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A CLASSIFICATION OF TOTALLY GEODESIC AND TOTALLY UMBILICAL LEGENDRIAN SUBMANIFOLDS OF (κ, µ)-SPACES
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We present classifications of totally geodesic and totally umbilical Legendrian submanifolds of (κ, µ)-spaces with Boeckx invariant I ≤ -1. In particular, we prove that such submanifolds must be, up to local isometries, among the examples that we explicitly construct.

Introduction

Although under a different name, (κ, µ)-spaces were introduced by D. E. Blair, T. Koufogiorgos and B. J. Papantoniou in [START_REF] Blair | Contact metric manifolds satisfying a nullity condition[END_REF] (for technical details, we refer to the Preliminaries section). Actually, these manifolds have proven to be really useful, because they provide non-trivial examples for some important classes of contact metric manifolds (for instance, the unit tangent sphere bundle of any Riemannian manifold of constant sectional curvature carries such a structure). The theory of (κ, µ)-spaces was soon developed, with many interesting results. In particular, we can point out the outstanding paper [START_REF] Boeckx | A full classification of contact metric (κ, µ)-spaces[END_REF], where E. Boeckx classified non-Sasakian (κ, µ)-spaces by using the invariant I (depending only on the values of κ and µ) introduced by himself. He also provided examples for all possible (κ, µ).

Nevertheless, the theory of submanifolds of (κ, µ)-spaces has not been developed in depth yet, even if we can find some very interesting papers about it. For example, in [START_REF] Montano | Invariant submanifolds of contact (κ, µ)-manifolds[END_REF], B. Cappelletti Montano, L. Di Terlizzi and M. M. Tripathi proved that any invariant submanifold of a non-Sasakian contact (κ, µ)-space is always totally geodesic and, conversely, that every totally geodesic submanifold of a non-Sasakian contact (κ, µ)-space such that µ = 0 and the characteristic vector field ξ is tangent to the submanifold is invariant. Motivated by these results, we consider the case of submanifolds which are normal to ξ. Moreover, we restrict our study to the case of Legendrian submanifolds, i.e., those with dimension n in a (2n + 1)-dimensional ambient space.

From our point of view, a key step in continuing the analysis of submanifolds of (κ, µ)spaces should be to understand the behavior of the so-called h operator of the ambient space with respect to the submanifold. Therefore, in this paper, we first establish in Section 3 a decomposition of that operator in its tangent and normal parts, and find its main properties. In Section 4 we present several examples of totally geodesic and totally umbilical Legendrian submanifolds of (κ, µ)-spaces with I ≤ -1. Actually, we prove in Section 5 that these examples constitute the complete local classification of these kinds of submanifolds, given by our main results Theorems 5.1 and 5.2.

Preliminaries

Let M be a (2n + 1)-dimensional smooth manifold M . Then an almost contact structure is a triplet (ϕ, ξ, η), where ϕ is a (1, 1)-tensor field, η a 1-form and ξ a vector field on M satisfying the following conditions (2.1)

ϕ 2 = -I + η ⊗ ξ, η(ξ) = 1.
It follows from (2.1) that ϕξ = 0, η • ϕ = 0 and that rank(ϕ) = 2n ( [START_REF] Blair | Riemannian Geometry of Contact and Symplectic Manifolds, Second Edition[END_REF]).

Any almost contact manifold (M, ϕ, ξ, η) admits a compatible metric, i.e. a Riemannian metric g satisfying

g (ϕX, ϕY ) = g (X, Y ) -η (X) η (Y ) , for all vector fields X, Y on M . It follows that η = g(•, ξ) and g(•, ϕ•) = -g(ϕ•, •).
The manifold M is said to be an almost contact metric manifold with structure (ϕ, ξ, η, g).

We can define the fundamental 2-form Φ of an almost contact metric manifold by Φ (X, Y ) = g (X, ϕY ). If Φ = dη, then η becomes a contact form, with ξ its Reeb/characteristic vector field and D = ker(η) its corresponding contact distribution, and M (ϕ, ξ, η, g) is called a contact metric manifold.

Every contact metric manifold satisfies

(2.2) ∇ξ = -ϕ -ϕh,
where 2h is the Lie derivative of ϕ in the direction of ξ, i.e. h = 1 2 L ξ ϕ. The tensor field h is symmetric with respect to g, satisfies hξ = 0, anticommutes with ϕ and vanishes identically if and only if the Reeb vector field ξ is Killing. In this last case the contact metric manifold is said to be K-contact.

An almost contact metric manifold is said to be normal if N ϕ := [ϕ, ϕ]+2dη⊗ξ = 0. A normal contact metric manifold is called a Sasakian manifold. Any Sasakian manifold is K-contact and the converse holds in dimension 3 but not in general.

A special class of contact metric manifold is that of (κ, µ)-spaces, first studied in [START_REF] Blair | Contact metric manifolds satisfying a nullity condition[END_REF] under the name of contact metric manifolds with ξ belonging to the (κ, µ)-distribution. A contact metric (κ, µ)-space is one satisfying the condition

(2.3) R(X, Y )ξ = κ (η(Y )X -η(X)Y ) + µ (η(Y )hX -η(X)hY ),
for some constants κ and µ. In this paper, all manifolds will be contact metric, so we will shorten "contact metric (κ, µ)-space" to "(κ, µ)-space". Every (κ, µ)-space satisfies

h 2 = (κ -1)ϕ 2 , (2.4) (∇ X ϕ)Y = g(X, Y + hY )ξ -η(Y )(X + hX), (2.5) (∇ X h)Y = ((1 -κ)g(X, ϕY ) -g(X, ϕhY ))ξ -η(Y )((1 -κ)ϕX + ϕhX) -µη(X)ϕhY. (2.6)
Moreover, we have the following result:

Theorem 2.1 ([2]
). Let M 2n+1 (ϕ, ξ, η, g) be a (κ, µ)-space. Then κ ≤ 1. If κ = 1, then h = 0 and M 2n+1 is a Sasakian manifold. If κ < 1, M 2n+1 admits three mutually orthogonal and integrable distributions E M (0) = span(ξ), E M (λ) and E M (-λ) determined by the eigenspaces of h, where λ = √ 1 -κ.

As a consequence of this theorem, it was also proved in [START_REF] Blair | Contact metric manifolds satisfying a nullity condition[END_REF] that the sectional curvature of a plane section {X, Y } normal to ξ is given by

(2.7) K(X, Y ) =      2(1 + λ) -µ, for any X, Y ∈ E M (λ), n > 1, 2(1 -λ) -µ, for any X, Y ∈ E M (-λ), n > 1, -(κ + µ)(g(X, ϕY )) 2 , for any unit vectors X ∈ E M (λ), Y ∈ E M (-λ).
Given a contact metric manifold M 2n+1 (ϕ, ξ, η, g), a D a -homothetic deformation is a change of structure tensors of the form

(2.8) φ = 1 a ϕ, ξ = ξ, η = aη, g = ag + a(a -1)η ⊗ η,
where a is a positive constant. It is well known that M 2n+1 ( φ, ξ, η, g) is also a contact metric manifold.

It was also proved in [START_REF] Blair | Contact metric manifolds satisfying a nullity condition[END_REF] that the class of (κ, µ)-spaces remains invariant under D a -homothetic deformations. Indeed, applying one of these deformations to a (κ, µ)-space yields a new (κ, μ)space, where

κ = κ + a 2 -1 a 2 , μ = µ + 2a -2 a .
Many authors studied (κ, µ)-spaces later, as can be seen in [START_REF] Blair | Riemannian Geometry of Contact and Symplectic Manifolds, Second Edition[END_REF]. We highlight here the work of Boeckx, who gave in [START_REF] Boeckx | A full classification of contact metric (κ, µ)-spaces[END_REF] an explicit writing of the curvature tensor of these spaces:

(2.9) R(X, Y )Z = 1 - µ 2 (g(Y, Z)X -g(X, Z)Y ) + g(Y, Z)hX -g(X, Z)hY -g(hX, Z)Y + g(hY, Z)X + 1 -µ 2 1 -κ (g(hY, Z)hX -g(hX, Z)hY ) - µ 2 (g(ϕY, Z)ϕX -g(ϕX, Z)ϕY ) + µg(ϕX, Y )ϕZ + κ -µ 2 1 -κ (g(ϕhY, Z)ϕhX -g(ϕhX, Z)ϕhY ) -η(X)η(Z) κ -1 + µ 2 Y + (µ -1)hY + η(Y )η(Z) κ -1 + µ 2 X + (µ -1)hX + η(X) κ -1 + µ 2 g(Y, Z) + (µ -1)g(hY, Z) ξ -η(Y ) κ -1 + µ 2 g(X, Z) + (µ -1)g(hX, Z) ξ.
Boeckx [START_REF] Boeckx | A full classification of contact metric (κ, µ)-spaces[END_REF] also classified the (κ, µ)-spaces in terms of an invariant that he introduced:

I M = 1-µ 2 √
1-κ . Indeed, he proved that if M 1 and M 2 are two non-Sasakian (κ i , µ i )-spaces of the same dimension, then I M 1 = I M 2 if and only if, up to a D a -homothetic deformation, the two spaces are locally isometric as contact metric spaces. In particular, if both spaces are simply connected and complete, they are globally isometric up to a D a -homothetic deformation.

It was also stated in paper [START_REF] Boeckx | A full classification of contact metric (κ, µ)-spaces[END_REF] that "it follows that we know all non-Sasakian (κ, µ)-spaces locally as soon as we have, for every odd dimension 2n + 1 and for every possible value for the invariant I, one (κ, µ)-space M with I M = I." For I > -1, we have the unit tangent sphere bundle T 1 M n (c) of a space of constant curvature c (c = 1) for the appropriate c (see [START_REF] Blair | Contact metric manifolds satisfying a nullity condition[END_REF]). For I ≤ -1, Boeckx presented in [START_REF] Boeckx | A full classification of contact metric (κ, µ)-spaces[END_REF] the following examples for any possible odd dimension 2n + 1 and value of I.

Example 2.2 ([3]

). Let g be a (2n + 1)-dimensional Lie algebra with basis {ξ, X 1 , . . . , X n , Y 1 , . . . , Y n } and the Lie brackets given by

(2.10) [ξ, X 1 ] = - αβ 2 X 2 - α 2 2 Y 1 , [Y i , Y j ] = 0, i, j = 2, [ξ, X 2 ] = αβ 2 X 1 - α 2 2 Y 2 , [X 1 , Y 1 ] = -βX 2 + 2ξ, [ξ, X i ] = - α 2 2 Y i , i ≥ 3, [X 1 , Y i ] = 0, i ≥ 2, [ξ, Y 1 ] = β 2 2 X 1 - αβ 2 Y 2 , [X 2 , Y 1 ] = βX 1 -αY 2 , [ξ, Y 2 ] = β 2 2 X 2 + αβ 2 Y 1 , [X 2 , Y 2 ] = αY 1 + 2ξ, [ξ, Y i ] = β 2 2 X i , i ≥ 3, [X 2 , Y i ] = βX i , i ≥ 3, [X 1 , X i ] = αX i , i = 1, [X i , Y 1 ] = -αY i , i ≥ 3, [X i , X j ] = 0, i, j = 1, [X i , Y 2 ] = 0, i ≥ 3, [Y 2 , Y i ] = βY i , i = 2, [X i , Y j ] = δ ij (-βX 2 + αY 1 + 2ξ), i, j ≥ 3,
for real numbers α and β. Next we define a left-invariant contact metric structure (ϕ, ξ, η, g) on the associated Lie group G as follows:

• the basis {ξ, X 1 , . . . , X n , Y 1 , . . . , Y n } is orthonormal,

• the characteristic vector field is given by ξ,

• the one-form η is the metric dual of ξ,

• the (1, 1)-tensor field ϕ is determined by ϕξ = 0, ϕX i = Y i , ϕY i = -X i . It can also be proved that G is a (κ, µ)-space with κ = 1 - (β 2 -α 2 ) 2 16 , µ = 2 + α 2 + β 2 2 .
Moreover, supposing β 2 > α 2 gives us that λ = β 2 -α 2
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= 0 and thus the (κ, µ)-space is not Sasakian. The orthonormal basis also satisfies that hX i = λX i and hY i = -λY i .

Finally,

I G = -β 2 +α 2 β 2 -α 2 ≤ -1
, so for the appropriate choice of β > α ≥ 0, I G attains any real value smaller than or equal to -1.

Lastly, we will recall some formulas from submanifolds theory in order to fix our notation. Let N be an n-dimensional submanifold isometrically immersed in an m-dimensional Riemannian manifold (M, g). Then, the Gauss and Weingarten formulas hold:

∇ X Y = ∇ X Y + σ(X, Y ), (2.11) ∇ X V = -A V X + ∇ ⊥ X V, (2.12 
) for any tangent vector fields X, Y and any normal vector field V . Here σ denotes the second fundamental form, A the shape operator and ∇ ⊥ the normal connection. It is well known that the second fundamental form and the shape operator are related the following way:

(2.13) g(σ(X, Y ), V ) = g(A V X, Y ).
We denote by R and R the curvature tensors of M and N , respectively. They are related by Gauss and Codazzi's equations

(2.14) R(X, Y, Z, W ) = R(X, Y, Z, W ) -g(σ(X, W ), σ(Y, Z)) + g(σ(X, Z), σ(Y, W )), (2.15) (R(X, Y )Z) ⊥ = (∇ X σ)(Y, Z) -(∇ Y σ)(X, Z), respectively, where R(X, Y )Z ⊥ denotes the normal component of R(X, Y )Z and (2.16) (∇ X σ)(Y, Z) = ∇ ⊥ X (σ(Y, Z)) -σ(∇ X Y, Z) -σ(Y, ∇ X Z).
The submanifold N is said to be totally geodesic if the second fundamental form σ vanishes identically. It is said that it is totally umbilical if there exists a normal vector field V such that σ(X, Y ) = g(X, Y )V , for any tangent vector fields X, Y . In fact, it can be proved that, in such a case, V has to be the mean curvature H = 1 n n i=1 σ(e i , e i ), where {e 1 , . . . , e n } is a local orthonormal frame. It is clear that every totally geodesic submanifold is also totally umbilical but the converse is not true in general.

Decomposition of the h operator

Let N be a Legendrian submanifold of a (2n + 1)-dimensional (κ, µ)-space M , that is, an n-dimensional submanifold such that ξ is normal to N . Therefore, η(X) = 0 for any tangent vector field X and so it follows from (2.1) that ϕ 2 X = -X. Moreover, it was proved in [START_REF] Lotta | Slant submanifolds in contact geometry[END_REF] that N is an anti-invariant submanifold, i.e., ϕX is normal for any tangent vector field X. Moreover, under our assumptions about the dimensions of M and N , it holds that every normal vector field V can be written as ϕX, for a certain tangent vector field X.

Therefore, we can decompose the h operator in the following way:

(3.1) hX = h 1 X + ϕh 2 X,
for any tangent vector field X, where h 1 X (respectively ϕh 2 X) denotes the tangent (resp. normal) component of hX.

We can prove the following properties:

Proposition 3.1.
Let N be a Legendrian submanifold of a (κ, µ)-space M . Then, h 1 and h 2 are symmetric operators that satisfy h 1 ξ = h 2 ξ = 0 and equations

h 2 1 + h 2 2 = (1 -κ)I, (3.2) h 1 h 2 = h 2 h 1 . (3.3)
Proof. The symmetry of h 1 and h 2 can be directly obtained from that of h and the compatibility of the metric g. Similarly, hξ = 0 implies h 1 ξ = h 2 ξ = 0.

Furthermore, given a tangent vector field X, it follows from (2.1), (3.1) and the anticommutativity of h and ϕ that

(3.4) hϕX = -ϕhX = -ϕh 1 X + h 2 X.
Using (2.4), we have that h 2 X = (1 -κ)X. On the other hand, by virtue of (3.1) and (3.4), we obtain

h 2 X = h(h 1 X + ϕh 2 X) = h 2 1 X + ϕh 2 h 1 X -ϕh 1 h 2 X + h 2 2 X.
Joining both expressions for h 2 and identifying the tangent and normal parts give us equations (3.2) and (3.3). Proposition 3.2. Let N be a Legendrian submanifold of a (κ, µ)-space M . Then, h 1 and h 2 satisfy

(∇ X h 1 )Y = -ϕσ(X, h 2 Y ) -h 2 ϕσ(X, Y ), (3.5) (∇ X h 2 )Y = ϕσ(X, h 1 Y ) + h 1 ϕσ(X, Y ), (3.6)
for any tangent vector fields X, Y .

Proof. It follows from Gauss and Weingarten formulas (2.11) and (2.12) that

(∇ X ϕ)Y = ∇ X ϕY -ϕ∇ X Y = -A ϕY X + ∇ ⊥ X ϕY -ϕ∇ X Y -ϕσ(X, Y
), for any tangent vector fields X, Y . Therefore, by using (2.5) and identifying the tangent and normal components, we obtain:

A ϕY X = -ϕσ(X, Y ), (3.7) ∇ ⊥ X ϕY = ϕ∇ X Y + g(X, Y + h 1 Y )ξ. (3.8)
On the other hand, using (2.6) and (3.1), we have

∇ X (h 1 Y + ϕh 2 Y ) -h(∇ X Y ) = g(X, h 2 Y )ξ,
from where, by virtue of Gauss and Weingarten formulas (2.11) and (2.12), we deduce (3.9)

∇ X h 1 Y + σ(X, h 1 Y ) -A ϕh 2 Y X + ∇ ⊥ X ϕh 2 Y -h∇ X Y -hσ(X, Y ) = g(X, h 2 Y )ξ. We can put h∇ X Y = h 1 ∇ X Y + ϕh 2 ∇ X Y by (3.1). Now, by using (2.1), we can write σ(X, Y ) = -ϕ 2 σ(X, Y ) + η(σ(X, Y ))ξ, and hence hσ(X, Y ) = -hϕ 2 σ(X, Y ) = ϕhϕσ(X, Y ). Again, equation (3.1) gives us hσ(X, Y ) = ϕh 1 ϕσ(X, Y ) -h 2 ϕσ(X, Y ).
Therefore, if we substitute these two expressions, together with (3.7) and (3.8), in (3.9), we obtain:

(3.10) ∇ X h 1 Y + σ(X, h 1 Y ) + ϕσ(X, h 2 Y ) + ϕ∇ X h 2 Y + g(X, h 2 Y + h 1 h 2 Y )ξ -h 1 ∇ X Y -ϕh 2 ∇ X Y -ϕh 1 ϕσ(X, Y ) + h 2 ϕσ(X, Y ) = g(X, h 2 Y )ξ.
By identifying the tangent and normal parts of (3.10), equations (3.5) and (3.6) hold.

It is clear that, if we multiply (3.10) by ξ, then we obtain

g(σ(X, h 1 Y ), ξ) + g(X, h 1 h 2 Y ) = 0,
for any tangent vector fields X, Y . In fact, we can prove a more general result, which will be very useful in the proof of our main theorems:

Lemma 3.3.
Let N be a Legendrian submanifold of a (κ, µ)-space M . Then,

(3.11) g(σ(X, Y ), ξ) + g(X, h 2 Y ) = 0,
for any tangent vector fields X, Y .

Proof. It follows from Weingarten equation (2.12) and from (2.13) that g(X, ∇ X ξ) + g(σ(X, Y ), ξ) = 0, for any tangent vector fields X, Y . Then, it is enough to use (2.1), (2.2) and (3.1) to obtain (3.11).

Examples

We will present in this section some examples of totally geodesic and totally umbilical Legendrian submanifolds of the (κ, µ)-spaces of Example 2.2. Let us begin with the totally geodesic ones.

Example 4.1. Let M be a (κ, µ)-space from Example 2.2 with invariant I M ≤ -1. Then, the distribution D spanned by {X 1 , . . . , X n } is involutive and any integral submanifold N of it is a totally geodesic submanifold of M . Indeed, the involutive condition can be easily checked from (2.10). In order to prove the totally geodesic one, it is enough to show that ∇ X i X j ∈ D, for any i, j = 1, . . . , n, where ∇ denotes the Levi-Civita connection on M . In fact, in can be directly computed that:

(4.1) ∇ X 1 X 1 = ∇ X 1 X 2 = 0, ∇ X 2 X 1 = -αX 2 , ∇ X 2 X 2 = αX 1 , ∇ X 1 X i = ∇ X 2 X i = 0, for any i = 3, . . . , n, ∇ X i X 1 = -αX i , ∇ X i X 2 = 0, ∇ X i X j = δ ij αX 1 ,
for any i, j = 3, . . . , n.

Moreover, since hX i = λX i for any i = 1, . . . , n, then T N = E M (λ).

Example 4.2. Let M be a (κ, µ)-space from Example 2.2 with invariant I M ≤ -1. Then, the distribution D spanned by {Y 1 , . . . , Y n } is also involutive and any integral submanifold N of it is a totally geodesic submanifold of M . Indeed, both conditions can be checked the same way as in Example 4.1, by taking now into account that:

(4.2) ∇ Y 1 Y 1 = βY 2 , ∇ Y 1 Y 2 = -βY 1 , ∇ Y 2 Y 1 = ∇ Y 2 Y 2 = 0, ∇ Y 1 Y i = ∇ Y 2 Y i = 0, for any i = 3, . . . , n, ∇ Y i Y 1 = 0, ∇ Y i Y 2 = -βY i , ∇ Y i Y j = δ ij βY 2 ,
for any i, j = 3, . . . , n.

In this case, since hY i = -λY i for any i = 1, . . . , n, then T N = E M (-λ).

Example 4.3. Let M be a (κ, µ)-space from Example 2.2 with invariant I M ≤ -1. Then, the distribution D spanned by {X 1 , Y 2 , Z 3 , . . . , Z n }, where Z i is either X i or Y i , for any i = 3, . . . , n, is also involutive and any integral submanifold N of it is a totally geodesic submanifold of M .

Indeed, both conditions can be checked the same way as in Examples 4.1 and 4.2, by using now (4.1), (4.2) and the following formulas:

(4.3) ∇ X 1 Y i = 0 for any i = 2, . . . , n, ∇ Y 2 X i = 0 for any i = 1, 3, . . . , n, ∇ X i Y 2 = ∇ Y i X 1 = 0 for any i = 3, . . . , n, ∇ X i Y j = ∇ Y i X j = 0 for any i, j = 3, . . . , n, such that i = j.
Finally, if we define E(±λ) := E M (±λ)∩N , we can write

T N = E(λ)⊕E(-λ), with dim E(λ) = k (respectively dim E(-λ) = n -k), where k -1 (resp. n -k -1) is the number of Z i such that Z i = X i (resp. Z i = Y i )
. Therefore, we can obtain an example for any value of k from 1 to n -1.

We now present the family of totally umbilical examples:

Example 4.4. Let M be a (κ, µ)-space from Example 2.2 with invariant I M ≤ -1. Then, the distribution D spanned by {cX 1 +dY 1 , . . . , cX n +dY n }, with c, d non-zero constants, is involutive and any integral submanifold N of it is a totally umbilical submanifold of M . Indeed, the involutive condition can be easily checked from (2.10). In order to prove the totally umbilical one, we will first show that σ(cX i + dY i , cX j + dY j ) = 2δ ij cdλξ by checking that the Levi-Civita connection on M satisfies ∇ cX i +dY i (cX j + dY j ) = Z + 2δ ij cdλξ, with Z ∈ D, for any i, j = 1, . . . , n. In fact, it can be directly computed that:

∇ cX 1 +dY 1 (cX 1 + dY 1 ) = βd(cX 2 + dY 2 ) + 2cdλξ, ∇ cX 1 +dY 1 (cX 2 + dY 2 ) = -βd(cX 1 + dY 1 ), ∇ cX 2 +dY 2 (cX 1 + dY 1 ) = -αc(cX 2 + dY 2 ), ∇ cX 2 +dY 2 (cX 2 + dY 2 ) = αc(cX 1 + dY 1 ) + 2cdλξ,
∇ cX 1 +dY 1 (cX j + dY j ) = ∇ cX 2 +dY 2 (cX j + dY j ) = 0, for any j = 3, . . . , n,

∇ cX i +dY i (cX 1 + dY 1 ) = -αc(cX i + dY i ), ∇ cX i +dY i (cX 2 + dY 2 ) = -βd(cX i + dY i )
, for any i = 3, . . . , n,

∇ cX i +dY i (cX j + dY j ) = δ ij (αc(cX 1 + dY 1 ) + βd(cX 2 + dY 2 ) + 2cdλξ),
for any i, j = 3, . . . , n.

Therefore, we can write σ(cX i + dY i , cX j + dY j ) = g(cX i + dY i , cX j + dY j ) 2cdλ c 2 +d 2 ξ and, since 2cdλ c 2 +d 2 ξ = 0, the submanifold is totally umbilical but not totally geodesic. Finally, we observe that cX i + dY i , i = 1, . . . , n, is not an eigenvector of h.

Main results

Theorem 5.1. Let N be a Legendrian submanifold of a (2n + 1)-dimensional (κ, µ)-space M , with κ < 1 and I M ≤ -1. If N is totally geodesic, then, up to local isometries, it must be one of the submanifolds given in Examples 4.1, 4.2 or 4.3.

Proof. Since the submanifold N is totally geodesic, if follows directly from (3.11) that h 2 = 0 and so h| N = h 1 and h 2 1 = (1 -κ)I (see (3.1) and (3.2)). The operator h 1 is differentiable and symmetric, so it is diagonalisable and it has two eigenvalues ±λ = ± √ 1 -κ, which are distinct and constant everywhere.

Let us denote by E(λ) and E(-λ) the eigenspaces of h 1 in T N and by k the dimension of E(λ). This means that dim(E(-λ)) = n -k (because dim N = n) and that k ∈ {0, . . . , n}. The multiplicities of both eigenspaces must be the same at every point because the coefficients of the characteristic polynomial are differentiable. Indeed, the characteristic polynomial of h 1 is completely determined by k (thus, for different indices k, we get a different characteristic polynomial). Since k is an integer, it is impossible by continuity to go from one to the other one, thus the eigendistributions are differentiable. We can then write (5.1)

T N = E(λ) ⊕ E(-λ),
where dim(E(λ)) = k and dim(E(-λ)) = n -k, for a certain k ∈ {0, . . . , n}. Moreover, we deduce from (3.5) that ∇h

1 = 0. Therefore, it is straightforward to check that, if Y λ ∈ E(λ), then ∇ X Y λ ∈ E(λ), for every tangent vector field X. Similarly, if Y -λ ∈ E(-λ), then ∇ X Y -λ ∈ E(-λ).
Thus, E(λ) and E(-λ) are parallel and hence involutive. By virtue of Theorem 5.4 of [START_REF] Kobayashi | Foundations of Differential Geometry[END_REF], N can be locally decomposed as M 1 × M 2 , where M 1 and M 2 are leaves of the distributions E(λ) and E(-λ), respectively. Furthermore, it follows from (2.7) that, if dim

M 1 ≥ 2 (resp. dim M 2 ≥ 2), then M 1 (resp. M 2 ) has constant curvature 2(1 + λ) -µ = 2λ(I M + 1) ≤ 0 (resp. 2(1 -λ) -µ = 2λ(I M -1) < 0).
Recall that we have examples of submanifolds with decomposition (5.1) for every value of k. Indeed, see Example 4.1 for k = n, Example 4.2 for k = 0 and Example 4.3 for any value of k from 1 to n -1. Now, we will prove that any example must be one of these, up to local isometries.

Let us denote by F : N n → M 2n+1 (κ, µ) the immersion of N into M . Since κ < 1 and I M ≤ -1, we can suppose that, locally, M 2n+1 (κ, µ) is one of the Lie groups from Example 2.2. Thus, it is homogeneous and we can fix a point p 0 ∈ N such that F (p 0 ) = e, where e is the neutral element of the group.

We will give the explicit details when 2 ≤ k ≤ n -2. The other cases can be done in a similar way. We have that N = M 1 (2λ(I M + 1)) × M 2 (2λ(I M -1)) and we also identify N with its image as the (totally geodesic) integral submanifold through e of the distribution spanned by X 1 , X 3 , . . . , X k+1 , Y 2 , Y k+2 , . . . Y n . We denote by G the latter immersion of N and we pick an orthonormal basis {e 1 , . . . , e n } at the point p 0 of N , with G(p 0 ) = e, such that E p 0 (λ) = e 1 (p 0 ), . . . , e k (p 0 ) , E p 0 (-λ) = e k+1 (p 0 ), . . . , e n (p 0 ) and

dG(e 1 (p 0 )) = X 1 (e), dG(e j (p 0 )) = X j+1 (e), j = 2, . . . , k, dG(e k+1 (p 0 )) = Y 2 (e),
dG(e j (p 0 )) = Y j (e), j = k + 2, . . . , n, Note that by construction both We now take a geodesic γ in N through the point p 0 . Since N is totally geodesic, both with respect to the immersions H • F and G, the curves H • F (γ) and G(γ) are both geodesics in M 2n+1 (κ, µ) through e. Since d(H • F )(e i ) = dG(e i ), they are also determined by the same initial conditions. Therefore, both curves need to coincide, so H • F (γ(s)) = G(γ(s)) for all s and thus F and G are congruent. Theorem 5.2. Let N be a Legendrian submanifold of a (2n + 1)-dimensional (κ, µ)-space M , with n ≥ 3, κ < 1 and I M ≤ -1. If N is totally umbilical (but not totally geodesic), then, up to local isometries, it must be one of the submanifolds given in Example 4.4.

Proof. Since N is totally umbilical (but not totally geodesic), then there exists a normal vector field V = 0 such that σ(X, Y ) = g(X, Y )V . It follows from (3.11) that g(X, Y )η(V ) + g(X, h 2 Y ) = 0, for any tangent vector fields X, Y , and thus

(5.2) h 2 Y = aY,
with a = -η(V ).

We will now prove that a = 0. Indeed, if we suppose that a = 0, then h 2 = 0 and, as in the proof of Theorem 5.1, we have that h = h 1 , h 2 1 = (1 -κ)I and ∇h 1 = 0. Moreover, since h 2 = 0, it is clear that ∇h 2 = 0 and we obtain from (3.6) that ϕσ(X, h 1 Y ) + h 1 ϕσ(X, Y ) = 0, which, by using that N is totally umbilical, becomes (5.3) g(X, h 1 Y )ϕV + g(X, Y )h 1 ϕV = 0, for any tangent vector fields X, Y . Let us now choose unit vector fields X λ ∈ E(λ) and X -λ ∈ E(-λ). Then, taking X = Y = X λ in (5.3) implies h 1 ϕV = -λϕV and taking X = Y = X -λ in (5.3) implies h 1 ϕV = λϕV . Since V = 0, this yields a contradiction. Therefore, we can suppose from now on that (5.2) holds for a = 0. We deduce from equation (3.6) that

X(a)Y = ϕσ(X, h 1 Y ) + h 1 ϕσ(X, Y ) = g(X, h 1 Y )ϕV + g(X, Y )h 1 ϕV,
for every X, Y tangent vector fields.

Since dim N ≥ 3, we can take Y linearly independent from ϕV and h 1 ϕV . Then we deduce from the previous equation that X(a) = 0, for every X, thus a is a constant. Moreover, g(X, h 1 Y )ϕV + g(X, Y )h 1 ϕV = 0, for every X, Y tangent vector fields. Taking unit X = Y , we obtain that h 1 ϕV = -g(X, h 1 X)ϕV , which is only possible if h 1 = 0 or ϕV = 0. If h 1 = 0, then substituting (5.2) in (3.6) gives that 2ag(X, Y )ϕV = 0, so again ϕV = 0.

In both cases, we have obtained that ϕV = 0, so V is parallel to ξ and it follows from a = -η(V ) that V = -aξ and σ(X, Y ) = -ag(X, Y )ξ holds, for every X, Y tangent, where a = 0 is a constant.

Let us now recall Codazzi's equation (2.15):

(R(X, Y )Z) ⊥ = (∇ X σ)(Y, Z) -(∇ Y σ)(X, Z).
The first term is the normal component of R(X, Y )Z, so by equation (2.9) and the fact that

h 2 X = h 1 X + aϕX, we can write (R(X, Y )Z) ⊥ = a(g(Y, Z)ϕX -g(X, Z)ϕY ) + a 1 -µ 2 1 -κ (g(h 1 Y, Z)ϕX -g(h 1 X, Z)ϕY ) -a κ -µ 2 1 -κ (g(Y, Z)ϕh 1 X -g(X, Z)ϕh 1 Y ).
On the other hand,

(∇ X σ)(Y, Z) = ∇ ⊥ X (σ(Y, Z)) -σ(∇ X Y, Z) -σ(Y, ∇ X Z) = = ∇ ⊥ X (-ag(Y, Z)ξ) + ag(∇ X Y, Z)ξ + ag(∇ X Z, X)ξ = = -ag(Y, Z)∇ ⊥ X ξ = ag(Y, Z)(ϕX + ϕh 1 X). Therefore, the second term of Codazzi's equation is (∇ X σ)(Y, Z) -(∇ Y σ)(X, Z) = ag(Y, Z)(ϕX + ϕh 1 X) -ag(X, Z)(ϕY + ϕh 1 Y ) = a(g(Y, Z)ϕX -g(X, Z)ϕY ) + a(g(Y, Z)ϕh 1 X -g(X, Z)ϕh 1 Y ).
Joining both terms, and bearing in mind that a = 0, we obtain

1 -µ 2 1 -κ (g(h 1 Y, Z)ϕX -g(h 1 X, Z)ϕY ) = = 1 -µ 2 1 -κ (g(Y, Z)ϕh 1 X -g(X, Z)ϕh 1 Y ).
Since we are supposing that

I M = 1-µ 2 √ 1-κ ≤ -1, then 1-µ 2 
1-κ = 0 and applying ϕ to both terms of the previous equation gives us that

g(h 1 Y, Z)X -g(h 1 X, Z)Y = g(Y, Z)h 1 X -g(X, Z)h 1 Y,
for every X, Y, Z tangent vector fields.

Since dim(N ) ≥ 3, we can choose Y = Z unit and orthogonal to X, h 1 X, and we obtain that

(5.4) h 1 X = g(h 1 Y, Y )X,
and thus h 1 X = bX for some function b. From (3.2), we have that a 2 + b 2 = 1 -κ = λ 2 = 0, and in particular that b must be constant. We can also write that a = λ cos(θ) and b = λ sin(θ) for some constant θ ∈ [-π, π]. Since a = 0, then θ = ± π 2 . By Gauss equation (2.14) and the fact that h

2 X = aX, then R(X, Y, Z, W ) = R(X, Y, Z, W ) -g(σ(X, W ), σ(Y, Z)) + g(σ(X, Z), σ(Y, W )) = = R(X, Y, Z, W ) -a 2 (g(X, W )g(Y, Z) + g(X, Z)g(Y, W )),
for every X, Y, Z, W tangent vector fields.

On the other hand, we know from equation (2.9) and the fact that hX = bX + aϕX, that

R(X, Y, Z, W ) = 1 - µ 2 + 2b + b 2 1 -µ 2 1 -κ + a 2 κ -µ 2 
1 -κ (g(X, W )g(Y, Z) -g(X, Z)g(Y, W )). = -λ cos(θ)g(cX i + dY i , cX j + dY j )ξ, and the rest of conditions also hold. Now, we will prove that any totally umbilical submanifold N must be one of these, up to local isometries. Let us denote by F : N n → M 2n+1 (κ, µ) the immersion of N into M (κ, µ). Since κ < 1 and I M ≤ -1, we can suppose that, locally, M (κ, µ) is one of the Lie groups from Example 2.2. Thus, it is homogeneous and we can fix a point p 0 ∈ N such that F (p 0 ) = e, where e is the neutral element of the group.

We have that N = H(2(1 -µ 2 + λ sin(θ))) and we can identify N with its image as the (totally umbilical) integral submanifold through e of the distribution spanned by {cos π 4 -θ 2 X i (e)sin π 4 -θ 2 Y i (e), i = 1, . . . , n}. We denote by G this immersion of N and we take an orthonormal basis {e 1 , . . . , e n } at the point p 0 of N such that dG(e i ) = cos π 4 -θ 2 X i (e) -sin π 4 -θ 2 Y i (e), i = 1, . . . , n.

On the other hand, we have that h(dF (e i )) = dF (λ sin(θ)e i ) + ϕdF (λ cos(θ)e i ) = λ sin(θ)dF (e i ) + λ cos(θ)ϕdF (e i ), (5.6) hϕ(dF (e i )) = -ϕh(dF (e i )) = λ cos(θ)dF (e i ) -λ sin(θ)ϕdF (e i ).

(5.7) Therefore, using (5.6) and (5.7), we can construct eigenvectors of h associated with the eigenvalue λ the following way:

X 1

 1 (e), X 3 (e), . . . , X k+1 (e), ϕY 2 (e), ϕY k+2 (e), . . . , ϕY n (e) and dF (e 1 (p 0 )), . . . , dF (e k (p 0 )), ϕdF (e k+1 (p 0 )), . . . , ϕdF (e n (p 0 )) are basis of E e (λ). So, in view of Theorem 3 of [3], there exists an isometry H of M 2n+1 (κ, µ) preserving the structure such that H(e) = e and H maps one basis of E e (λ) into the other one. As a consequence, we have that H • F (e) = G(e) and d(H • F )(e i ) = dG(e i ).

2 + 2b + b 2 1 -µ 2 1 -κ + a 2 κ -µ 2 1 -κ + 1 (µ 2 √ 1 -h 1 X 4 = -δ ij sin π 2 -

 222121142 Joining the last two equations, we obtainR(X, Y, Z, W ) = 1 -µ g(X, W )g(Y, Z) -g(X, Z)g(Y, W )) X, W )g(Y, Z) -g(X, Z)g(Y, W )) =2(1 -µ 2 + b)(g(X, W )g(Y, Z) -g(X, Z)g(Y, W )).This means that the submanifold is a space form with constant curvature 2(1-µ 2 +b). Moreover, sinceI M = 1κ ≤ -1 and b = λ sin(θ) = λ, then 1 -µ 2 + b < 1 -µ 2 + λ ≤ 0 and the submanifold is a hyperbolic space N = H(2(1 -µ 2 + λ sin(θ))). Summing up, there exists θ ∈ [-π, π], θ = ± π 2 = λ sin(θ)X, h 2 X = λ cos(θ)X, σ(X, Y ) = -λ cos(θ)g(X, Y )ξ.We have examples of submanifolds with these properties for every value of θ. Indeed, Examples 4.4 with c = cos(π/4 -θ/2), d = -sin(π/4 -θ/2) satisfy σ(cX i + dY i , cX j + dY j ) = 2δ ij cdλξ = -2δ ij sin π θ λξ = -δ ij λ cos(θ)ξ =