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EVERY CENTROAFFINE TCHEBYCHEV HYPEROVALOID IS

ELLIPSOID

XIUXIU CHENG, ZEJUN HU AND LUC VRANCKEN

Abstract. In this paper, we study locally strongly convex Tchebychev hyper-
surfaces, namely the centroaffine totally umbilical hypersurfaces, in the (n+1)-
dimensional affine space Rn+1. We first make an ordinary-looking observation
that such hypersurfaces are characterized by having a Riemannian structure
admitting a canonically defined closed conformal vector field. Then, by taking
the advantage of properties about Riemannian manifolds with closed conformal
vector fields, we show that the ellipsoids are the only centroaffine Tchebychev
hyperovaloids. This solves the longstanding problem of trying to generalize the
classical theorem of Blaschke and Deicke on affine hyperspheres in equiaffine
differential geometry to that in centroaffine differential geometry.

1. Introduction

In this paper, we study locally strongly convex centroaffine hypersurfaces, i.e.,
the hypersurfaces of the (n + 1)-dimensional affine space Rn+1 with centroaffine
normalization. It is well-known that in both Euclidean and equiaffine differential
geometry, the Weingarten (shape) operator contains essential geometric information
about a hypersurface. This is different in centroaffine differential geometry, where
one studies the properties of hypersurfaces in Rn+1 which are invariant under the
centroaffine transformation group G = GL(n + 1,R), where G keeps the origin of
Rn+1 fixed. Since the centroaffine normalization induces the identity as Weingarten
operator, from the point of view of relative differential geometry any nondegenerate
hypersurface with centroaffine normalization is a relative hypersphere (see sections
6.3 and 7.2 of [21]); thus in centroaffine differential geometry the usually induced
Weingarten operator contains no further geometric information.

In such situation, C.P. Wang [27] made a breakthrough by giving the reasonable
definition for the Weingarten (shape) operator on centroaffine hypersurfaces of the
(n+ 1)-dimensional affine space Rn+1. Specifically, on a centroaffine hypersurface,
besides the centroaffine metric, there exists a canonically defined Tchebychev vector

field T . Let ∇̂ denote the Levi-Civita connection with respect to the centroaffine
metric, then the operator T := ∇̂T was introduced to be defined as the centroaffine
shape operator by Wang [27]. (Note: eversince [27] the centroaffine shape operator
T is also called the Tchebychev operator). To justify this terminology, it was shown
that the Tchebychev operator T in centroaffine differential geometry is analogous to
the shape operator in the equiaffine differential geometry. Indeed, C.P. Wang [27]

Key words and phrases. Centroaffine hypersurface, Tchebychev hypersurface, shape operator,
difference tensor, hyperovaloid, ellipsoid.

2010 Mathematics Subject Classification. Primary 53A15; Secondary 53C23, 53C24.
The first author was supported by CPSF, Grant No. 2019M652554. The second author was

supported by NSF of China, Grant No. 11771404.

1

http://arxiv.org/abs/1911.05222v1


2 X. CHENG, Z. HU AND L. VRANCKEN

calculated the first variation formula of the centroaffine area functional and, as an
important result, he showed (cf. Theorem 2 of [27]) that the critical hypersurfaces of
this functional are exactly hypersurfaces with vanishing centroaffine mean curvature
H := 1

n
TrT ; moreover, as in Euclidean and equiaffine differential geometry, C.P.

Wang also proved (Theorem 1 in [27]) that the only hyperovaloid in Rn+1 with
constant centroaffine mean curvature is the ellipsoid centered at the origin of Rn+1.
It is worthy to note that, as there are no general results about the sign of the
second variation of the centroaffine area functional at the critical hypersurfaces, it
was suggested in [10] (see also [26]) to call a centroaffine hypersurface with H = 0
the centroaffine extremal hypersurface.

The centroaffine shape operator T was studied systematically from Liu andWang
[16]. In particular, there is an important subclass of centroaffine hypersurfaces,
namely the centroaffine totally umbilical hypersurfaces. By definition, it consists of
centroaffine hypersurfaces whose shape operator T is proportional to the identity
isomorphism of the tangent spaces. Following Liu and Wang [16], these centroaffine
hypersurfaces are usually referred to as Tchebychev hypersurfaces. Obviously, the
notion of Tchebychev hypersurfaces generalizes in a natural way the notion of affine
hyperspheres in equiaffine differential geometry. More to be pointed out is that
both, i.e., Tchebychev hypersurfaces in centroaffine differential geometry and affine
hyperspheres in equiaffine differential geometry, have exactly the similar structure
equations (cf. [9, 12, 16, 18, 21]). Because of such nice similarity, the Tchebychev
hypersurfaces have been under extensive study. For references, we refer to [1, 6, 11,
14, 15, 16, 17, 22].

In equiaffine differential geometry, we have the well-known classical theorem of
Blaschke and Deicke (cf. Theorem 3.35 in [12]) which states that if a hyperovaloid
(which means a connected compact locally strongly convex hypersurface without
boundary in the (n + 1)-dimensional affine space Rn+1) is an affine hypersphere,
then it is an ellipsoid. The Blaschke and Deicke’s theorem and the preceding
mentioned similarity between affine hyperspheres and Tchebychev hypersurfaces
motivate strongly to study the following problem, which will provide an interesting
new global characterization of the ellipsoid as centroaffine Tchebychev hyperovaloid.

PROBLEM ([6]). Let x : Mn → Rn+1 (n ≥ 2) be a centroaffine Tchebychev
hyperovaloid. Must x(Mn) be an ellipsoid containing the origin of Rn+1?

The PROBLEM has been considered, first by Liu and Wang [16] but restricts to
the case n = 2. It was solved affirmatively:

Theorem 1.1 (cf. Theorem 4.3 of [16]). Let x : M2 → R3 be a centroaffine
Tchebychev ovaloid. Then x(M2) is an ellipsoid in R3 such that the origin of R3

is in the inside of x(M2).

The PROBLEM has been further investigated by many researchers in higher
dimensional cases. In [15], Liu, Simon and Wang solved it affirmatively under an
additional nondegenerate equiaffine Gauss map condition (cf. Theorem 5.2 of [15]).
In Theorem 5 of [14], following an argument about affine hyperspheres, M. Li also
obtained some partial results from the point of view in relative affine differential
geometry. More recently, joint with Z.K. Yao the first two authors of the present
article solved the PROBLEM affirmatively under the additional condition the cen-
troaffine metric having nonnegative sectional curvatures (Theorem 1.7 of [6]). We
would mention that the method of [6] depends heavily on the recent classification of
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locally strongly convex centroaffine hypersurfaces with parallel traceless difference
tensor (cf. [4, 5, 9]).

In this paper, as the continuation of [6], we still focus on the above PROBLEM.
By adopting a new approach, we first make an ordinary-looking but important
observation (Lemma 2.1) that the Tchebychev vector field on centroaffine hyper-
surfaces is closed, and that a centroaffine hypersurface is a Tchebychev hypersurface
if and only if its Tchebychev vector field is a conformal vector field with respect to
the centroaffine metric. Then, by taking the advantage of typical properties about
a Riemannian manifold with closed conformal vector field, we eventually solve the
PROBLEM affirmatively for every dimension n ≥ 3. Our main result can be stated
as follows:

Theorem 1.2. Let x : Mn → Rn+1 (n ≥ 3) be a centroaffine Tchebychev hyper-
ovaloid. Then x(Mn) is an ellipsoid such that the origin of Rn+1 is in the inside
of x(Mn).

Remark 1.1. A centroaffine hypersurface x : Mn → Rn+1 is a Tchebychev hyper-
surface if and only if it satifies T = α id, where α is a smooth function on Mn.
However, different from the affine hyperspheres in equiaffine differential geometry,
where the equiaffine shape operator must be a constant multiple of the identity
isomorphism of the tangent space, here the function α can be not a constant, even
if for the ellipsoids or for the general hyperquadrics. This significant difference
explains partially why the proof of Theorem 1.2 is complicated and very different
from that of Blaschke and Deicke’s theorem. To have a better understanding of
these respects, we would suggest the readers to compare the proof of Theorem 3.35,
p.145 in [12] and that of Theorem 5 in [14].

2. Preliminaries

In this section, we briefly recall some basic facts about centroaffine hypersurfaces.
More details are referred to the monographs [12, 18, 21] and the references [13, 27].

Let Rn+1 be the (n + 1)-dimensional affine space equipped with its canonical
flat connection D. Let Mn be a connected n-dimensional smooth manifold. An
immersion x : Mn → Rn+1 is said to be a centroaffine hypersurface if, for each
point x ∈Mn, the position vector x from the origin O ∈ Rn+1 is transversal to the
tangent space TxM

n of Mn at x. In that situation, the position vector x defines
the centroaffine normalization modulo orientation. For any vector fields X and Y
tangent to Mn, we have the centroaffine formula of Gauss:

DXx∗(Y ) = x∗(∇XY ) + h(X,Y )(−εx), (2.1)

where ε = 1 or −1. Moreover, associated with (2.1) we will call −εx, ∇ and h
the centroaffine normal, the induced (centroaffine) connection and the centroaffine
metric, respectively. In this paper, we will consider only locally strongly convex
centroaffine hypersurfaces such that the bilinear 2-form h defined by (2.1) is definite;
and we will choose ε such that the centroaffine metric h is positive definite.

Let x : Mn → R
n+1 be a locally strongly convex centroaffine hypersurface and

∇̂ be the Levi-Civita connection of its centroaffine metric h. Then the tensor K,
defined by K(X,Y ) := KXY := ∇XY −∇̂XY , is called the difference tensor of the

centroaffine hypersurface. It is symmetric as both connections ∇ and ∇̂ are torsion

free. Let R̂ denote the Riemannian curvature tensor of the centroaffine metric h,
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then the following Gauss and Codazzi equations hold:

R̂(X,Y )Z = ε(h(Y, Z)X − h(X,Z)Y )− [KX ,KY ]Z, (2.2)

(∇̂ZK)(X,Y ) = (∇̂XK)(Z, Y ). (2.3)

Moreover, we further have the following totally symmetry equation

h((∇̂ZK)(X,Y ),W ) = h((∇̂XK)(Z,W ), Y ). (2.4)

Associated to a centroaffine hypersurface x : Mn → R
n+1, we can define the

Tchebychev form T ♯ and the Tchebychev vector field T in implicit form by

T ♯(X) = 1
n
Tr (KX), h(T,X) = T ♯(X), ∀X ∈ TMn. (2.5)

Moreover, using the difference tensor K and the Tchebychev vector field T , one
can further define the symmetric traceless difference tensor K̃ by

K̃(X,Y ) := K(X,Y )− n
n+2

[
h(X,Y )T + h(X,T )Y + h(Y, T )X

]
. (2.6)

It is well-known that K̃ vanishes if and only if x(Mn) lies in a hyperquadric (cf.
Section 7.1 in [21]; Lemma 2.1 and Remark 2.2 in [11]).

As have been stated in the Introduction, the centroaffine shape operator T of
a centroaffine hypersurface x : Mn → Rn+1, introduced by C.P. Wang [27] and is
also called the Tchebychev operator, is a homomorphism mapping T : TM → TM ,
defined by

T (X) := ∇̂XT, ∀X ∈ TMn. (2.7)

Then, the well-defined function H := 1
n
TrT was named as the centroaffine mean

curvature of x. This is a meaningful terminology because, according to C.P. Wang
[27], the hypersurfaces with H = 0 are exactly the critical hypersurfaces of the
centroaffine area functional. Moreover, related to the centroaffine shape operator T ,
it is interesting to consider an important subclass of the centroaffine hypersurfaces,
named as the Tchebychev hypersurfaces, which is defined as below:

Definiton 2.1 ([16]). Let x :Mn → R
n+1 be a centroaffine hypersurface such that

its Tchebychev operator T is proportional to the identity isomorphism id : TMn →
TMn, i.e., T = 1

n
(div T ) id. Then, x is called a Tchebychev hypersurface.

As it was pointed out in [15] that the Tchebychev hypersurfaces satisfy certain
systems of second order PDE, and some of these systems play an important role
in the general context of conformal geometry. In this context, we shall further
emphasize the following important Riemannian geometric characterization of the
Tchebychev hypersurfaces:

Lemma 2.1. For a centroaffine hypersurface x : Mn → Rn+1, the Tchebychev
vector field T is a closed vector field in the sense that the Tchebychev form T ♯ is a
closed form. Moreover, a centroaffine hypersurface x :Mn → Rn+1 is a Tchebychev
hypersurface if and only if, associated to the centroaffine metric h, its Tchebychev
vector field T is a conformal vector field.

Proof. The first statement, which is equivalent to that the Tchebychev operator T is
self-adjoint with respect to the centroaffine metric h, was first shown by C.P. Wang
[27]. Next, let x : Mn → Rn+1 be a centroaffine hypersurface with Tchebychev
vector field T . If it is a Tchebychev hypersurface, then we have

(LTh)(X,Y ) = h(∇̂XT, Y ) + h(X, ∇̂Y T ) =
2
n
(div T )h(X,Y ), (2.8)
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where LT denotes the Lie derivative with respect to the Tchebychev vector field T .
This shows that LTh = 2

n
(div T )h. Thus, T is a conformal vector field. Conversely,

assume that T is a conformal vector field relative to h, i.e., it holds that

(LTh)(X,Y ) = 2fh(X,Y )

for any vector fields X,Y and some smooth function f onMn. Then, by using that
(LTh)(X,Y ) = h(∇̂XT, Y )+h(X, ∇̂Y T ) and the self-adjointness of T , namely that

h(∇̂XT, Y ) = h(∇̂Y T,X), (2.9)

we derive ∇̂XT = fX for any vector fieldX ∈ TMn. It follows that x :Mn → Rn+1

is a Tchebychev hypersurface. �

Before concluding this section, we would emphasize that Riemannian manifolds
with closed conformal vector fields have been extensively studied, see the papers
e.g. [2, 8, 19, 23, 24, 25]. In next sections, we shall work for the application of the
useful characterization of the centroaffine Tchebychev hypersurfaces, established by
Lemma 2.1, so as to complete the proof of Theorem 1.2.

3. Local properties of the Tchebychev hypersurfaces

In this section, we will study the local properties of centroaffine Tchebychev
hypersurfaces in Rn+1. Since our concern is the PROBLEM, and that we already
have Theorem 1.1, in sequel we assume that n ≥ 3.

Recall that in [15], Liu, Simon and Wang established several local geometric
characterizations of the Tchebychev hypersurfaces and, as a corollary, they showed
that any quadric is a Tchebychev hypersurface.

In view of Lemma 2.1, and according to Lemma 1 of [20] (cf. also Lemma 1 of
[7]) which collects some results about Riemannian manifolds admitting closed and
conformal vector fields, we immediately obtain the following lemma.

Lemma 3.1 (cf. [20]). Let x : Mn → Rn+1 be a centroaffine Tchebychev hyper-
surface with nontrivial Tchebychev vector field T and T = α id. Then we have:

(i) The norm ‖T ‖ with respect to the centroaffine metric h, the function α and

the curvature tensor R̂ satisfy the following relations:

∇̂‖T ‖2 = 2αT, ‖T ‖2∇̂α = T (α)T,

‖T ‖2R̂(X,Y )T = −T (α)(h(T, Y )X − h(T,X)Y ).
(3.1)

(ii) The zeros of T is a discrete set. Moreover, T has nonvanishing divergence
at its zeros.

(iii) If we denote M̃ = {p ∈Mn | T (p) 6= 0}, then the distribution

p ∈ M̃ → D(p) := {v ∈ TpM
n | p ∈ M̃ and h(v, T ) = 0}

defines an umbilical foliation on (M̃, h). In particular, the functions ‖T ‖2

and α are constant on the connected leaves of D.

(iv) If g = ‖T ‖−2h, then (M̃, g) is locally isometric to (I × N, dt2 ⊕ g′) and
T = (∂/∂t, 0), where I is an open interval in R, {t} × N is a leaf of the
foliation D for any t ∈ R.
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Next, closely related to the proof of Theorem 1.2, we first study centroaffine
Tchebychev hypersurfaces which satisfy the condition KTT = λT for some function
λ ∈ C∞(Mn). Following the notations of Lemma 3.1, we begin with the following
lemma.

Lemma 3.2. Let x :Mn → Rn+1 be a centroaffine Tchebychev hypersurface whose
Tchebychev vector field T is nontrivial and satisfies KTT = λT . Then:

(i) For any point p ∈ M̃ , the eigenvalues {λi}2≤i≤n of KT on D(p) satisfy the
quadratic equation

λ2i − λλi + ε‖T ‖2 + α′ = 0, (3.2)

where α′ := dα
dt
. In particular, at most two of {λi}2≤i≤n are distinct.

(ii) If V,W ∈ D are eigenvectors of KT corresponding to different eigenvalues,
then K(V,W ) = 0.

(iii) The eigenvalues of KT are constant on the connected leaves of the foliation
D.

Proof. At any p ∈ M̃ , since T is an eigenvector of KT and KT is self-adjoint with
respect to the centroaffine metric, KT can be diagonalized on D. Let {Xi}2≤i≤n ⊂
D be the mutually orthogonal eigenvectors of KT with corresponding eigenvalues
{λi}2≤i≤n, i.e.,

KTXi = λiXi, i = 2, . . . , n.

Then, the third equation in (3.1) implies that

R̂(Xi, T )T = −α′Xi, R̂(Xi, Xj)T = 0. (3.3)

On the other hand, by using the Gauss equation, we obtain

R̂(Xi, T )T = (λ2i − λλi + ε‖T ‖2)Xi,

R̂(Xi, Xj)T = (λi − λj)K(Xi, Xj).
(3.4)

From (3.3) and (3.4), the assertions (i) and (ii) follows.
If we derivate KTT = λT with respect to X ∈ TMn, we obtain

(∇̂XK)(T, T ) + 2αKTX = X(λ)T + αλX. (3.5)

It follows that for any vector field Y ∈ TMn there holds

h((∇̂XK)(T, T ), Y ) + 2αh(KTX,Y ) = X(λ)h(T, Y ) + αλh(X,Y ). (3.6)

From (3.6) and noticing that both h((∇̂·K)(·, ·), ·) and h(K(·, ·), ·) are totally
symmetric, we get X(λ)h(T, Y ) = Y (λ)h(T,X) for any X,Y ∈ TMn. It follows
that

X(λ)T = h(T,X)∇̂λ, X ∈ TMn. (3.7)

Hence, we have X(λ) = 0 for any X ∈ D.
From item (iii) of Lemma 3.1, we know that X(α) = 0 for X ∈ D. This, together

with (iv) of Lemma 3.1, implies that X(α′) = 0 for any X ∈ D. It follows that the
solutions of (3.2) are constant on each connected leaves of the foliation D. Thus
the assertion (iii) follows. �

Now, we can further prove the following proposition.

Proposition 3.1. Let x : Mn → Rn+1 be a centroaffine Tchebychev hypersurface
with nontrivial T such that KTT = λT . Then one of the following two cases occurs:
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(i) M̃ = M , i.e. T has no zeros; ∇̂T = 0, and KT has exactly two distinct
constant eigenvalues on D;

(ii) KTV = µV for any V ∈ D. Moreover, we have

µ′ = (λ− µ)α, n‖T ‖2 = λ+ (n− 1)µ, (3.8)

and that c0 := ε‖T ‖2 − µ2 + α2 is a constant.

Proof. As Mn is connected and the zeros of T is isolated, the subset M̃ is also
connected. By Lemma 3.2, KT on D has at most two distinct eigenvalues. We put

M0 = {p ∈ M̃ |KT has two distinct eigenvalues on D(p)}.

First of all, we assume that M0 6= ∅. Obviously, M0 is an open subset of M̃ .

Claim 1. M0 is a closed subset of M̃ .

Let {λi}2≤i≤n be the eigenvalues of KT on D and assume that

µ1 := λ2 = · · · = λm < λm+1 = · · · = λn =: µ2.

Since µ1 and µ2 are continuous functions on M0, we see that m is a constant on
each connected component of M0. So

Di = {V ∈ D | KTV = µiV }, i = 1, 2,

define two distributions on the connected components of M0 and D = D1 ⊕D2.
For V ∈ D1 andW ∈ D2, by direct calculations and using Lemma 3.2, we obtain

∇̂Wh(KTV, V ) =h((∇̂WK)(T, V ), V ) + αh(KWV, V ) + 2h(KTV, ∇̂WV )

=h((∇̂WK)(T, V ), V ) + 2µ1h(V, ∇̂WV ),

and
∇̂W (µ1h(V, V )) = 2µ1h(V, ∇̂WV ).

Comparing the above equations and using h(KTV, V ) = µ1h(V, V ), we get

h((∇̂WK)(T, V ), V ) = 0, V ∈ D1,W ∈ D2. (3.9)

Similarly, for V ∈ D1 and W ∈ D2, taking the derivative of h(KTV,W ) = 0
with respect to V ∈ D1 and using Lemma 3.2, we obtain

h((∇̂VK)(T, V ),W ) = (µ1 − µ2)h(∇̂V V,W ), V ∈ D1,W ∈ D2. (3.10)

Comparing (3.9), (3.10) and using (2.4), we derive

h(∇̂V V,W ) = 0, V ∈ D1,W ∈ D2. (3.11)

On the other hand, the fact T = α id implies that

h(∇̂V V, T ) = −h(∇̂V T, V ) = −αh(V, V ), V ∈ D1. (3.12)

Thus we get

∇̂V V = (∇̂V V )1 − α‖T ‖−2h(V, V )T, V ∈ D1, (3.13)

where (∇̂V V )1 denotes the component of ∇̂V V on D1.
Again, for V ∈ D1 and W ∈ D2, taking the covariant derivative of K(V,W ) = 0

with respect to V , we obtain

(∇̂VK)(V,W ) +K(∇̂V V,W ) +K(∇VW,V ) = 0.

Hence, we have

h((∇̂VK)(V,W ),W ) + h(K(∇̂V V,KWW ) = 0, V ∈ D1,W ∈ D2. (3.14)
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Inserting (3.13) into (3.14), we obtain

h((∇̂VK)(V,W ),W ) = α‖T ‖−2µ2h(V, V )h(W,W ), V ∈ D1,W ∈ D2.

Then, the fact h((∇̂WK)(W,V ), V ) = h((∇̂VK)(V,W ),W ) implies that

h((∇̂VK)(V,W ),W ) = α‖T ‖−2µ1h(V, V )h(W,W ), V ∈ D1,W ∈ D2.

Comparing the above computations, we obtain,

(µ1 − µ2)α‖T ‖
−2h(V, V )h(W,W ) = 0, V ∈ D1,W ∈ D2.

It follows that α = 0 on M0. Hence, we have

∇̂T = 0, on M0. (3.15)

Taking X = V ∈ D1 and Y =W ∈ D2 in (3.6), we get

h((∇̂VK)(T, T ),W ) = 0, V ∈ D1,W ∈ D2. (3.16)

For V ∈ D1 and W ∈ D2, taking the derivative of h(KTV,W ) = 0 with respect
to T , we easily obtain

h((∇̂VK)(T, T ),W ) + µ2h(∇̂TV,W ) + µ1h(∇̂TW,V ) = 0. (3.17)

From (3.16) and (3.17), we get

(µ2 − µ1)h(∇̂TV,W ) = 0, V ∈ D1,W ∈ D2. (3.18)

From (3.18) and noting that h(∇̂TV, T ) = −αh(T, V ) = 0, we get

∇̂TV ∈ D1, V ∈ D1. (3.19)

Then, for V ∈ D1, taking the covariant derivative of KTV = µ1V with respect
to T and using (3.15), we obtain

(∇̂TK)(T, V ) +K(∇̂TV, T ) = T (µ1)V + µ1∇̂TV. (3.20)

Then, by (3.19) and (3.20), we get

h((∇̂TK)(T, V ), V ) = T (µ1)h(V, V ). (3.21)

On the other hand, as α = 0 on M0, from (3.5) and (3.15), we have

h((∇̂TK)(T, V ), V ) = 0. (3.22)

Then (3.21) and (3.22) imply that

T (µ1) = 0 on M0. (3.23)

This and (iii) of Lemma 3.2 show that µ1 is a constant on the component of M0.
Similarly, we can prove that µ2 is constant on the component of M0. So, by

continuity of µ1 and µ2, KT restricted on D has two distinct eigenvalues on the

closure of M0. Thus, M0 is a closed subset of M̃ and Claim 1 is verified.

In summary, we have proved that there are only two possibilities: EitherM0 = M̃
or M0 = ∅.

If M̃ =M0, then by continuity ∇̂T = 0 and h(T, T ) is constant on M . Since by

assumption T 6= 0, we have proved that T has no zeros and M̃ = M . Thus, case
(i) in Proposition 3.1 occurs.

If M0 = ∅, KT restricted on D has only one eigenvalue, denoted by µ, which is
constant on the leaves of D. Hence KTV = µV for any V ∈ D.
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Taking the derivative ofKTV = µV with respect to T and noting that ∇̂TV ∈ D,
we obtain

(∇̂TK)(T, V ) + αµV = µ′V, V ∈ D. (3.24)

On the other hand, from (3.5), we obtain

(∇̂TK)(T, V ) = (λ− 2µ)αV, V ∈ D. (3.25)

From (3.24) and (3.25), we get the first equation in (3.8).

For any p ∈ M̃ , let {e1 = ‖T ‖−1T, e2, . . . , en} be an orthonormal basis of TpM
n.

Then, by definition (2.5) we can derive that T = 1
n

∑n
i=1Keiei. It follows that

T =
1

n

(
‖T ‖−2KTT +

n∑

i=2

Keiei

)
. (3.26)

Taking the inner product of both sides of (3.26) with T , we get immediately the
second equation in (3.8).

By using (3.2), the first two equations in (3.1) and the first equation in (3.8),
direct calculations show that

∇̂(ε‖T ‖2 − µ2 + α2) = 2‖T ‖−2α(µ2 − λµ+ ε‖T ‖2 + α′)T = 0.

It follows that ε‖T ‖2 − µ2 + α2 =: c0 is a constant on M̃ .
We have proved that if M0 = ∅ then case (ii) in Proposition 3.1 occurs. �

As a crucial step to complete the proof of Theorem 1.2, we intend to derive a
locally expression for centroaffine Tchebychev hypersurfaces which are assumed to
satisfy property (ii) of Proposition 3.1. To achieve the purpose, we first state the
following lemma, whose proof is an easy computation.

Lemma 3.3. Assume that λ(t), α(t) and µ(t) are real-valued functions satisfying

α′ = −µ2 + λµ− ε‖T ‖2, µ′ = (λ− µ)α.

Then the ordinary differential equation

xtt = (λ + α)xt − ε|T |2x

has two linear independent solutions that can be written as follows:

x1 = e
∫
(α+µ)dt, x2 = x1

∫
e
∫
(λ−2µ−αdt)dt.

Finally, as one main result of this section, we can prove the following

Proposition 3.2. Let x : Mn → Rn+1 be a centroaffine Tchebychev hypersurface
with T = α id such that KTT = λT and case (ii) in Proposition 3.1 occurs. Then
x can be written as

x = γ1(t)ϕ+ γ2(t)C, (3.27)

where ϕ : N → Rn is an affine hypersphere, C is a nonzero constant vector in
Rn+1, and

γ1(t) = e
∫
(α+µ)dt, γ2(t) = e

∫
(α+µ)dt

∫
e
∫
(λ−2µ−α)dtdt. (3.28)

Moreover, the difference tensor K of x : Mn → Rn+1 and the difference tensor
K ′ of ϕ : N → Rn are related by

K(X,Y ) = ‖T ‖−2h(X,Y )µT +K ′(X,Y ), X, Y ∈ D. (3.29)
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Proof. From item (iv) of Lemma 3.1, the Riemannian manifold (Mn, h) is locally
isometric to (I×N, ‖T ‖2(dt2+g′)), where N is the integral manifold ofD and g′ is a
metric defined on N . Therefore, we can take a local coordinate (u1 := t, u2, . . . , un)
of Mn = I ×N so that the metric h has the following expression

h = ‖T ‖2
(
dt2 +

n∑

i=2

g′ijduiduj

)
.

By using (2.1), and case (ii) of Proposition 3.1, we have

xtt = (λ + α)xt − ε‖T ‖2x, (3.30)

xtui
= (µ+ α)xui

, i ≥ 2. (3.31)

In our case, by (3.2), (3.8) and Lemma 3.3, we can solve (3.30) to obtain

x = γ1(t)ϕ(u2, . . . , un) + γ2(t)ψ(u2, . . . , un). (3.32)

where ϕ(u2, . . . , un) and ψ(u2, . . . , un) are Rn+1-valued functions, γ1(t) and γ2(t)
are described by (3.28).

Then, substituting (3.32) into (3.31), we further derive ∂ψ
∂uk

= 0 for 2 ≤ k ≤ n.

This implies that ψ(u2, . . . , un) =: C is a constant vector in R
n+1. Due to that

x : Mn → Rn+1 is a nondegenerate centroaffine hypersurfaces, C must be nonzero
(if otherwise, we have xt = γ−1

1 γ′1x, contradicting to that x is a transversal vector).
Now, we have

x = γ1(t)ϕ(u2, . . . , un) + γ2(t)C. (3.33)

It follows that
ϕui

= γ1(t)
−1xui

, i ≥ 2. (3.34)

Thus, ϕ defines an immersion from N into Rn+1.

Claim 2. ϕ : N → Rn+1 defines a locally strongly convex affine hypersphere in
an n-dimensional vector subspace Rn of Rn+1.

To verify Claim 2, noticing that ‖T ‖−2h(∂ui, ∂uj) = g′(∂ui, ∂uj) for i, j ≥ 2,

and from (3.28) we can derive xt = γ1(α + µ)ϕ + γ2(α + µ)C + γ1e
∫
(λ−2µ−α)dtC.

Then straightforward calculations by using (3.33) and (3.34) give that

ϕuiuj
= γ1(t)

−1xuiuj
= γ1(t)

−1(x∗(∇∂ui
∂uj)− εh(∂ui, ∂uj)x)

= γ1(t)
−1

(
x∗(∇

T
∂ui

∂uj) + h(∇̂∂ui
∂uj , ‖T ‖

−1T ) ‖T ‖−1xt

+ h(K∂ui
∂uj, ‖T ‖

−1T ) ‖T ‖−1xt − εh(∂ui, ∂uj)x
)

= γ1(t)
−1

(
x∗(∇

T
∂ui

∂uj)
)
+
[
c0ϕ+

(
c0

∫
e
∫
(λ−2µ−α)dtdt

+ (µ− α)e
∫
(λ−2µ−α)dt

)
C
]
‖T ‖−2h(∂ui, ∂uj)

= ϕ∗(∇
T
∂ui

∂uj) +
[
c0ϕ+

(
c0

∫
e
∫
(λ−2µ−α)dtdt

+ (µ− α)e
∫
(λ−2µ−α)dt

)
C
]
g′(∂ui, ∂uj), i, j ≥ 2,

(3.35)

where c0 := ε‖T ‖2 − µ2 + α2 is a constant as described in Proposition 3.1, and
∇T
∂ui

∂uj denotes the tangent component of ∇∂ui
∂uj in TN .

Now, we consider two possibilities:

Case I. c0 = 0, i.e. ε‖T ‖2 − µ2 + α2 = 0.
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By direct calculations, we can show that (µ − α)e
∫
(λ−2µ−α)dt is a constant. If

(µ− α)e
∫
(λ−2µ−α)dt = 0, then µ− α = 0 which, together with c0 = 0, implies that

T = 0. This contradict to the assumption T 6= 0. Hence (µ− α)e
∫
(λ−2µ−α)dt 6= 0.

Then, denoting the non-zero constant vector (µ − α)e
∫
(λ−2µ−α)dtC still by C, we

get the expression

ϕuiuj
= ϕ∗(∇

T
∂ui

∂uj) + g′(∂ui, ∂uj)C, i, j ≥ 2. (3.36)

Case II. c0 6= 0. In this case, we have

ϕuiuj
=γ1(t)

−1
(
x∗(∇

T
∂ui

∂uj)
)
+ c0

[
ϕ+

(∫
e
∫
(λ−2µ−α)dtdt

+ c−1
0 (µ− α)e

∫
(λ−2µ−α)dt

)
C
]
g′(∂ui, ∂uj), i, j ≥ 2.

(3.37)

Moreover, direct calculations show that the term∫
e
∫
(λ−2µ−α)dtdt+ c−1

0 (µ− α)e
∫
(λ−2µ−α)dt

is a constant. Then, denoting (
∫
e
∫
(λ−2µ−α)dtdt + c−1

0 (µ − α)e
∫
(λ−2µ−α)dt)C still

by C, we obtain

ϕuiuj
=ϕ∗(∇

T
∂ui

∂uj) + c0(ϕ+ C)g′(∂ui, ∂uj), i, j ≥ 2. (3.38)

Therefore, for both cases, (3.36) (resp. (3.38)) implies that in Case I (resp.
Case II) the image of ϕ is contained in an n-dimensional linear subspace Rn of
Rn+1, and the immersion ϕ : N → Rn can be interpreted as a relative hypersphere
with respect to the relative normal vector field C (resp. c0(ϕ + C)), with induced
connection ∇T and relative metric g′ (which by definition is definite), respectively.

Denote by ∇̂′ the Levi-Civita connection of g′. Using h = ‖T ‖2(dt2 + g′) and
the Koszul’s formula, we have the calculation

‖T ‖−2h(∇̂′
∂ui

∂uj, ∂uk) = g′(∇̂′
∂ui

∂uj , ∂uk)

= ‖T ‖−2h(∇̂∂ui
∂uj, ∂uk), i, j ≥ 2.

This shows that ∇̂′
∂ui

∂uj = ∇̂T
∂ui

∂uj for i, j ≥ 2, and therefore, the difference
tensor K ′ of ϕ : N → Rn is given by

K ′
∂ui
∂uj = KT

∂ui
∂uj, i, j ≥ 2, (3.39)

where ∇̂T
∂ui
∂uj and K

T
∂ui
∂uj denote the tangent parts of ∇̂∂ui

∂uj and K∂ui
∂uj in

TN , respectively.
Let ((g′)ij) (resp. (hAB)) denote the inverse matrix of (g′ij) (resp. (hAB)), and

hAB = h(∂uA, ∂uB) for A,B ≥ 1. Then, by using (3.39), for any X ∈ TN , we can
get the calculation that

TrK ′
X =

n∑

i,j=2

(g′)ijg′(K ′
X∂ui, ∂uj)

=

n∑

i,j=2

hijh(KX∂ui, ∂uj)

= nh(T,X)− h11h(KXT, T )

= 0.

(3.40)

This verifies Claim 2 that ϕ : N → R
n is actually an affine hypersphere.
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Finally, by (3.39) and the definition of the difference tensor, (3.29) immediately
follows. �

4. The Completion of Theorem 1.2’s Proof

We first show that for a centroaffine Tchebychev hyperovaloid, the Tchebychev
vector field T and the difference tensor field K satisfy an important relation.

Lemma 4.1. Let x :Mn → Rn+1 be a centroaffine Tchebychev hyperovaloid. Then
its Tchebychev vector field T and difference tensor field K satisfy the relation

KTT = 3n
n+2‖T ‖

2T. (4.1)

Proof. Put Z := KTT − 3n
n+2‖T ‖

2T . By a direct calculation, we obtain

h(∇̂XZ, Y ) =h((∇̂XK)(T, T ), Y ) + 2
n
(div T )h(KXY, T )

− 3
n+2 (div T )

(
2h(X,T )h(Y, T ) + h(T, T )h(X,Y )

)
.

(4.2)

From (4.2), it is easily seen that Z is a closed vector field which satisfies divZ = 0.
So Z is a harmonic vector field onMn. Notice thatMn is diffeomorphic to a sphere,
whereas on the sphere there are no nontrivial harmonic vector fields. Hence, Z
vanishes identically, and we get (4.1). �

It is well known that the centroaffine Tchebychev form T ♯ can be expressed by
the equiaffine support function ρ (cf. [15, 22]):

T ♯ = n+2
2n d ln ρ. (4.3)

Put f := n+2
2n ln ρ. Then by (4.3), we can write T = ∇̂f . It follows that

Hessf(X,Y ) = 1
n
(div T )h(X,Y ). (4.4)

If T ≡ 0, then, as a centroaffine hypersurface, x is an affine hypersphere centered
at the origin O ∈ Rn+1. By the theorem of Blaschke and Deicke, x : Mn → Rn+1

is an ellipsoid centered at the origin of Rn+1.
Next, we assume that T 6= 0. Then, sinceMn is compact and is diffeomorphic to

a sphere, according to [25] and (4.4) we know that (Mn, h) is conformally equivalent
to a round sphere and the number of isolated zeros of T is 2 (cf. also Theorem 4.6
of [15]). On the other hand, from Lemma 4.1 and Proposition 3.1, we see that,
in order to complete the proof of Theorem 1.2, we are left to study case (ii) in
Proposition 3.1. Then, by using Proposition 3.2, we know that x : Mn → R

n+1

reduces to be

x = γ1(t)ϕ+ γ2(t)C.

where ϕ : N → Rn is an affine hypersphere, C is a nonzero constant vector in Rn+1,
γ1(t) and γ2(t) are described by (3.28).

Since, according to pp.18-19 of [3], the umbilicity of submanifolds is invariant
under a conformal transformation of the ambient Riemannian manifold, and in a
round sphere the umbilical hypersurfaces are spheres, we obtain that the leaves N
of the umbilical foliation D are spheres. This implies that ϕ : N → Rn is a locally
strongly convex affine hypersphere which is compact and without boundary. Then,
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by the theorem of Blaschke and Deicke ϕ : N → Rn is an ellipsoid, and thus K ′ = 0.
Hence, from the second equation in (3.8), (3.29) and (4.1), we obtain that





KTT = 3n
n+2‖T ‖

2T,

KTV = n
n+2‖T ‖

2V, V ∈ D,

KVW = n
n+2h(V,W )T, V,W ∈ D.

(4.5)

Then, by direct calculations, we can show that K̃ = 0 on M̃ . By continuity, K̃ = 0
holds on the whole Mn. It follows that x : Mn → Rn+1 is an ellipsoid and, as a
centroaffine hypersurface, the origin of Rn+1 must be in the inside of x(Mn).

This completes the proof of Theorem 1.2. �
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