4 (ξ; 1) since f 1 and f 2 belong to L 2 (0; 1). Now, integrating by parts lead to:

1 0 (f 2 + bf 1 -αf 1 (ξ)δ ξ )φdx = ξ 0 au (4) x φdx + 1 ξ au (4)
x φdx + [au [START_REF] Akil | Energy decay of some boundary coupled systems involving wave Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping[END_REF] x (ξ + ) -au

(3) x (ξ + )]φ x (ξ) +[au (3) x (ξ + ) -au (3) x (ξ + )]φ(ξ) + au (2) x φ x (1) -au (2)
x φ x (0).

Consequently, by taking particular test functions φ and using v = -f 1 , we obtain U ∈ D(A) satisfying [START_REF] Mercier | Control of a network of Euler-Bernoulli beams[END_REF], which finishes the proof of maximality.

Using Lumer-Phillips Theorem (see [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF], Theorem 1.4.3), the operator A generates a C 0 -semigroup of contractions e tA on H. Then, we have the following result. 

U ∈ C 0 (R + , D(A)) ∩ C 1 (R + , H).
(2) If U 0 ∈ H, then system (13) has a unique weak solution

U ∈ C 0 (R + , H).
Now, we have the following general strong stability result. 3) is strongly stable, i.e. for any solution U of [START_REF] Liu | A Method of Reinforcement and Vibration Reduction of Girder Bridges Using Shape Memory Alloy Cables[END_REF] with initial data U 0 ∈ H, it holds

lim t→∞ E(t) = 0,
where E(t) is defined by [START_REF] Arendt | Tauberian theorems and stability of one-parameter of semi-groups[END_REF].

Proof. Since A generates a contraction semigroup and its resolvent is compact in H, using Arendt-Batty Theorem(see [START_REF] Arendt | Tauberian theorems and stability of one-parameter of semi-groups[END_REF], p. 837), system (1)-( 3) is strongly stable if and only if A does not have purely imaginary eigenvalues.

Assume that A has a purely imaginary eigenvalue denoted by iµ with µ ∈ R. Then there exists U = (u, v) = (0; 0) ∈ D(A) such that v = iµu and AU = iµU . Using (18) leads to [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] ℜ

[iµ(U, U ) H ] = 0 = -b 1 0 |v(x)| 2 dx -α|v(ξ)| 2 .
This implies |v(ξ)| = 0 and 1 0 |v(x)| 2 dx = 0 (since α > 0 and b > 0). Thus v ≡ 0 almost everywhere on (0; 1) and since v = iµu, u ≡ 0 almost everywhere on (0; 1). Now u and v are continuous on (0; 1) and they vanish at 0 and 1 due to their belonging to D(A). Thus u ≡ v ≡ 0. This contradicts the fact that U = (0; 0).

Explicit expression for the resolvent

In this section we give an explicit expression of the resolvent (µI -A) -1 and prove some useful estimates. In fact such estimates are useful since later on, we will use a result of [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] (Theorem 2.4) which involves the norm operator of (µI -A) -1 with µ ∈ C.

Let F = (u 1 , v 1 ) ∈ H, we look for a solution U = (u, v) ∈ D(A) of (19) (µI -A)U = F, µ ∈ C.
The explicit expression for the resolvent we give in next Proposition 3.2 involves the restriction on [0; 1] of the classical convolution product of two functions on R. Let us recall the definition and two useful properties we established in [START_REF] Mercier | Decay rate of the Timoshenko system with one boundary damping[END_REF].

Lemma 3.1 (A technical lemma) Let ψ ∈ C ∞ ([0, ∞[)
and f in L 2 (0; 1) be two functions and define their convolution product ψ ⋆ f on [0, 1] by :

(20) (ψ ⋆ f )(x) = x 0 ψ(x -s)f (s)ds, ∀x ∈ [0; 1].
Then the following two properties hold:

1. (ψ ⋆ f ) ∈ H 1 (0; 1) and its derivative is:

(21) (ψ ⋆ f ) ′ (x) = x 0 ψ ′ (x -s)f (s)ds + ψ(0)f (x), ∀x ∈ [0; 1]. 2. If ψ(0) = 0 is also assumed, then (ψ ⋆ f ) ∈ H 2 (0; 1)
and its second derivative is:

(22) (ψ ⋆ f ) ′′ (x) = x 0 ψ ′′ (x -s)f (s)ds + ψ ′ (0)f (x), ∀x ∈ [0; 1].
Proof.

1. The functions ψ extended by 0 on (-∞, 0) and f extended by 0 on R outside [0, 1] are still called ψ and f respectively. Then the convolution product defined by ( 20) is extended by the classical convolution product on R i.e by ( 23)

(ψ ⋆ f )(x) = R ψ(x -s)f (s)ds, ∀x ∈ R. It is well known that (ψ ⋆ f ) ′ = (ψ ′ ) dist ⋆ f where (ψ ′ ) dist is the derivative of ψ in the distributional sense.
Due to the property of ψ and its extension on R we have

(ψ ′ ) dist = ψ ′ + ψ(0)δ 0 ,
where δ 0 is the Dirac distribution at x = 0. The property (21) follows from this remark.

2. ( 22) is a consequence of (21).

Note that weaker assumptions could be made on ψ for this lemma (ψ

∈ C 2 ([0, 1]) is sufficient).

Proposition 3.2 (Explicit expression for the resolvent of the operator A)

Let a, b and α be strictly positive real numbers, ξ a real number in (0; 1) and µ a complex number.

Let the spaces H and D(A) be defined by ( 9) and [START_REF] Dekoninck | Control of networks of Euler-Bernoulli beams[END_REF].

Let F = (u 1 , v 1 ) ∈ H.
Denote by λ the complex number, such that ∃k ∈ Z, arg(λ) ∈ [-π/4 + 2kπ; π/4 + 2kπ), satisfying:

(24)

λ 4 = - bµ + µ 2 a .
Denote by H(x, 0) the Heaviside step function defined by

(25) H(x, 0) := 0, ∀x < 0 1, ∀x ≥ 0.
Define the expressions:

(26) f 0 1 := (µ + b)u 1 + v 1 (27) Det α (λ) := 4λ 2 [-2λ 3 sinh(λ) - αµ a sinh(λξ) sinh(λ(ξ -1))] sin(λ) + αµ a sin(λξ) sinh(λ) sin(λ(ξ -1)) (28) Det 0 (λ) := -8λ 5 sinh(λ) sin(λ) (29) u 0 (λ, x) := 1 2aλ 3 [sin(λx) -sinh(λx)] H(x, 0), ∀x ∈ (0; 1) (30)    A(λ, α) := λ 2 (u 0 (λ, •) ⋆ f 0 1 )(1) + 2λ 2 αu 1 (ξ)u 0 (λ, 1 -ξ) B(λ, α) := (u 0 (λ, •) ⋆ f 0 1 ) xx (1) + 2αu 1 (ξ)u 0,xx (λ, 1 -ξ) C(λ, ξ) := λ 2 (u 0 (λ, •) ⋆ f 0 1 )(ξ)
For simplicity, the dependency of A, B and C on λ and ξ is omitted in the following.

(31) R(µ, A 0 )F := (u 0 ⋆ f 0 1 )(x) + a Det 0 (λ) 4λ 4 {(A -B) sinh(λ) + (A + B) sin(λ)} u 0 (x, λ) +4λ 6 {(A + B) sin(λ) -(A -B) sinh(λ)} u 0,xx (x, λ) (32) ∆(λ, ξ) := 4λ 2 µ a (sin(λξ) sin(λ(ξ -1)) sinh(λ) -sinh(λξ) sinh(λ(ξ -1)) sin(λ)) (33) 
∆ 3 (λ, ξ) := 4λµ a sin(λ(ξ -1)) A + B 2 [sinh(λξ) -sin(λξ)] -C sinh(λ) + sinh(λ(ξ -1)) A -B 2 [sinh(λξ) -sin(λξ)] + C sin(λ) (34) 
∆ 1 (λ, ξ) := 4λ 3 µ a sin(λ(ξ -1)) - A + B 2 [sinh(λξ) + sin(λξ)] + C sinh(λ) + sinh(λ(ξ -1)) - A -B 2 [sinh(λξ) + sin(λξ)] + C sin(λ) (35) ∆ 0 (λ, ξ) := -4λ 3 2C sin(λ) sinh(λ) -(A + B) sin(λ) sinh(λξ) -(A -B) sin(λξ) sinh(λ)
Then the solution U = (u, v) ∈ D(A) of (µI -A)U = F , with F = (u 1 , v 1 ) ∈ H, is given by:

(36) u(x) = 1 Det α (λ) Det 0 (λ) • R(µ, A 0 )F + α ∆(λ, ξ)(u 0 ⋆ f 0 1 )(x) + a∆ 3 (λ, ξ)u 0 (λ, x) + a∆ 1 (λ, ξ)u 0,xx (λ, x) -µ∆ 0 (λ, ξ)u 0 (λ, x -ξ)
Proof. The computation of an explicit expression for the resolvent of A requires the search for a solution u in

H 4 (0; ξ) ∩ H 2 (0; 1) (resp. in H 4 (ξ; 1) ∩ H 2 (0; 1)
) of the following problem on (0; ξ) (resp. on (ξ; 1)):

(37)

                 au (4) x + (bµ + µ 2 )u + µαδ ξ u = f α 1 v = µu -u 1 u(0) = u(1) = 0 u xx (0) = u xx (1) = 0 u xx (ξ -) = u xx (ξ + ) u (3) 
x (ξ + ) -u

(3) where u is a solution of (37) on (0; ξ). Denote by L the classical Laplace transform. Using four successive integrations by parts and the properties of u at 0, 1, ξ -and ξ + leads to:

x (ξ -) = g 1 with f α 1 := (µ + b)u 1 + v 1 + αδ ξ u 1 and g 1 := α a (-µu(ξ) + u 1 (ξ)). Note that f 0 1 defined by (26) is f α 1 with α = 0.
(39) [Lu (4) x ](p) = p 4 [Lu](p) + [u (3) x (ξ -) + pu (2) x (ξ -) + p 2 u x (ξ -) + p 3 u(ξ -)]e -pξ -[u (3) x (0) + p 2 u x (0)]

Applying the Laplace transform to Problem (37) on (0; ξ) gives:

(40) [ap 4 +bµ+µ 2 ][Lu](p)+αµu(ξ)e -pξ +a[u (3)
x (ξ -)+pu (2) x (ξ -)+p 2 u x (ξ)+p 3 u(ξ)]e -pξ -a[u (3) x (0

)+p 2 u x (0)] = L(f α 1 •χ (0;ξ) )
We proceed similarly on (ξ; 1) and sum both functions to get:

(41)

[Lu](p) = 1 ap 4 + bµ + µ 2 [Lf α
1 ](p) + au (3) x (0) + (u (3) x (ξ + ) -u (3) x (ξ -))ae -pξ -au (3) x (1)e -p

+ap 2 [u x (0) -u x (1)e -p ] -αµu 1 (ξ)e -pξ = 1 ap 4 + bµ + µ 2 [Lf α 1 ](p) + au (3) x (0) + αu(ξ)e -pξ -au (3) x (1)e -p + ap 2 [u x (0) -u x (1)e -p ]
The function u 0 defined by (29) satisfies:

L 1 2aλ 3 [sin(λ•) -sinh(λ•)] (p) = 1 ap 4 + bµ + µ 2 . Thus (42) u(x) = [u 0 (λ, •) ⋆ f α 1 ](x) + au (3) x (0) • u 0 (λ, x) + au x (0) • u 0,xx (λ, x) + [αu 1 (ξ) -2αµu(ξ)] • u 0 (λ, x -ξ)
An analogous problem is treated in Section 2.1 of [START_REF] Majkut | Eigenvalue based inverse model of beam for structural modification and diagnostics. Part I: Theoretical formulation[END_REF] for example. Taking into account u(1) = u xx (1) = 0 gives the following two equations:

(43)

           λ 2 [sinh(λ) + sin(λ)]u (3) 
x (0) + [sinh(λ) -sin(λ)]u x (0) - αµ a [sinh(λ(1 -ξ)) -sin(λ(1 -ξ))]u(ξ) = -2λ 3 (u 0 ⋆ f 0 1 )(1) -4λ 3 αu 1 (ξ)u 0 (1 -ξ) λ 2 [sinh(λ) -sin(λ)]u (3) x (0) + [sinh(λ) + sin(λ)]u x (0) - αµ a [sinh(λ(1 -ξ)) + sin(λ(1 -ξ))]u(ξ) = -2λ(u 0 ⋆ f 0 1 ) (2) (1) -4λαu 1 (ξ)u 0,xx (1 -ξ) (22) 
has been used here since u 0 (0) = u 0,x (0) = 0. The last step is to evaluate (42) at x = ξ:

(44) [sinh(λξ) -sin(λξ)]u (3) x (0) + λ 2 [sinh(λξ) + sin(λξ)]u x (0) -2λ 3 u(ξ) = -2λ 3 (u 0 ⋆ f 0 1 )(ξ).
Now ( 43) and (44) form a 3 × 3 system where the unknowns are u

x (0), u x (0) and u(ξ). Its determinant is Det α (λ). Solving this system gives (36) after long calculations.

Remark 3.3

The expression R(λ, A 0 ) represents the resolvent of the operator A 0 which is A with α = 0. Thus the expression for the solution u given by (36

) is R(λ, A 0 )F if α = 0.

Eigenvalues and eigenfunctions of the operator A

The eigenvalues and eigenfunctions of the operator A defined by [START_REF] Dekoninck | Control of networks of Euler-Bernoulli beams[END_REF] and [START_REF] Majkut | Eigenvalue based inverse model of beam for structural modification and diagnostics. Part I: Theoretical formulation[END_REF] in Section 2 are explicitly calculated. For the sake of completeness, the case α = 0 which corresponds to the operator A a0 of [START_REF] Ammari | The rate at which energy decays in a viscously damped hinged Euler-Bernoulli beam[END_REF] is recalled here. Note the dependency of A on a, b, α and ξ.

First a technical Lemma will be useful in the proof of Theorem 4.2 to handle with particular values for ξ. Assume that a, b, α are strictly positive constants, ξ ∈ (0; 1). The following problem on H 4 (0; ξ) ∩ H 2 (0; 1) (resp. on H 4 (ξ; 1) ∩ H 2 (0; 1)):

(45)              au (4) x -bαδ ξ u = 0 u(0) = u(1) = 0 u xx (0) = u xx (1) = 0 u xx (ξ -) = u xx (ξ + ) u (3) x (ξ + ) -u (3) x (ξ -) = α a bu(ξ)
has no other solution than u ≡ 0 if the polynomial 2 has no solution in (0; 1). There are three cases:

P (x) = 1 - 2αb 3 x 2 (1 -x)
• Case αb > 6: P has exactly two roots in (0; 1) called ξ 1 and ξ 2 in the following.

• Case αb = 6: P has exactly one root in (0; 1) called ξ 0 in the following.

• Case αb < 6: the polynomial P does not vanish on (0; 1).

Proof. The proof starts like that of Proposition 3.2. Denote by u 0 the function defined by u 0 (x) =

x 3 6a • H(x, 0), ∀x ∈ (0; 1). It holds [L x 3 6a ](x → p) = 1 ap 4 , ∀p ∈ (0; +∞). Thus (46) u(x) = au (3) x (0) • u 0 (λ, x) + au x (0) • u 0,xx (λ, x) + α a bu(ξ) • u 0 (λ, x -ξ).
Taking into account u(1) = u xx (1) = 0 gives the following two equations:

(47)

   1 6 u (3) x (0) + u x (0) + α a bu(ξ)(1 -ξ) 3 = 0 u (3) x (0) + 2αbu(ξ)(1 -ξ) = 0
The last step is to evaluate (46) at x = ξ: 3) x (0) + ξu x (0) -u(ξ) = 0. Now (47) and (48) form a 3 × 3 system where the unknowns are u

(48) ξ 3 6 u ( 
x (0), u x (0) and u(ξ). An obvious solution is (0; 0; 0). Its determinant is P (ξ). The system has no other solution than (0; 0; 0) if and only if P (ξ) does not vanish. The roots of P follow from a classical study of the variations of the function P .

Theorem 4.2 (Eigenvalues and eigenfunctions of the operator A)

Let A be the operator defined by ( 11) and ( 12) in Section 2. Denote by µ n , n ∈ Z the eigenvalues of A and by λ the complex numbers satisfying λ 4 = -bµ + µ 2 a . One of these λ's is such that ∃k ∈ Z, arg(λ) ∈

[-π/4 + 2kπ; π/4 + 2kπ). The others are -λ and ±iλ and they are still denoted by λ.

1. Case α = 0. If b ∈ R + * -{2 √ an 2 π 2 , n ∈ Z * }, then ∃n 0 such that 2 √ an 2 0 π 2 < b < 2 √ a(n 0 + 1) 2 π 2 and
(49)

µ ± n =      1 2 -b ± b 2 -4an 4 π 4 , n = 1, 2, . . . , n 0 1 2 -b ± i 4an 4 π 4 -b 2 , n > n 0 .
The algebraic multiplicity of these eigenvalues is 1.

If ∃n 0 such that b = 2 √ an 2 0 π 2 then µ n0 = - b 2
and the algebraic multiplicity of this eigenvalue may not exceed 2.

In both cases, the associated eigenfunction is defined on (0; 1) by

(50) Φ ± n (x) = sin(nπx)(1, µ ± n ), n ≥ 1.
2. Case α = 0.

(a) Case αb < 6: µ = -b is not an eigenvalue of A.

If ξ / ∈ Q, µ is an eigenvalue of A if and only if the corresponding λ's satisfy λ / ∈ {kπ, k ∈ Z}, λ /
∈ {ikπ, k ∈ Z} and the characteristic equation:

(51) 2(µ + b) sinh(λ) sin(λ) + αλ [sin(λ) sinh(λξ) sinh(λ(1 -ξ)) -sinh(λ) sin(λξ) sin(λ(1 -ξ))] = 0
and the associated eigenfunction is If α takes any other value, the algebraic multiplicity of µ as an eigenvalue of A is at least 1 and its geometric multiplicity is 1.

Φ(µ, •) = (φ(λ, •)(1, µ) where φ(λ, •) is defined on (0; 1) by φ(λ, x) := 1 |λ| 2 • e (ξ-2)|λ| sin(λ) sinh(λ)[sin(λ(x -ξ)) -sinh(λ(x -ξ))] • H(x, ξ) + sinh(λ) sin(λ(1 -ξ)) sin(λx) -sin(λ) sinh(λ(1 -ξ)) sinh(λx) (52 
(b) Case αb = 6: there exists ξ 0 in (0; 1) such that, if ξ = ξ 0 , µ = -b is an eigenvalue of A (= A(ξ)). If ξ = ξ 0 , µ = -b is not an eigenvalue of A (= A(ξ)).
In both cases, if ξ / ∈ Q, the other eigenvalues and the associated eigenfunctions are given by the same expressions as in the preceding case.

(c) Case αb > 6: there exist ξ 1 and ξ 2 in (0; 1) such that, if

ξ = ξ 1 or ξ = ξ 2 , µ = -b is an eigenvalue of A (= A(ξ)). If ξ / ∈ {ξ 1 , ξ 2 }, µ = -b is not an eigenvalue of A (= A(ξ)).
In both cases, if ξ / ∈ Q, the other eigenvalues and the associated eigenfunctions are given by the same expressions as in the first case.

Proof. First of all, the operator A has already been proved to have no imaginary eigenvalues (cf. the proof of Theorem 2.4). In particular, 0 is not an eigenvalue.

The computation of the eigenelements of A requires the search for a solution u in H 4 (0; ξ) ∩ H 2 (0; 1) (resp. in H 4 (ξ; 1) ∩ H 2 (0; 1)) of the following problem on (0; ξ) (resp. on (ξ; 1)):

(54)              au (4) x + (bµ + µ 2 )u + µαδ ξ u = 0 u(0) = u(1) = 0 u xx (0) = u xx (1) = 0 u xx (ξ -) = u xx (ξ + ) u (3) x (ξ + ) -u (3) x (ξ -) = - α a µu(ξ)
Case α = 0: the proof is that of Lemma 2.2 of [START_REF] Ammari | The rate at which energy decays in a viscously damped hinged Euler-Bernoulli beam[END_REF], mutatis mutandis.

Case α = 0 and αb < 6: since neither µ = 0 nor µ = -b is an eigenvalue of A (cf. Lemma 4.1), λ cannot vanish and a particular solution of Problem (54) is:

(55) u p (λ, x) := - αµ 2aλ 3 u(ξ) [sinh(λ(x -ξ)) -sin(λ(x -ξ))] H(x, ξ), ∀x ∈ (0; 1)
where H(x, ξ) is for the Heaviside step function defined by

(56) H(x, ξ) := 0, ∀x < ξ 1, ∀x ≥ ξ.
This result is not new: it can be found in [START_REF] Majkut | Eigenvalue based inverse model of beam for structural modification and diagnostics. Part I: Theoretical formulation[END_REF] for example.

The general solution of this problem (i.e. with u

x (ξ + ) -u

x (ξ -) = 0) can be written as:

(57) u g (λ, x) := P 1 cosh(λx) + Q 1 sinh(λx) + R 1 cos(λx) + S 1 sin(λx), ∀x ∈ (0; ξ] P 2 cosh(λ(x -ξ))

+ Q 2 sinh(λ(x -ξ)) + R 2 cos(λ(x -ξ)) + S 2 sin(λ(x -ξ)), ∀x ∈ [ξ; 1)
Using the boundary conditions for u and u xx as well as the continuity of u xx and u

x at ξ, it holds:

(58)

     P 1 = R 1 = 0 P 2 = Q 1 sinh(λξ), Q 2 = Q 1 cosh(λξ), R 2 = S 1 sin(λξ) and S 2 = S 1 cos(λξ) sinh(λ)Q 1 = - αµ 2aλ 3 u(ξ) sinh(λ(ξ -1)) and sin(λ)S 1 = αµ 2aλ 3 u(ξ) sin(λ(ξ -1)) If ξ / ∈ Q, λ / ∈ {kπ, k ∈ Z * } and λ / ∈ {ikπ, k ∈ Z * }. Indeed, if ∃k ∈ Z *
, such that λ = kπ, then sin(λ) = 0 but sinh(λ) = 0 and the last identity of (58) is:

(59) αµ 2aλ 3 u(ξ) sin(kπ(ξ -1)) = 0
Since α = 0, µ = 0 and sin(kπ(ξ -1)) = 0 (the expression only vanishes if ξ ∈ Q), it holds u(ξ) = 0. Now, since sinh(λ) = 0, it implies Q 1 = 0 and consequently, P 2 = Q 2 = 0. The vanishing of u(ξ) also implies that of u p . Thus (60) u(λ, x) = u g (λ, x) := S 1 sin(nπx), ∀x ∈ (0; ξ] S 1 sin(nπξ) cos(nπ(x -ξ)) + S 1 cos(nπξ) sin(nπ(x -ξ)) = S 1 sin(nπx), ∀x ∈ [ξ; 1). Now, u(ξ) = 0 = S 1 sin(nπξ) and S 1 = 0 (otherwise u ≡ 0), then sin(nπξ) = 0, which contradicts the fact that ξ / ∈ Q.

Analogously, λ / ∈ {ikπ, k ∈ Z * } if ξ / ∈ Q. Now, since λ / ∈ {kπ, k ∈ Z * } and λ / ∈ {ikπ, k ∈ Z * }, (58) becomes: 
(61)

       P 1 = R 1 = 0 Q 1 = - αµ 2aλ 3 u(ξ) sinh(λ(ξ -1)) sinh(λ) and S 1 = αµ 2aλ 3 u(ξ) sin(λ(ξ -1)) sin(λ) P 2 = Q 1 sinh(λξ), Q 2 = Q 1 cosh(λξ), R 2 = S 1 sin(λξ) and S 2 = S 1 cos(λξ)
Combining that with classical trigonometric formulae leads to:

(62) u g (λ, x) := Q 1 sinh(λx) + S 1 sin(λx), ∀x ∈ (0; 1).

In particular u(ξ) = u p (λ, ξ) + u g (λ, ξ) = u g (λ, ξ) i.e. ( 63 
) u(ξ) = - αµ 2aλ 3 u(ξ) sinh(λ(ξ -1)) sinh(λ) sinh(λx) - sin(λ(ξ -1)) sin(λ) sin(λx) .
This implies the following equation, since u(ξ) = 0:

(64) 2aλ 3 sinh(λ) sin(λ) -αµ [sin(λ) sinh(λξ) sinh(λ(1 -ξ)) -sinh(λ) sin(λξ) sin(λ(1 -ξ))] = 0
Multiplying both sides by λ = 0, replacing (aλ 4 ) by (-bµ -µ 2 ) and dividing by µ = 0 leads to the characteristic equation (51).

At last, u(ξ) can be rewritten as:

(65) u(ξ) = u g (ξ) = -sinh(λ(ξ -1)) sinh(λ) sinh(λx) + sin(λ(ξ -1)) sin(λ) sin(λx) = 2aλ 3 αµ due to the characteristic equation.

Hence the expression for the eigenfunction (52). Note that the factor 1 |λ| 2 e (ξ-2)|λ| is aimed at making the function bounded with λ in H.

The last part of the proof concerns the multiplicity of the eigenvalues. Since the characteristic equation ( 51) is invariant under the transform λ → iλ, to each root λ such that λ ∈ {z ∈ C -{kπ, k ∈ Z}, ∃l ∈ Z, arg(z) ∈ [-π/4 + 2lπ; π/4 + 2lπ) correspond three other roots which are ±iλ and -λ. Up to a multiplicative constant, the expression for the eigenfunction is invariant under the transform λ → iλ, thus the geometric multiplicity of µ as an eigenvalue is always 1.

Now (24) is equivalent to (66) µ(λ) = -b + δ(λ) 2 
where ±δ(λ) are the (complex) square roots of (b 2 -4aλ 4 ).

The value µ = -b/2 is an eigenvalue of the operator A if and only if δ(λ) = 0 which is the case for the value α defined by (53). In that case, the algebraic multiplicity is at least 2.

If α takes any other value, it is at least 1.

Remark 4.3

The characteristic equation (51) (found for α = 0 and ξ / ∈ Q) becomes sinh(λ) sin(λ) = 0, if α is replaced by 0 in (51). The solutions of this equation are λ = nπ, n ∈ Z and λ = inπ, n ∈ Z. Now, if α tends to 0, αb < 6 so µ = -b is not an eigenvalue of A and since 0 is not an eigenvalue of A, λ = 0. Thus the corresponding eigenvalues are those given for Case α = 0 in Theorem 4.2, which is coherent. 4)-( 6) with the additional term βδ ξ are unchanged (cf. ( 52)) and the characteristic equation (51) becomes:

(67) 2aλ 3 sinh(λ) sin(λ) -(αµ + β) [sin(λ) sinh(λξ) sinh(λ(1 -ξ)) -sinh(λ) sin(λξ) sin(λ(1 -ξ))] = 0.
Multiplying both sides by λ = 0, replacing (aλ 4 ) by (-bµ -µ 2 ) and dividing by µ = 0 leads to the following characteristic equation:

(68) 2(µ + b) sinh(λ) sin(λ) + α + β µ λ [sin(λ) sinh(λξ) sinh(λ(1 -ξ)) -sinh(λ) sin(λξ) sin(λ(1 -ξ))] = 0.
The asymptotic behaviour of the eigenvalues is often useful for the study of stabilization. The following Proposition gives what we call the asymptotic characteristic equation.

Proposition 4.5 (Large eigenvalues of the operator A)

Let A be the operator defined by ( 11) and ( 12) in Section 2. Denote by µ n , n ∈ Z the eigenvalues of A and by λ the complex numbers satisfying

λ 4 = - bµ + µ 2 a . One of these λ's is such that ∃k ∈ Z, arg(λ) ∈ [-π/4 + 2kπ; π/4 + 2kπ
). The others are -λ and ±iλ and they are still denoted by λ.

Assume that α > 0, αb < 6 and ξ / ∈ Q. Then µ is a large eigenvalue of A if and only if the corresponding λ's satisfy the asymptotic characteristic equation:

(69) sinh(λ) sin(λ) = 0.

The algebraic multiplicity of µ as a large eigenvalue of A is exactly 1 and its geometric multiplicity is 1.

Proof. We start from the characteristic equation ( 64) in which the trigonometric functions are replaced by: (70)

     sin(λ) = e ℑ(λ) 2i -e -iℜ(λ) + e -2ℑ(λ) e iℜ(λ) sinh(λ) = e ℜ(λ) 2 e iℑ(λ) -e -2ℜ(λ) e -iℑ(λ) .
Denoting by (71) S(λ) := -e -iℜ(λ) + e -2ℑ(λ) e iℜ(λ) Sh(λ) := e iℑ(λ) -e -2ℜ(λ) e -iℑ(λ)

the characteristic equation ( 64) is equivalent to:

(72) e ℑ(λ)+ℜ(λ) 4i 2aλ 3 S(λ)Sh(λ) -αµ[S(λ)Sh(λξ)Sh(λ(ξ -1)) -Sh(λ)S(λξ)S(λ(ξ -1))] = 0 and, since λ = 0 is excluded here, it is also:

(73) S(λ)Sh(λ) -α µ 2aλ 3 [S(λ)Sh(λξ)Sh(λ(ξ -1)) -Sh(λ)S(λξ)S(λ(ξ -1))] = 0
The expression [S(λ)Sh(λξ)Sh(λ(ξ -1)) -Sh(λ)S(λξ)S(λ(ξ -1))] is bounded with respect to λ, if ℜ(λ) and ℑ(λ) tend to +∞ and the quotient µ 2aλ 3 tends to zero if |λ| tends to +∞. The other cases (ℜ(λ) and ℑ(λ) tend to -∞, ℜ(λ) tends to ±∞ while ℑ(λ) tends to ∓∞) are treated similarly. Hence (69).

The multiplicity of the large eigenvalues follows from the fact that the roots of sin(λ) = 0 are simple as well as those of sinh(λ) = 0. The result is proved using Rouché's Theorem. We follow the proof of Lemma 2.4 of [START_REF] Abdallah | Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems[END_REF]. We denote by h α (λ) the left-hand side of (73) and define, for N large enough, the curves:

(74)        Γ S ±,n := z/|z ± nπ| = C 0 n Γ Sh ±,n := z/|z ± inπ| = C ′ 0 n
Our aim is to choose C 0 such that, by Rouché's Theorem, h α has the same roots as sinh (resp. as sin) inside the curve Γ Sh ±,n (resp. Γ S ±,n ) for every n > N where N is large enough. The proof is written for z ∈ Γ Sh +,n . The rest is analogous.

The first step is to show that, if z ∈ Γ Sh +,n , then |Sh(z)| ≥ C 0 |z| .
Writing z = inπ + ρ n e iθ with ρ n = C 0 n and using trigonometric formulae lead to

(75) | sinh(z)| 2 = | sinh(inπ + ρ n e iθ )| 2 = sinh 2 (ρ n cos(θ)) cos 2 (ρ n cos(θ)) + cosh 2 (ρ n cos(θ)) sin 2 (ρ n cos(θ)) = ρ 2 n + o(1). Now |z| 2 = ρ 2 n cos 2 (θ) + (nπ + ρ n sin(θ)) 2 ≤ (nπ + ρ n sin(θ)) 2 and
(76)

C 2 0 |z| 2 ≤ C 2 0 (nπ + ρ n sin(θ)) 2 = C 2 0 n 2 π 2 + o 1 n 2 = C 2 0 n 2 + o(1) = | sinh(z)| 2 .
Since |Sh(z)| = 2e -ℜ(z) | sinh(z)| and ℜ(z) = ρ n cos(θ) tends to zero when n tends to +∞

(77) ∃N 1 , n ≥ N 1 ⇒ 2e -ℜ(z) ≥ 1 and |Sh(z)| ≥ | sinh(z)| ≥ C 0 |z| . The second step is to show that, if z ∈ Γ Sh +,n , then |h α (z) -S(z)Sh(z)| ≤ |S(z)Sh(z)|.
By definition of h α (z), it holds:

(78) |h α (z) -S(z)Sh(z)| ≤ 1 |z| • αµ 2aλ 2 • |S(z)| • Sh(ξz)Sh((ξ -1)z) -Sh(z) S(ξz)S((ξ -1)z) S(z) . If z ∈ Γ Sh +,n , ℑ(z) = nπ + C 0 n sin(θ) ≥ nπ - C 0 n .
The expression αµ 2az 2 Sh(ξz)Sh((ξ -1)z) -Sh(z) S(ξz)S((ξ -1)z) S(z) is bounded with respect to ℑ(z). Let us denote by C 0 the real number such that

(79) ∃C 1 , ∀z ∈ Γ Sh +,n , ℑ(z) ≥ C 1 ⇒ αµ 2aλ 2 • Sh(ξz)Sh((ξ -1)z) -Sh(z) S(ξz)S((ξ -1)z) S(z) ≤ C 0 .
At last, there exists

N 2 such that N 2 π - C 0 N 2 > C 1 . If N ≥ max{N 1 , N 2 }, z ∈ Γ Sh +,n ⇒ |h α (z) -S(z)Sh(z)| ≤ |S(z)Sh(z)|.
Remark 4.6 The large roots of the characteristic equation ( 51) are close to the roots of (69), that is to say, either (nπ) or (inπ) with n ∈ Z * . The large eigenvalues µ of the operator A with α > 0 are thus near the eigenvalues of the operator A 0 given in the first part of Theorem 4.2.

Remark 4.7 (Case β > 0) The latter Proposition still holds for Problem ( 4)-( 6) with the additional term βδ ξ .

Another natural question which arises in this context is that of the continuity of the eigenvalues with respect to the parameter α.

Proposition 4.8 (Continuity of the eigenvalues and eigenvectors of the operator A with respect to α) Let A be the operator defined by ( 11) and ( 12) in Section 2. Denote by µ an eigenvalue of A and by λ the complex numbers satisfying

λ 4 = - bµ + µ 2 a . One of these λ's is such that ∃k ∈ Z, arg(λ) ∈ [-π/4 + 2kπ; π/4 + 2kπ
). The others are -λ and ±iλ and they are still denoted by λ. Assume that α > 0, αb < 6 and ξ / ∈ Q. Then µ depends continuously on the parameter α and the eigenvector Φ(µ, •) converges pointwise to the eigenvector Φ ± n (up to a multiplicative constant) when α tends to zero.

Proof. To state the continuity of µ with respect to α, we follow the proof of Remark 1 of [START_REF] Abdallah | Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems[END_REF]. We denote by g α (λ) the left-hand side of (51). For a fixed α, denote by λ 0 a root of A. Since λ 0 is isolated, there exists ρ > 0 such that (80)

g α (z) = 0, ∀z ∈ C, such that 0 < |z -λ 0 | < ρ.
Now, g α is a continuous function. Indeed the functions λ → λ 3 , λ → sin(λ) and λ → sinh(λ) are continuous functions on C. As for µ, it is the root of the second degree equation:

(81) µ 2 + bµ + aλ 4 = 0.
Thus it is a continuous function of the coefficients of this equation i.e. a continuous function of the variable λ.

Setting D = {z ∈ C, such that |z -λ 0 | = ρ}, the continuity of g α implies that there exists a positive real number κ such that |g α (z)| ≥ κ, ∀z ∈ D.

For a fixed positive real number ǫ 0 , we consider the mapping of two variables

(82) H : [0, ǫ 0 ] × D → C : (ǫ, z) → g α+ǫ (z) -g α (z).
Since it is a uniformly continuous function and since H(0; z) = 0 for all z ∈ D, we deduce the existence of a positive real number δ such that

(83) |H(ǫ, z)| < κ, ∀(ǫ, z) ∈ [0; δ] × D.
The last two estimates imply that (84)

|g α+ǫ (z) -g α (z)| < |g α (z)|, ∀(ǫ, z) ∈ [0; δ] × D.
Hence Rouché's theorem allows to conclude that g α+ǫ has the same number of roots as g α for all ǫ ∈ [0; δ]. Thus the root λ of g α is a continuous function of α and, by composition, µ is also a continuous function of α.

To finish with the proof, note that, when α tends to zero, αb < 6 then µ + b = 0 and the characteristic equation (51) becomes: sin(λ) sinh(λ) = 0. Thus λ tends either to (nπ) or to (inπ) with n ∈ Z * . If it tends to (nπ) for example, sin(λ) tends to zero and the eigenfunction tends to:

(85) lim λ→nπ φ(λ, x) := 1 n 2 π 2 • e nπ(ξ-2) sinh(nπ) sin(nπ(1 -ξ)) sin(nπx).

Indeed the other terms tend to zero since sin(λ) tends to zero and the following two expressions are bounded with λ:

(86)      1 |λ| 2 • e (ξ-2)|λ| sinh(λ)[sin(λ(x -ξ)) -sinh(λ(x -ξ))] • H(x, ξ) 1 |λ| 2 • e (ξ-2)|λ| sinh(λ(1 -ξ)) sinh(λx).
And if λ tends to (inπ), sinh(λ) tends to zero and the eigenfunction tends to:

lim λ→inπ φ(λ, x) := 1 n 2 π 2 • e nπ(ξ-2) sin(inπ) sinh(inπ(1 -ξ)) sinh(inπx) = -i 1 n 2 π 2 • e nπ(ξ-2) sinh(nπ) sin(nπ(1 -ξ) sin(nπx).
(87) Indeed the other terms tend to zero since sinh(λ) tends to zero and the following two expressions are bounded with λ:

(88)      1 |λ| 2 • e (ξ-2)|λ| sin(λ)[sin(λ(x -ξ)) -sinh(λ(x -ξ))] • H(x, ξ) 1 |λ| 2 • e (ξ-2)|λ| sin(λ(1 -ξ)) sin(λx).
Hence the announced result concerning the eigenfunctions.

Localization of the eigenvalues of the operator A for small values of α

The aim of this Section is to determine the localization of the eigenvalues of the operator A for small values of α compared with the case α = 0 already studied in [START_REF] Ammari | The rate at which energy decays in a viscously damped hinged Euler-Bernoulli beam[END_REF] and recalled in Theorem 4.2.

Theorem 5.1 (Localization of the eigenvalues of the operator A for small values of α) Let A be the operator defined by ( 11) and ( 12) in Section 2 with ξ / ∈ Q. Denote by µ an eigenvalue of A.

The case α = 0 is already known (cf. Theorem 4.2). If b ≤ 2 √ aπ 2 , then

(89) sup µ∈σ(A) ℜ(µ) = - b 2 . If b > 2 √ aπ 2 , then (90) 
sup µ∈σ(A) ℜ(µ) = 1 2 (-b + b 2 -4aπ 4 ).
Now, for any ǫ > 0, there exists α 0 such that, if

0 < α < α 0 , it holds: if b ≤ 2 √ aπ 2 , then (91) 
ℜ(µ) ≤ - b 2 + ǫ. If b > 2 √ aπ 2 , then (92) 
ℜ(µ) ≤ 1 2 (-b + b 2 -4aπ 4 ) + ǫ.
Now, it holds, for all 1 ≤ n ≤ n 0 :

(99)

-b < 1 2 (-b-b 2 -4aπ 4 ) < 1 2 (-b-b 2 -4an 4 π 4 ) < - b 2 < 1 2 (-b+ b 2 -4an 4 π 4 ) < 1 2 (-b+ b 2 -4aπ 4 ) < 0.
Thus, for all n ≥ 1 and α sufficiently small:

(100) ℜ(µ ± n ) < 1 2 (-b + b 2 -4aπ 4 ).
Note that, if ξ belonged to Q, there would exist (m, n) ∈ (N * ) 2 such that ξ = m n and sin(2nπξ) would vanish (as well as sin(2knπξ) for k ∈ Z). More calculations would be required to get the third (at least) degree Mac Laurin polynomials of the functions involved in the characteristic equation since the second degree term for λ and for µ n also vanishes.

Remark 5.2 (Case β > 0) The first-degree Taylor polynomial linear approximation of ℜ(µ ± n ) if we add the term βδ ξ to get Problem ( 4)-( 6) contains the additional term:

(101) ±2 sin 2 (2nπξ) √ b 2 -4an 4 π 4 • β.
Note that the real part of the eigenvalues µ + n is larger than that of the same eigenvalues with β = 0. This confirms what we said in the introduction: the stiffness term does not improve the decreasing of the energy. If the SMA cables restrain the vibrations of girder bridges, it only comes from the damper term αu t δ ξ . All that is true if sin 2 (2nπξ) does not vanish, which happens for some values of ξ. That is why this result does not contradict the experiments of [START_REF] Liu | A Method of Reinforcement and Vibration Reduction of Girder Bridges Using Shape Memory Alloy Cables[END_REF]. 

Energy decreasing

Ψ ± n := 1 n 2 π 2 e nπ(ξ-2) sinh(nπ) sin(nπ(1 -ξ)) sin(nπx)(1, µ ± ) (respectively by (103) Ψ ± n := -i 1 n 2 π 2 e (ξ-2)|λ| sin(nπ) sin(nπx)(1, µ ± )).
Theorem 6.2 (Riesz basis for the operator A) Let Φ(µ, •) still be defined as in Theorem 4.2 and Ψ ± n given by the above definition. There exists n 0 ≥ 1, such that

(104) |n|≥n0 Φ(µ, •) -Ψ ± n 2 H < ∞.
Thus, the root eigenvectors of A form a Riesz basis of H.

Proof. First the Ψ ± n form an orthogonal basis (see [START_REF] Ammari | The rate at which energy decays in a viscously damped hinged Euler-Bernoulli beam[END_REF]).

The inner product in H has two terms. Since the eigenvector Φ(µ, •) is defined as Φ(µ, •) := (φ(λ, •)(1, µ) and since µ has the same behaviour as λ 2 for large values of λ, it is enough to consider the first term in the inner product. Now the eigenfunction defined by ( 52) is made of three terms. Let us start with the third one. The second one is analogous with easier calculations. That is why we do not give details for this second term. Let us prove that, if λ → nπ (n ∈ N * ), then

1 0 e (ξ-2)|λ| sin(λ) sinh(λ(1 -ξ)) sinh(λx) + e (ξ-2)nπ sin(nπ) sinh(nπ(1 -ξ)) sinh(nπx) 2 dx = O 1 n 2 . ( 105 
)
The integrand is of the form

|A • B -A 0 • B 0 | 2 ≤ 2|A -A 0 | 2 • |B| 2 + 2|A 0 | 2 • |B -B 0 | 2 with (106) |A 0 | 2 := |e (ξ-2)nπ sin(nπ) sinh(nπ(1 -ξ))| 2 = O e -2nπ .
Since, for x ∈ (0; 1), sinh(λx) = O e 2|ℜ(λ)| = O e 2nπ (cf. proof of Proposition 4.5 about the large eigenvalues), it holds:

(107)

1 0 |B| 2 := 1 0 |sinh(λx)| 2 dx = O e 2nπ .
Thus it is enough to show the following two estimates:

|A -A 0 | 2 := e (ξ-2)|λ| sin(λ) sinh(λ(1 -ξ)) -e (ξ-2)nπ sin(nπ) sinh(nπ(1 -ξ)) 2 = O 1 n 2 e -2nπ (108) (109) 1 0 |B -B 0 | 2 := 1 0 |sinh(λx) -sinh(nπx)| 2 dx = O 1 n 2 e 2nπ .
Coming back to the definition of the trigonometric functions, it holds:

(110) sin(λ) -sin(nπ) = 1 2i (e iℜ(λ) e -ℑ(λ) -e inπ ) -(e -iℜ(λ) e ℑ(λ) -e -inπ ) .

Then, using the mean-value Theorem as well as the asymptotic behaviour of the difference (λ -nπ) obtained in the proof of Proposition 4.5 about the large eigenvalues:

(111)

e iℜ(λ) e -ℑ(λ) -e inπ 2 = e iℜ(λ) -e inπ + e -ℑ(λ) -1 • e iℜ(λ) 2 ≤ 2 e -ℑ(λ) -1 2 + 2 |cos(ℜ(λ)x) -cos(nπ) + i (sin(ℜ(λ)) -sin(nπ))| 2 ≤ 2 e -ℑ(λ) -1 2 + 2 (cos(ℜ(λ)) -cos(nπ)) 2 + 2 (sin(ℜ(λ)) -sin(nπ)) 2 ≤ C 2 0 n 2 exp 2 C 0 n + o(1/n) + 4 (ℜ(λ) -nπ) 2 = O 1 n 2 . Now (108) is of the form |E • F -E 0 • F 0 | 2 ≤ 2|E -E 0 | 2 • |F | 2 + 2|E 0 | 2 • |F -F 0 | 2 with (112)                  |F -F 0 | 2 := e iℜ(λ) e -ℑ(λ) -e inπ 2 = O 1 n 2 |E 0 | 2 := e (ξ-2)nπ sinh(nπ(1 -ξ)) 2 = O e -2nπ |E -E 0 | 2 := e (ξ-2)|λ| sinh(λ(1 -ξ)) -e (ξ-2)nπ sinh(nπ(1 -ξ)) 2 = O e -2nπ | sin(λ)| 2 = sin nπ + O 1 n 2 = (-1) n sin O 1 n 2 = O 1 n 2 .
Hence (108). Analogously, it holds:

(113) sinh(λx) -sinh(nπx) = 1 2 (e ℜ(λ)x e iℑ(λ)x -e nπx ) -(e -ℜ(λ)x e -iℑ(λ)x -e -nπx ) .

Using once more the mean-value Theorem as well as the asymptotic behaviour of the difference (λ-nπ) obtained in the proof of Proposition 4.5 about the large eigenvalues:

(114)

e ℜ(λ)x e iℑ(λ)x -e nπx 2 = e ℜ(λ)x -e nπx + e iℑ(λ)x -1 • e ℜ(λ)x 2 ≤ 2 e ℜ(λ)x -e nπx 2 + 2e 2ℜ(λ)x (cos(ℑ(λ)x) -1) 2 + sin 2 (ℑ(λ)x) ≤ 4 C 2 0 n 2 exp 2 nπ + C 0 n + o(1/n) = O 1 n 2 e 2nπ .
Hence (109).

The first term of the eigenfunction has to be considered. Finally, the energy is proved to decay exponentially and the localization of the eigenvalues for small values of α leads to a lower bound for the decay rate in that case. This bound is the optimal decay rate obtained for α = 0 in [START_REF] Ammari | The rate at which energy decays in a viscously damped hinged Euler-Bernoulli beam[END_REF] which means that the decay rate for small values of α > 0 is equal to that with α = 0 (i.e. without SMA cables). SMA cables do not restrain the vibrations of girder bridges if α is close to zero. This is not in contradiction with the experiments of [START_REF] Liu | A Method of Reinforcement and Vibration Reduction of Girder Bridges Using Shape Memory Alloy Cables[END_REF] but it means that the simple fact of adding SMA cables may not be enough. Theorem 6.3 (Exponential stability and decay rate for small values of α) System (1)-(3) (presented in the introduction) is exponentially stable and, for any ǫ > 0, there exists α 0 such that for any 0 < α < α 0 , for any solution U of (13) with initial data U 0 ∈ D(A), there exist constants C > 0 and ω 0 (ǫ) < 0 depending on a, b and α such that:

E(t) ≤ Ce 2ω0(ǫ)t U 0 2 D(A) , ∀t > 0,
where E(t) is defined by ( 7) and Proof. According to Theorem 6.2, the system of eigenvectors of A constitutes a Riesz basis. Consequently, by a standard argument (see the proof of Theorem 2.5 of [START_REF] Ammari | The rate at which energy decays in a viscously damped hinged Euler-Bernoulli beam[END_REF] for example), the optimal energy decay rate is identified with the supremum of the real part of the eigenvalues of A.

Thus the result follows from Theorem 5.1.

Remark 6.4 (Case α = 0)

In [START_REF] Ammari | The rate at which energy decays in a viscously damped hinged Euler-Bernoulli beam[END_REF] the systems of eigenvectors of A and A 0 (obtained with α = 0) are proved to be quadratically close in V × L 2 (0, 1) using the explicit expression of the eigenfunctions of both operators. Thus, it follows from Theorem 3 in Appendix D of [START_REF] Pöschel | Inverse Spectral Theory[END_REF], that the system of eigenvectors of A 0 constitutes a Riesz basis. Consequently, by a standard argument (see the proof of Theorem 2.5 in [START_REF] Ammari | The rate at which energy decays in a viscously damped hinged Euler-Bernoulli beam[END_REF]), the optimal energy decay rate is identified with the supremum of the real part of the eigenvalues of A 0 . With the notation of Theorem 6.3, it means that ω = ω 0 (0) when α = 0.

Conclusion

One could have thought that adding the damping term αδ ξ u t , α > 0 would logically increase the decay rate of the energy compared with the case α = 0 already studied by Ammari, Dimassi and Zerzeri in [START_REF] Ammari | The rate at which energy decays in a viscously damped hinged Euler-Bernoulli beam[END_REF].

In fact this is not obvious. If α is small, we have proved that the decay rate does not change. Is it clear that it will increase with α? This is not clear either.

As announced in the introduction, let us prove that, if α = 0, increasing the value of b may not increase the decay rate of the energy. Indeed, in that situation, the energy decreases exponentially and the decay rate is given by the maximum of ℜµ + n which is In conclusion, the decay rate of the energy may be better with α > 0 (with α large enough) than with α = 0 i.e. Shape Memory Alloy cables may restrain the vibrations of girder bridges effectively.

The experiments of [START_REF] Liu | A Method of Reinforcement and Vibration Reduction of Girder Bridges Using Shape Memory Alloy Cables[END_REF] would be confirmed mathematically if we were able to prove that there exist α > 0, β > 0, ξ ∈ (0; 1) and ω 1 (α, β, ξ) < ω 0 (0), such that all the roots of the characteristic equation (68) are such that the corresponding µ's satisfy ℜ(µ) ≤ ω 1 (α, β, ξ). We conjecture that this requires a value for ξ which is excluded in our theorems.
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Theorem 2 . 3 (

 23 Existence and uniqueness) (1) If U 0 ∈ D(A), then system (13) has a unique strong solution

Theorem 2 . 4 (

 24 Strong stability)System (1)-(

  First we still denote by u the function defined by (38) u(x) := 0, ∀x < 0 and x > ξ u(x), ∀x ∈ (0; ξ).

Lemma 4 . 1 (

 41 Is µ = -b an eigenvalue of A?)

  ) with H(x, ξ) the Heaviside step function at ξ. Denote by r = r(a, b) the real positive number such that r 4 = b 2 4a . Then, if (53) α = -4ar 3 sinh(r) sin(r) b[sinh(r) sin(rξ) sin(r(ξ -1)) -sin(r) sinh(rξ) sinh(r(ξ -1))]then µ = -b/2 is an eigenvalue of A with algebraic multiplicity at least 2 and its geometric multiplicity is 1.
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 44 Case β > 0) The eigenfunctions of Problem (

1 0e

 1 Since | sin(λ)| 2 = O 1 n 2 and e (ξ-2)|λ| sinh(λ) sinh(λ(x -ξ))H(x, ξ) 2 = O(1) for x > ξ, it holds, if λ → nπ (n ∈ N * ): (ξ-2)|λ| sin(λ) sinh(λ) sinh(λ(x -ξ))H(x, ξ)

b 2 -

 2 4aπ 4 ) + ǫ, if b > 2 √ aπ 2 .

+ b 2 -4an 4 π 4 = -2an 4 π 4 b + √ b 2 - 4 b + b 2 -4an 4 0 π 4 , n = 1 , 2 ,

 2424412 4an 4 π 4 , n = 1, 2, . . . , n 0 where b ∈ R + * -{2 √ an 2 π 2 , n ∈ Z * } and n 0 is such that 2 . . . , n 0and the last bound tends to zero, if b tends to +∞.
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Proof. Since the study is restricted here to the case of the small non-vanishing values of α, the eigenvalues µ of the operator A are known to be such that the corresponding λ's satisfy λ / ∈ {kπ, k ∈ Z}, λ / ∈ {ikπ, k ∈ Z} and the characteristic equation:

The first remark is that this equation is invariant under the transform λ → iλ so it is enough to consider

In order to compute the first degree Mac Laurin polynomial for the function λ(α) i.e. to find λ 1 such that λ = nπ + λ 1 α + o(α) around the value α = 0, we write all the first degree Mac Laurin polynomials for the functions involved in equation ( 93) as functions of λ around λ = nπ (n ∈ N * ):

(94)

Inserting all these results into the characteristic equation (93) leads, for n such that n > n 0 , to:

(96)

At last, λ = nπ + λ 1 α + o(α) is put into the expression of µ ± n , which leads after some calculations to:

(97)

The real part of µ ± n is:

The eigenvalues of A for small positive values of α and large values of n are on the left of those we have for α = 0 (whose real part is -b/2).

As for the case of small values of n (1