
HAL Id: hal-03722113
https://uphf.hal.science/hal-03722113

Preprint submitted on 13 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Do Shape Memory Alloy cables restrain the vibrations
of girder bridges? -A mathematical point of view

Virginie Régnier

To cite this version:
Virginie Régnier. Do Shape Memory Alloy cables restrain the vibrations of girder bridges? -A math-
ematical point of view. 2022. �hal-03722113�

https://uphf.hal.science/hal-03722113
https://hal.archives-ouvertes.fr


ar
X

iv
:2

11
2.

01
40

0v
1 

 [
m

at
h.

A
P]

  2
 D

ec
 2

02
1

Do Shape Memory Alloy cables restrain the vibrations of girder

bridges? - a mathematical point of view

V. Régnier∗

December 3, 2021

Abstract

We study the energy decay of a damped Euler-Bernoulli beam which is subject to a pointwise feedback

force representing a Shape Memory Alloy (SMA) cable. The problem we consider is that of [13] but,

for simplicity, our modelization does not take into account the additional stiffness term they considered.

An explicit expression is given for the resolvent of the underlying operator as well as its eigenvalues and

eigenfunctions. We show the exponential decay of the energy. The fastest decay rate is given by the

supremum of the real part of the spectrum of the infinitesimal generator of the underlying semigroup since

we prove the existence of a Riesz basis. To the question "Do Shape Memory Alloy cables restrain the

vibrations of girder bridges?", the experiments in [13] answer positively. Our study does not allow to give

a definite answer yet. The only presence of these cables may not to be enough. Some physical parameters

have to be chosen carefully.

Key words: Euler-Bernoulli beam, pointwise stabilization, resolvent operator, eigenvalues and their localiza-

tion, eigenfunctions, Riesz basis, exponential stability, rate of decay.

AMS subject classification: 74K10, 35B40, 35Q74, 34L10, 34L15, 34L20, 35B35, 35E15, 93D23.

1 Introduction

In this paper, we consider the same problem as in [13] which is rewritten for simplicity:

∂2u

∂t2
(x, t) + a

∂4u

∂x4
(x, t) + b

∂u

∂t
(x, t) + α

∂u

∂t
(ξ, t)δξ = 0 for (x, t) in (0, 1)× (0,∞)(1)

u(0, t) = u(1, t) =
∂2u

∂x2
(0, t) =

∂2u

∂x2
(1, t) = 0 for t in (0,∞)(2)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x) for x in (0, 1)(3)

where a, b and α are strictly positive constants.

In this problem the function u denotes the transverse displacement of the bridge deck represented by a beam

with a uniform section, δξ is the Dirac mass concentrated in the point ξ ∈ (0; 1).

Denote by ρ the mass density of the beam, A the area of the cross section of the beam, EI the second moment

of area of the cross-section and c the damping of the beam. Then (1)-(3) coincides with the system in [13] with

a =
(EI)

ρA
, b =

c

ρA
, α =

cSMA

ρA
and kSMA = 0.

The values kSMA and cSMA are respectively the equivalent stiffness and equivalent damping of a damper which
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represents the Shape Memory Alloy (SMA) cable at the position x. They are calculated by (26) and (27) of [13].

In fact, the problem considered in [13] is more precisely the following one with β > 0:

∂2u

∂t2
(x, t) + a

∂4u

∂x4
(x, t) + b

∂u

∂t
(x, t) +

(

α
∂u

∂t
(ξ, t) + βu(ξ, t)

)

δξ = 0 for (x, t) in (0, 1)× (0,∞)(4)

u(0, t) = u(1, t) =
∂2u

∂x2
(0, t) =

∂2u

∂x2
(1, t) = 0 for t in (0,∞)(5)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x) for x in (0, 1)(6)

Indeed A-R. Liu, C-H. Liu, J-Y. Fu, Y-L. Pi, Y-H. Huang and J-P. Zhang have realized experiments in which

the value kSMA (equivalent stiffness of the damper) does not vanish. We start here with a simpler problem

but we conjecture that the result will not change since the term we keep is the most important one for the

stabilization. In this paper, β = 0. The most important results are generalized to the case β > 0 in remarks

(see Remarks 4.4 and 4.7).

Note that the case a = 1, b > 0 and α = 0 is treated in [4]. They even consider L∞(0; 1) functions for b,

which are positive and non-negative on an open subset of (0; 1). For a constant b, the energy is proved to

decrease exponentially and the fastest decay rate is given by the supremum of the real part of the spectrum of

the infinitesimal generator of the underlying semigroup.

The case a = 1, b = 0 and α > 0 is treated in [5] with two types of boundary conditions. They study

the energy decay of a Bernoulli-Euler beam which is subject to a pointwise feedback force (given by the Dirac

term). They show that both uniform and non uniform energy decay may occur depending on the boundary

conditions. In the case of non uniform decay in the energy space (which is the case we are interested in), they

give explicit polynomial decay estimates valid for regular initial data. Their method consists of deducing the

decay estimates from observability inequalities for the associated undamped problem via sharp trace regularity

results.

The same problem is studied by the same authors in [6] one year later. It is the second example of the applica-

tions given in Section 5. The estimates are unchanged for this example but the paper gives more general results:

under a regularity assumption, the authors show that observability properties for the undamped problem imply

decay estimates for the damped problem.

Let u be a regular solution of system (1)-(3). Its associated total energy is defined by

(7) E(t) =
1

2

∫ 1

0

(|ut(x, t)|2 + a|uxx(x, t)|2)dx.

Then a classical computation using parts integration gives:

(8)
d

dt
E(t) = −b

(
∫ 1

0

|ut(x, t)|2dx
)

− α|ut(ξ, t)|2 ≤ 0.

Hence system (1)-(3) is dissipative in the sense that its associated energy is non increasing with respect to time.

A lot of studies have been performed by many authors in the stabilization of Euler-Bernoulli beams. Some of

them can be found in the bibliography of the already cited papers : [4], [5] and [6].

The control of networks of Euler-Bernoulli or Timoshenko beams were studied in [11], [9], [14], [15], [16] and [2]

for example. Spectral methods are used like in this paper.

More recently, Euler-Bernoulli beams are coupled with wave equations with a Kelvin-Voigt damping in [3] for

example. See also the references of this paper.
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The main goal of this work is to obtain the energy decay rate of the damped Euler-Bernoulli beam subject to

a pointwise feedback force representing a Shape Memory Alloy (SMA) cable described by (1) to (3).

First we establish the well-posedness and strong stability of the problem. Then an explicit expression for the

resolvent is given as well as the eigenvalues and eigenfunctions of the associated dissipative operator. We study

the localization of the eigenvalues of the operator for small values of α > 0. We prove that the eigenfunctions

are quadratically close to those of the case α = 0. Thus they form a Riesz basis using a result of [19].

At last, we give the explicit exponential decay estimate of the energy for regular initial data. The presence

of a SMA cable (α > 0) with a weak damping (small value for α) may not restrain the vibrations of girder

bridges. Our modelization does not take into account the stiffness term considered in [13] (β = 0 here). The

term which contributes most to the damping is αut. That is why we start with this situation. See Remark 5.2

which confirms this intuition. The stiffness term (βδξu) even seems to diminish the decay rate of the energy.

Note that the results were not obvious. One may think that adding a damping term (α > 0 versus α = 0) always

leads to a better decay rate of the energy. This is not so clear. What we already know (cf. the conclusion of

this paper) is that, if α = 0, increasing the value of b does not always lead to a higher decay rate of the energy,

which is rather counterintuitive.

This paper does not confirm the results of [13]. Nor does it refute them. The situation is more compli-

cated. First they have an additional stiffness term but we conjecture that the results will be analogous. Indeed

the eigenfunctions are unchanged and the characteristic equation is similar (cf. Remarks 4.4 and 4.7). Moreover

the large eigenvalues of the case α > 0 and β = 0 are proved to be close to those of the case α = 0 and β = 0

(see Proposition 4.5) and Remark 5.2 proves that adding the stiffness term (β > 0) leads to some eigenvalues

with a real part larger than the supremum of the real part of the eigenvalues with β = 0.

All that is not necessarily in contradiction with the experiments of [13], since we have excluded some values for

ξ (cf. Theorem 4.2). As it is said in the conclusion of this paper, some more work is required to give a definite

answer to the question in its title.

2 Well-posedness and strong stability

In this section we study the existence, uniqueness and strong stability of the solution of system (1)-(3).

The energy space H is defined as follows

(9) H = [H2(0; 1) ∩H1
0 (0; 1)]× L2(0; 1)

with the inner product defined by

(U1, U2)H =

∫ 1

0

(au1,xxu2,xx + v1v2)dx,(10)

for all U1 = (u1, v1), U2 = (u2, v2) ∈ H.

Here again a is a strictly positive constant (as in the introduction).

Remark 2.1 The norm (U,U)
1

2

H induced by (10) is equivalent to the usual norm of H.

For shortness we denote by ‖ . ‖ the L2(Ω)-norm.
Now, we define a linear unbounded operator A : D(A) → H by:
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D(A) =

{

U ∈ H : (u, v) ∈ [H4(0, ξ) ∩H4(ξ, 1) ∩H2(0; 1)]×H2(0; 1), u(0) = v(0) = u(1) = v(1) = 0(11)

uxx(0) = uxx(1) = 0, uxx(ξ
−) = uxx(ξ

+), u(3)x (ξ+)− u(3)x (ξ−) = −α
a
v(ξ)

}

(12) A(u, v) =
(

v,−au(4)x − bv − αv(ξ)δξ
)

, ∀U = (u, v) ∈ D(A).

Then we rewrite formally System (1)-(3) into the evolution equation

(13)

{

Ut = AU,
U(0) = U0, U0 ∈ H

with U = (u, ut).

Proposition 2.2 The operator A is m-dissipative in the energy space H.

Proof. On the first hand, the dissipativeness holds since we can check using integrations by parts:

(14) ℜ(AU,U)H = −b
(
∫ 1

0

|ut|2dx
)

− α|ut(ξ, t)|2 ≤ 0, ∀U = (u, v) ∈ D(A).

On the other end, the maximality is proved in the following way.
Let f := (f1; f2) ∈ H. We look for U := (u; v) ∈ D(A) solution of

(15) −AU = f

or equivalently

(16)

{

f1 = −v
f2 = −au(4)x − bv − αv(ξ)δξ

⇔
{

v = −f1
au

(4)
x = f2 + bf1 − αf1(ξ)δξ

Assume that such a solution u exists, then multiplying the second identity by a function φ ∈ V := H2(0; 1) ∩
H1

0 (0; 1), integrating in space and using integration by parts, it follows, since U ∈ D(A)

(17)

∫ 1

0

au(2)x φ(2)x dx =

∫ 1

0

(f2 + bf1)φdx.

This problem has a unique solution u ∈ V = H2(0; 1)∩H1
0 (0; 1) by Lax-Milgram’s lemma, because the left-hand

side of (17) is coercive on V .
If we consider φ ∈ (D(0, ξ)) ∩ D(ξ, 1) ⊂ V , then u satisfies

au(4)x = f2 + bf1 − αf1(ξ)δξ in the distributional sense.

This directly implies that u ∈ H4(0; ξ) ∩H4(ξ; 1) since f1 and f2 belong to L2(0; 1).
Now, integrating by parts lead to:

∫ 1

0 (f2 + bf1 − αf1(ξ)δξ)φdx =
∫ ξ

0 au
(4)
x φdx +

∫ 1

ξ
au

(4)
x φdx + [au

(3)
x (ξ+)− au

(3)
x (ξ+)]φx(ξ)

+[au
(3)
x (ξ+)− au

(3)
x (ξ+)]φ(ξ) + au

(2)
x φx(1)− au

(2)
x φx(0).

Consequently, by taking particular test functions φ and using v = −f1, we obtain U ∈ D(A) satisfying (15),

which finishes the proof of maximality.

Using Lumer-Phillips Theorem (see [18], Theorem 1.4.3), the operator A generates a C0-semigroup of contrac-

tions etA on H. Then, we have the following result.
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Theorem 2.3 (Existence and uniqueness)

(1) If U0 ∈ D(A), then system (13) has a unique strong solution

U ∈ C0(R+,D(A)) ∩ C1(R+,H).

(2) If U0 ∈ H, then system (13) has a unique weak solution

U ∈ C0(R+,H).

Now, we have the following general strong stability result.

Theorem 2.4 (Strong stability)

System (1)-(3) is strongly stable, i.e. for any solution U of (13) with initial data U0 ∈ H, it holds

lim
t→∞

E(t) = 0,

where E(t) is defined by (7).

Proof. Since A generates a contraction semigroup and its resolvent is compact in H, using Arendt-Batty Theo-

rem(see [7], p. 837), system (1)-(3) is strongly stable if and only if A does not have purely imaginary eigenvalues.

Assume that A has a purely imaginary eigenvalue denoted by iµ with µ ∈ R. Then there exists U = (u, v) 6=
(0; 0) ∈ D(A) such that v = iµu and AU = iµU . Using (18) leads to

(18) ℜ [iµ(U,U)H] = 0 = −b
(
∫ 1

0

|v(x)|2dx
)

− α|v(ξ)|2.

This implies |v(ξ)| = 0 and
∫ 1

0
|v(x)|2dx = 0 (since α > 0 and b > 0). Thus v ≡ 0 almost everywhere on (0; 1)

and since v = iµu, u ≡ 0 almost everywhere on (0; 1). Now u and v are continuous on (0; 1) and they vanish at

0 and 1 due to their belonging to D(A). Thus u ≡ v ≡ 0. This contradicts the fact that U 6= (0; 0).

3 Explicit expression for the resolvent

In this section we give an explicit expression of the resolvent (µI −A)−1 and prove some useful estimates. In

fact such estimates are useful since later on, we will use a result of [8] (Theorem 2.4) which involves the norm

operator of (µI −A)−1 with µ ∈ C.
Let F = (u1, v1) ∈ H, we look for a solution U = (u, v) ∈ D(A) of

(19) (µI −A)U = F, µ ∈ C.

The explicit expression for the resolvent we give in next Proposition 3.2 involves the restriction on [0; 1] of

the classical convolution product of two functions on R. Let us recall the definition and two useful properties

we established in [17].

Lemma 3.1 (A technical lemma)

Let ψ ∈ C∞([0,∞[) and f in L2(0; 1) be two functions and define their convolution product ψ ⋆ f on [0, 1] by :

(20) (ψ ⋆ f)(x) =

∫ x

0

ψ(x− s)f(s)ds, ∀x ∈ [0; 1].

Then the following two properties hold:

1. (ψ ⋆ f) ∈ H1(0; 1) and its derivative is:

(21) (ψ ⋆ f)′(x) =

∫ x

0

ψ′(x− s)f(s)ds+ ψ(0)f(x), ∀x ∈ [0; 1].
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2. If ψ(0) = 0 is also assumed, then (ψ ⋆ f) ∈ H2(0; 1) and its second derivative is:

(22) (ψ ⋆ f)′′(x) =

∫ x

0

ψ′′(x− s)f(s)ds+ ψ′(0)f(x), ∀x ∈ [0; 1].

Proof.

1. The functions ψ extended by 0 on (−∞, 0) and f extended by 0 on R outside [0, 1] are still called ψ and

f respectively. Then the convolution product defined by (20) is extended by the classical convolution

product on R i.e by

(23) (ψ ⋆ f)(x) =

∫

R

ψ(x− s)f(s)ds, ∀x ∈ R.

It is well known that (ψ⋆f)′ = (ψ′)dist ⋆f where (ψ′)dist is the derivative of ψ in the distributional sense.

Due to the property of ψ and its extension on R we have

(ψ′)dist = ψ′ + ψ(0)δ0,

where δ0 is the Dirac distribution at x = 0. The property (21) follows from this remark.

2. (22) is a consequence of (21).

Note that weaker assumptions could be made on ψ for this lemma (ψ ∈ C2([0, 1]) is sufficient).

Proposition 3.2 (Explicit expression for the resolvent of the operator A)

Let a, b and α be strictly positive real numbers, ξ a real number in (0; 1) and µ a complex number.

Let the spaces H and D(A) be defined by (9) and (11). Let F = (u1, v1) ∈ H.

Denote by λ the complex number, such that ∃k ∈ Z, arg(λ) ∈ [−π/4 + 2kπ;π/4 + 2kπ), satisfying:

(24) λ4 = −bµ+ µ2

a
.

Denote by H(x, 0) the Heaviside step function defined by

(25) H(x, 0) :=

{

0, ∀x < 0

1, ∀x ≥ 0.

Define the expressions:

(26) f0
1 := (µ+ b)u1 + v1

(27) Detα(λ) := 4λ2
{

[−2λ3 sinh(λ) − αµ

a
sinh(λξ) sinh(λ(ξ − 1))] sin(λ) +

αµ

a
sin(λξ) sinh(λ) sin(λ(ξ − 1))

}

(28) Det0(λ) := −8λ5 sinh(λ) sin(λ)

(29) u0(λ, x) :=
1

2aλ3
[sin(λx) − sinh(λx)]H(x, 0), ∀x ∈ (0; 1)
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(30)







A(λ, α) := λ2(u0(λ, ·) ⋆ f0
1 )(1) + 2λ2αu1(ξ)u0(λ, 1− ξ)

B(λ, α) := (u0(λ, ·) ⋆ f0
1 )xx(1) + 2αu1(ξ)u0,xx(λ, 1− ξ)

C(λ, ξ) := λ2(u0(λ, ·) ⋆ f0
1 )(ξ)

For simplicity, the dependency of A, B and C on λ and ξ is omitted in the following.

(31)
R(µ,A0)F := (u0 ⋆ f

0
1 )(x) +

a

Det0(λ)

[

4λ4 {(A−B) sinh(λ) + (A+B) sin(λ)} u0(x, λ)

+4λ6 {(A+B) sin(λ) − (A−B) sinh(λ)} u0,xx(x, λ)
]

(32) ∆(λ, ξ) :=
4λ2µ

a
(sin(λξ) sin(λ(ξ − 1)) sinh(λ) − sinh(λξ) sinh(λ(ξ − 1)) sin(λ))

(33)
∆3(λ, ξ) :=

4λµ

a

{

sin(λ(ξ − 1))

(

A+B

2
[sinh(λξ) − sin(λξ)] − C sinh(λ)

)

+sinh(λ(ξ − 1))

(

A−B

2
[sinh(λξ)− sin(λξ)] + C sin(λ)

)}

(34)
∆1(λ, ξ) :=

4λ3µ

a

{

sin(λ(ξ − 1))

(

−A+B

2
[sinh(λξ) + sin(λξ)] + C sinh(λ)

)

+sinh(λ(ξ − 1))

(

−A−B

2
[sinh(λξ) + sin(λξ)] + C sin(λ)

)}

(35) ∆0(λ, ξ) := −4λ3
{

2C sin(λ) sinh(λ) − (A+B) sin(λ) sinh(λξ) − (A−B) sin(λξ) sinh(λ)

}

Then the solution U = (u, v) ∈ D(A) of (µI −A)U = F , with F = (u1, v1) ∈ H, is given by:

(36)

u(x) =
1

Detα(λ)

(

Det0(λ) · R(µ,A0)F + α

[

∆(λ, ξ)(u0 ⋆ f
0
1 )(x) + a∆3(λ, ξ)u0(λ, x) + a∆1(λ, ξ)u0,xx(λ, x)

−µ∆0(λ, ξ)u0(λ, x− ξ)

])

Proof. The computation of an explicit expression for the resolvent of A requires the search for a solution u in

H4(0; ξ) ∩H2(0; 1) (resp. in H4(ξ; 1) ∩H2(0; 1)) of the following problem on (0; ξ) (resp. on (ξ; 1)):

(37)



































au
(4)
x + (bµ+ µ2)u+ µαδξu = fα

1

v = µu− u1
u(0) = u(1) = 0

uxx(0) = uxx(1) = 0

uxx(ξ
−) = uxx(ξ

+)

u
(3)
x (ξ+)− u

(3)
x (ξ−) = g1

with fα
1 := (µ+ b)u1+ v1+αδξu1 and g1 :=

α

a
(−µu(ξ)+u1(ξ)). Note that f0

1 defined by (26) is fα
1 with α = 0.

First we still denote by u the function defined by

(38) u(x) :=

{

0, ∀x < 0 and x > ξ

u(x), ∀x ∈ (0; ξ).

7



where u is a solution of (37) on (0; ξ).
Denote by L the classical Laplace transform. Using four successive integrations by parts and the properties of

u at 0, 1, ξ− and ξ+ leads to:

(39) [Lu(4)x ](p) = p4[Lu](p) + [u(3)x (ξ−) + pu(2)x (ξ−) + p2ux(ξ
−) + p3u(ξ−)]e−pξ − [u(3)x (0) + p2ux(0)]

Applying the Laplace transform to Problem (37) on (0; ξ) gives:

(40)

[ap4+bµ+µ2][Lu](p)+αµu(ξ)e−pξ+a[u(3)x (ξ−)+pu(2)x (ξ−)+p2ux(ξ)+p
3u(ξ)]e−pξ−a[u(3)x (0)+p2ux(0)] = L(fα

1 ·χ(0;ξ))

We proceed similarly on (ξ; 1) and sum both functions to get:

(41)

[Lu](p) = 1

ap4 + bµ+ µ2

[

[Lfα
1 ](p) + au(3)x (0) + (u(3)x (ξ+)− u(3)x (ξ−))ae−pξ − au(3)x (1)e−p

+ap2[ux(0)− ux(1)e
−p]− αµu1(ξ)e

−pξ

]

=
1

ap4 + bµ+ µ2

[

[Lfα
1 ](p) + au(3)x (0) + αu(ξ)e−pξ − au(3)x (1)e−p + ap2[ux(0)− ux(1)e

−p]

]

The function u0 defined by (29) satisfies:

[

L
[

1

2aλ3
[sin(λ·) − sinh(λ·)]

]]

(p) =
1

ap4 + bµ+ µ2
. Thus

(42) u(x) = [u0(λ, ·) ⋆ fα
1 ](x) + au(3)x (0) · u0(λ, x) + aux(0) · u0,xx(λ, x) + [αu1(ξ)− 2αµu(ξ)] · u0(λ, x− ξ)

An analogous problem is treated in Section 2.1 of [12] for example. Taking into account u(1) = uxx(1) = 0 gives

the following two equations:

(43)























λ2[sinh(λ) + sin(λ)]u
(3)
x (0) + [sinh(λ)− sin(λ)]ux(0)−

αµ

a
[sinh(λ(1 − ξ))− sin(λ(1 − ξ))]u(ξ)

= −2λ3(u0 ⋆ f
0
1 )(1)− 4λ3αu1(ξ)u0(1− ξ)

λ2[sinh(λ)− sin(λ)]u
(3)
x (0) + [sinh(λ) + sin(λ)]ux(0)−

αµ

a
[sinh(λ(1 − ξ)) + sin(λ(1 − ξ))]u(ξ)

= −2λ(u0 ⋆ f
0
1 )

(2)(1)− 4λαu1(ξ)u0,xx(1 − ξ)

(22) has been used here since u0(0) = u0,x(0) = 0. The last step is to evaluate (42) at x = ξ:

(44) [sinh(λξ)− sin(λξ)]u(3)x (0) + λ2[sinh(λξ) + sin(λξ)]ux(0)− 2λ3u(ξ) = −2λ3(u0 ⋆ f
0
1 )(ξ).

Now (43) and (44) form a 3 × 3 system where the unknowns are u
(3)
x (0), ux(0) and u(ξ). Its determinant is

Detα(λ). Solving this system gives (36) after long calculations.

Remark 3.3 The expression R(λ,A0) represents the resolvent of the operator A0 which is A with α = 0. Thus

the expression for the solution u given by (36) is R(λ,A0)F if α = 0.

4 Eigenvalues and eigenfunctions of the operator A
The eigenvalues and eigenfunctions of the operator A defined by (11) and (12) in Section 2 are explicitly cal-

culated. For the sake of completeness, the case α = 0 which corresponds to the operator Aa0
of [4] is recalled

here. Note the dependency of A on a, b, α and ξ.

First a technical Lemma will be useful in the proof of Theorem 4.2 to handle with particular values for ξ.
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Lemma 4.1 (Is µ = −b an eigenvalue of A?)

Assume that a, b, α are strictly positive constants, ξ ∈ (0; 1). The following problem on H4(0; ξ) ∩ H2(0; 1)

(resp. on H4(ξ; 1) ∩H2(0; 1)):

(45)



























au
(4)
x − bαδξu = 0

u(0) = u(1) = 0

uxx(0) = uxx(1) = 0

uxx(ξ
−) = uxx(ξ

+)

u
(3)
x (ξ+)− u

(3)
x (ξ−) =

α

a
bu(ξ)

has no other solution than u ≡ 0 if the polynomial P (x) = 1 − 2αb

3
x2(1 − x)2 has no solution in (0; 1). There

are three cases:

• Case αb > 6: P has exactly two roots in (0; 1) called ξ1 and ξ2 in the following.

• Case αb = 6: P has exactly one root in (0; 1) called ξ0 in the following.

• Case αb < 6: the polynomial P does not vanish on (0; 1).

Proof. The proof starts like that of Proposition 3.2. Denote by u0 the function defined by u0(x) =
x3

6a
·

H(x, 0), ∀x ∈ (0; 1). It holds [L
(

x3

6a

)

](x 7→ p) =
1

ap4
, ∀p ∈ (0;+∞). Thus

(46) u(x) = au(3)x (0) · u0(λ, x) + aux(0) · u0,xx(λ, x) +
α

a
bu(ξ) · u0(λ, x− ξ).

Taking into account u(1) = uxx(1) = 0 gives the following two equations:

(47)







1

6
u(3)x (0) + ux(0) +

α

a
bu(ξ)(1− ξ)3 = 0

u
(3)
x (0) + 2αbu(ξ)(1 − ξ) = 0

The last step is to evaluate (46) at x = ξ:

(48)
ξ3

6
u(3)x (0) + ξux(0)− u(ξ) = 0.

Now (47) and (48) form a 3 × 3 system where the unknowns are u
(3)
x (0), ux(0) and u(ξ). An obvious solution

is (0; 0; 0). Its determinant is P (ξ).

The system has no other solution than (0; 0; 0) if and only if P (ξ) does not vanish.

The roots of P follow from a classical study of the variations of the function P .

Theorem 4.2 (Eigenvalues and eigenfunctions of the operator A)

Let A be the operator defined by (11) and (12) in Section 2. Denote by µn, n ∈ Z the eigenvalues of A
and by λ the complex numbers satisfying λ4 = −bµ+ µ2

a
. One of these λ’s is such that ∃k ∈ Z, arg(λ) ∈

[−π/4 + 2kπ;π/4 + 2kπ). The others are −λ and ±iλ and they are still denoted by λ.

1. Case α = 0.

If b ∈ R+∗ − {2√an2π2, n ∈ Z∗}, then ∃n0 such that 2
√
an2

0π
2 < b < 2

√
a(n0 + 1)2π2 and

(49) µ±
n =











1

2

(

−b±
√

b2 − 4an4π4
)

, n = 1, 2, . . . , n0

1

2

(

−b± i
√

4an4π4 − b2
)

, n > n0.
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The algebraic multiplicity of these eigenvalues is 1.

If ∃n0 such that b = 2
√
an2

0π
2 then µn0

= − b

2
and the algebraic multiplicity of this eigenvalue may

not exceed 2.

In both cases, the associated eigenfunction is defined on (0; 1) by

(50) Φ±
n (x) = sin(nπx)(1, µ±

n ), n ≥ 1.

2. Case α 6= 0.

(a) Case αb < 6: µ = −b is not an eigenvalue of A.

If ξ /∈ Q, µ is an eigenvalue of A if and only if the corresponding λ’s satisfy λ /∈ {kπ, k ∈ Z},
λ /∈ {ikπ, k ∈ Z} and the characteristic equation:

(51) 2(µ+ b) sinh(λ) sin(λ) + αλ [sin(λ) sinh(λξ) sinh(λ(1 − ξ))− sinh(λ) sin(λξ) sin(λ(1 − ξ))] = 0

and the associated eigenfunction is Φ(µ, ·) = (φ(λ, ·)(1, µ) where φ(λ, ·) is defined on (0; 1) by

φ(λ, x) :=
1

|λ|2 · e(ξ−2)|λ|

{

sin(λ) sinh(λ)[sin(λ(x − ξ))− sinh(λ(x − ξ))] ·H(x, ξ)

+ sinh(λ) sin(λ(1 − ξ)) sin(λx)− sin(λ) sinh(λ(1 − ξ)) sinh(λx)

}(52)

with H(x, ξ) the Heaviside step function at ξ.

Denote by r = r(a, b) the real positive number such that r4 =
b2

4a
. Then, if

(53) α = − 4ar3 sinh(r) sin(r)

b[sinh(r) sin(rξ) sin(r(ξ − 1))− sin(r) sinh(rξ) sinh(r(ξ − 1))]

then µ = −b/2 is an eigenvalue of A with algebraic multiplicity at least 2 and its geometric multi-

plicity is 1.

If α takes any other value, the algebraic multiplicity of µ as an eigenvalue of A is at least 1 and

its geometric multiplicity is 1.

(b) Case αb = 6: there exists ξ0 in (0; 1) such that, if ξ = ξ0, µ = −b is an eigenvalue of A (= A(ξ)). If

ξ 6= ξ0, µ = −b is not an eigenvalue of A (= A(ξ)). In both cases, if ξ /∈ Q, the other eigenvalues

and the associated eigenfunctions are given by the same expressions as in the preceding case.

(c) Case αb > 6: there exist ξ1 and ξ2 in (0; 1) such that, if ξ = ξ1 or ξ = ξ2, µ = −b is an eigenvalue

of A (= A(ξ)). If ξ /∈ {ξ1, ξ2}, µ = −b is not an eigenvalue of A (= A(ξ)). In both cases, if ξ /∈ Q,

the other eigenvalues and the associated eigenfunctions are given by the same expressions as in the

first case.

Proof. First of all, the operator A has already been proved to have no imaginary eigenvalues (cf. the proof of

Theorem 2.4). In particular, 0 is not an eigenvalue.
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The computation of the eigenelements of A requires the search for a solution u in H4(0; ξ) ∩H2(0; 1) (resp. in

H4(ξ; 1) ∩H2(0; 1)) of the following problem on (0; ξ) (resp. on (ξ; 1)):

(54)



























au
(4)
x + (bµ+ µ2)u+ µαδξu = 0

u(0) = u(1) = 0

uxx(0) = uxx(1) = 0

uxx(ξ
−) = uxx(ξ

+)

u
(3)
x (ξ+)− u

(3)
x (ξ−) = −α

a
µu(ξ)

Case α = 0: the proof is that of Lemma 2.2 of [4], mutatis mutandis.

Case α 6= 0 and αb < 6: since neither µ = 0 nor µ = −b is an eigenvalue of A (cf. Lemma 4.1), λ cannot

vanish and a particular solution of Problem (54) is:

(55) up(λ, x) := − αµ

2aλ3
u(ξ) [sinh(λ(x − ξ))− sin(λ(x − ξ))]H(x, ξ), ∀x ∈ (0; 1)

where H(x, ξ) is for the Heaviside step function defined by

(56) H(x, ξ) :=

{

0, ∀x < ξ

1, ∀x ≥ ξ.

This result is not new: it can be found in [12] for example.

The general solution of this problem (i.e. with u
(3)
x (ξ+)− u

(3)
x (ξ−) = 0) can be written as:

(57) ug(λ, x) :=

{

P1 cosh(λx) +Q1 sinh(λx) +R1 cos(λx) + S1 sin(λx), ∀x ∈ (0; ξ]

P2 cosh(λ(x − ξ)) +Q2 sinh(λ(x − ξ)) +R2 cos(λ(x − ξ)) + S2 sin(λ(x − ξ)), ∀x ∈ [ξ; 1)

Using the boundary conditions for u and uxx as well as the continuity of uxx and u
(3)
x at ξ, it holds:

(58)











P1 = R1 = 0

P2 = Q1 sinh(λξ), Q2 = Q1 cosh(λξ), R2 = S1 sin(λξ) and S2 = S1 cos(λξ)

sinh(λ)Q1 = − αµ

2aλ3
u(ξ) sinh(λ(ξ − 1)) and sin(λ)S1 =

αµ

2aλ3
u(ξ) sin(λ(ξ − 1))

If ξ /∈ Q, λ /∈ {kπ, k ∈ Z∗} and λ /∈ {ikπ, k ∈ Z∗}. Indeed, if ∃k ∈ Z∗, such that λ = kπ, then sin(λ) = 0

but sinh(λ) 6= 0 and the last identity of (58) is:

(59)
αµ

2aλ3
u(ξ) sin(kπ(ξ − 1)) = 0

Since α 6= 0, µ 6= 0 and sin(kπ(ξ − 1)) 6= 0 (the expression only vanishes if ξ ∈ Q), it holds u(ξ) = 0. Now,

since sinh(λ) 6= 0, it implies Q1 = 0 and consequently, P2 = Q2 = 0. The vanishing of u(ξ) also implies that of

up. Thus

(60)

u(λ, x) = ug(λ, x) :=

{

S1 sin(nπx), ∀x ∈ (0; ξ]

S1 sin(nπξ) cos(nπ(x− ξ)) + S1 cos(nπξ) sin(nπ(x − ξ)) = S1 sin(nπx), ∀x ∈ [ξ; 1).

Now, u(ξ) = 0 = S1 sin(nπξ) and S1 6= 0 (otherwise u ≡ 0), then sin(nπξ) = 0, which contradicts the fact

that ξ /∈ Q.
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Analogously, λ /∈ {ikπ, k ∈ Z∗} if ξ /∈ Q.

Now, since λ /∈ {kπ, k ∈ Z∗} and λ /∈ {ikπ, k ∈ Z∗}, (58) becomes:

(61)















P1 = R1 = 0

Q1 = − αµ

2aλ3
u(ξ)

sinh(λ(ξ − 1))

sinh(λ)
and S1 =

αµ

2aλ3
u(ξ)

sin(λ(ξ − 1))

sin(λ)
P2 = Q1 sinh(λξ), Q2 = Q1 cosh(λξ), R2 = S1 sin(λξ) and S2 = S1 cos(λξ)

Combining that with classical trigonometric formulae leads to:

(62) ug(λ, x) := Q1 sinh(λx) + S1 sin(λx), ∀x ∈ (0; 1).

In particular u(ξ) = up(λ, ξ) + ug(λ, ξ) = ug(λ, ξ) i.e.

(63) u(ξ) = − αµ

2aλ3
u(ξ)

(

sinh(λ(ξ − 1))

sinh(λ)
sinh(λx) − sin(λ(ξ − 1))

sin(λ)
sin(λx)

)

.

This implies the following equation, since u(ξ) 6= 0:

(64) 2aλ3 sinh(λ) sin(λ) − αµ [sin(λ) sinh(λξ) sinh(λ(1 − ξ))− sinh(λ) sin(λξ) sin(λ(1 − ξ))] = 0

Multiplying both sides by λ 6= 0, replacing (aλ4) by (−bµ−µ2) and dividing by µ 6= 0 leads to the characteristic

equation (51).

At last, u(ξ) can be rewritten as:

(65)

u(ξ) = ug(ξ) = − sinh(λ(ξ − 1))

sinh(λ)
sinh(λx) +

sin(λ(ξ − 1))

sin(λ)
sin(λx) =

2aλ3

αµ
due to the characteristic equation.

Hence the expression for the eigenfunction (52). Note that the factor
1

|λ|2 e
(ξ−2)|λ| is aimed at making the

function bounded with λ in H.

The last part of the proof concerns the multiplicity of the eigenvalues. Since the characteristic equation (51)

is invariant under the transform λ 7→ iλ, to each root λ such that λ ∈ {z ∈ C − {kπ, k ∈ Z}, ∃l ∈ Z, arg(z) ∈
[−π/4 + 2lπ;π/4 + 2lπ) correspond three other roots which are ±iλ and −λ. Up to a multiplicative constant,

the expression for the eigenfunction is invariant under the transform λ 7→ iλ, thus the geometric multiplicity of

µ as an eigenvalue is always 1.

Now (24) is equivalent to

(66) µ(λ) =
−b+ δ(λ)

2

where ±δ(λ) are the (complex) square roots of (b2 − 4aλ4).

The value µ = −b/2 is an eigenvalue of the operator A if and only if δ(λ) = 0 which is the case for the

value α defined by (53). In that case, the algebraic multiplicity is at least 2.

If α takes any other value, it is at least 1.
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Remark 4.3 The characteristic equation (51) (found for α 6= 0 and ξ /∈ Q) becomes sinh(λ) sin(λ) = 0, if α

is replaced by 0 in (51). The solutions of this equation are λ = nπ, n ∈ Z and λ = inπ, n ∈ Z. Now, if α

tends to 0, αb < 6 so µ = −b is not an eigenvalue of A and since 0 is not an eigenvalue of A, λ 6= 0. Thus the

corresponding eigenvalues are those given for Case α = 0 in Theorem 4.2, which is coherent.

Remark 4.4 (Case β > 0) The eigenfunctions of Problem (4)-(6) with the additional term βδξ are unchanged

(cf. (52)) and the characteristic equation (51) becomes:

(67) 2aλ3 sinh(λ) sin(λ)− (αµ + β) [sin(λ) sinh(λξ) sinh(λ(1 − ξ))− sinh(λ) sin(λξ) sin(λ(1 − ξ))] = 0.

Multiplying both sides by λ 6= 0, replacing (aλ4) by (−bµ − µ2) and dividing by µ 6= 0 leads to the following

characteristic equation:

(68) 2(µ+ b) sinh(λ) sin(λ) +

(

α+
β

µ

)

λ [sin(λ) sinh(λξ) sinh(λ(1 − ξ))− sinh(λ) sin(λξ) sin(λ(1 − ξ))] = 0.

The asymptotic behaviour of the eigenvalues is often useful for the study of stabilization. The following Propo-

sition gives what we call the asymptotic characteristic equation.

Proposition 4.5 (Large eigenvalues of the operator A)

Let A be the operator defined by (11) and (12) in Section 2. Denote by µn, n ∈ Z the eigenvalues of A
and by λ the complex numbers satisfying λ4 = −bµ+ µ2

a
. One of these λ’s is such that ∃k ∈ Z, arg(λ) ∈

[−π/4 + 2kπ;π/4 + 2kπ). The others are −λ and ±iλ and they are still denoted by λ.

Assume that α > 0, αb < 6 and ξ /∈ Q.

Then µ is a large eigenvalue of A if and only if the corresponding λ’s satisfy the asymptotic characteristic

equation:

(69) sinh(λ) sin(λ) = 0.

The algebraic multiplicity of µ as a large eigenvalue of A is exactly 1 and its geometric multiplicity is 1.

Proof. We start from the characteristic equation (64) in which the trigonometric functions are replaced by:

(70)











sin(λ) =
eℑ(λ)

2i

[

−e−iℜ(λ) + e−2ℑ(λ)eiℜ(λ)
]

sinh(λ) =
eℜ(λ)

2

[

eiℑ(λ) − e−2ℜ(λ)e−iℑ(λ)
]

.

Denoting by

(71)

{

S(λ) := −e−iℜ(λ) + e−2ℑ(λ)eiℜ(λ)

Sh(λ) := eiℑ(λ) − e−2ℜ(λ)e−iℑ(λ)

the characteristic equation (64) is equivalent to:

(72)
eℑ(λ)+ℜ(λ)

4i

[

2aλ3S(λ)Sh(λ) − αµ[S(λ)Sh(λξ)Sh(λ(ξ − 1))− Sh(λ)S(λξ)S(λ(ξ − 1))]
]

= 0

and, since λ = 0 is excluded here, it is also:

(73) S(λ)Sh(λ)− α
µ

2aλ3
[S(λ)Sh(λξ)Sh(λ(ξ − 1))− Sh(λ)S(λξ)S(λ(ξ − 1))] = 0
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The expression [S(λ)Sh(λξ)Sh(λ(ξ − 1)) − Sh(λ)S(λξ)S(λ(ξ − 1))] is bounded with respect to λ, if ℜ(λ) and

ℑ(λ) tend to +∞ and the quotient
µ

2aλ3
tends to zero if |λ| tends to +∞. The other cases (ℜ(λ) and ℑ(λ)

tend to −∞, ℜ(λ) tends to ±∞ while ℑ(λ) tends to ∓∞) are treated similarly. Hence (69).

The multiplicity of the large eigenvalues follows from the fact that the roots of sin(λ) = 0 are simple as

well as those of sinh(λ) = 0. The result is proved using Rouché’s Theorem. We follow the proof of Lemma 2.4

of [1].

We denote by hα(λ) the left-hand side of (73) and define, for N large enough, the curves:

(74)















ΓS
±,n :=

{

z/|z ± nπ| = C0

n

}

ΓSh
±,n :=

{

z/|z ± inπ| = C′
0

n

}

Our aim is to choose C0 such that, by Rouché’s Theorem, hα has the same roots as sinh (resp. as sin) inside

the curve ΓSh
±,n (resp. ΓS

±,n) for every n > N where N is large enough.

The proof is written for z ∈ ΓSh
+,n. The rest is analogous.

The first step is to show that, if z ∈ ΓSh
+,n, then |Sh(z)| ≥ C0

|z| .

Writing z = inπ + ρne
iθ with ρn =

C0

n
and using trigonometric formulae lead to

(75)
| sinh(z)|2 = | sinh(inπ + ρne

iθ)|2 = sinh2(ρn cos(θ)) cos2(ρn cos(θ)) + cosh2(ρn cos(θ)) sin
2(ρn cos(θ))

= ρ2n + o(1).

Now |z|2 = ρ2n cos
2(θ) + (nπ + ρn sin(θ))

2 ≤ (nπ + ρn sin(θ))
2 and

(76)
C2

0

|z|2 ≤ C2
0

(nπ + ρn sin(θ))2
=

C2
0

n2π2
+ o

(

1

n2

)

=
C2

0

n2
+ o(1) = | sinh(z)|2.

Since |Sh(z)| = 2e−ℜ(z)| sinh(z)| and ℜ(z) = ρn cos(θ) tends to zero when n tends to +∞

(77) ∃N1, n ≥ N1 ⇒ 2e−ℜ(z) ≥ 1 and |Sh(z)| ≥ | sinh(z)| ≥ C0

|z| .

The second step is to show that, if z ∈ ΓSh
+,n, then |hα(z)− S(z)Sh(z)| ≤ |S(z)Sh(z)|.

By definition of hα(z), it holds:

(78) |hα(z)− S(z)Sh(z)| ≤ 1

|z| ·
∣

∣

∣

αµ

2aλ2

∣

∣

∣
· |S(z)| ·

∣

∣

∣

∣

Sh(ξz)Sh((ξ − 1)z)− Sh(z)
S(ξz)S((ξ − 1)z)

S(z)

∣

∣

∣

∣

.

If z ∈ ΓSh
+,n, ℑ(z) = nπ +

C0

n
sin(θ) ≥ nπ − C0

n
.

The expression
αµ

2az2

(

Sh(ξz)Sh((ξ − 1)z)− Sh(z)
S(ξz)S((ξ − 1)z)

S(z)

)

is bounded with respect to ℑ(z). Let us

denote by C0 the real number such that

(79) ∃C1, ∀z ∈ ΓSh
+,n,ℑ(z) ≥ C1 ⇒

∣

∣

∣

αµ

2aλ2

∣

∣

∣
·
∣

∣

∣

∣

Sh(ξz)Sh((ξ − 1)z)− Sh(z)
S(ξz)S((ξ − 1)z)

S(z)

∣

∣

∣

∣

≤ C0.

At last, there exists N2 such that N2π − C0

N2
> C1.

If N ≥ max{N1, N2}, z ∈ ΓSh
+,n ⇒ |hα(z)− S(z)Sh(z)| ≤ |S(z)Sh(z)|.
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Remark 4.6 The large roots of the characteristic equation (51) are close to the roots of (69), that is to say,

either (nπ) or (inπ) with n ∈ Z∗. The large eigenvalues µ of the operator A with α > 0 are thus near the

eigenvalues of the operator A0 given in the first part of Theorem 4.2.

Remark 4.7 (Case β > 0) The latter Proposition still holds for Problem (4)-(6) with the additional term βδξ.

Another natural question which arises in this context is that of the continuity of the eigenvalues with respect

to the parameter α.

Proposition 4.8 (Continuity of the eigenvalues and eigenvectors of the operator A with respect to α)

Let A be the operator defined by (11) and (12) in Section 2. Denote by µ an eigenvalue of A and by λ the com-

plex numbers satisfying λ4 = −bµ+ µ2

a
. One of these λ’s is such that ∃k ∈ Z, arg(λ) ∈ [−π/4+2kπ;π/4+2kπ).

The others are −λ and ±iλ and they are still denoted by λ.

Assume that α > 0, αb < 6 and ξ /∈ Q.

Then µ depends continuously on the parameter α and the eigenvector Φ(µ, ·) converges pointwise to the eigen-

vector Φ±
n (up to a multiplicative constant) when α tends to zero.

Proof. To state the continuity of µ with respect to α, we follow the proof of Remark 1 of [1]. We denote by

gα(λ) the left-hand side of (51).

For a fixed α, denote by λ0 a root of A. Since λ0 is isolated, there exists ρ > 0 such that

(80) gα(z) 6= 0, ∀z ∈ C, such that 0 < |z − λ0| < ρ.

Now, gα is a continuous function. Indeed the functions λ 7→ λ3, λ 7→ sin(λ) and λ 7→ sinh(λ) are continuous

functions on C. As for µ, it is the root of the second degree equation:

(81) µ2 + bµ+ aλ4 = 0.

Thus it is a continuous function of the coefficients of this equation i.e. a continuous function of the variable λ.

Setting D = {z ∈ C, such that |z − λ0| = ρ}, the continuity of gα implies that there exists a positive real

number κ such that |gα(z)| ≥ κ, ∀z ∈ D.

For a fixed positive real number ǫ0, we consider the mapping of two variables

(82) H : [0, ǫ0]×D → C : (ǫ, z) 7→ gα+ǫ(z)− gα(z).

Since it is a uniformly continuous function and since H(0; z) = 0 for all z ∈ D, we deduce the existence of a

positive real number δ such that

(83) |H(ǫ, z)| < κ, ∀(ǫ, z) ∈ [0; δ]×D.

The last two estimates imply that

(84) |gα+ǫ(z)− gα(z)| < |gα(z)|, ∀(ǫ, z) ∈ [0; δ]×D.

Hence Rouché’s theorem allows to conclude that gα+ǫ has the same number of roots as gα for all ǫ ∈ [0; δ]. Thus

the root λ of gα is a continuous function of α and, by composition, µ is also a continuous function of α.

To finish with the proof, note that, when α tends to zero, αb < 6 then µ + b 6= 0 and the characteristic

equation (51) becomes: sin(λ) sinh(λ) = 0. Thus λ tends either to (nπ) or to (inπ) with n ∈ Z∗.

If it tends to (nπ) for example, sin(λ) tends to zero and the eigenfunction tends to:

(85) lim
λ→nπ

φ(λ, x) :=
1

n2π2
· enπ(ξ−2) sinh(nπ) sin(nπ(1 − ξ)) sin(nπx).
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Indeed the other terms tend to zero since sin(λ) tends to zero and the following two expressions are bounded

with λ:

(86)











1

|λ|2 · e(ξ−2)|λ| sinh(λ)[sin(λ(x− ξ)) − sinh(λ(x − ξ))] ·H(x, ξ)

1

|λ|2 · e(ξ−2)|λ| sinh(λ(1− ξ)) sinh(λx).

And if λ tends to (inπ), sinh(λ) tends to zero and the eigenfunction tends to:

lim
λ→inπ

φ(λ, x) :=
1

n2π2
· enπ(ξ−2) sin(inπ) sinh(inπ(1− ξ)) sinh(inπx)

=− i
1

n2π2
· enπ(ξ−2) sinh(nπ) sin(nπ(1 − ξ) sin(nπx).

(87)

Indeed the other terms tend to zero since sinh(λ) tends to zero and the following two expressions are bounded

with λ:

(88)











1

|λ|2 · e(ξ−2)|λ| sin(λ)[sin(λ(x − ξ)) − sinh(λ(x − ξ))] ·H(x, ξ)

1

|λ|2 · e(ξ−2)|λ| sin(λ(1 − ξ)) sin(λx).

Hence the announced result concerning the eigenfunctions.

5 Localization of the eigenvalues of the operator A for small values

of α

The aim of this Section is to determine the localization of the eigenvalues of the operator A for small values of

α compared with the case α = 0 already studied in [4] and recalled in Theorem 4.2.

Theorem 5.1 (Localization of the eigenvalues of the operator A for small values of α)

Let A be the operator defined by (11) and (12) in Section 2 with ξ /∈ Q. Denote by µ an eigenvalue of A.

The case α = 0 is already known (cf. Theorem 4.2). If b ≤ 2
√
aπ2, then

(89) sup
µ∈σ(A)

ℜ(µ) = − b

2
.

If b > 2
√
aπ2, then

(90) sup
µ∈σ(A)

ℜ(µ) = 1

2
(−b+

√

b2 − 4aπ4).

Now, for any ǫ > 0, there exists α0 such that, if 0 < α < α0, it holds: if b ≤ 2
√
aπ2, then

(91) ℜ(µ) ≤ − b

2
+ ǫ.

If b > 2
√
aπ2, then

(92) ℜ(µ) ≤ 1

2
(−b+

√

b2 − 4aπ4) + ǫ.
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Proof. Since the study is restricted here to the case of the small non-vanishing values of α, the eigenvalues µ

of the operator A are known to be such that the corresponding λ’s satisfy λ /∈ {kπ, k ∈ Z}, λ /∈ {ikπ, k ∈ Z}
and the characteristic equation:

(93) 2aλ3 sinh(λ) sin(λ) − αµ [sin(λ) sinh(λξ) sinh(λ(1 − ξ))− sinh(λ) sin(λξ) sin(λ(1 − ξ))] = 0

(cf. Proof of Theorem 4.2).

The first remark is that this equation is invariant under the transform λ 7→ iλ so it is enough to consider

λ ∈ {z ∈ C− {kπ, k ∈ Z}, ∃l ∈ Z, arg(z) ∈ [−π/4 + 2lπ;π/4 + 2lπ).

In order to compute the first degree Mac Laurin polynomial for the function λ(α) i.e. to find λ1 such that

λ = nπ + λ1α + o(α) around the value α = 0, we write all the first degree Mac Laurin polynomials for the

functions involved in equation (93) as functions of λ around λ = nπ (n ∈ N∗):

(94)







λ3 = n3π3 + (3n2π2λ1)α+ o(α)

sinh(λ) = sinh(nπ) + cosh(nπ)λ1α+ o(α)

sin(λ) = (−1)nλ1α+ o(α)

Hence 2aλ3 sinh(λ) sin(λ) = [2a(−1)nn3π3 sinh(nπ)λ1]α+o(α). Now, ∃n0 such that 2an2
0π

2 < b < 2a(n0+1)2π2

and for n > n0 :

(95) µ+,−
n =

1

2

[

−b± i
√

4an4π4 − b2
]

+ o(1).

Inserting all these results into the characteristic equation (93) leads, for n such that n > n0, to:

(96) λ1 =
[−b± i

√
4an4π4 − b2] sin(nπξ) sin(nπ(ξ − 1))

4(−1)nan3π3
=

[−b± i
√
4an4π4 − b2](−1)n sin2(2nπξ)

8(−1)nan3π3
.

At last, λ = nπ + λ1α+ o(α) is put into the expression of µ±
n , which leads after some calculations to:

(97)















µ±
n =

1

2
[−b± i

√

4an4π4 − b2]± i
sin2(2nπξ)

2
√
4an4π4 − b2

[−b± i
√

4an4π4 − b2] · α+ o(α), ∀n > n0

µ±
n =

1

2
[−b±

√

b2 − 4an4π4]∓ sin2(2nπξ)

2
√
b2 − 4an4π4

[−b±
√

b2 − 4an4π4] · α+ o(α), ∀n, 1 ≤ n ≤ n0.

The real part of µ±
n is:

(98)











ℜ(µ±
n ) = − b

2
− 1

2
sin2(2nπξ) · α+ o(α), ∀n > n0

ℜ(µ±
n ) =

1

2
[−b±

√

b2 − 4an4π4]± sin2(2nπξ)

2
√
b2 − 4an4π4

[b∓
√

b2 − 4an4π4] · α+ o(α), ∀n, 1 ≤ n ≤ n0.

The eigenvalues of A for small positive values of α and large values of n are on the left of those we have for

α = 0 (whose real part is −b/2).

As for the case of small values of n (1 ≤ n < n0), since [b ∓
√
b2 − 4an4π4] > 0 and

√
b2 − 4an4π4 > 0,

the eigenvalues µ+
n of A for small positive values of α are on the right of those we have for α = 0 and the

eigenvalues µ−
n of A for small positive values of α are on the left of those we have for α = 0.

Moreover, 0 ≤ 1

2
sin2(2nπξ) · α ≤ α

2
and

∣

∣

∣

∣

sin2(2nπξ)

2
√
b2 − 4an4π4

[b∓
√

b2 − 4an4π4]

∣

∣

∣

∣

is bounded for n ≤ n0.
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Now, it holds, for all 1 ≤ n ≤ n0:

(99)

−b < 1

2
(−b−

√

b2 − 4aπ4) <
1

2
(−b−

√

b2 − 4an4π4) < − b

2
<

1

2
(−b+

√

b2 − 4an4π4) <
1

2
(−b+

√

b2 − 4aπ4) < 0.

Thus, for all n ≥ 1 and α sufficiently small:

(100) ℜ(µ±
n ) <

1

2
(−b+

√

b2 − 4aπ4).

Note that, if ξ belonged to Q, there would exist (m,n) ∈ (N∗)2 such that ξ =
m

n
and sin(2nπξ) would vanish

(as well as sin(2knπξ) for k ∈ Z). More calculations would be required to get the third (at least) degree Mac

Laurin polynomials of the functions involved in the characteristic equation since the second degree term for λ

and for µn also vanishes.

Remark 5.2 (Case β > 0) The first-degree Taylor polynomial linear approximation of ℜ(µ±
n ) if we add the

term βδξ to get Problem (4)-(6) contains the additional term:

(101)
±2 sin2(2nπξ)√
b2 − 4an4π4

· β.

Note that the real part of the eigenvalues µ+
n is larger than that of the same eigenvalues with β = 0. This

confirms what we said in the introduction: the stiffness term does not improve the decreasing of the energy. If

the SMA cables restrain the vibrations of girder bridges, it only comes from the damper term αutδξ.

All that is true if sin2(2nπξ) does not vanish, which happens for some values of ξ. That is why this result does

not contradict the experiments of [13].

6 Energy decreasing

Definition 6.1 (Functions Ψ±
n )

Consider µ such that λ defined by λ4 = −bµ+ µ2

a
satisfies the characteristic equation (51). It is already

known that µ is an eigenvalue of the operator A and that one of these λ’s is such that ∃k ∈ Z, arg(λ) ∈
[−π/4 + 2kπ;π/4 + 2kπ). The others are −λ and ±iλ. Consider this λ. If its modulus |λ| tends to +∞, then

there exists n ∈ Z∗ such that λ tends to nπ (respectively to inπ).

This integer n depends on µ.

The function Ψ±
n is defined on (0; 1) by

(102) Ψ±
n :=

1

n2π2
enπ(ξ−2) sinh(nπ) sin(nπ(1− ξ)) sin(nπx)(1, µ±)

(respectively by

(103) Ψ±
n := −i 1

n2π2
e(ξ−2)|λ| sin(nπ) sin(nπx)(1, µ±)).

Theorem 6.2 (Riesz basis for the operator A)

Let Φ(µ, ·) still be defined as in Theorem 4.2 and Ψ±
n given by the above definition. There exists n0 ≥ 1, such

that

(104)
∑

|n|≥n0

‖Φ(µ, ·)−Ψ±
n ‖2H <∞.

Thus, the root eigenvectors of A form a Riesz basis of H.
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Proof. First the Ψ±
n form an orthogonal basis (see [4]).

The inner product in H has two terms. Since the eigenvector Φ(µ, ·) is defined as Φ(µ, ·) := (φ(λ, ·)(1, µ)
and since µ has the same behaviour as λ2 for large values of λ, it is enough to consider the first term in the

inner product.

Now the eigenfunction defined by (52) is made of three terms. Let us start with the third one. The second one

is analogous with easier calculations. That is why we do not give details for this second term.
Let us prove that, if λ→ nπ (n ∈ N∗), then

∫ 1

0

∣

∣

∣
e(ξ−2)|λ| sin(λ) sinh(λ(1 − ξ)) sinh(λx) + e(ξ−2)nπ sin(nπ) sinh(nπ(1− ξ)) sinh(nπx)

∣

∣

∣

2

dx = O

(

1

n2

)

.

(105)

The integrand is of the form |A ·B −A0 · B0|2 ≤ 2|A−A0|2 · |B|2 + 2|A0|2 · |B −B0|2 with

(106) |A0|2 := |e(ξ−2)nπ sin(nπ) sinh(nπ(1 − ξ))|2 = O
(

e−2nπ
)

.

Since, for x ∈ (0; 1), sinh(λx) = O
(

e2|ℜ(λ)|
)

= O
(

e2nπ
)

(cf. proof of Proposition 4.5 about the large eigenval-

ues), it holds:

(107)

∫ 1

0

|B|2 :=

∫ 1

0

|sinh(λx)|2 dx = O
(

e2nπ
)

.

Thus it is enough to show the following two estimates:

|A−A0|2 :=
∣

∣

∣
e(ξ−2)|λ| sin(λ) sinh(λ(1 − ξ))− e(ξ−2)nπ sin(nπ) sinh(nπ(1 − ξ))

∣

∣

∣

2

= O

(

1

n2
e−2nπ

)

(108)

(109)

∫ 1

0

|B −B0|2 :=

∫ 1

0

|sinh(λx) − sinh(nπx)|2 dx = O

(

1

n2
e2nπ

)

.

Coming back to the definition of the trigonometric functions, it holds:

(110) sin(λ) − sin(nπ) =
1

2i

[

(eiℜ(λ)e−ℑ(λ) − einπ)− (e−iℜ(λ)eℑ(λ) − e−inπ)
]

.

Then, using the mean-value Theorem as well as the asymptotic behaviour of the difference (λ − nπ) obtained

in the proof of Proposition 4.5 about the large eigenvalues:

(111)

∣

∣eiℜ(λ)e−ℑ(λ) − einπ
∣

∣

2
=

∣

∣

(

eiℜ(λ) − einπ
)

+
(

e−ℑ(λ) − 1
)

· eiℜ(λ)
∣

∣

2

≤ 2
(

e−ℑ(λ) − 1
)2

+ 2 |cos(ℜ(λ)x) − cos(nπ) + i (sin(ℜ(λ)) − sin(nπ))|2

≤ 2
(

e−ℑ(λ) − 1
)2

+ 2 (cos(ℜ(λ)) − cos(nπ))
2
+ 2 (sin(ℜ(λ)) − sin(nπ))

2

≤ C2
0

n2
exp

(

2

(

C0

n
+ o(1/n)

))

+ 4 (ℜ(λ)− nπ)
2
= O

(

1

n2

)

.

Now (108) is of the form |E · F − E0 · F0|2 ≤ 2|E − E0|2 · |F |2 + 2|E0|2 · |F − F0|2 with

(112)



































|F − F0|2 :=
∣

∣eiℜ(λ)e−ℑ(λ) − einπ
∣

∣

2
= O

(

1

n2

)

|E0|2 :=
∣

∣e(ξ−2)nπ sinh(nπ(1 − ξ))
∣

∣

2
= O

(

e−2nπ
)

|E − E0|2 :=
∣

∣e(ξ−2)|λ| sinh(λ(1 − ξ))− e(ξ−2)nπ sinh(nπ(1− ξ))
∣

∣

2
= O

(

e−2nπ
)

| sin(λ)|2 =

∣

∣

∣

∣

sin

(

nπ +O

(

1

n

))∣

∣

∣

∣

2

=

∣

∣

∣

∣

(−1)n sin

(

O

(

1

n

))∣

∣

∣

∣

2

= O

(

1

n2

)

.
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Hence (108). Analogously, it holds:

(113) sinh(λx)− sinh(nπx) =
1

2

[

(eℜ(λ)xeiℑ(λ)x − enπx)− (e−ℜ(λ)xe−iℑ(λ)x − e−nπx)
]

.

Using once more the mean-value Theorem as well as the asymptotic behaviour of the difference (λ−nπ) obtained

in the proof of Proposition 4.5 about the large eigenvalues:

(114)

∣

∣eℜ(λ)xeiℑ(λ)x − enπx
∣

∣

2
=

∣

∣

(

eℜ(λ)x − enπx
)

+
(

eiℑ(λ)x − 1
)

· eℜ(λ)x
∣

∣

2

≤ 2
(

eℜ(λ)x − enπx
)2

+ 2e2ℜ(λ)x
[

(cos(ℑ(λ)x) − 1)
2
+ sin2(ℑ(λ)x)

]

≤ 4
C2

0

n2
exp

(

2

(

nπ +
C0

n
+ o(1/n)

))

= O

(

1

n2
e2nπ

)

.

Hence (109).

The first term of the eigenfunction has to be considered.

Since | sin(λ)|2 = O

(

1

n2

)

and
∣

∣e(ξ−2)|λ| sinh(λ) sinh(λ(x − ξ))H(x, ξ)
∣

∣

2
= O(1) for x > ξ, it holds, if λ → nπ

(n ∈ N∗):

∫ 1

0

∣

∣

∣e(ξ−2)|λ| sin(λ) sinh(λ) sinh(λ(x − ξ))H(x, ξ)
∣

∣

∣

2

dx = O

(

1

n2

)

.(115)

This ends the proof.

Finally, the energy is proved to decay exponentially and the localization of the eigenvalues for small values

of α leads to a lower bound for the decay rate in that case. This bound is the optimal decay rate obtained for

α = 0 in [4] which means that the decay rate for small values of α > 0 is equal to that with α = 0 (i.e. without

SMA cables). SMA cables do not restrain the vibrations of girder bridges if α is close to zero. This is not in

contradiction with the experiments of [13] but it means that the simple fact of adding SMA cables may not be

enough.

Theorem 6.3 (Exponential stability and decay rate for small values of α)

System (1)-(3) (presented in the introduction) is exponentially stable and, for any ǫ > 0, there exists α0 such

that for any 0 < α < α0, for any solution U of (13) with initial data U0 ∈ D(A), there exist constants C > 0

and ω0(ǫ) < 0 depending on a, b and α such that:

E(t) ≤ Ce2ω0(ǫ)t‖U0‖2D(A), ∀t > 0,

where E(t) is defined by (7) and

(116)











ω0(ǫ) := − b

2
+ ǫ, if b ≤ 2

√
aπ2

ω0(ǫ) :=
1

2
(−b+

√

b2 − 4aπ4) + ǫ, if b > 2
√
aπ2.

Proof. According to Theorem 6.2, the system of eigenvectors of A constitutes a Riesz basis. Consequently,

by a standard argument (see the proof of Theorem 2.5 of [4] for example), the optimal energy decay rate is

identified with the supremum of the real part of the eigenvalues of A.

Thus the result follows from Theorem 5.1.
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Remark 6.4 (Case α = 0)

In [4] the systems of eigenvectors of A and A0 (obtained with α = 0) are proved to be quadratically close in

V ×L2(0, 1) using the explicit expression of the eigenfunctions of both operators. Thus, it follows from Theorem

3 in Appendix D of [19], that the system of eigenvectors of A0 constitutes a Riesz basis. Consequently, by a

standard argument (see the proof of Theorem 2.5 in [4]), the optimal energy decay rate is identified with the

supremum of the real part of the eigenvalues of A0. With the notation of Theorem 6.3, it means that ω = ω0(0)

when α = 0.

7 Conclusion

One could have thought that adding the damping term αδξut, α > 0 would logically increase the decay rate of

the energy compared with the case α = 0 already studied by Ammari, Dimassi and Zerzeri in [4].

In fact this is not obvious. If α is small, we have proved that the decay rate does not change. Is it clear

that it will increase with α? This is not clear either.

As announced in the introduction, let us prove that, if α = 0, increasing the value of b may not increase

the decay rate of the energy. Indeed, in that situation, the energy decreases exponentially and the decay rate

is given by the maximum of ℜµ+
n which is

(117) ℜµ+
n =

1

2

(

−b+
√

b2 − 4an4π4
)

=
−2an4π4

b+
√
b2 − 4an4π4

, n = 1, 2, . . . , n0

where b ∈ R+∗ − {2√an2π2, n ∈ Z∗} and n0 is such that 2
√
an2

0π
2 < b < 2

√
a(n0 + 1)2π2.

Thus

(118) ℜµ+
n ≤ −2aπ4

b+
√

b2 − 4an4
0π

4
, n = 1, 2, . . . , n0

and the last bound tends to zero, if b tends to +∞.

In conclusion, the decay rate of the energy may be better with α > 0 (with α large enough) than with α = 0

i.e. Shape Memory Alloy cables may restrain the vibrations of girder bridges effectively.

The experiments of [13] would be confirmed mathematically if we were able to prove that there exist α > 0,

β > 0, ξ ∈ (0; 1) and ω1(α, β, ξ) < ω0(0), such that all the roots of the characteristic equation (68) are such

that the corresponding µ’s satisfy ℜ(µ) ≤ ω1(α, β, ξ). We conjecture that this requires a value for ξ which is

excluded in our theorems.
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I would like to dedicate this paper to D. Mercier with whom I have enjoyed doing mathematics for so many

years. I wish him a happy retirement!

References

[1] F. Abdallah, D. Mercier, S. Nicaise, Spectral analysis and exponential or polynomial stability of some

indefinite sign damped problems, Evol. Equ. Control Theory 2, No 1 (2013) 1-33.

[2] M. Akil, Y. Chitour, M. Ghader, A. Wehbe, Stability and Exact Controllability of a Timoshenko System

with Only One Fractional Damping on the Boundary, Asymptotic Analysis 119 (2020) 221-280.

21



[3] M. Akil, I. Issa, A. Wehbe, Energy decay of some boundary coupled systems involving wave Euler-Bernoulli

beam with one locally singular fractional Kelvin-Voigt damping, arXiv:2102.12732.

[4] K. Ammari, M. Dimassi, M. Zerzeri, The rate at which energy decays in a viscously damped hinged

Euler-Bernoulli beam, J. Diff. Equ. 257 (2014) 3501-3520.

[5] K. Ammari, M. Tucsnak, Stabilization of Bernouilli-Euler beams by means of a pointwise feedback force,

SIAM J. Control Optim. 39 (No. 4) (2000) 1160-1181.

[6] K. Ammari, M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feed-

backs, ESAIM: COCV 6 (2001) 361-386.

[7] W. Arendt, C.J.K. Batty, Tauberian theorems and stability of one-parameter of semi-groups, Trans. Amer.

Math. Soc. 305 (2) (1988) 837-852.

[8] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann.

347(2) (2010) 455-478.

[9] C. Castro, E. Zuazua, Exact boundary controllability of two Euler-Bernoulli beams connected by a point

mass, Mathematical and Computer Modelling, 32(2000) 955-969.

[10] S. Cox and E. Zuazua, The rate at which energy decays in a damped string, Partial Differential Equations,

19, (1994) 213-243.

[11] B. Dekoninck, S. Nicaise, Control of networks of Euler-Bernoulli beams, ESAIM : Control, Optimisation

and Calculus of Variations, 4(1999) 57-81.

[12] L. Majkut, Eigenvalue based inverse model of beam for structural modification and diagnostics. Part I:

Theoretical formulation, Latin American Journal of Solids and Structures (2010) 423-436.

[13] A-R. Liu, C-H. Liu, J-Y. Fu, Y-L. Pi, Y-H. Huang, J-P. Zhang, A Method of Reinforcement and Vibration

Reduction of Girder Bridges Using Shape Memory Alloy Cables, Int. J. Struct. Stab. Dyn. 17 (No. 7)

(2017) 1750076.

[14] D. Mercier, V. Régnier, Spectrum of a network of Euler-Bernoulli beams. J. Math. Anal. Appl., 337/1

(2007) 174-196.

[15] D. Mercier, V. Régnier, Control of a network of Euler-Bernoulli beams. J. Math. Anal. Appl., 342 (2008)

874-894.

[16] D. Mercier, V. Régnier, Boundary controllability of a chain of serially connected Euler-Bernoulli beams

with interior masses. Collect. Math. 60/3 (2009) 307-334.

[17] D. Mercier, V. Régnier, Decay rate of the Timoshenko system with one boundary damping, Evol. Equ.

Control Theory 8, No 2 (2019) 423-445.

[18] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied

Mathematical Sciences 44 (1983) Springer-Verlag.

[19] J. Pöschel, E. Trubowitz, Inverse Spectral Theory, Pure and Applied Mathematics, 130, Academic Press,

Boston, MA (1987).

[20] R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York (1980).

22

http://arxiv.org/abs/2102.12732

	1 Introduction
	2 Well-posedness and strong stability
	3 Explicit expression for the resolvent
	4 Eigenvalues and eigenfunctions of the operator A
	5 Localization of the eigenvalues of the operator A for small values of 
	6 Energy decreasing
	7 Conclusion

