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In this paper we consider minimal Lagrangian submanifolds in ndimensional complex space forms. More precisely, we study such submanifolds which, endowed with the induced metrics, write as a Riemannian product of two Riemannian manifolds, each having constant sectional curvature. As the main result, we give a complete classification of these submanifolds.

Introduction

In this paper we study Lagrangian submanifolds of the n-dimensional complex space forms M n (4c) of constant holomorphic sectional curvature 4c. Indeed, the complex space forms are the easiest examples of Kähler manifolds. These are almost Hermitian manifolds for which the almost complex structure J is parallel with respect to the Levi-Civita connection ∇ of the Hermitian metric g. The standard models of complex space forms are the complex projective space CP n , the complex Euclidean space C n and the complex hyperbolic space CH n , according to whether the holomorphic sectional curvature satisfies c > 0, c = 0 or c < 0.

There are two special classes of submanifolds of a Kähler manifold depending on the behavior of the complex structure J with respect to the submanifold.

A submanifold M of M n is called almost complex if and only if J maps tangent vectors to tangent vectors. On the other hand, M is called totally real if the almost complex structure J of M n carries each tangent space of M into its corresponding normal space. The study of minimal totally real submanifolds originates with the work of Chen and Ogiue (see [START_REF] Chen | On totally real submanifolds[END_REF]). A special case here happens when the real dimension of the submanifold equals the complex dimension of the ambient space. In that case J interchanges the tangent and the normal spaces. Such submanifolds are called Lagrangian submanifolds. These can also be seen as submanifolds of the largest possible dimension on which the symplectic form vanishes identically.

For the study of minimal Lagrangian immersions in complex space forms one may find a short survey in [START_REF] Chen | Riemannian geometry of Lagrangian submanifolds[END_REF], where some of the main results are mentioned (see also for example [START_REF] Barros | Indefinite Kähler manifolds[END_REF][START_REF] Castro | Hamiltonian-minimal Lagrangian submanifolds in complex space forms[END_REF][START_REF] Castro | On a minimal Lagrangian submanifold of C n foliated by spheres[END_REF][START_REF] Chen | Lagrangian isometric immersions of a real-space-form M n (c) into a complex-space-form M n (4c)[END_REF][START_REF] Chen | On totally real submanifolds[END_REF][START_REF] Chen | Lagrangian minimal isometric immersions of a Lorentzian real space form M n 1 (c) into a Lorentzian complex space form M n 1 (4c)[END_REF][START_REF] Dajczer | Flat totally real submanifolds of CP n and the symmetric generalized wave equation[END_REF][START_REF] Dillen | Lagrangian submanifolds in complex projective space with parallel second fundamental form[END_REF][START_REF] Ejiri | Totally real minimal immersions of n-dimensional real space forms into ndimensional complex space forms[END_REF][START_REF] Kriele | Minimal Lagrangian submanifolds of Lorentzian complex space forms with constant sectional curvature[END_REF][START_REF] Li | Isotropic Lagrangian submanifolds in complex Euclidean space and complex hyperbolic space[END_REF][START_REF] Li | A differentiable sphere theorem for compact Lagrangian submanifolds in complex Euclidean space and complex projective space[END_REF][START_REF] Ma | Differential Geometry of Lagrangian Submanifolds and Hamiltonian Variational Problems[END_REF][START_REF] Wang | Lagrangian submanifolds in 3-dimensional complex space forms with isotropic cubic tensor[END_REF][START_REF] Wang | Minimal Lagrangian isotropic immersions in indefinite complex space forms[END_REF]).

The fundamental question in submanifold theory is then to determine to what extent the geometry of the submanifold determines the immersion of the submanifold in the ambient space. In that respect, it was shown by Ejiri [START_REF] Ejiri | Totally real minimal immersions of n-dimensional real space forms into ndimensional complex space forms[END_REF] that an n-dimensional Lagrangian minimal submanifold of constant sectional curvature c immersed in an n-dimensional complex space form is either totally geodesic or flat (c = 0) (cf. also [START_REF] Li | Totally real minimal submanifolds in CP n[END_REF] and [START_REF] Dajczer | Flat totally real submanifolds of CP n and the symmetric generalized wave equation[END_REF]). More precisely in the latter case it must be congruent to a specific Lagrangian tori in the complex projective space (see Main Theorem below). Note that the condition that the immersion is minimal is unavoidable. From [START_REF] Chen | Lagrangian isometric immersions of a real-space-form M n (c) into a complex-space-form M n (4c)[END_REF] and [START_REF] Tojeiro | Lagrangian submanifolds of constant sectional curvature and their Ribaucour transformation[END_REF] we can see that one cannot expect to obtain a general classification of all Lagrangian submanifolds of real space forms in complex space forms.

In this paper we consider the logical next step. We will assume that our manifold M is isometric with M n1 1 (c 1 ) × M n2 2 (c 2 ), i.e. it is a product of two real space forms of constant sectional curvature, respectively c 1 and c 2 . As the main result of the paper we extend Ejiri's result by proving Main Theorem. Let ψ : M n → M n (4c) be a minimal Lagrangian immersion into a complex space form with induced metric

•, • . If M n = M n1 1 (c 1 )×M n2 2 (c 2 ), where n = n 1 +n 2 , M n1 1 (c 1 ) (resp. M n2 1 (c 2 )
) is an n 1 (resp. n 2 )-dimensional Riemannian manifold of constant sectional curvature c 1 (resp. c 2 ), then c 1 c 2 = 0. Moreover,

(1) if c 1 = c 2 = 0, then M n is equivalent to either the totally geodesic immersion in C n or the Lagrangian flat torus in CP n (4c). ( 2) if c 1 c 2 = 0 and c 2 1 + c 2 2 = 0, without loss of generality, we may assume that c 1 = 0 and c 2 = 0. Then we have c 2 = n1+n2+1 n2+1 c > 0, say c = 1, so the ambient space is CP n (4), and the immersion is congruent with 1 n+1 (e iu1 , . . . , e iun 1 , ae iun 1 +1 y 1 , . . . , ae iun 1 +1 y n2+1 ), where (i) (y 1 , y 2 , . . . , y n2+1 ) describes the standard sphere

S n2 → R n2+1 → C n2+1 , (ii) a = √ n 2 + 1, (iii) u 1 + • • • + u n1 + a 2 u n1+1 = 0.
Remark 1.1. The technique we use in the proof of the Main Theorem is based on two steps. The first step is to take cyclic permutation of the covariant derivative of the Codazzi equation. The second step is then expressing the second fundamental form of the submanifold M n with respect to a conveniently chosen frame. To do so, we proceed by induction (see [START_REF] Vrancken | Affine spheres with constant affine sectional curvature[END_REF] and [START_REF] Cheng | On product affine hyperspheres in R n+1[END_REF]). One should notice that, eventually, our main result follows directly from the theorems in [START_REF] Li | Calabi product Lagrangian immersions in complex projective space and complex hyperbolic space[END_REF].

Preliminaries

In this section, we will recall the basic formulas for Lagrangian submanifolds in complex space forms. Let M n (4c) be a complex space form of complex dimension n and having constant holomorphic sectional curvature 4c. Let M n be a minimal Lagrangian submanifold in M n (4c) given by the immersion ψ :

M n → M n (4c) such that (2.1) M n = M n1 1 (c 1 ) × M n2 2 (c 2 ), where n 1 + n 2 = n, M n1
1 (c 1 ) and M n2 2 (c 2 ) are manifolds of real dimensions n 1 and n 2 and have constant sectional curvature c 1 and c 2 , respectively.

Let ∇ and ∇ be the Levi-Civita connections on M n and M n (4c), respectively. The formulas of Gauss and Weingarten write out as

(2.2) ∇X Y = ∇ X Y + h(X, Y ), ∇X ξ = -A ξ X + ∇ ⊥ X ξ,
for X, Y tangent to M n and ξ normal to M n , where h, A and ∇ ⊥ are the second fundamental form, the shape operator and the normal connection, respectively. Notice that we will always identify M n with its immersed image in M n (4c). As M n is Lagrangian, we have that the almost complex structure J interchanges the tangent and the normal spaces. Moreover, since J is parallel, we deduce that

(2.3) ∇ ⊥ X JY = J∇ X Y, A JX Y = -Jh(X, Y ) = A JY X.
The last formula implies that the cubic form g(h(X, Y ), JZ) is totally symmetric. The minimality condition on M n means that trace h = 0, and one may notice that this is equivalent to traceA J = 0.

A straightforward computation shows that the equations of Gauss, Codazzi and Ricci are

(2.4) R(X, Y )Z = c ( Y, Z X -X, Z Y ) + [A JX , A JY ]Z, (2.5) (∇h)(X, Y, Z) = (∇h)(Y, X, Z), (2.6) R ⊥ (X, Y )JZ = c( Y, Z JX -X, Z JY ) + J[A JX , A JY ]Z,
where X, Y, Z are tangent vector fields and the covariant derivative of h is given by

(2.7) (∇h)(X, Y, Z) = ∇ ⊥ X (h(Y, Z)) -h(∇ X Y, Z) -h(Y, ∇ X Z).
Moreover, the following Ricci identity holds:

(∇ 2 h)(X, Y, Z, W ) -(∇ 2 h)(Y, X, Z, W ) = JR(X, Y )A JZ W -h(R(X, Y )Z, W ) -h(R(X, Y )W, Z), (2.8) 
where X, Y, Z, W are tangent vector fields and

(∇ 2 h)(W, X, Y, Z) =∇ ⊥ W ((∇h)(X, Y, Z)) -(∇h)(∇ W X, Y, Z) -(∇h)(X, ∇ W Y, Z) -(∇h)(X, Y, ∇ W Z). (2.9)
In the following, we will prove an additional relation that is very useful in our computations. To do so, we will make use of the technique introduced in [START_REF] Antić | Affine hypersurfaces with constant sectional curvature[END_REF], as the Tsinghua Principle. First, take the covariant derivative in (2.5) with respect to W , and use (2.9) and (2.5), to obtain straightforwardly that

(2.10) (∇ 2 h)(W, X, Y, Z) -(∇ 2 h)(W, Y, X, Z) = 0.
In the above equation we then cyclicly permute the first three vector fields and express each time the left-hand side of the equations using the Ricci identity in (2.8). It then follows that

(2.11) 0 =R(W, X)Jh(Y, Z) -Jh(Y, R(W, X)Z) + R(X, Y )Jh(W, Z) -Jh(W, R(X, Y )Z) + R(Y, W )Jh(X, Z) -Jh(X, R(Y, W )Z).
Furthermore, given [START_REF] O'neill | Semi-Riemannian Geometry with Applications to Relativity[END_REF]Corollary 58,p. 89], we know that

(2.12) R(X, Y )Z = c 1 ( Y 1 , Z 1 X 1 -X 1 , Z 1 Y 1 ) + c 2 ( Y 2 , Z 2 X 2 -X 2 , Z 2 Y 2 ), where X i , Y i , Z i are the projections of X, Y, Z on the T M ni i component of T M n , for i = 1, 2, respectively.
We recall the following useful definitions and theorems (see [START_REF] Li | Calabi product Lagrangian immersions in complex projective space and complex hyperbolic space[END_REF]):

Definition 1. Let ψ i : (M ni i , g i ) → CP ni (4), i = 1, 2
, be two Lagrangian immersions and let γ = (γ 1 , γ2 ) : I → S 3 (1) ⊂ C 2 be a Legendre curve. Then ψ = Π(γ 1 ψ1 ; γ2 ψ2 ) :

I × M n1 1 × M n2 2 → CP n (4) is a Lagrangian immersion, where n = n 1 + n 2 + 1, ψi : M ni i → S 2ni+1 ( 
1) are horizontal lifts of ψ i , i = 1, 2, respectively, and Π is the Hopf fibration. We call ψ a warped product Lagrangian immersion of ψ 1 and ψ 2 . When n 1 (or n 2 ) is zero, we call ψ a warped product Lagrangian immersion of ψ 2 (or ψ 1 ) and a point. where r 1 , r 2 and a are positive constants with r 2 1 +r 2 2 = 1, we call ψ a Calabi product Lagrangian immersion of ψ 1 and ψ 2 . When n 1 (or n 2 ) is zero, we call ψ a Calabi product Lagrangian immersion of ψ 2 (or ψ 1 ) and a point.

Theorem 2.1 ([17]

). Let ψ : M n → CP n (4) be a Lagrangian immersion. Then ψ is locally a Calabi product Lagrangian immersion of an (n-1)-dimensional Lagrangian immersion ψ 1 : M n-1 1 → CP n-1 (4) and a point if and only if M n admits two orthogonal distributions D 1 (of dimension 1, spanned by a unit vector field E 1 ) and D 2 (of dimension n-1, spanned by {E 2 , . . . , E n }) and there exist two real constants λ 1 and λ 2 such that

(2.14) h(E 1 , E 1 ) = λ 1 JE 1 , h(E 1 , E i ) = λ 2 JE i , i = 2, . . . , n, λ 1 = 2λ 2 .
Moreover, a Lagrangian immersion ψ : M n → CP n (4), satisfying the above conditions, has the following properties:

(1) ψ is Hamiltonian minimal if and only if ψ 1 is Hamiltonian minimal;

(2) ψ is minimal if and only if λ 2 = ± 1 √ n and ψ 1 is minimal. In this case, up to a reparametrization and a rigid motion of CP n , locally we have M n = I × M n-1 1 and ψ is given by ψ = Π • ψ with

ψ(t, p) = n n+1 e i 1 n+1 t ψ1 (p), 1 n+1 e -i n n+1 t , (t, p) ∈ I × M n-1 1 ,
where Π is the Hopf fibration and ψ1 :

M n-1 1 → S 2n-1 (1) is the horizontal lift of ψ 1 .

Theorem 2.2 ([17]

). Let ψ : M n → CP n (4) be a Lagrangian immersion. If M n admits two orthogonal distributions D 1 (of dimension 1, spanned by a unit vector field E 1 ) and D 2 (of dimension n -1, spanned by {E 2 , . . . , E n }), and that there exist local functions λ 1 , λ 2 such that (2.14) holds, then M n has parallel second fundamental form if and only if ψ is locally a Calabi product Lagrangian immersion of a point and an (n -1)-dimensional Lagrangian immersion ψ 1 : M n-1 1 → CP n-1 (4), which has parallel second fundamental form.

Proof of the Main Theorem

In this section, we study a minimal Lagrangian isometric immersion into a complex space form: ψ :

M n → M n , where M n = M n1 1 (c 1 ) × M n2 2 (c 2 ), n = n 1 + n 2 and M n1 1 (c 1 ) (resp. M n2 1 (c 2 )
) is n 1 (resp. n 2 )-dimensional Riemannian manifold with constant sectional curvature c 1 (resp. c 2 ). We will prove the Main Theorem stated in introduction.

One should be aware that throughout the paper we will make the following identifications. As M n = M n1 1 × M n2 2 , we can write a tangent vector field Z(p, q) = (X(p, q), Y (p, q)) where X(p, q) ∈ T p M n1 1 and Y (p, q) ∈ T q M n2 2 . In general, the X notation (as well as X i , 1 ≤ i ≤ n 1 ) will denote a vector tangent at (p, q) ∈ M n , with zero components on M n2 2 . We will also identify X(p, q) ∈ T p M n1 1 with (X(p, q), 0) ∈ T (p,q) (M n1 1 ×M n2 2 ) (and similarly Y (p, q) ∈ T q M n2 2 with (0, Y (p, q)) ∈ T (p,q) (M n1 1 ×M n2 2 ). Notice that, a priori, it means that X, as a vector field depends on q as well, not only on p. One should have in mind this meaning when reading

X ∈ T p M n1 1 , respectively Y ∈ T q M n2 2 .
Nonetheless, a complete understanding will be acquired with the proofs of Lemmas 3.6 and 3.7, when we will actually see that due to our particular choice of basis, X only depends on p.

First of all, we consider the case c 2 1 + c 2 2 = 0. We begin with the following result. Lemma 3.1. If c 2 1 + c 2 2 = 0, then the shape operator A J vanishes nowhere. Proof. Assume that A J vanishes at the point p ∈ M n . From equation (2.4) it follows that R(X, Y )Z = c( Y, Z X -X, Z Y ), which yields that M n has constant sectional curvature c at p. Moreover, by taking X 1 , X 2 , X 2 in (2.4) and (2.12), we obtain that c 1 = c and then by taking X, Y, Y in (2.4) and (2.12),

X ∈ T p M n1 1 , Y ∈ T p M n2 2 , we get c = 0. Similarly, taking Y 1 , Y 2 , Y 2 ∈ T p M n2 2 in (2.4
) and (2.12), we get that c 2 = 0. Therefore, we get a contradiction with

c 2 1 + c 2 2 = 0. For c 2 1 + c 2 2 = 0, if c 1 c 2 = 0
, without loss of generality, we may assume that c 1 = 0 and c 2 = 0. Therefore, we are left to consider the following two cases:

Case (i): c 1 = 0 and c 2 = 0; Case (ii): c 1 = 0 and c 2 = 0.

3.1.

In this subsection, we will deal with Case (i) and prove the following result.

Theorem 3.1. Let ψ : M n → M n (4c) be a minimal Lagrangian isometric immersion into a complex space form such that

(M n , •, • ) = M n1 1 (c 1 ) × M n2 2 (c 2 )
and Case (i) occurs. Then we have c 2 = n1+n2+1 n2+1 c > 0, say c = 1, so the ambient space is CP n (4) and the immersion is congruent with 1 n+1 (e iu1 , . . . , e iun 1 , ae iun 1 +1 y 1 , . . . , ae iun 1 +1 y n2+1 ), where

(1) (y 1 , y 2 , . . . , y n2+1 ) describes the standard sphere

S n2 → R n2+1 → C n2+1 , (2) a = √ n 2 + 1, (3) u 1 + • • • + u n1 + a 2 u n1+1 = 0.
The proof of Theorem 3.1 consists of several lemmas as following. Lemma 3.2. Let {X i } 1≤i≤n1 and {Y j } 1≤j≤n2 be orthonormal bases of M n1 1 (c 1 ) and M n2 2 (c 2 ), respectively. Then we have

(3.1) A JXi X j , Y k = 0, and 
(3.2) A JXi Y j , Y k = 0, if j = k, µ(X i ), if j = k,
where µ(X i ) =: µ i depends only on X i for each i = 1, . . . , n 1 .

Proof.

Expressing (2.11) for X = Y k , Y = Y l , Z = X i , W = X j , k = l,
and using (2.12), we see that there is only one term remaining in the right-hand side: 0 = R(Y k , Y l )A JXi X j . Using (2.12) again, we get

(3.3) 0 = Y l , A JXi X j Y k -Y k , A JXi X j Y l .
It follows immediately the assertion (3.1) that

(3.4) Y l , A JXi X j = 0, 1 ≤ i, j ≤ n 1 , 1 ≤ l ≤ n 2 .
For the second relation, we proceed similarly by choosing in (2.11):

X = Y m , Y = X i , Z = Y l , W = Y k , we obtain (3.5) 0 = -c 2 ( A JXi Y l , Y m Y k -A JXi Y l , Y k Y m -δ ml A JXi Y k + δ kl A JXi Y m ).
In (3.5), let k, l, m be distinct, then we get

(3.6) A JXi Y l , Y m = 0, 1 ≤ i ≤ n 1 , 1 ≤ l, m ≤ n 2 , l = m.
Again in (3.5), let assume that l = m = k, then we have

(3.7) A JXi Y l , Y l = A JXi Y k , Y k , 1 ≤ i ≤ n 1 , 1 ≤ l, k ≤ n 2 , l = k.
By (3.4), (3.6) and (3.7), we have µ(X i ) depends only on X i such that

A JXi Y l = µ(X i )Y l , 1 ≤ i ≤ n 1 , 1 ≤ l ≤ n 2 .
Then the assertion (3.2) immediately follows.

Lemma 3.3. Let {X i } 1≤i≤n1 be an orthonormal basis in the tangent space of M n1 1 at a point. Then it holds that

(3.8) µ(X 1 ) 2 + • • • + µ(X n1 ) 2 = n1 n2+1 c. Proof.
We compute the sectional curvature K(π(X i , Y j )) of the plane π spanned by X i and Y j , for some fixed i = 1, . . . , n 1 and some fixed j = 1, . . . , n 2 . We use on the one hand (2.12) and on the other hand (2.4) together with (3.2) to obtain

0 =c + A JYj Y j , A JXi X i -A JXi Y j , A JYj X i =c -µ(X i ) 2 + A JYj Y j , A JXi X i , 1 ≤ i ≤ n 1 , 1 ≤ j ≤ n 2 .
Taking summation over i = 1, . . . , n 1 , and using Lemma 3.2, we get

(3.9) 0 = n 1 c - n1 i=1 µ(X i ) 2 + A JYj Y j , n1 i=1 A JXi X i = n 1 c - n1 i=1 µ(X i ) 2 + n1 k=1 n1 i=1 A JX k X i , X i µ(X k ).
However, the minimality condition implies that for each k = 1, . . . , n 1 we have

(3.10) 0 = n1 i=1 A JX k X i , X i + n2 j=1 A JX k Y j , Y j = n1 i=1 A JX k X i , X i + n 2 µ(X k ).
Therefore, from (3.9) and (3.10), we obtain

(3.11) µ(X 1 ) 2 + • • • + µ(X n1 ) 2 = n1 n2+1 c. This completes the proof of Lemma 3.3.
Next, we will describe the construction of a local frame of vector fields for which we can determine the values of the shape operator A J . This is a crucial step and will be stated in Lemma 3.5. Let us describe first a general method for choosing suitable orthonormal vectors at a point on M n , which will be used recurrently in the proof of Lemma 3.5. The main idea originates from the very similar situation in studying affine hyperspheres in [START_REF] Cheng | On product affine hyperspheres in R n+1[END_REF][START_REF] Hu | On four-dimensional Einstein affine hyperspheres[END_REF][START_REF] Vrancken | Affine spheres with constant affine sectional curvature[END_REF].

Let (p, q) ∈ M n and

U p M n1 1 = {u ∈ T p M n1 1 | u, u = 1}. As the metric on M n1 1 is positive definite, we have that U p M n1 1
is compact. We define on this set the functions (3.12)

f (p,q) (u) = A Ju u, u , u ∈ U p M n1 1 .
We know that there exists e 1 ∈ U p M n1 1 for which f (p,q) attains an absolute maximum:

f (p,q) (e 1 ) = A Je1 e 1 , e 1 =: λ 1 . Let u ∈ U p M n1
1 such that u, e 1 = 0 and define g(t) = f (p,q) (cos(t)e 1 + sin(t)u). One may check that

g (0) = 3 A Je1 e 1 , u , (3.13) g (0) = 6 A Je1 u, u -3f (p,q) (e 1 ). (3.14)
Since g attains an absolute maximum for t = 0, we have that g (0) = 0 and g (0) ≤ 0, i.e.

(3.15)

A Je1 e 1 , u = 0,

A Je1 e 1 , e 1 ≥ 2 A Je1 u, u , u ⊥ e 1 , u, u = 1.
Therefore, e 1 is an eigenvector of A Je1 with λ 1 the corresponding eigenvalue. Since A Je1 is self-adjoint, we can further choose orthonormal vectors e 2 , . . . , e n1 , which are eigenvectors of A Je1 , with respectively the eigenvalues λ 2 , . . . , λ n1 . To sum up, we have

(3.16) A Je1 e i = λ i e i , i = 1, . . . , n 1 ; λ 1 ≥ 2λ i for i ≥ 2. Lemma 3.4. Let (p, q) ∈ M n1 1 × M n2
2 and {X i } 1≤i≤n1 and {Y j } 1≤j≤n2 be arbitrary orthonormal bases of T p M n1 1 and T q M n2 2 , respectively. Then (3.17)

A JYj Y k = (µ 1 X 1 + • • • + µ n1 X n1 )δ jk , 1 ≤ j, k ≤ n 2 ,
where µ i := µ(X i ) with µ defined as before. Moreover, we have c 2 = n1+n2+1 n2+1 c. Proof. From Lemma 3.2 we know that

A JYj Y k = (µ 1 X 1 + • • • + µ n1 X n1 )δ jk + n2 l=1 α jk l Y l ,
for real numbers α jk 1 , . . . , α jk n2 . Now, we claim that α jk l = 0 for all possible indexes, or equivalently, (3.18)

A JYj Y k , Y l = 0, for any Y j , Y k , Y l ∈ T q M n2 2 .
We will verify the claim by contradiction. In fact, if it did not hold, then we could choose a unit vector Y

1 (p, q) ∈ U q M n2 2 such that α 1 := A JY1 Y 1 , Y 1 > 0 is the maximum of the function f (p,q) defined on U q M n2 2 . Define an operator A on T q M n2 2 by A(Y ) = A JY1 Y -A JY1 Y, X 1 X 1 -• • • -A JY1 Y, X n1 X n1 .
It is easy to show that A is self-adjoint and Y 1 is one of its eigenvectors. We can choose orthonormal vectors Y 2 , . . . , Y n2 ∈ U q M n2 2 orthogonal to Y 1 , which are the remaining eigenvectors of the operator A, associated to the eigenvalues α 2 , . . . , α n2 (notice that we have changed the notation for the corresponding α jk l for more simplicity). Therefore, we have

(3.19) A JY1 Y 1 = µ 1 X 1 + • • • + µ n1 X n1 + α 1 Y 1 , A JY1 Y i = α i Y i , 1 < i ≤ n 2 .
Taking in (2.4) 

X = Z = Y 1 , Y = Y i , 1 < i ≤ n 2 ,
α 2 i -α 1 α i -n1+n2+1 n2+1 c + c 2 = 0.
It follows that there exist an integer n 2,1 , 0 ≤ n 2,1 ≤ n 2 -1, if necessary after renumbering the basis, such that

(3.21)      α 2 = • • • = α n2,1+1 = 1 2 α 1 + α 2 1 + 4( n1+n2+1 n2+1 c -c 2 ) , α n2,1+2 = • • • = α n2 = 1 2 α 1 -α 2 1 + 4( n1+n2+1 n2+1 c -c 2 ) .
Using Lemma 3.2, (3.19), (3.21) and trace A JY1 = 0, we have

(3.22) α 1 = 4( n 1 +n 2 +1 n 2 +1 c-c2) n2+1 n2-2n2,1-1 2 -1 .
Therefore, if there exists a unit vector field

V ∈ T M n2 2 such that A JV V = λV + µ 1 X 1 + • • • + µ n1 X n1 , then we see that (3.23) λ ∈    4 n 1 +n 2 +1 n 2 +1 c-c2 n2+1 n2-2n2,1-1 2 -1    0≤n2,1≤n2-1 .
Moreover, α 1 is the absolute maximum of f (p,q) if and only if

(3.24) α 1 = 4 n1+n2+1 n2+1 c-c2 n2+1 n2-1 2 -1
, corresponding to n 2,1 = 0.

Next, we show that if f (p,q) attains an absolute maximum in Y 1 , we can extend Y 1 differentiably to a unit vector field which is also denoted by Y 1 on a neighbourhood U of (p, q) such that, at every point (p , q ) ∈ U , f (p ,q ) attains an absolute maximum in Y 1 (p , q ).

In order to achieve that purpose, let {E 1 , . . . , E n2 } be an arbitrary differentiable orthonormal basis defined on a neighbourhood U of (p, q) such that E 1 (p, q) = Y 1 . Then, we define a function γ by

γ : R n2 × U → R n2 : (a 1 , . . . , a n2 , (p , q )) → (b 1 , . . . , b n2 ), b k = n1 i,j=1 a i a j A JEi E j , E k -α 1 a k , 1 ≤ k ≤ n 2 .
Using the fact that f (p,q) attains an absolute maximum in E 1 (p, q), we then obtain that

∂b k ∂am (1, 0, . . . , 0, (p, q)) = 2 (A JE1(p,q) E m (p, q), E k (p, q) -α 1 δ km =      0, if k = m, α 1 , if k = m = 1, 2α k -α 1 , if k = m > 1.
Since α 1 > 0 and given (3.21), we have 2α k -α 1 = 0 for k ≥ 2. Hence the implicit function theorem shows that there exist differentiable functions a 1 , . . . , a n2 , defined on a neighbourhood U of (p, q), such that a 1 (p, q) = 1, a 2 (p, q) = 0, . . . , a n2 (p, q) = 0.

Define the local vector field V by

V = a 1 E 1 + • • • + a n1 E n1 . Then we have V (p, q) = Y 1 and A JV V = α 1 V + µ 1 V, V X 1 + • • • + µ n1 V, V X n1 . Hence A J V √ V,V V √ V,V = α1 √ V,V V √ V,V + µ 1 X 1 + • • • + µ n1 X n1 .
By (3.23), the continuity of α1 √

V,V and V, V (q) = 1, we can derive that V, V = 1 identically. Therefore, for any point (p , q ) ∈ U , f ( p,q ) attains an absolute maximum at V (p , q ). Let Y 1 = V and take orthonormal vector fields

Y 2 , . . . , Y n2 orthogonal to Y 1 , then {Y 1 , . . . , Y n1 } is a local basis satisfying (3.25) A JY1 Y 1 = µ 1 X 1 + • • • + µ n1 X n1 + α 1 Y 1 , A JY1 Y i = α i Y i , 1 < i ≤ n 2 ,
where, α 1 is defined by (3.24), and

(3.26) α 2 = • • • = α n2 = 1 2 α 1 -α 2 1 + 4( n1+n2+1 n2+1 c -c 2 )
. We recall that on the product manifold M n we know that ∇ Yi Y j , X = 0, for i, j = 1, . . . , n 2 and X tangent to M 1 . Applying (2.5), and (3.24)-(3.26), we have that

(3.27) ∇ Yi Y 1 = 0, 1 ≤ i ≤ n 2 .
Hence, we have R(Y 1 , Y 2 )Y 1 = 0, a contradiction to the fact that c 2 = 0. This verifies the claim and thus (3.17) follows. Moreover, using (2.4), (2.12) and (3.17), we easily get the relation c 2 = n1+n2+1 n2+1 c. Lemma 3.5. In Case (i), we have c > 0. Moreover, there exist local orthonormal frames of vector fields

{X i } 1≤i≤n1 of M n1 1 and {Y j } 1≤j≤n2 of M n2
2 , respectively, such that the operator A J takes the following form:

(3.28)          A JX1 X 1 = λ 1,1 X 1 , A JXi X i = µ 1 X 1 + • • • + µ i-1 X i-1 + λ i,i X i , 1 < i ≤ n 1 , A JXi X j = µ i X j , 1 ≤ i < j, A JXi Y j = µ i Y j , 1 ≤ i ≤ n 1 , 1 ≤ j ≤ n 2 ,
where λ i,i , µ i are constants and satisfy

(3.29) λ i,i + (n -i)µ i = 0, 1 ≤ i ≤ n 1 .
Proof. We will give the proof by induction on the index i of A JXi . According to general principles, this consists of two steps as below.

The first step of induction.

In this step, we should verify the assertion for i = 1. To do so, we have to show that, around any given (p, q) ∈ M n1 1 × M n2 2 , there exist an orthonormal frame of vector fields {X i } 1≤i≤n1 of T M n1 1 , {Y j } 1≤i≤n2 of T M n2 2 , and smooth functions λ 1,1 and µ 1 , so that we have

     A JX1 X 1 = λ 1,1 X 1 , A JX1 Y j = µ 1 Y j , 1 ≤ j ≤ n 2 , A JX1 X i = µ 1 X i , 2 ≤ i ≤ n 1 , λ 1,1 + (n -1)µ 1 = 0.
The proof of the above conclusion will be divided into four claims as below.

Claim I-(1). Given (p, q) ∈ M n1 1 ×M n2 2 , there exist orthonormal bases {X i } 1≤i≤n1 of T p M n1 1 , {Y j } 1≤i≤n2 of T q M n2 2 , and real numbers λ 1,1 > 0, λ 1,2 = • • • = λ 1,n1
and µ 1 , such that the following relations hold:

A JX1 X 1 = λ 1,1 X 1 , A JX1 X i = λ 1,i X i , 2 ≤ i ≤ n 1 , A JX1 Y j = µ 1 Y j , 1 ≤ j ≤ n 2 .
Moreover, λ 1,1 is the maximum of f (p,q) defined on U p M n1 1 . In particular, c > 0.

Proof of Claim I-(1). First, if for an orthonormal basis {X i } 1≤i≤n1 and for any i, j, k = 1, . . . , n 1 , A JXi X j , X k = 0 holds, then by the fact traceA JXi = 0 and Lemma 3.2, we get µ i = 0. This further implies by Lemma 3.3 that c = 0. From this, using (2.4), (2.12) and Lemma 3.4, we can compute the sectional curvature of the section spanned by Y 1 and Y 2 to obtain that c 2 = 0, which is a contradiction. Accordingly, following the idea described right before Lemma 3.4, we can choose a vector X 1 ∈ U p M n1 1 such that f (p,q) on U p M n1 1 attains its absolute maximum λ 1,1 > 0 at X 1 . Then, we can choose an orthonormal basis {X i } 1≤i≤n1 of T p M n1 1 and an arbitrary orthonormal basis {Y j } 1≤i≤n2 of T q M n2 2 , such that, for 2

≤ k ≤ n 1 , A JX1 X k = λ 1,k X k and λ 1,1 ≥ 2λ 1,k . Moreover, by Lemma 3.2, A JX1 Y j = µ 1 Y j for 1 ≤ j ≤ n 2 .
Next, we will show that λ 1,2 = • • • = λ 1,n1 , and that λ 1,1 , λ 1,2 and µ 1 are all constants independent of (p, q).

Taking in (2.4) that X = Z = X 1 and Y = X k for k ≥ 2, and using (2.12), we obtain

(3.30) λ 2 1,k -λ 1,1 λ 1,k -c = 0, 2 ≤ k ≤ n 1 . As c ≥ 0 by (3.11) and λ 1,1 ≥ 2λ 1,k for 2 ≤ k ≤ n 1 , then (3.30) implies that (3.31) λ 1,2 = • • • = λ 1,n1 = 1 2 λ 1,1 -λ 2 1,1 + 4c .
Similarly, taking X = Z = X 1 and Y ∈ U q M n2 2 in (2.4) and using (2.12) and Lemma 3.2, we get

(3.32) µ 2 1 -µ 1 λ 1,1 -c = 0. Thus we obtain (3.33) µ 1 = 1 2 λ 1,1 + ε 1 λ 2 1,1 + 4c , ε 1 = ±1.
Then, applying trace A JX1 = 0, we get

(3.34) 1 2 (n + 1)λ 1,1 + 1 2 (ε 1 n 2 -n 1 + 1) λ 2 1,1 + 4c = 0. It follows that ε 1 n 2 -n 1 + 1 = 0 and (3.35) n + 1 ε 1 n 2 -n 1 + 1 2 -1 λ 2 1,1 = 4c.
Moreover, (3.35) shows that c > 0, and that

(3.36) λ 1,1 = 2 c ( n+1 ε1n2-n1+1 ) 2 -1 .
This, together with (3.33), implies that λ 1,1 , λ 1,2 = • • • = λ 1,n1 and µ 1 are all constants independent of (p, q).

Claim I-(2). λ 1,2 = • • • = λ 1,n1 = µ 1 and λ 1,1 + (n -1)µ 1 = 0.
Proof of Claim I- [START_REF] Barros | Indefinite Kähler manifolds[END_REF]. From (3.31) and (3.33), the first assertion is equivalent to showing that ε 1 = -1. Suppose on the contrary that ε 1 = 1. Then we have

(3.37) µ 1 λ 1,2 = -c.
Corresponding to the case c 2 = 0 we have n 2 ≥ 2, then (3.34) implies that

(3.38) n 1 > n 2 + 1 ≥ 3.
We rechoose a vector

X 2 ∈ U p M n1 1 , which is orthogonal to X 1 and such that λ 2,2 = A JX2 X 2 , X 2 is the maximum of f (p,q) on {u ∈ U p M n1 1 | u ⊥ X 1 }. Define A on {u ∈ T p M n1 1 | u ⊥ X 1 } by A(X) = A JX2 X -A JX2 X, X 1 X 1 .
It is easy to show that A is self-adjoint and X 2 is one of its eigenvectors. We can choose an orthonormal basis {X 3 , . . . , X n1 } for {u ∈ T p M n1 1 | u ⊥ X 1 , u ⊥ X 2 } so that they are the remaining eigenvectors of the operator A, associated to eigenvalues λ 2,3 , . . . , λ 2,n1 . In this way, we have obtained

(3.39) A JX2 X 2 = λ 1,2 X 1 + λ 2,2 X 2 , A JX2 X k = λ 2,k X k , 3 ≤ k ≤ n 1 .
Taking X = Z = X 2 , Y = X k in (2.4) and using (3.39) together with (2.12), we obtain

(3.40) λ 2 2,k -λ 2,2 λ 2,k -c -λ 2 1,2 = 0, 3 ≤ k ≤ n 1 . Given that λ 2,2 ≥ 2λ 2,k , this implies that (3.41) λ 2,k = 1 2 λ 2,2 -λ 2 2,2 + 4(c + λ 2 1,2 ) , 3 ≤ k ≤ n 1 .
Similarly, taking X = Z = X 2 and Y ∈ U q M n2 2 in (2.4) and using (3.39) and (2.12), we get

(3.42) µ 2 2 -µ 2 λ 2,2 -c -µ 1 λ 1,2 = 0.
Combining (3.37) with (3.42) we get

(3.43) µ 2 2 -µ 2 λ 2,2 = 0. Therefore, we have (3.44) µ 2 = 1 2 (λ 2,2 + ε 2 λ 2,2 ), ε 2 = ±1.
By using (3.39), (3.41), (3.44) and trace A JX2 = 0, we have

(3.45) λ 2,2 + 1 2 (n 1 -2) λ 2,2 -λ 2 2,2 + 4(c + λ 2 1,2 ) + 1 2 n 2 (λ 2,2 + ε 2 λ 2,2 ) = 0.
Hence we have

(3.46) λ 2,2 = 2 c+λ 2 1,2 n1+n2+ε2n2 n1-2 2 -1
.

Note that for ε 1 = 1, (3.36) gives

(3.47) λ 1,1 = 2 c n1+n2+1 n1-n2-1 2 -1 . Using (3.38), we have n1+n2+1 n1-n2-1 -n1+n2+ε2n2 n1-2 ≥ n1+n2+1 n1-n2-1 -n1+2n2 n1-2 = n1-n2-1+2(n2+1) n1-n2-1 -n1-2+2n2+2 n1-2 = 2(n2+1)(n2-1) (n1-n2-1)(n1-2) > 0.
It follows that λ 2,2 > λ 1,1 . This is a contradiction. We have proved that

ε 1 = -1 and thus λ 1,2 = • • • = λ 1,n1 = µ 1 .
Finally, from trace A JX1 = 0 we get λ 1,1 + (n -1)µ 1 = 0 as claimed.

Claim I-(3).

If there exists a unit vector V ∈ T p M n1 1 such that A JV V = λV , then λ has only a finite number of possible values.

Proof of Claim I-(3).

Assume that there exists a unit vector V ∈ T p M n1 1 such that A JV V = λV . Let X 1 = V and λ 1,1 = λ, then we may complete X 1 to obtain an orthonormal basis {X i } 1≤i≤n1 of T p M n1 1 such that, for each 2 ≤ k ≤ n 1 , X k is the eigenvector of A JX1 with eigenvalue λ 1,k . Then we have (3.30), from which we know the existence of an integer n 1,1 , 0 ≤ n 1,1 ≤ n 1 -1, such that, if necessary after renumbering the basis, we have

(3.48)      λ 1,2 = • • • = λ 1,n1,1+1 = 1 2 λ 1,1 + λ 2 1,1 + 4c , λ 1,n1,1+2 = λ 1,n1 = 1 2 λ 1,1 -λ 2 1,1 + 4c .
Similarly, we have (3.33). By (3.48), (3.33) and the fact that trace A JX1 = 0, we have

(3.49) 1 2 (n 1 + n 2 + 1)λ 1,1 + 1 2 (2n 1,1 -n 1 + 1 + ε 1 n 2 ) λ 2 1,1 + 4c = 0.
This immediately implies that λ 1,1 has only finite possibilities.

Claim I-(4). The aforementioned tangent vector X 1 at (p, q) can be extended differentiably to a unit vector field, still denoted by X 1 , in a neighbourhood U of (p, q), such that for each (p , q ) ∈ U , f (p ,q ) defined on U p M n1 1 attains the absolute maximum at X 1 (p , q ).

Proof of Claim I-(4).

Let {E 1 , . . . , E n1 } be an arbitrary differentiable orthonormal basis defined on a neighbourhood U of (p, q) such that E 1 (p, q) = X 1 . Then, from the fact A JX1 X 1 = λ 1,1 X 1 at (p, q), we define a function γ by

γ : R n1 × U → R n1 , (a 1 , . . . , a n1 , (p , q )) → (b 1 , . . . , b n1 ), where b k = b k (a 1 , . . . , a n1 ) := n1 i,j=1 a i a j A JEi E j , E k -λ 1,1 a k for 1 ≤ k ≤ n 1 .
Using the fact that f (p,q) attains an absolute maximum in E 1 (p, q), and that, by Claim I-(1),

A JE1 E k = λ 1,k E k at (p, q) for 2 ≤ k ≤ n 1 , we have the calculation that ∂b k ∂am (1, 0, . . . , 0, (p, q)) = 2 A JE1(p,q) E m (p, q), E k (p, q) -λ 1,1 δ km =      0, if k = m, λ 1,1 , if k = m = 1, 2λ 1,k -λ 1,1 , if k = m ≥ 2.
Given the fact that c > 0, by (3.31) we have that 2λ 1,k -λ 1,1 = 0 for k ≥ 2. Hence the implicit function theorem shows that there exist differentiable functions a 1 , . . . , a n1 , defined on a neighbourhood U of (p, q) and satisfying

a 1 (p, q) = 1, a 2 (p, q) = 0, . . . , a n2 (p, q) = 0, such that      b 1 (a 1 (p , q ), . . . , a n1 (p , q ), (p , q )) ≡ 0, • • • b n1 (a 1 (p , q ), .
. . , a n1 (p , q ), (p , q )) ≡ 0.

Therefore, the local vector field V defined by

V = a 1 E 1 + • • • + a n1 E n1 satisfies V (p, q) = X 1 and A JV V = λ 1,1 V . Hence (3.50) A J V √ V,V V √ V,V = λ1,1 √ V,V V √ V,V
.

According to Claim I-(3), there is a finite number of possible values that the function

λ1,1 √ V,V
can take. On the other hand, since

λ1,1 √ V,V
is continuous and V, V (p, q) = 1, it must be that V, V = 1 identically. Define on U a vector field X 1 := V . By Claim I-( 1) and its proof we know that, for any point (p , q ) ∈ U , f (p ,q ) attains an absolute maximum at X 1 (p , q ). This verifies the assertion of Claim I-(4).

Finally, having determined the unit vector field X 1 as in Claim I-(4), we further choose vector fields X 2 , . . . , X n1 (which are orthogonal to X 1 ) such that {X i } 1≤i≤n1 is a local orthonormal frame of T M n1 1 . Then, combining with Lemma 3.2, we complete immediately the proof for the first step of induction.

The second step of induction.

In this step, we first assume the assertion of Lemma 3.5 for all i ≤ k, where k ∈ {2, . . . , n 1 -1} is a fixed integer. Therefore, there exists a local orthonormal frame of vector fields {X i } 1≤i≤n1 of M n1 1 , such that the operator A J takes the following form:

(3.51)          A JX1 X 1 = λ 1,1 X 1 , A JXi X i = µ 1 X 1 + • • • + µ i-1 X i-1 + λ i,i X i , 1 < i ≤ k, A JXi X j = µ i X j , 1 ≤ i ≤ k, i < j ≤ n 1 , A JXi Y = µ i Y, 1 ≤ i ≤ k, Y ∈ T M n2
2 , where µ i and λ i,i for 1 ≤ i ≤ k are constants that satisfy the relations:

(3.52) λ i,i + (n -i)µ i = 0, 1 ≤ i ≤ k.
Moreover, for 1 ≤ i ≤ k and (p , q ) around (p, q), λ i,i is the maximum of f (p ,q ) defined on

{u ∈ T p M n1 1 | u, u = 1, u ⊥ X 1 , . . . , X i-1 }.
Then, as purpose of the second step, we should verify the assertion of Lemma 3.5 for i = k + 1. To do so, we have to show that there exists a local orthonormal frame of vector fields { Xi } 1≤i≤n1 of T M n1 1 given by

X1 = X 1 , . . . , Xk = X k ; Xl = n1 t=k+1 T t l X t , k + 1 ≤ l ≤ n 1 ,
such that T = (T t l ) k+1≤l,t≤n1 is an orthogonal matrix, and the operator A J takes the following form:

(3.53)            A J X1 X1 = λ 1,1 X1 , A J Xi Xi = µ 1 X1 + • • • + µ i-1 Xi-1 + λ i,i Xi , 2 ≤ i ≤ k + 1, A J Xi Xj = µ i Xj , 1 ≤ i ≤ k + 1, i + 1 ≤ j ≤ n 1 , A J Xi Y = µ i Y, 1 ≤ i ≤ k + 1, Y ∈ T M n2
2 , where µ i and λ i,i for 1 ≤ i ≤ k + 1 are constants and satisfy the relations

(3.54) λ i,i + (n -i)µ i = 0, 1 ≤ i ≤ k + 1.
Moreover, for 1 ≤ i ≤ k + 1 and (p , q ) around (p, q), λ i,i is the maximum of f (p ,q ) defined on

{u ∈ T p M n1 1 | u, u = 1, u ⊥ X1 , . . . , u ⊥ Xi }.
Similarly to the first step, the proof of the above conclusion will also be divided into the verification of four claims.

Claim II- [START_REF] Antić | Affine hypersurfaces with constant sectional curvature[END_REF]. For any (p, q) ∈ M n1 1 × M n2 2 , there exists an orthonormal basis

{ Xi } 1≤i≤n1 of T p M n1 1 and real numbers λ k+1,k+1 > 0, λ k+1,k+2 = • • • = λ k+1,n1
and µ k+1 , such that the following relations hold:

           A J X1 X1 = λ 1,1 X1 , A J Xi Xi = µ 1 X1 + • • • + µ i-1 Xi-1 + λ i,i X i , 2 ≤ i ≤ k + 1, A J Xk+1 Xi = λ k+1,i Xi , i ≥ k + 2, A J Xk+1 Y = µ k+1 Y, Y ∈ T q M n2 2 .
Proof of Claim II- [START_REF] Antić | Affine hypersurfaces with constant sectional curvature[END_REF]. By the induction assumption, we have an orthonormal basis {X i } 1≤i≤n1 such that (3.51) and (3.52) hold. We first take X1 = X 1 (p, q), . . . , Xk = X k (p, q). Then, putting

V k = {u ∈ T p M n1 1 | u ⊥ X1 , .
. . , u ⊥ Xk }, we will show that, restricting on U p M n1 1 ∩ V k , the function f (p,q) = 0. Indeed, suppose on the contrary that f (p,q) | V k = 0. Then, letting {u i } k+1≤i≤n1 be an orthonormal basis of V k , we have

A Jui u j , u k = 0, k + 1 ≤ i, j, k ≤ n 1 . Taking in (2.4) that X = u k+2 , Y = Z = u k+1
, by assumption of induction and Lemma 3.2, we obtain

µ 2 1 + • • • + µ 2 k + c = 0
. This is a contradiction to the fact c > 0. Now, we can choose Xk+1 such that f (p,q) , restricted on U p M n1 1 ∩ V k , attains its maximum with value λ k+1,k+1 := A J Xk+1 Xk+1 , Xk+1 > 0.

Consider the self-adjoint operator

A : V k → V k defined by A(X) = A J Xk+1 X - k i=1 A J Xk+1 X, Xi Xi .
It is easy to see that A( Xk+1 ) = λ k+1,k+1 Xk+1 . Hence, by the assumption of induction, we have:

λ k+1,k+1 Xk+1 =A J Xk+1 Xk+1 - k i=1 A J Xk+1 Xk+1 , Xi Xi =A J Xk+1 Xk+1 - k i=1 A J Xi Xk+1 , Xk+1 Xi =A J Xk+1 Xk+1 - k i=1 µ i Xi .
Next, we choose Xk+2 , . . . , Xn1 as the remaining unit eigenvectors of A, with corresponding eigenvalues λ k+1,k+2 , . . ., λ k+1,n1 , respectively. Thus, by Lemma 3.2 we have µ k+1 , and the following relations:

(3.55)      A J Xk+1 Xk+1 = µ 1 X1 + • • • + µ k Xk + λ k+1,k+1 Xk+1 , A J Xk+1 Xi = λ k+1,i Xi , k + 2 ≤ i ≤ n 1 , A J Xk+1 Y = µ k+1 Y, Y ∈ T q M n2 2 .
Now, taking in (2.4) that X = Z = Xk+1 and Y = Xj with j ≥ k + 2, combining with (2.12), we can obtain

(3.56) λ 2 k+1,j -λ k+1,k+1 λ k+1,j -c -(µ 2 1 + • • • + µ 2 k ) = 0.
It follows that (3.57)

λ k+1,k+2 = • • • = λ k+1,n1 = 1 2 λ k+1,k+1 -λ 2 k+1,k+1 + 4(c + µ 2 1 + • • • + µ 2 k-1 + µ 2 k ) .
On the other hand, taking in (2.4) that X = Z = Xk+1 , and Y ∈ T q M n2 2 be a unit vector, combining with (2.12), we can obtain

(3.58) µ 2 k+1 -λ k+1,k+1 µ k+1 -c -(µ 2 1 + • • • + µ 2 k ) = 0. Hence (3.59) µ k+1 = 1 2 λ k+1,k+1 + ε k+1 λ 2 k+1,k+1 + 4(c + µ 2 1 + • • • + µ 2 k )
, where ε k+1 = ±1. Then, using that trace A J Xk+1 = 0, we get n 1 -n 2 ε k+1 -k-1 > 0 and

λ k+1,k+1 = 2 c+µ 2 1 +•••+µ 2 k-1 +µ 2 k n1+n2-k+1 n1-n2ε k+1 -k-1 2 -1 . (3.60)
By the assumption that µ 1 , . . . , µ k are constants we see that, as claimed, λ k+1,k+2 = • • • = λ k+1,n1 and µ k+1 are also constants.

Claim II-(2). λ k+1,k+2 = • • • = λ k+1,n1 = µ k+1 and λ k+1,k+1 +(n-k-1)µ k+1 = 0.
Proof of Claim II- [START_REF] Barros | Indefinite Kähler manifolds[END_REF]. From (3.57) and (3.59), the first assertion is equivalent to showing that ε k+1 = -1. Suppose, on the contrary, that ε k+1 = 1. Then we have

(3.61) µ k+1 λ k+1,i = -(c + µ 2 1 + • • • + µ 2 k ), i ≥ k + 2.
Similar to getting (3.60), now we have

(3.62) n 1 -n 2 -k -1 > 0 and (3.63) λ k+1,k+1 = 2 c+µ 2 1 +•••+µ 2 k n1+n2-k+1 n1-n2-k-1 2 -1
.

Put V k+1 = {u ∈ T p M n1 1 | u ⊥ X1 , . . . , u ⊥ Xk+1 }.
Then, a similar argument as in the proof of Claim II- [START_REF] Antić | Affine hypersurfaces with constant sectional curvature[END_REF] shows that, restricting on U p M n1 1 ∩ V k+1 , the function f (p,q) = 0. Now, by a totally similar process as in the proof of Claim II-(1), we can choose another orthonormal basis {X i } 1≤i≤n1 of T p M n1 1 with X j = Xj for 1 ≤ j ≤ k + 1, such that f (p,q) , restricting on U p M n1 1 ∩ V k+1 , attains its maximum λ k+2,k+2 > 0 at X k+2 so that λ k+2,k+2 = h(A JX k+2 X k+2 , X k+2 ). As before, we define a self-adjoint operator A :

V k+1 → V k+1 by A(X) = A JX k+2 X - k+1 i=1 A JX k+2 X, X i X i .
Then we have A(X k+2 ) = λ k+2,k+2 X k+2 . As before we will choose X k+3 , . . . , X n1 as the remaining unit eigenvectors of A, with corresponding eigenvalues λ k+2,k+3 , . . ., λ k+2,n1 , respectively. In this way, we can prove that (3.64)

A JX k+2 X k+2 = µ 1 X 1 + • • • + µ k X k + λ k+1,k+2 X k+1 + λ k+2,k+2 X k+2 , A JX k+2 X i = λ k+2,i X i , k + 3 ≤ i ≤ n 1 .
Taking X = Z = X k+2 and Y = X i for k + 3 ≤ i ≤ n 1 in (2.4) and using (2.12), we obtain

(3.65) λ 2 k+2,i -λ k+2,k+2 λ k+2,i -c -(µ 2 1 + • • • + µ 2 k + λ 2 k+1,i ) = 0, k + 3 ≤ i ≤ n 1 .
Noting that for k + 3 ≤ i ≤ n 1 we have λ k+2,k+2 ≥ 2λ k+2,i , it follows from (3.65) that (3.66)

λ k+2,i = 1 2 λ k+2,k+2 -λ 2 k+2,k+2 + 4(c + µ 2 1 + • • • + µ 2 k + λ 2 k+1,i ) , i ≥ k + 3.
Similarly, let X = Z = X k+2 and Y ∈ T q M n2 2 be a unit vector in (2.4). Using (2.12) we get 

(3.67) µ 2 k+2 -µ k+2 λ k+2,k+2 -c -(µ 2 1 + • • • + µ 2 k + λ k+1,i µ k+1 ) = 0, i ≥ k + 2.
µ k+2 = 1 2 (λ k+2,k+2 + ε k+2 λ k+2,k+2 ), ε k+2 = ±1.
Then, using trace A JX k+2 = 0, we can get n 1 -k -2 > 0 and

(3.70) λ k+2,k+2 = 2 c+µ 2 1 +•••+µ 2 k +λ 2 k+1,i n1+n2-k+ε k+2 n2 n1-k-2 2 -1 , i ≥ k + 2.
Given (3.62), we have the following calculations

(3.71) n1+n2-k+1 n1-n2-k-1 -n1+n2+ε k+2 n2-k n1-k-2 > n1+n2-k+1 n1-n2-k-1 -n1+2n2-k n1-k-2 = 2(n2+1)(n2-1) (n1-n2-k-1)(n1-k-2) .
Then, by (3.63) and (3.70), we get λ k+2,k+2 > λ k+1,k+1 , which is a contradiction. Therefore, ε k+1 = -1 and λ k+1,k+2 = • • • = λ k+1,n1 = µ k+1 , as claimed. Finally, from trace A J Xk+1 = 0, we get

λ k+1,k+1 + (n -k -1)µ k+1 = 0.
This completes the verification of Claim II- [START_REF] Barros | Indefinite Kähler manifolds[END_REF].

Claim II- [START_REF] Castro | Hamiltonian-minimal Lagrangian submanifolds in complex space forms[END_REF]. Let {X i } 1≤i≤n1 be the local orthonormal vector fields of M n which form a basis for the first component as in the assumption of induction. If a unit vector field V of T M n1 1 \ span{X 1 , . . . , X k } has the property that Proof of Claim II-(3). We first carry the discussion at an arbitrary fixed point (p, q) Let X

A JV V = λV + µ 1 X 1 + • • • + µ k X k ,
k+1 := V , X 1 = X 1 , . . . , X k = X k , λ k+1,k+1 := λ. Put V k = {u ∈ T p M n1 1 | u ⊥ X 1 , . . . , u ⊥ X k }. Define A : V k → V k by A(X) = A JV X - k i=1 A JV X, X i X i .
It is easily seen that A is a self-adjoint transformation and that A(V ) = λV . Thus, we can choose an orthonormal basis

{X i } k+1≤i≤n1 of V k , such that A(X i ) = λ i,i X i for k +2 ≤ i ≤ n 1 .
Then, as before we see that (3.56) holds, and thus there exists an integer n 1,k+1 , 0 ≤ n 1,k+1 ≤ n 1 -(k + 1) such that, if necessary after renumbering the basis, we have

(3.72)                λ k+1,k+2 = • • • = λ k+1,n 1,k+1 +k+1 = 1 2 λ k+1,k+1 + λ 2 k+1,k+1 + 4(c + µ 2 1 + • • • + µ 2 k-1 + µ 2 k ) , λ k+1,n 1,k+1 +k+2 = • • • = λ k+1,n1 = 1 2 λ k+1,k+1 -λ 2 k+1,k+1 + 4(c + µ 2 1 + • • • + µ 2 k-1 + µ 2 k ) . Then, using trace A JX k+1 = 0, we can show that (3.73) λ k+1,k+1 = 2 c+µ 2 1 +•••+µ 2 k-1 +µ 2 k n1+n2-k+1 2n 1,k+1 -n1+n2ε k+1 +k+1 2 -1 .
Finally, noticing that by assumption µ 1 , . . . , µ k are constants, and that the set Claim II-(4). Let {X i } 1≤i≤n1 be the local vector fields on M n as in the assumption of induction, 1) can be extended differentiably to be a unit vector field, denoted by Xk+1 , in a neighbourhood U of (p, q), such that for each (p , q ) ∈ U , f (p ,q ) defined on V k attains the absolute maximum at Xk+1 (p , q ). Proof of Claim II-(4). Let {E k+1 , . . . , E n1 } be arbitrary differentiable orthonormal vector fields of V k defined on a neighbourhood U of (p, q) such that E k+1 (p, q) = Xk+1 . Then, we define a function γ by

V k = {u ∈ T p M n1 1 | u, u = 1, u ⊥ X 1 , . . . , u ⊥ X k }. The unit vector Xk+1 ∈ T p M n1 1 determined in Claim II-(
γ : R n1-k × U → R n1-k , (a k+1 , . . . , a n1 , (p , q )) → (b k+1 , . . . , b n1 ), where b l = n1 i,j=k+1 a i a j A JEi E j , E l -λ k+1,k+1 a l , l = k + 1 ≤ l ≤ n 1 .
Using the fact that f (p,q) attains an absolute maximum in E k+1 (p, q) so that

A JE k+1 E l , E l | (p,q) = λ k+1,l , l ≥ k + 1, we then obtain that ∂b l ∂am (1, 0, . . . , 0, (p, q)) = 2 A JE k+1 (p,q) E m (p, q), E l (p, q) -λ k+1,k+1 δ lm =      0, if l = m, λ k+1,k+1 , if l = m = k + 1, 2λ k+1,l -λ k+1,k+1 , if l = m ≥ k + 2.
As c > 0, then from (3.57) we obtain that 2λ k+1,l -λ k+1,k+1 = 0. Hence, similar to the proof of Claim I-(4), the implicit function theorem shows that there exist differentiable functions a k+1 , . . . , a n1 , defined on a neighbourhood U of (p, q), such that the local vector field V , defined by

V = a k+1 E k+1 + • • • + a n1 E n1 ,
has the property V (p, q) = X k+1 and satisfies that

A JV V = λ k+1,k+1 V + µ 1 V, V X 1 + • • • + µ k V, V X k . Hence (3.74) A J V √ V,V V √ V,V = λ k+1,k+1 √ V,V V √ V,V + µ 1 X 1 + • • • + µ k X k .
According to Claim II-(3), the function

λ k+1,k+1 √ V,V
can take a finite number of values. On the other hand,

λ k+1,k+1 √ V,V
is continuous and V, V (p, q) = 1. Thus V, V = 1 holds identically. Let Xk+1 := V . Then, (3.74) and V, V = 1 imply that for any (p , q ) ∈ U , f (p ,q ) defined on V k (p , q ) attains an absolute maximum at Xk+1 (p , q ). Finally, we choose vector fields X1 = X 1 , . . . , Xk = X k and Xk+2 , . . . , Xn1 such that { X1 , X2 , . . . , Xn1 } are orthonormal vector fields of M n which together span a basis for the first component of the tangent space. Then, combining with Lemma 3.2, we immediately fulfil the second step of induction.

Accordingly, we have completed the proof of Lemma 3.5.

In the following part, we aim at giving the explicit parametrization of ψ : M n → M n (4c). For this we will use Theorems 2.1 and 2.2 from [START_REF] Li | Calabi product Lagrangian immersions in complex projective space and complex hyperbolic space[END_REF].

Firstly, we will prove that the submanifold M n has parallel second fundamental form. We will do this by direct computations: for the local orthonormal frame {X i } 1≤i≤n1 of M n1 1 as determined in Lemma 3.5, we will use the Codazzi equation in (2.5) to show that, for each 1 ≤ i ≤ n 1 , X i is a parallel vector field. Then we will further prove that ψ : M n → M n (4c) has parallel second fundamental form. Lemma 3.6. Let {X 1 , . . . , X n1 } be the local orthonormal vector fields of M n , as determined in Lemma 3.5 and let {Y 1 , . . . , Y n2 } be a local vector fields on M which form a basis for the second component, and moreover, we assume that {Y i } depend only on the second component. Then

∇X i = 0, 1 ≤ i ≤ n 1 .
Proof. We will proceed by induction on the subscript of X i and prove separately that ∇ X X i = 0, X ∈ T M n1 1 and ∇ Y X i = 0, Y ∈ T M n2 2 , where 1 ≤ i ≤ n 1 . Let us check first that ∇ X X i = 0, X ∈ T M n1 1 . For i ≥ 2, by using (2.3) and (3.28), we have

J(∇h)(X i , X 1 , X 1 ) = (2µ 1 -λ 1,1 )∇ Xi X 1 , J(∇h)(X 1 , X i , X 1 ) = -µ 1 ∇ X1 X i + A JX1 (∇ X1 X i ) + A JXi (∇ X1 X 1 ).
Then, the Codazzi equations J(∇h)(X i , X 1 , X 1 ) = J(∇h)(X 1 , X i , X 1 ) give that

(3.75) (2µ 1 -λ 1,1 )∇ Xi X 1 = -µ 1 ∇ X1 X i + A JX1 (∇ X1 X i ) + A JXi (∇ X1 X 1 ).
Taking the component in the direction of X 1 in (3.75) we can get ∇ X1 X 1 = 0. Substituting ∇ X1 X 1 = 0 into (3.75), and then taking the component in the direction of X i , we get ∇ Xi X 1 , X k = 0 for 2 ≤ i, k ≤ n 1 .

The above facts immediately verify for the first step of induction that

∇ X X 1 = 0, X ∈ T M n1 1 .
Next, assume by induction that for a fixed j ≥ 2 it holds (3.76) ∇ X X k = 0, X ∈ T M n1 1 , k = 1, . . . , j -1.

As ψ n1-1 is minimal, we further apply Theorem 2.1 (2) and we get n-(n 1 -1)+1 t , (t, p) ∈ I n1 × M 1,n1 , where Π n1-1 : S 2n-2n1+3 (1) → CP n-n1+1 (4) is the Hopf fibration and ψn1 : M 1,n1 → S 2n-2n1+1 (1) is the horizontal lift of ψ n1 . Notice that the restriction A n1 J of the shape operator A J on {Y 1 , . . . , Y n2 } is A n1

µ n1 = ± 1 √ n -n 1 + 1 , ψ n1 is
JYi Y j = 0. Therefore, we eventually have that M n is locally a Calabi product Lagrangian immersion of n 1 points and an n 2 -dimensional Lagrangian immersion ψ n1 : M n2 2 → CP n-n1 (4), for M n2 2 := M 1,n1 which has vanishing second fundamental form. Moreover,

M n = I 1 × I 2 × • • • × I n1 × M n2
2 , I 1 , . . . , I n1 ⊂ R. Finally, for q ∈ M n2 2 the parametrization of ψ : M n → CP n (4) is given by: ψ(t 1 , . . . , t n1 , q) = n-(n1-1) n+1 

e i t 1 n+1 + t 2 n +•••+ t n 1 -1 n-(n 1 -2)+1 + tn 1 n-(n 1 -1)+1 ψn1 (q),
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  then the function λ takes values of only finite possibilities.

n 1 ,

 1 k+1 (p) | p ∈ M n1 1 consists of finite numbers, we get the assertion that λ = λ k+1,k+1 takes values of only finite possibilities.

  minimal, andψ n1-1 = Π n1-1 • ψn1-

1 √ n+1 e i t 1 n+1 + t 2 n 1 √ 1 √ 1 √

 112111 n-2 (n-2)+1 t3) , n+1 e i( t 1 n+1 -n-1 n t2 , 1 √ n+1 e -i n n+1 t1 ,which, writing ψn1 (q) =: (y 1 , . . . , y n2+1 ), is equivalent toψ(t 1 , . . . , t n1 , q) = n+1 e iu1 , . . . , n+1 e iun 1 , n2+1 n+1 e iun 1 +1 y 1 , y 2 , . . . , y n2+1 ,(3.81)where,{u i } 1≤i≤n1+1 are defined by n1-2)+1 -n-(n1-1) n-(n1-1)+1 t n1 , u n1+1 = t1 n+1 + t2 n + • • • + tn 1 -1 n-(n1-2)+1 + tn 1 n-(n1-1)+1 ,and they satisfyu 1 + u 2 + • • • + u n1 + (n 2 + 1)u n1+1 = 0.This completes the proof of Theorem 3.1.
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We claim that ∇X j = 0. The proof of the claim will be given in four cases: [START_REF] Antić | Affine hypersurfaces with constant sectional curvature[END_REF] From the induction assumption and the fact that X i , X l = δ il , we get ∇ Xi X j , X k = -∇ Xi X k , X j = 0, 1 ≤ i ≤ n 1 , k ≤ j.

(2) For i ≤ j -1, by the induction assumption we have J(∇h)(X i , X j , X j ) = -∇ Xi A JXj X j + 2A JXj ∇ Xi X j = λ j,j ∇ Xi X j -2A JXj ∇ Xi X j = (λ j,j -2µ j )∇ Xi X j ;

Then, by J(∇h)(X i , X j , X j ) = J(∇h)(X j , X i , X j ), we immediately get ∇ Xi X j , X j0 = 0, i ≤ j -1, j + 1 ≤ j 0 ≤ n 1 .

(3) For j + 1 ≤ j 0 ≤ n 1 , similar and direct calculations give that

By J(∇h)(X j , X j0 , X j ) = J(∇h)(X j , X j0 , X j ) and taking the component in the direction of X j , we obtain that ∇ Xj X j , X j0 = 0, j + 1 ≤ j 0 ≤ n 1 .

(4) For i ≥ j + 1, by similar calculations for both sides of J(∇h)(X i , X j , X j ) = J(∇h)(X j , X i , X j ), and taking the component in the direction of X j0 for j 0 ≥ j + 1, we can get

Summing up the above four cases, we finally get the assertion

2 and 1 ≤ i ≤ n 1 . The proof follows the same steps as before. For instance, we start with the Codazzi equation J

Multiplying once by X 1 and once by Y j , j ≤ n 1 , we get that ∇ Y1 X 1 = 0. Then, ∇ Yj X 1 = 0, j > 1 follows similarly from J(∇h)(Y i , X 1 , X 1 ) = J(∇h)(X 1 , Y i , X 1 ), i > 1. We then complete the proof of this part by following the same steps as for ∇ X X i = 0, X ∈ T M n1 1 . By induction we have completed the proof of Lemma 3.6. Lemma 3.7. Under the condition of Theorem 3.1, the submanifold ψ : M n → M n (4c) has parallel second fundamental form: ∇h = 0.

Proof. We have that M n = M n1 1 (c 1 ) × M n2 2 (c 2 ), for c 1 = 0, c 2 > 0 and c = 1. Let {X i } 1≤i≤n1 and {Y j } 1≤j≤n2 be the local orthonormal frames of vector fields of M n1 1 and M n2 2 , respectively, as described in Lemma 3.5. Consider arbitrarily

We will make use of the Codazzi equation (2.5), equations (3.17), (3.28) and the fact that ∇X i = 0, 1 ≤ i ≤ n 1 . We need, additionally, to know that ∇ Xi Y j = 0 for i < n 1 and each j, where for every Y j chosen in the basis of T q M n2 2 , we take its horizontal lift on

2 ), which we denote still by Y j . Our setting corresponds now to [START_REF] O'neill | Semi-Riemannian Geometry with Applications to Relativity[END_REF]Proposition 56,p. 89]. Hence, ∇ X Y j = 0.

Given the symmetries of ∇h, it is enough to evaluate the following terms such as ∇h

Then finally by direct calculations we obtain ∇h = 0.

Completion of the Proof of Theorem 3.1.

Let {X i } 1≤i≤n1 and {Y j } 1≤j≤n2 be the local orthonormal frames of vector fields of M n1 1 and M n2 2 , respectively, as described in Lemma 3.5. Now, we consider the two distributions D 1 spanned by X 1 , and D 2 spanned by {X 2 , . . . , X n1 , Y 1 , . . . , Y n2 }. Given the form of A JX1 in (3.28), we may apply Theorem 2.1 and obtain that ψ :

As ψ is minimal in our case, we may further apply Theorem 2.1 [START_REF] Barros | Indefinite Kähler manifolds[END_REF]. Therefore, we get that

where Π : S 2n+1 (1) → CP n (4) is the Hopf fibration and ψ1 :

Consider next the immersion

→ CP n-1 (4). From (3.28) we may see that the restriction A 1 J of the shape operator

) is defined as

). We then apply Theorem 2.1 on M n-1 1,1 , by identifying D 1 with span{X 2 } and D 2 with span{X 3 , . . . , X n1 , Y 1 , . . . , Y n2 }, and obtain that ψ 1 :

As ψ 2 is minimal, we further apply Theorem 2.1 (2), and we get

and

where Π 1 : S 2n-1 (1) → CP n-1 (4) is the Hopf fibration, and ψ2 : M n-2 1,2 → S 2n-3 (1) is the horizontal lift of ψ 2 .

In this way, we can apply Theorem 2.1 for the (n 1 -1) th time because, inductively, we have that

) is defined as

Then applying Theorem 2.2 by identifying D 1 with span{X n1-1 }, and D 2 with span{X n1 , Y 1 , . . . , Y n2 }, respectively, we obtain that M 1,n1-2 is locally a Calabi product Lagrangian immersion of an (n -

As ψ n1-2 is minimal, we further apply Theorem 2.1 [START_REF] Barros | Indefinite Kähler manifolds[END_REF] to see that

and

Here, Π n1-2 : S 2n-2n1+5 (1) → CP n-(n1-2) (4) is the Hopf fibration, and ψn1-1 :

We want to apply Theorem 2.1 for the n th 1 time, for the Lagrangian immersion

JYi Y j = δ ij µ n1 X n1 . Applying Theorem 2.2 again by identifying D 1 with span{X n1 }, and D 2 with span{Y 1 , . . . , Y n2 }, we obtain that ψ n1-1 : M 1,n1-1 → CP n-(n1-1) (4) is locally a Calabi product Lagrangian immersion of an (n -n 1 )-dimensional Lagrangian immersion ψ n1 : M 1,n1 → CP n-n1 (4) and a point. Thus M 1,n1-1 = I n1 × M 1,n1 and (3.80)

3.2. Now, we deal with Case (ii), that is, we treat the case when c 1 = 0 and c 2 = 0. We begin with the following result whose proof is similar to that of (3.4).

Lemma 3.8. If Case (ii) occurs, then we have

Then, as main result of this subsection we can prove the following lemma.

Lemma 3.9. Case (ii) does not occur.

Proof. Suppose on the contrary that Case (ii) does occur. From Lemma 3.1 we know that A J vanishes nowhere. We may assume that there exist X ∈ T p M n1 1 such that A JX = 0 at the point p. Given Lemma 3.8, similarly to the proof of Lemma 3.5, we can show that there exists a local orthonormal frame {X 1 , . . . , X n1 } ∈ T M n1 1 on a neighbourhood of p such that the shape operator satisfies

where λ 1 and λ 2 are constants. Then, similarly to the proof of (3.27), we can show that ∇ X X 1 = 0 for any X ∈ T M n1 1 . This implies that R(X 1 , X 2 )X 1 = 0, which is a contradiction to c 1 c 2 = 0.

Completion of the Proof of the Main Theorem.

If c 1 = c 2 = 0, it follows from (2.12) that (M n , •, • ) is flat. According to the result of [START_REF] Ejiri | Totally real minimal immersions of n-dimensional real space forms into ndimensional complex space forms[END_REF][START_REF] Li | Totally real minimal submanifolds in CP n[END_REF] and [START_REF] Chen | On totally real submanifolds[END_REF] (see the Gauss equation (3.5) in [START_REF] Chen | On totally real submanifolds[END_REF]), we get item (1) of the Main Theorem.

If c 2 1 + c 2 2 = 0, we have two cases: Case (i) and Case (ii). For Case (i), by Theorem 3.1, we obtain the minimal Lagrangian submanifold as stated in item (2) of the Main Theorem.

Whereas for Case (ii), by Lemma 3.9, it does not occur. Hence, we have completed the proof of the Main Theorem.