HAL
open science

On Product Minimal Lagrangian Submanifolds in Complex Space Forms

Xiuxiu Cheng, Zejun Hu, Marilena Moruz, Luc Vrancken

To cite this version:

Xiuxiu Cheng, Zejun Hu, Marilena Moruz, Luc Vrancken. On Product Minimal Lagrangian Submanifolds in Complex Space Forms. The Journal of Geometric Analysis, 2021, 31 (2), pp.1934-1964. 10.1007/s12220-019-00328-7 . hal-03722540

HAL Id: hal-03722540
https://uphf.hal.science/hal-03722540
Submitted on 16 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON PRODUCT MINIMAL LAGRANGIAN SUBMANIFOLDS IN COMPLEX SPACE FORMS

XIUXIU CHENG, ZEJUN HU, MARILENA MORUZ AND LUC VRANCKEN

Abstract

In this paper we consider minimal Lagrangian submanifolds in n dimensional complex space forms. More precisely, we study such submanifolds which, endowed with the induced metrics, write as a Riemannian product of two Riemannian manifolds, each having constant sectional curvature. As the main result, we give a complete classification of these submanifolds.

1. Introduction

In this paper we study Lagrangian submanifolds of the n-dimensional complex space forms $\tilde{M}^{n}(4 \tilde{c})$ of constant holomorphic sectional curvature $4 \tilde{c}$. Indeed, the complex space forms are the easiest examples of Kähler manifolds. These are almost Hermitian manifolds for which the almost complex structure J is parallel with respect to the Levi-Civita connection ∇ of the Hermitian metric g. The standard models of complex space forms are the complex projective space $\mathbb{C P}^{n}$, the complex Euclidean space \mathbb{C}^{n} and the complex hyperbolic space $\mathbb{C} \mathbb{H}^{n}$, according to whether the holomorphic sectional curvature satisfies $\tilde{c}>0, \tilde{c}=0$ or $\tilde{c}<0$.

There are two special classes of submanifolds of a Kähler manifold depending on the behavior of the complex structure J with respect to the submanifold.

A submanifold M of \tilde{M}^{n} is called almost complex if and only if J maps tangent vectors to tangent vectors. On the other hand, M is called totally real if the almost complex structure J of \tilde{M}^{n} carries each tangent space of M into its corresponding normal space. The study of minimal totally real submanifolds originates with the work of Chen and Ogiue (see [7]). A special case here happens when the real dimension of the submanifold equals the complex dimension of the ambient space. In that case J interchanges the tangent and the normal spaces. Such submanifolds are called Lagrangian submanifolds. These can also be seen as submanifolds of the largest possible dimension on which the symplectic form vanishes identically.

For the study of minimal Lagrangian immersions in complex space forms one may find a short survey in [5], where some of the main results are mentioned (see also for example $[2,3,4,6,7,8,10,11,12,14,16,18,19,23,24]$).

The fundamental question in submanifold theory is then to determine to what extent the geometry of the submanifold determines the immersion of the submanifold in the ambient space. In that respect, it was shown by Ejiri [12] that an

[^0]n-dimensional Lagrangian minimal submanifold of constant sectional curvature c immersed in an n-dimensional complex space form is either totally geodesic or flat $(c=0)$ (cf. also [15] and [10]). More precisely in the latter case it must be congruent to a specific Lagrangian tori in the complex projective space (see Main Theorem below). Note that the condition that the immersion is minimal is unavoidable. From [6] and [21] we can see that one cannot expect to obtain a general classification of all Lagrangian submanifolds of real space forms in complex space forms.

In this paper we consider the logical next step. We will assume that our manifold M is isometric with $M_{1}^{n_{1}}\left(c_{1}\right) \times M_{2}^{n_{2}}\left(c_{2}\right)$, i.e. it is a product of two real space forms of constant sectional curvature, respectively c_{1} and c_{2}. As the main result of the paper we extend Ejiri's result by proving
Main Theorem. Let $\psi: M^{n} \rightarrow \tilde{M}^{n}(4 \tilde{c})$ be a minimal Lagrangian immersion into a complex space form with induced metric $\langle\cdot, \cdot\rangle$. If $M^{n}=M_{1}^{n_{1}}\left(c_{1}\right) \times M_{2}^{n_{2}}\left(c_{2}\right)$, where $n=n_{1}+n_{2}, M_{1}^{n_{1}}\left(c_{1}\right)$ (resp. $M_{1}^{n_{2}}\left(c_{2}\right)$) is an n_{1} (resp. n_{2})-dimensional Riemannian manifold of constant sectional curvature c_{1} (resp. c_{2}), then $c_{1} c_{2}=0$. Moreover,
(1) if $c_{1}=c_{2}=0$, then M^{n} is equivalent to either the totally geodesic immersion in \mathbb{C}^{n} or the Lagrangian flat torus in $\mathbb{C P}^{n}(4 \tilde{c})$.
(2) if $c_{1} c_{2}=0$ and $c_{1}^{2}+c_{2}^{2} \neq 0$, without loss of generality, we may assume that $c_{1}=0$ and $c_{2} \neq 0$. Then we have $c_{2}=\frac{n_{1}+n_{2}+1}{n_{2}+1} \tilde{c}>0$, say $\tilde{c}=1$, so the ambient space is $\mathbb{C P}^{n}(4)$, and the immersion is congruent with

$$
\frac{1}{n+1}\left(e^{i u_{1}}, \ldots, e^{i u_{n_{1}}}, a e^{i u_{n_{1}+1}} y_{1}, \ldots, a e^{i u_{n_{1}+1}} y_{n_{2}+1}\right)
$$

where
(i) $\left(y_{1}, y_{2}, \ldots, y_{n_{2}+1}\right)$ describes the standard sphere $\mathbb{S}^{n_{2}} \hookrightarrow \mathbb{R}^{n_{2}+1} \hookrightarrow \mathbb{C}^{n_{2}+1}$,
(ii) $a=\sqrt{n_{2}+1}$,
(iii) $u_{1}+\cdots+u_{n_{1}}+a^{2} u_{n_{1}+1}=0$.

Remark 1.1. The technique we use in the proof of the Main Theorem is based on two steps. The first step is to take cyclic permutation of the covariant derivative of the Codazzi equation. The second step is then expressing the second fundamental form of the submanifold M^{n} with respect to a conveniently chosen frame. To do so, we proceed by induction (see [22] and [9]). One should notice that, eventually, our main result follows directly from the theorems in [17].

2. Preliminaries

In this section, we will recall the basic formulas for Lagrangian submanifolds in complex space forms. Let $\tilde{M}^{n}(4 \tilde{c})$ be a complex space form of complex dimension n and having constant holomorphic sectional curvature $4 \tilde{c}$. Let M^{n} be a minimal Lagrangian submanifold in $\tilde{M}^{n}(4 \tilde{c})$ given by the immersion $\psi: M^{n} \rightarrow \tilde{M}^{n}(4 \tilde{c})$ such that

$$
\begin{equation*}
M^{n}=M_{1}^{n_{1}}\left(c_{1}\right) \times M_{2}^{n_{2}}\left(c_{2}\right) \tag{2.1}
\end{equation*}
$$

where $n_{1}+n_{2}=n, M_{1}^{n_{1}}\left(c_{1}\right)$ and $M_{2}^{n_{2}}\left(c_{2}\right)$ are manifolds of real dimensions n_{1} and n_{2} and have constant sectional curvature c_{1} and c_{2}, respectively.

Let ∇ and $\tilde{\nabla}$ be the Levi-Civita connections on M^{n} and $\tilde{M}^{n}(4 \tilde{c})$, respectively. The formulas of Gauss and Weingarten write out as

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \quad \tilde{\nabla}_{X} \xi=-A_{\xi} X+\nabla_{X}^{\perp} \xi \tag{2.2}
\end{equation*}
$$

for X, Y tangent to M^{n} and ξ normal to M^{n}, where h, A and ∇^{\perp} are the second fundamental form, the shape operator and the normal connection, respectively.

Notice that we will always identify M^{n} with its immersed image in $\tilde{M}^{n}(4 \tilde{c})$. As M^{n} is Lagrangian, we have that the almost complex structure J interchanges the tangent and the normal spaces. Moreover, since J is parallel, we deduce that

$$
\begin{equation*}
\nabla_{X}^{\perp} J Y=J \nabla_{X} Y, \quad A_{J X} Y=-J h(X, Y)=A_{J Y} X \tag{2.3}
\end{equation*}
$$

The last formula implies that the cubic form $g(h(X, Y), J Z)$ is totally symmetric. The minimality condition on M^{n} means that trace $h=0$, and one may notice that this is equivalent to trace $A_{J}=0$.

A straightforward computation shows that the equations of Gauss, Codazzi and Ricci are

$$
\begin{align*}
R(X, Y) Z= & \tilde{c}(\langle Y, Z\rangle X-\langle X, Z\rangle Y)+\left[A_{J X}, A_{J Y}\right] Z, \tag{2.4}\\
& (\nabla h)(X, Y, Z)=(\nabla h)(Y, X, Z), \tag{2.5}\\
R^{\perp}(X, Y) J Z= & \tilde{c}(\langle Y, Z\rangle J X-\langle X, Z\rangle J Y)+J\left[A_{J X}, A_{J Y}\right] Z, \tag{2.6}
\end{align*}
$$

where X, Y, Z are tangent vector fields and the covariant derivative of h is given by

$$
\begin{equation*}
(\nabla h)(X, Y, Z)=\nabla_{X}^{\perp}(h(Y, Z))-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) \tag{2.7}
\end{equation*}
$$

Moreover, the following Ricci identity holds:

$$
\begin{align*}
& \left(\nabla^{2} h\right)(X, Y, Z, W)-\left(\nabla^{2} h\right)(Y, X, Z, W) \\
& \quad=J R(X, Y) A_{J Z} W-h(R(X, Y) Z, W)-h(R(X, Y) W, Z) \tag{2.8}
\end{align*}
$$

where X, Y, Z, W are tangent vector fields and

$$
\begin{align*}
\left(\nabla^{2} h\right)(W, X, Y, Z)= & \nabla_{W}^{\perp}((\nabla h)(X, Y, Z))-(\nabla h)\left(\nabla_{W} X, Y, Z\right) \tag{2.9}\\
& -(\nabla h)\left(X, \nabla_{W} Y, Z\right)-(\nabla h)\left(X, Y, \nabla_{W} Z\right)
\end{align*}
$$

In the following, we will prove an additional relation that is very useful in our computations. To do so, we will make use of the technique introduced in [1], as the Tsinghua Principle. First, take the covariant derivative in (2.5) with respect to W, and use (2.9) and (2.5), to obtain straightforwardly that

$$
\begin{equation*}
\left(\nabla^{2} h\right)(W, X, Y, Z)-\left(\nabla^{2} h\right)(W, Y, X, Z)=0 \tag{2.10}
\end{equation*}
$$

In the above equation we then cyclicly permute the first three vector fields and express each time the left-hand side of the equations using the Ricci identity in (2.8). It then follows that

$$
\begin{align*}
0= & R(W, X) \operatorname{Jh}(Y, Z)-\operatorname{Jh}(Y, R(W, X) Z) \\
& +R(X, Y) \operatorname{Jh}(W, Z)-\operatorname{Jh}(W, R(X, Y) Z) \tag{2.11}\\
& +R(Y, W) \operatorname{Jh}(X, Z)-\operatorname{Jh}(X, R(Y, W) Z) .
\end{align*}
$$

Furthermore, given [20, Corollary 58, p. 89], we know that

$$
\begin{equation*}
R(X, Y) Z=c_{1}\left(\left\langle Y_{1}, Z_{1}\right\rangle X_{1}-\left\langle X_{1}, Z_{1}\right\rangle Y_{1}\right)+c_{2}\left(\left\langle Y_{2}, Z_{2}\right\rangle X_{2}-\left\langle X_{2}, Z_{2}\right\rangle Y_{2}\right) \tag{2.12}
\end{equation*}
$$

where X_{i}, Y_{i}, Z_{i} are the projections of X, Y, Z on the $T M_{i}^{n_{i}}$ component of $T M^{n}$, for $i=1,2$, respectively.

We recall the following useful definitions and theorems (see [17]):

Definition 1. Let $\psi_{i}:\left(M_{i}^{n_{i}}, g_{i}\right) \rightarrow \mathbb{C P}^{n_{i}}(4), i=1,2$, be two Lagrangian immersions and let $\tilde{\gamma}=\left(\tilde{\gamma}_{1}, \tilde{\gamma}_{2}\right): I \rightarrow \mathbb{S}^{3}(1) \subset \mathbb{C}^{2}$ be a Legendre curve. Then $\psi=\Pi\left(\tilde{\gamma}_{1} \tilde{\psi}_{1} ; \tilde{\gamma}_{2} \tilde{\psi}_{2}\right): I \times M_{1}^{n_{1}} \times M_{2}^{n_{2}} \rightarrow \mathbb{C P}^{n}(4)$ is a Lagrangian immersion, where $n=n_{1}+n_{2}+1, \tilde{\psi}_{i}: M_{i}^{n_{i}} \rightarrow \mathbb{S}^{2 n_{i}+1}(1)$ are horizontal lifts of $\psi_{i}, i=1,2$, respectively, and Π is the Hopf fibration. We call ψ a warped product Lagrangian immersion of ψ_{1} and ψ_{2}. When n_{1} (or n_{2}) is zero, we call ψ a warped product Lagrangian immersion of $\psi_{2}\left(\right.$ or $\left.\psi_{1}\right)$ and a point.
Definition 2. In Definition 1, when

$$
\begin{equation*}
\tilde{\gamma}(t)=\left(r_{1} e^{i\left(\frac{r_{2}}{r_{1}} a t\right)}, r_{2} e^{i\left(-\frac{r_{1}}{r_{2}} a t\right)}\right) \tag{2.13}
\end{equation*}
$$

where r_{1}, r_{2} and a are positive constants with $r_{1}^{2}+r_{2}^{2}=1$, we call ψ a Calabi product Lagrangian immersion of ψ_{1} and ψ_{2}. When n_{1} (or n_{2}) is zero, we call ψ a Calabi product Lagrangian immersion of $\psi_{2}\left(\right.$ or $\left.\psi_{1}\right)$ and a point.
Theorem $2.1([17])$. Let $\psi: M^{n} \rightarrow \mathbb{C P}^{n}(4)$ be a Lagrangian immersion. Then ψ is locally a Calabi product Lagrangian immersion of an $(n-1)$-dimensional Lagrangian immersion $\psi_{1}: M_{1}^{n-1} \rightarrow \mathbb{C P}^{n-1}(4)$ and a point if and only if M^{n} admits two orthogonal distributions \mathcal{D}_{1} (of dimension 1 , spanned by a unit vector field E_{1}) and \mathcal{D}_{2} (of dimension $n-1$, spanned by $\left\{E_{2}, \ldots, E_{n}\right\}$) and there exist two real constants λ_{1} and λ_{2} such that

$$
\begin{align*}
h\left(E_{1}, E_{1}\right) & =\lambda_{1} J E_{1}, h\left(E_{1}, E_{i}\right)=\lambda_{2} J E_{i}, i=2, \ldots, n, \\
\lambda_{1} & \neq 2 \lambda_{2} \tag{2.14}
\end{align*}
$$

Moreover, a Lagrangian immersion $\psi: M^{n} \rightarrow \mathbb{C P}^{n}(4)$, satisfying the above conditions, has the following properties:
(1) ψ is Hamiltonian minimal if and only if ψ_{1} is Hamiltonian minimal;
(2) ψ is minimal if and only if $\lambda_{2}= \pm \frac{1}{\sqrt{n}}$ and ψ_{1} is minimal. In this case, up to a reparametrization and a rigid motion of $\mathbb{C P}^{n}$, locally we have $M^{n}=$ $I \times M_{1}^{n-1}$ and ψ is given by $\psi=\Pi \circ \tilde{\psi}$ with

$$
\tilde{\psi}(t, p)=\left(\sqrt{\frac{n}{n+1}} e^{i \frac{1}{n+1} t} \tilde{\psi}_{1}(p), \sqrt{\frac{1}{n+1}} e^{-i \frac{n}{n+1} t}\right), \quad(t, p) \in I \times M_{1}^{n-1}
$$

where Π is the Hopf fibration and $\tilde{\psi}_{1}: M_{1}^{n-1} \rightarrow S^{2 n-1}(1)$ is the horizontal lift of ψ_{1}.

Theorem $2.2([17])$. Let $\psi: M^{n} \rightarrow \mathbb{C P}^{n}(4)$ be a Lagrangian immersion. If M^{n} admits two orthogonal distributions \mathcal{D}_{1} (of dimension 1 , spanned by a unit vector field E_{1}) and \mathcal{D}_{2} (of dimension $n-1$, spanned by $\left\{E_{2}, \ldots, E_{n}\right\}$), and that there exist local functions λ_{1}, λ_{2} such that (2.14) holds, then M^{n} has parallel second fundamental form if and only if ψ is locally a Calabi product Lagrangian immersion of a point and an $(n-1)$-dimensional Lagrangian immersion $\psi_{1}: M_{1}^{n-1} \rightarrow \mathbb{C P}^{n-1}(4)$, which has parallel second fundamental form.

3. Proof of the Main Theorem

In this section, we study a minimal Lagrangian isometric immersion into a complex space form: $\psi: M^{n} \rightarrow \tilde{M}^{n}$, where $M^{n}=M_{1}^{n_{1}}\left(c_{1}\right) \times M_{2}^{n_{2}}\left(c_{2}\right), n=n_{1}+n_{2}$ and $M_{1}^{n_{1}}\left(c_{1}\right)$ (resp. $M_{1}^{n_{2}}\left(c_{2}\right)$) is n_{1} (resp. n_{2})-dimensional Riemannian manifold with constant sectional curvature c_{1} (resp. c_{2}). We will prove the Main Theorem stated in introduction.

One should be aware that throughout the paper we will make the following identifications. As $M^{n}=M_{1}^{n_{1}} \times M_{2}^{n_{2}}$, we can write a tangent vector field $Z(p, q)=$ $(X(p, q), Y(p, q))$ where $X(p, q) \in T_{p} M_{1}^{n_{1}}$ and $Y(p, q) \in T_{q} M_{2}^{n_{2}}$. In general, the X notation (as well as $X_{i}, 1 \leq i \leq n_{1}$) will denote a vector tangent at $(p, q) \in$ M^{n}, with zero components on $M_{2}^{n_{2}}$. We will also identify $X(p, q) \in T_{p} M_{1}^{n_{1}}$ with $(X(p, q), 0) \in T_{(p, q)}\left(M_{1}^{n_{1}} \times M_{2}^{n_{2}}\right)$ (and similarly $Y(p, q) \in T_{q} M_{2}^{n_{2}}$ with $(0, Y(p, q)) \in$ $T_{(p, q)}\left(M_{1}^{n_{1}} \times M_{2}^{n_{2}}\right)$. Notice that, a priori, it means that X, as a vector field depends on q as well, not only on p. One should have in mind this meaning when reading $X \in T_{p} M_{1}^{n_{1}}$, respectively $Y \in T_{q} M_{2}^{n_{2}}$. Nonetheless, a complete understanding will be acquired with the proofs of Lemmas 3.6 and 3.7 , when we will actually see that due to our particular choice of basis, X only depends on p.

First of all, we consider the case $c_{1}^{2}+c_{2}^{2} \neq 0$. We begin with the following result.
Lemma 3.1. If $c_{1}^{2}+c_{2}^{2} \neq 0$, then the shape operator A_{J} vanishes nowhere.
Proof. Assume that A_{J} vanishes at the point $p \in M^{n}$. From equation (2.4) it follows that $R(X, Y) Z=\tilde{c}(\langle Y, Z\rangle X-\langle X, Z\rangle Y)$, which yields that M^{n} has constant sectional curvature \tilde{c} at p. Moreover, by taking X_{1}, X_{2}, X_{2} in (2.4) and (2.12), we obtain that $c_{1}=\tilde{c}$ and then by taking X, Y, Y in (2.4) and (2.12), $X \in T_{p} M_{1}^{n_{1}}$, $Y \in T_{p} M_{2}^{n_{2}}$, we get $\tilde{c}=0$. Similarly, taking $Y_{1}, Y_{2}, Y_{2} \in T_{p} M_{2}^{n_{2}}$ in (2.4) and (2.12), we get that $c_{2}=0$. Therefore, we get a contradiction with $c_{1}^{2}+c_{2}^{2} \neq 0$.

For $c_{1}^{2}+c_{2}^{2} \neq 0$, if $c_{1} c_{2}=0$, without loss of generality, we may assume that $c_{1}=0$ and $c_{2} \neq 0$. Therefore, we are left to consider the following two cases:

Case (i): $c_{1}=0$ and $c_{2} \neq 0 ;$ Case (ii): $c_{1} \neq 0$ and $c_{2} \neq 0$.
3.1.

In this subsection, we will deal with Case (i) and prove the following result.
Theorem 3.1. Let $\psi: M^{n} \rightarrow \tilde{M}^{n}(4 \tilde{c})$ be a minimal Lagrangian isometric immersion into a complex space form such that $\left(M^{n},\langle\cdot, \cdot\rangle\right)=M_{1}^{n_{1}}\left(c_{1}\right) \times M_{2}^{n_{2}}\left(c_{2}\right)$ and Case (i) occurs. Then we have $c_{2}=\frac{n_{1}+n_{2}+1}{n_{2}+1} \tilde{c}>0$, say $\tilde{c}=1$, so the ambient space is $\mathbb{C P}^{n}(4)$ and the immersion is congruent with

$$
\frac{1}{n+1}\left(e^{i u_{1}}, \ldots, e^{i u_{n_{1}}}, a e^{i u_{n_{1}+1}} y_{1}, \ldots, a e^{i u_{n_{1}+1}} y_{n_{2}+1}\right)
$$

where
(1) $\left(y_{1}, y_{2}, \ldots, y_{n_{2}+1}\right)$ describes the standard sphere $\mathbb{S}^{n_{2}} \hookrightarrow \mathbb{R}^{n_{2}+1} \hookrightarrow \mathbb{C}^{n_{2}+1}$,
(2) $a=\sqrt{n_{2}+1}$,
(3) $u_{1}+\cdots+u_{n_{1}}+a^{2} u_{n_{1}+1}=0$.

The proof of Theorem 3.1 consists of several lemmas as following.
Lemma 3.2. Let $\left\{X_{i}\right\}_{1 \leq i \leq n_{1}}$ and $\left\{Y_{j}\right\}_{1 \leq j \leq n_{2}}$ be orthonormal bases of $M_{1}^{n_{1}}\left(c_{1}\right)$ and $M_{2}^{n_{2}}\left(c_{2}\right)$, respectively. Then we have

$$
\begin{equation*}
\left\langle A_{J X_{i}} X_{j}, Y_{k}\right\rangle=0 \tag{3.1}
\end{equation*}
$$

and

$$
\left\langle A_{J X_{i}} Y_{j}, Y_{k}\right\rangle=\left\{\begin{array}{l}
0, \text { if } j \neq k \tag{3.2}\\
\mu\left(X_{i}\right), \text { if } j=k
\end{array}\right.
$$

where $\mu\left(X_{i}\right)=: \mu_{i}$ depends only on X_{i} for each $i=1, \ldots, n_{1}$.

Proof. Expressing (2.11) for $X=Y_{k}, Y=Y_{l}, Z=X_{i}, W=X_{j}, k \neq l$, and using (2.12), we see that there is only one term remaining in the right-hand side: $0=$ $R\left(Y_{k}, Y_{l}\right) A_{J X_{i}} X_{j}$. Using (2.12) again, we get

$$
\begin{equation*}
0=\left\langle Y_{l}, A_{J X_{i}} X_{j}\right\rangle Y_{k}-\left\langle Y_{k}, A_{J X_{i}} X_{j}\right\rangle Y_{l} \tag{3.3}
\end{equation*}
$$

It follows immediately the assertion (3.1) that

$$
\begin{equation*}
\left\langle Y_{l}, A_{J X_{i}} X_{j}\right\rangle=0, \quad 1 \leq i, j \leq n_{1}, \quad 1 \leq l \leq n_{2} \tag{3.4}
\end{equation*}
$$

For the second relation, we proceed similarly by choosing in (2.11): $X=Y_{m}$, $Y=X_{i}, Z=Y_{l}, W=Y_{k}$, we obtain

$$
\begin{equation*}
0=-c_{2}\left(\left\langle A_{J X_{i}} Y_{l}, Y_{m}\right\rangle Y_{k}-\left\langle A_{J X_{i}} Y_{l}, Y_{k}\right\rangle Y_{m}-\delta_{m l} A_{J X_{i}} Y_{k}+\delta_{k l} A_{J X_{i}} Y_{m}\right) \tag{3.5}
\end{equation*}
$$

In (3.5), let k, l, m be distinct, then we get

$$
\begin{equation*}
\left\langle A_{J X_{i}} Y_{l}, Y_{m}\right\rangle=0,1 \leq i \leq n_{1}, 1 \leq l, m \leq n_{2}, l \neq m \tag{3.6}
\end{equation*}
$$

Again in (3.5), let assume that $l=m \neq k$, then we have

$$
\begin{equation*}
\left\langle A_{J X_{i}} Y_{l}, Y_{l}\right\rangle=\left\langle A_{J X_{i}} Y_{k}, Y_{k}\right\rangle, 1 \leq i \leq n_{1}, 1 \leq l, k \leq n_{2}, l \neq k \tag{3.7}
\end{equation*}
$$

By (3.4), (3.6) and (3.7), we have $\mu\left(X_{i}\right)$ depends only on X_{i} such that

$$
A_{J X_{i}} Y_{l}=\mu\left(X_{i}\right) Y_{l}, 1 \leq i \leq n_{1}, 1 \leq l \leq n_{2}
$$

Then the assertion (3.2) immediately follows.
Lemma 3.3. Let $\left\{X_{i}\right\}_{1 \leq i \leq n_{1}}$ be an orthonormal basis in the tangent space of $M_{1}^{n_{1}}$ at a point. Then it holds that

$$
\begin{equation*}
\mu\left(X_{1}\right)^{2}+\cdots+\mu\left(X_{n_{1}}\right)^{2}=\frac{n_{1}}{n_{2}+1} \tilde{c} \tag{3.8}
\end{equation*}
$$

Proof. We compute the sectional curvature $K\left(\pi\left(X_{i}, Y_{j}\right)\right)$ of the plane π spanned by X_{i} and Y_{j}, for some fixed $i=1, \ldots, n_{1}$ and some fixed $j=1, \ldots, n_{2}$. We use on the one hand (2.12) and on the other hand (2.4) together with (3.2) to obtain

$$
\begin{aligned}
0 & =\tilde{c}+\left\langle A_{J Y_{j}} Y_{j}, A_{J X_{i}} X_{i}\right\rangle-\left\langle A_{J X_{i}} Y_{j}, A_{J Y_{j}} X_{i}\right\rangle \\
& =\tilde{c}-\mu\left(X_{i}\right)^{2}+\left\langle A_{J Y_{j}} Y_{j}, A_{J X_{i}} X_{i}\right\rangle, \quad 1 \leq i \leq n_{1}, 1 \leq j \leq n_{2}
\end{aligned}
$$

Taking summation over $i=1, \ldots, n_{1}$, and using Lemma 3.2, we get

$$
\begin{align*}
0 & =n_{1} \tilde{c}-\sum_{i=1}^{n_{1}} \mu\left(X_{i}\right)^{2}+\left\langle A_{J Y_{j}} Y_{j}, \sum_{i=1}^{n_{1}} A_{J X_{i}} X_{i}\right\rangle \\
& =n_{1} \tilde{c}-\sum_{i=1}^{n_{1}} \mu\left(X_{i}\right)^{2}+\sum_{k=1}^{n_{1}} \sum_{i=1}^{n_{1}}\left\langle A_{J X_{k}} X_{i}, X_{i}\right\rangle \mu\left(X_{k}\right) . \tag{3.9}
\end{align*}
$$

However, the minimality condition implies that for each $k=1, \ldots, n_{1}$ we have

$$
\begin{equation*}
0=\sum_{i=1}^{n_{1}}\left\langle A_{J X_{k}} X_{i}, X_{i}\right\rangle+\sum_{j=1}^{n_{2}}\left\langle A_{J X_{k}} Y_{j}, Y_{j}\right\rangle=\sum_{i=1}^{n_{1}}\left\langle A_{J X_{k}} X_{i}, X_{i}\right\rangle+n_{2} \mu\left(X_{k}\right) \tag{3.10}
\end{equation*}
$$

Therefore, from (3.9) and (3.10), we obtain

$$
\begin{equation*}
\mu\left(X_{1}\right)^{2}+\cdots+\mu\left(X_{n_{1}}\right)^{2}=\frac{n_{1}}{n_{2}+1} \tilde{c} . \tag{3.11}
\end{equation*}
$$

This completes the proof of Lemma 3.3.

Next, we will describe the construction of a local frame of vector fields for which we can determine the values of the shape operator A_{J}. This is a crucial step and will be stated in Lemma 3.5. Let us describe first a general method for choosing suitable orthonormal vectors at a point on M^{n}, which will be used recurrently in the proof of Lemma 3.5. The main idea originates from the very similar situation in studying affine hyperspheres in $[9,13,22]$.

Let $(p, q) \in M^{n}$ and $U_{p} M_{1}^{n_{1}}=\left\{u \in T_{p} M_{1}^{n_{1}} \mid\langle u, u\rangle=1\right\}$. As the metric on $M_{1}^{n_{1}}$ is positive definite, we have that $U_{p} M_{1}^{n_{1}}$ is compact. We define on this set the functions

$$
\begin{equation*}
f_{(p, q)}(u)=\left\langle A_{J u} u, u\right\rangle, u \in U_{p} M_{1}^{n_{1}} . \tag{3.12}
\end{equation*}
$$

We know that there exists $e_{1} \in U_{p} M_{1}^{n_{1}}$ for which $f_{(p, q)}$ attains an absolute maximum: $f_{(p, q)}\left(e_{1}\right)=\left\langle A_{J e_{1}} e_{1}, e_{1}\right\rangle=: \lambda_{1}$. Let $u \in U_{p} M_{1}^{n_{1}}$ such that $\left\langle u, e_{1}\right\rangle=0$ and define $g(t)=f_{(p, q)}\left(\cos (t) e_{1}+\sin (t) u\right)$. One may check that

$$
\begin{align*}
g^{\prime}(0) & =3\left\langle A_{J e_{1}} e_{1}, u\right\rangle \tag{3.13}\\
g^{\prime \prime}(0) & =6\left\langle A_{J e_{1}} u, u\right\rangle-3 f_{(p, q)}\left(e_{1}\right) \tag{3.14}
\end{align*}
$$

Since g attains an absolute maximum for $t=0$, we have that $g^{\prime}(0)=0$ and $g^{\prime \prime}(0) \leq 0$, i.e.

$$
\left\{\begin{array}{l}
\left\langle A_{J e_{1}} e_{1}, u\right\rangle=0 \tag{3.15}\\
\left\langle A_{J e_{1}} e_{1}, e_{1}\right\rangle \geq 2\left\langle A_{J e_{1}} u, u\right\rangle, u \perp e_{1},\langle u, u\rangle=1
\end{array}\right.
$$

Therefore, e_{1} is an eigenvector of $A_{J e_{1}}$ with λ_{1} the corresponding eigenvalue. Since $A_{J e_{1}}$ is self-adjoint, we can further choose orthonormal vectors $e_{2}, \ldots, e_{n_{1}}$, which are eigenvectors of $A_{J e_{1}}$, with respectively the eigenvalues $\lambda_{2}, \ldots, \lambda_{n_{1}}$. To sum up, we have

$$
\begin{equation*}
A_{J e_{1}} e_{i}=\lambda_{i} e_{i}, i=1, \ldots, n_{1} ; \quad \lambda_{1} \geq 2 \lambda_{i} \text { for } i \geq 2 \tag{3.16}
\end{equation*}
$$

Lemma 3.4. Let $(p, q) \in M_{1}^{n_{1}} \times M_{2}^{n_{2}}$ and $\left\{X_{i}\right\}_{1 \leq i \leq n_{1}}$ and $\left\{Y_{j}\right\}_{1 \leq j \leq n_{2}}$ be arbitrary orthonormal bases of $T_{p} M_{1}^{n_{1}}$ and $T_{q} M_{2}^{n_{2}}$, respectively. Then

$$
\begin{equation*}
A_{J Y_{j}} Y_{k}=\left(\mu_{1} X_{1}+\cdots+\mu_{n_{1}} X_{n_{1}}\right) \delta_{j k}, \quad 1 \leq j, k \leq n_{2} \tag{3.17}
\end{equation*}
$$

where $\mu_{i}:=\mu\left(X_{i}\right)$ with μ defined as before. Moreover, we have $c_{2}=\frac{n_{1}+n_{2}+1}{n_{2}+1} \tilde{c}$.
Proof. From Lemma 3.2 we know that

$$
A_{J Y_{j}} Y_{k}=\left(\mu_{1} X_{1}+\cdots+\mu_{n_{1}} X_{n_{1}}\right) \delta_{j k}+\sum_{l=1}^{n_{2}} \alpha_{l}^{j k} Y_{l}
$$

for real numbers $\alpha_{1}^{j k}, \ldots, \alpha_{n_{2}}^{j k}$.
Now, we claim that $\alpha_{l}^{j k}=0$ for all possible indexes, or equivalently,

$$
\begin{equation*}
\left\langle A_{J Y_{j}} Y_{k}, Y_{l}\right\rangle=0, \text { for any } Y_{j}, Y_{k}, Y_{l} \in T_{q} M_{2}^{n_{2}} \tag{3.18}
\end{equation*}
$$

We will verify the claim by contradiction.
In fact, if it did not hold, then we could choose a unit vector $Y_{1}(p, q) \in U_{q} M_{2}^{n_{2}}$ such that $\alpha_{1}:=\left\langle A_{J Y_{1}} Y_{1}, Y_{1}\right\rangle>0$ is the maximum of the function $f_{(p, q)}$ defined on $U_{q} M_{2}^{n_{2}}$.

Define an operator \mathcal{A} on $T_{q} M_{2}^{n_{2}}$ by

$$
\mathcal{A}(Y)=A_{J Y_{1}} Y-\left\langle A_{J Y_{1}} Y, X_{1}\right\rangle X_{1}-\cdots-\left\langle A_{J Y_{1}} Y, X_{n_{1}}\right\rangle X_{n_{1}}
$$

It is easy to show that \mathcal{A} is self-adjoint and Y_{1} is one of its eigenvectors. We can choose orthonormal vectors $Y_{2}, \ldots, Y_{n_{2}} \in U_{q} M_{2}^{n_{2}}$ orthogonal to Y_{1}, which are the remaining eigenvectors of the operator \mathcal{A}, associated to the eigenvalues $\alpha_{2}, \ldots, \alpha_{n_{2}}$ (notice that we have changed the notation for the corresponding $\alpha_{l}^{j k}$ for more simplicity). Therefore, we have

$$
\left\{\begin{array}{l}
A_{J Y_{1}} Y_{1}=\mu_{1} X_{1}+\cdots+\mu_{n_{1}} X_{n_{1}}+\alpha_{1} Y_{1} \tag{3.19}\\
A_{J Y_{1}} Y_{i}=\alpha_{i} Y_{i}, 1<i \leq n_{2}
\end{array}\right.
$$

Taking in (2.4) $X=Z=Y_{1}, Y=Y_{i}, 1<i \leq n_{2}$, using (3.19) and Lemmas 3.2 and 3.3 , we can obtain

$$
\begin{equation*}
\alpha_{i}^{2}-\alpha_{1} \alpha_{i}-\frac{n_{1}+n_{2}+1}{n_{2}+1} \tilde{c}+c_{2}=0 \tag{3.20}
\end{equation*}
$$

It follows that there exist an integer $n_{2,1}, 0 \leq n_{2,1} \leq n_{2}-1$, if necessary after renumbering the basis, such that

$$
\left\{\begin{array}{l}
\alpha_{2}=\cdots=\alpha_{n_{2,1}+1}=\frac{1}{2}\left(\alpha_{1}+\sqrt{\alpha_{1}^{2}+4\left(\frac{n_{1}+n_{2}+1}{n_{2}+1} \tilde{c}-c_{2}\right)}\right) \tag{3.21}\\
\alpha_{n_{2,1}+2}=\cdots=\alpha_{n_{2}}=\frac{1}{2}\left(\alpha_{1}-\sqrt{\alpha_{1}^{2}+4\left(\frac{n_{1}+n_{2}+1}{n_{2}+1} \tilde{c}-c_{2}\right)}\right)
\end{array}\right.
$$

Using Lemma 3.2, (3.19), (3.21) and trace $A_{J Y_{1}}=0$, we have

$$
\begin{equation*}
\alpha_{1}=\sqrt{\frac{4\left(\frac{n_{1}+n_{2}+1}{n_{2}+1} \tilde{c}-c_{2}\right)}{\left(\frac{n_{2}+1}{n_{2}-2 n_{2,1}-1}\right)^{2}-1}} . \tag{3.22}
\end{equation*}
$$

Therefore, if there exists a unit vector field $V \in T M_{2}^{n_{2}}$ such that $A_{J V} V=$ $\lambda V+\mu_{1} X_{1}+\cdots+\mu_{n_{1}} X_{n_{1}}$, then we see that

$$
\begin{equation*}
\lambda \in\left\{\sqrt{\frac{4\left(\frac{n_{1}+n_{2}+1}{n_{2}+1} \tilde{c}-c_{2}\right)}{\left(\frac{n_{2}+1}{n_{2}-2 n_{2,1}-1}\right)^{2}-1}}\right\}_{0 \leq n_{2,1} \leq n_{2}-1} . \tag{3.23}
\end{equation*}
$$

Moreover, α_{1} is the absolute maximum of $f_{(p, q)}$ if and only if

$$
\begin{equation*}
\alpha_{1}=\sqrt{\frac{4\left(\frac{n_{1}+n_{2}+1}{n_{2}+1} \tilde{c}-c_{2}\right)}{\left(\frac{n_{2}+1}{n_{2}-1}\right)^{2}-1}}, \quad \text { corresponding to } n_{2,1}=0 \tag{3.24}
\end{equation*}
$$

Next, we show that if $f_{(p, q)}$ attains an absolute maximum in Y_{1}, we can extend Y_{1} differentiably to a unit vector field which is also denoted by Y_{1} on a neighbourhood U of (p, q) such that, at every point $\left(p^{\prime}, q^{\prime}\right) \in U, f_{\left(p^{\prime}, q^{\prime}\right)}$ attains an absolute maximum in $Y_{1}\left(p^{\prime}, q^{\prime}\right)$.

In order to achieve that purpose, let $\left\{E_{1}, \ldots, E_{n_{2}}\right\}$ be an arbitrary differentiable orthonormal basis defined on a neighbourhood U^{\prime} of (p, q) such that $E_{1}(p, q)=Y_{1}$. Then, we define a function γ by

$$
\begin{gathered}
\gamma: \mathbb{R}^{n_{2}} \times U^{\prime} \rightarrow \mathbb{R}^{n_{2}}:\left(a_{1}, \ldots, a_{n_{2}},\left(p^{\prime}, q^{\prime}\right)\right) \mapsto\left(b_{1}, \ldots, b_{n_{2}}\right), \\
b_{k}=\sum_{i, j=1}^{n_{1}} a_{i} a_{j}\left\langle A_{J E_{i}} E_{j}, E_{k}\right\rangle-\alpha_{1} a_{k}, 1 \leq k \leq n_{2} .
\end{gathered}
$$

Using the fact that $f_{(p, q)}$ attains an absolute maximum in $E_{1}(p, q)$, we then obtain that

$$
\begin{aligned}
\frac{\partial b_{k}}{\partial a_{m}}(1,0, \ldots, 0,(p, q)) & =2\left\langle\left(A_{J E_{1}(p, q)} E_{m}(p, q), E_{k}(p, q)\right\rangle-\alpha_{1} \delta_{k m}\right. \\
& =\left\{\begin{array}{l}
0, \quad \text { if } k \neq m, \\
\alpha_{1}, \quad \text { if } k=m=1 \\
2 \alpha_{k}-\alpha_{1}, \quad \text { if } k=m>1
\end{array}\right.
\end{aligned}
$$

Since $\alpha_{1}>0$ and given (3.21), we have $2 \alpha_{k}-\alpha_{1} \neq 0$ for $k \geq 2$. Hence the implicit function theorem shows that there exist differentiable functions $a_{1}, \ldots, a_{n_{2}}$, defined on a neighbourhood U of (p, q), such that

$$
a_{1}(p, q)=1, a_{2}(p, q)=0, \ldots, a_{n_{2}}(p, q)=0
$$

Define the local vector field V by

$$
V=a_{1} E_{1}+\cdots+a_{n_{1}} E_{n_{1}} .
$$

Then we have $V(p, q)=Y_{1}$ and $A_{J V} V=\alpha_{1} V+\mu_{1}\langle V, V\rangle X_{1}+\cdots+\mu_{n_{1}}\langle V, V\rangle X_{n_{1}}$. Hence

$$
A_{J \frac{V}{\sqrt{\langle V, V\rangle}}} \frac{V}{\sqrt{\langle V, V\rangle}}=\frac{\alpha_{1}}{\sqrt{\langle V, V\rangle}} \frac{V}{\sqrt{\langle V, V\rangle}}+\mu_{1} X_{1}+\cdots+\mu_{n_{1}} X_{n_{1}}
$$

By (3.23), the continuity of $\frac{\alpha_{1}}{\sqrt{\langle V, V\rangle}}$ and $\langle V, V\rangle(q)=1$, we can derive that $\langle V, V\rangle=$ 1 identically. Therefore, for any point $\left(p^{\prime}, q^{\prime}\right) \in U, f_{\left({ }^{\prime} p, q^{\prime}\right)}$ attains an absolute maximum at $V\left(p^{\prime}, q^{\prime}\right)$. Let $Y_{1}=V$ and take orthonormal vector fields $Y_{2}, \ldots, Y_{n_{2}}$ orthogonal to Y_{1}, then $\left\{Y_{1}, \ldots, Y_{n_{1}}\right\}$ is a local basis satisfying

$$
\left\{\begin{array}{l}
A_{J Y_{1}} Y_{1}=\mu_{1} X_{1}+\cdots+\mu_{n_{1}} X_{n_{1}}+\alpha_{1} Y_{1} \tag{3.25}\\
A_{J Y_{1}} Y_{i}=\alpha_{i} Y_{i}, \quad 1<i \leq n_{2}
\end{array}\right.
$$

where, α_{1} is defined by (3.24), and

$$
\begin{equation*}
\alpha_{2}=\cdots=\alpha_{n_{2}}=\frac{1}{2}\left(\alpha_{1}-\sqrt{\alpha_{1}^{2}+4\left(\frac{n_{1}+n_{2}+1}{n_{2}+1} \tilde{c}-c_{2}\right)}\right) . \tag{3.26}
\end{equation*}
$$

We recall that on the product manifold M^{n} we know that $\left\langle\nabla_{Y_{i}} Y_{j}, X\right\rangle=0$, for $i, j=1, \ldots, n_{2}$ and X tangent to M_{1}. Applying (2.5), and (3.24)-(3.26), we have that

$$
\begin{equation*}
\nabla_{Y_{i}} Y_{1}=0, \quad 1 \leq i \leq n_{2} \tag{3.27}
\end{equation*}
$$

Hence, we have $R\left(Y_{1}, Y_{2}\right) Y_{1}=0$, a contradiction to the fact that $c_{2} \neq 0$. This verifies the claim and thus (3.17) follows. Moreover, using (2.4), (2.12) and (3.17), we easily get the relation $c_{2}=\frac{n_{1}+n_{2}+1}{n_{2}+1} \tilde{c}$.

Lemma 3.5. In Case (i), we have $\tilde{c}>0$. Moreover, there exist local orthonormal frames of vector fields $\left\{X_{i}\right\}_{1 \leq i \leq n_{1}}$ of $M_{1}^{n_{1}}$ and $\left\{Y_{j}\right\}_{1 \leq j \leq n_{2}}$ of $M_{2}^{n_{2}}$, respectively, such that the operator A_{J} takes the following form:

$$
\left\{\begin{align*}
A_{J X_{1}} X_{1} & =\lambda_{1,1} X_{1} \tag{3.28}\\
A_{J X_{i}} X_{i} & =\mu_{1} X_{1}+\cdots+\mu_{i-1} X_{i-1}+\lambda_{i, i} X_{i}, 1<i \leq n_{1} \\
A_{J X_{i}} X_{j} & =\mu_{i} X_{j}, 1 \leq i<j \\
A_{J X_{i}} Y_{j} & =\mu_{i} Y_{j}, 1 \leq i \leq n_{1}, 1 \leq j \leq n_{2}
\end{align*}\right.
$$

where $\lambda_{i, i}, \mu_{i}$ are constants and satisfy

$$
\begin{equation*}
\lambda_{i, i}+(n-i) \mu_{i}=0, \quad 1 \leq i \leq n_{1} \tag{3.29}
\end{equation*}
$$

Proof. We will give the proof by induction on the index i of $A_{J X_{i}}$. According to general principles, this consists of two steps as below.

The first step of induction.

In this step, we should verify the assertion for $i=1$. To do so, we have to show that, around any given $(p, q) \in M_{1}^{n_{1}} \times M_{2}^{n_{2}}$, there exist an orthonormal frame of vector fields $\left\{X_{i}\right\}_{1 \leq i \leq n_{1}}$ of $T M_{1}^{n_{1}},\left\{Y_{j}\right\}_{1 \leq i \leq n_{2}}$ of $T M_{2}^{n_{2}}$, and smooth functions $\lambda_{1,1}$ and μ_{1}, so that we have

$$
\left\{\begin{array}{l}
A_{J X_{1}} X_{1}=\lambda_{1,1} X_{1}, \quad A_{J X_{1}} Y_{j}=\mu_{1} Y_{j}, \quad 1 \leq j \leq n_{2} \\
A_{J X_{1}} X_{i}=\mu_{1} X_{i}, \quad 2 \leq i \leq n_{1} \\
\lambda_{1,1}+(n-1) \mu_{1}=0
\end{array}\right.
$$

The proof of the above conclusion will be divided into four claims as below.
Claim I-(1). Given $(p, q) \in M_{1}^{n_{1}} \times M_{2}^{n_{2}}$, there exist orthonormal bases $\left\{X_{i}\right\}_{1 \leq i \leq n_{1}}$ of $T_{p} M_{1}^{n_{1}},\left\{Y_{j}\right\}_{1 \leq i \leq n_{2}}$ of $T_{q} M_{2}^{n_{2}}$, and real numbers $\lambda_{1,1}>0, \lambda_{1,2}=\cdots=\lambda_{1, n_{1}}$ and μ_{1}, such that the following relations hold:

$$
\left\{\begin{aligned}
A_{J X_{1}} X_{1} & =\lambda_{1,1} X_{1}, \quad A_{J X_{1}} X_{i}=\lambda_{1, i} X_{i}, 2 \leq i \leq n_{1} \\
A_{J X_{1}} Y_{j} & =\mu_{1} Y_{j}, 1 \leq j \leq n_{2}
\end{aligned}\right.
$$

Moreover, $\lambda_{1,1}$ is the maximum of $f_{(p, q)}$ defined on $U_{p} M_{1}^{n_{1}}$. In particular, $\tilde{c}>0$.
Proof of Claim I-(1). First, if for an orthonormal basis $\left\{X_{i}\right\}_{1 \leq i \leq n_{1}}$ and for any $i, j, k=1, \ldots, n_{1},\left\langle A_{J X_{i}} X_{j}, X_{k}\right\rangle=0$ holds, then by the fact $\operatorname{trace} A_{J X_{i}}=0$ and Lemma 3.2, we get $\mu_{i}=0$. This further implies by Lemma 3.3 that $\tilde{c}=0$. From this, using (2.4), (2.12) and Lemma 3.4, we can compute the sectional curvature of the section spanned by Y_{1} and Y_{2} to obtain that $c_{2}=0$, which is a contradiction.

Accordingly, following the idea described right before Lemma 3.4, we can choose a vector $X_{1} \in U_{p} M_{1}^{n_{1}}$ such that $f_{(p, q)}$ on $U_{p} M_{1}^{n_{1}}$ attains its absolute maximum $\lambda_{1,1}>0$ at X_{1}. Then, we can choose an orthonormal basis $\left\{X_{i}\right\}_{1 \leq i \leq n_{1}}$ of $T_{p} M_{1}^{n_{1}}$ and an arbitrary orthonormal basis $\left\{Y_{j}\right\}_{1 \leq i \leq n_{2}}$ of $T_{q} M_{2}^{n_{2}}$, such that, for $2 \leq k \leq n_{1}$, $A_{J X_{1}} X_{k}=\lambda_{1, k} X_{k}$ and $\lambda_{1,1} \geq 2 \lambda_{1, k}$. Moreover, by Lemma 3.2, $A_{J X_{1}} Y_{j}=\mu_{1} Y_{j}$ for $1 \leq j \leq n_{2}$.

Next, we will show that $\lambda_{1,2}=\cdots=\lambda_{1, n_{1}}$, and that $\lambda_{1,1}, \lambda_{1,2}$ and μ_{1} are all constants independent of (p, q).

Taking in (2.4) that $X=Z=X_{1}$ and $Y=X_{k}$ for $k \geq 2$, and using (2.12), we obtain

$$
\begin{equation*}
\lambda_{1, k}^{2}-\lambda_{1,1} \lambda_{1, k}-\tilde{c}=0, \quad 2 \leq k \leq n_{1} . \tag{3.30}
\end{equation*}
$$

As $\tilde{c} \geq 0$ by (3.11) and $\lambda_{1,1} \geq 2 \lambda_{1, k}$ for $2 \leq k \leq n_{1}$, then (3.30) implies that

$$
\begin{equation*}
\lambda_{1,2}=\cdots=\lambda_{1, n_{1}}=\frac{1}{2}\left(\lambda_{1,1}-\sqrt{\lambda_{1,1}^{2}+4 \tilde{c}}\right) \tag{3.31}
\end{equation*}
$$

Similarly, taking $X=Z=X_{1}$ and $Y \in U_{q} M_{2}^{n_{2}}$ in (2.4) and using (2.12) and Lemma 3.2, we get

$$
\begin{equation*}
\mu_{1}^{2}-\mu_{1} \lambda_{1,1}-\tilde{c}=0 . \tag{3.32}
\end{equation*}
$$

Thus we obtain

$$
\begin{equation*}
\mu_{1}=\frac{1}{2}\left(\lambda_{1,1}+\varepsilon_{1} \sqrt{\lambda_{1,1}^{2}+4 \tilde{c}}\right), \varepsilon_{1}= \pm 1 \tag{3.33}
\end{equation*}
$$

Then, applying trace $A_{J X_{1}}=0$, we get

$$
\begin{equation*}
\frac{1}{2}(n+1) \lambda_{1,1}+\frac{1}{2}\left(\varepsilon_{1} n_{2}-n_{1}+1\right) \sqrt{\lambda_{1,1}^{2}+4 \tilde{c}}=0 . \tag{3.34}
\end{equation*}
$$

It follows that $\varepsilon_{1} n_{2}-n_{1}+1 \neq 0$ and

$$
\begin{equation*}
\left[\left(\frac{n+1}{\varepsilon_{1} n_{2}-n_{1}+1}\right)^{2}-1\right] \lambda_{1,1}^{2}=4 \tilde{c} \tag{3.35}
\end{equation*}
$$

Moreover, (3.35) shows that $\tilde{c}>0$, and that

$$
\begin{equation*}
\lambda_{1,1}=2 \sqrt{\frac{\tilde{C}}{\left(\frac{n+1}{\varepsilon_{1} n_{2}-n_{1}+1}\right)^{2}-1}} . \tag{3.36}
\end{equation*}
$$

This, together with (3.33), implies that $\lambda_{1,1}, \lambda_{1,2}=\cdots=\lambda_{1, n_{1}}$ and μ_{1} are all constants independent of (p, q).

Claim I-(2). $\lambda_{1,2}=\cdots=\lambda_{1, n_{1}}=\mu_{1}$ and $\lambda_{1,1}+(n-1) \mu_{1}=0$.
Proof of Claim I-(2). From (3.31) and (3.33), the first assertion is equivalent to showing that $\varepsilon_{1}=-1$. Suppose on the contrary that $\varepsilon_{1}=1$. Then we have

$$
\begin{equation*}
\mu_{1} \lambda_{1,2}=-\tilde{c} \tag{3.37}
\end{equation*}
$$

Corresponding to the case $c_{2} \neq 0$ we have $n_{2} \geq 2$, then (3.34) implies that

$$
\begin{equation*}
n_{1}>n_{2}+1 \geq 3 \tag{3.38}
\end{equation*}
$$

We rechoose a vector $X_{2} \in U_{p} M_{1}^{n_{1}}$, which is orthogonal to X_{1} and such that $\lambda_{2,2}=\left\langle A_{J X_{2}} X_{2}, X_{2}\right\rangle$ is the maximum of $f_{(p, q)}$ on $\left\{u \in U_{p} M_{1}^{n_{1}} \mid u \perp X_{1}\right\}$.

Define \mathcal{A} on $\left\{u \in T_{p} M_{1}^{n_{1}} \mid u \perp X_{1}\right\}$ by $\mathcal{A}(X)=A_{J X_{2}} X-\left\langle A_{J X_{2}} X, X_{1}\right\rangle X_{1}$. It is easy to show that \mathcal{A} is self-adjoint and X_{2} is one of its eigenvectors. We can choose an orthonormal basis $\left\{X_{3}, \ldots, X_{n_{1}}\right\}$ for $\left\{u \in T_{p} M_{1}^{n_{1}} \mid u \perp X_{1}, u \perp X_{2}\right\}$ so that they are the remaining eigenvectors of the operator \mathcal{A}, associated to eigenvalues $\lambda_{2,3}, \ldots, \lambda_{2, n_{1}}$. In this way, we have obtained

$$
\begin{equation*}
A_{J X_{2}} X_{2}=\lambda_{1,2} X_{1}+\lambda_{2,2} X_{2}, A_{J X_{2}} X_{k}=\lambda_{2, k} X_{k}, 3 \leq k \leq n_{1} \tag{3.39}
\end{equation*}
$$

Taking $X=Z=X_{2}, Y=X_{k}$ in (2.4) and using (3.39) together with (2.12), we obtain

$$
\begin{equation*}
\lambda_{2, k}^{2}-\lambda_{2,2} \lambda_{2, k}-\tilde{c}-\lambda_{1,2}^{2}=0,3 \leq k \leq n_{1} \tag{3.40}
\end{equation*}
$$

Given that $\lambda_{2,2} \geq 2 \lambda_{2, k}$, this implies that

$$
\begin{equation*}
\lambda_{2, k}=\frac{1}{2}\left(\lambda_{2,2}-\sqrt{\lambda_{2,2}^{2}+4\left(\tilde{c}+\lambda_{1,2}^{2}\right)}\right), 3 \leq k \leq n_{1} . \tag{3.41}
\end{equation*}
$$

Similarly, taking $X=Z=X_{2}$ and $Y \in U_{q} M_{2}^{n_{2}}$ in (2.4) and using (3.39) and (2.12), we get

$$
\begin{equation*}
\mu_{2}^{2}-\mu_{2} \lambda_{2,2}-\tilde{c}-\mu_{1} \lambda_{1,2}=0 \tag{3.42}
\end{equation*}
$$

Combining (3.37) with (3.42) we get

$$
\begin{equation*}
\mu_{2}^{2}-\mu_{2} \lambda_{2,2}=0 \tag{3.43}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\mu_{2}=\frac{1}{2}\left(\lambda_{2,2}+\varepsilon_{2} \lambda_{2,2}\right), \varepsilon_{2}= \pm 1 \tag{3.44}
\end{equation*}
$$

By using (3.39), (3.41), (3.44) and trace $A_{J X_{2}}=0$, we have

$$
\begin{equation*}
\lambda_{2,2}+\frac{1}{2}\left(n_{1}-2\right)\left(\lambda_{2,2}-\sqrt{\lambda_{2,2}^{2}+4\left(\tilde{c}+\lambda_{1,2}^{2}\right)}\right)+\frac{1}{2} n_{2}\left(\lambda_{2,2}+\varepsilon_{2} \lambda_{2,2}\right)=0 \tag{3.45}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
\lambda_{2,2}=2 \sqrt{\frac{\tilde{c}+\lambda_{1,2}^{2}}{\left(\frac{n_{1}+n_{2}+\varepsilon_{2} n_{2}}{n_{1}-2}\right)^{2}-1}} \tag{3.46}
\end{equation*}
$$

Note that for $\varepsilon_{1}=1,(3.36)$ gives

$$
\begin{equation*}
\lambda_{1,1}=2 \sqrt{\frac{\tilde{c}}{\left(\frac{n_{1}+n_{2}+1}{n_{1}-n_{2}-1}\right)^{2}-1}} . \tag{3.47}
\end{equation*}
$$

Using (3.38), we have

$$
\begin{aligned}
\frac{n_{1}+n_{2}+1}{n_{1}-n_{2}-1}-\frac{n_{1}+n_{2}+\varepsilon_{2} n_{2}}{n_{1}-2} & \geq \frac{n_{1}+n_{2}+1}{n_{1}-n_{2}-1}-\frac{n_{1}+2 n_{2}}{n_{1}-2} \\
& =\frac{n_{1}-n_{2}-1+2\left(n_{2}+1\right)}{n_{1}-n_{2}-1}-\frac{n_{1}-2+2 n_{2}+2}{n_{1}-2} \\
& =\frac{2\left(n_{2}+1\right)\left(n_{2}-1\right)}{\left(n_{1}-n_{2}-1\right)\left(n_{1}-2\right)}>0
\end{aligned}
$$

It follows that $\lambda_{2,2}>\lambda_{1,1}$. This is a contradiction.
We have proved that $\varepsilon_{1}=-1$ and thus $\lambda_{1,2}=\cdots=\lambda_{1, n_{1}}=\mu_{1}$.
Finally, from trace $A_{J X_{1}}=0$ we get $\lambda_{1,1}+(n-1) \mu_{1}=0$ as claimed.
Claim I-(3). If there exists a unit vector $V \in T_{p} M_{1}^{n_{1}}$ such that $A_{J V} V=\lambda V$, then λ has only a finite number of possible values.

Proof of Claim I-(3). Assume that there exists a unit vector $V \in T_{p} M_{1}^{n_{1}}$ such that $A_{J V} V=\lambda V$. Let $X_{1}=V$ and $\lambda_{1,1}=\lambda$, then we may complete X_{1} to obtain an orthonormal basis $\left\{X_{i}\right\}_{1 \leq i \leq n_{1}}$ of $T_{p} M_{1}^{n_{1}}$ such that, for each $2 \leq k \leq n_{1}, X_{k}$ is the eigenvector of $A_{J X_{1}}$ with eigenvalue $\lambda_{1, k}$. Then we have (3.30), from which we know the existence of an integer $n_{1,1}, 0 \leq n_{1,1} \leq n_{1}-1$, such that, if necessary after renumbering the basis, we have

$$
\left\{\begin{array}{l}
\lambda_{1,2}=\cdots=\lambda_{1, n_{1,1}+1}=\frac{1}{2}\left(\lambda_{1,1}+\sqrt{\lambda_{1,1}^{2}+4 \tilde{c}}\right) \tag{3.48}\\
\lambda_{1, n_{1,1}+2}=\lambda_{1, n_{1}}=\frac{1}{2}\left(\lambda_{1,1}-\sqrt{\lambda_{1,1}^{2}+4 \tilde{c}}\right)
\end{array}\right.
$$

Similarly, we have (3.33). By (3.48), (3.33) and the fact that trace $A_{J X_{1}}=0$, we have

$$
\begin{equation*}
\frac{1}{2}\left(n_{1}+n_{2}+1\right) \lambda_{1,1}+\frac{1}{2}\left(2 n_{1,1}-n_{1}+1+\varepsilon_{1} n_{2}\right) \sqrt{\lambda_{1,1}^{2}+4 \tilde{c}}=0 \tag{3.49}
\end{equation*}
$$

This immediately implies that $\lambda_{1,1}$ has only finite possibilities.
Claim I-(4). The aforementioned tangent vector X_{1} at (p, q) can be extended differentiably to a unit vector field, still denoted by X_{1}, in a neighbourhood U of (p, q), such that for each $\left(p^{\prime}, q^{\prime}\right) \in U, f_{\left(p^{\prime}, q^{\prime}\right)}$ defined on $U_{p^{\prime}} M_{1}^{n_{1}}$ attains the absolute maximum at $X_{1}\left(p^{\prime}, q^{\prime}\right)$.

Proof of Claim I-(4). Let $\left\{E_{1}, \ldots, E_{n_{1}}\right\}$ be an arbitrary differentiable orthonormal basis defined on a neighbourhood U^{\prime} of (p, q) such that $E_{1}(p, q)=X_{1}$. Then, from the fact $A_{J X_{1}} X_{1}=\lambda_{1,1} X_{1}$ at (p, q), we define a function γ by

$$
\begin{aligned}
\gamma: & \mathbb{R}^{n_{1}} \times U^{\prime} \rightarrow \mathbb{R}^{n_{1}} \\
& \left(a_{1}, \ldots, a_{n_{1}},\left(p^{\prime}, q^{\prime}\right)\right) \mapsto\left(b_{1}, \ldots, b_{n_{1}}\right),
\end{aligned}
$$

where $b_{k}=b_{k}\left(a_{1}, \ldots, a_{n_{1}}\right):=\sum_{i, j=1}^{n_{1}} a_{i} a_{j}\left\langle A_{J E_{i}} E_{j}, E_{k}\right\rangle-\lambda_{1,1} a_{k}$ for $1 \leq k \leq n_{1}$.
Using the fact that $f_{(p, q)}$ attains an absolute maximum in $E_{1}(p, q)$, and that, by Claim I-(1), $A_{J E_{1}} E_{k}=\lambda_{1, k} E_{k}$ at (p, q) for $2 \leq k \leq n_{1}$, we have the calculation that

$$
\begin{aligned}
\frac{\partial b_{k}}{\partial a_{m}}(1,0, \ldots, 0,(p, q)) & =2\left\langle A_{J E_{1}(p, q)} E_{m}(p, q), E_{k}(p, q)\right\rangle-\lambda_{1,1} \delta_{k m} \\
& =\left\{\begin{array}{l}
0, \quad \text { if } k \neq m, \\
\lambda_{1,1}, \quad \text { if } k=m=1, \\
2 \lambda_{1, k}-\lambda_{1,1}, \quad \text { if } k=m \geq 2
\end{array}\right.
\end{aligned}
$$

Given the fact that $\tilde{c}>0$, by (3.31) we have that $2 \lambda_{1, k}-\lambda_{1,1} \neq 0$ for $k \geq 2$. Hence the implicit function theorem shows that there exist differentiable functions $a_{1}, \ldots, a_{n_{1}}$, defined on a neighbourhood U of (p, q) and satisfying

$$
a_{1}(p, q)=1, a_{2}(p, q)=0, \ldots, a_{n_{2}}(p, q)=0
$$

such that

$$
\left\{\begin{array}{l}
b_{1}\left(a_{1}\left(p^{\prime}, q^{\prime}\right), \ldots, a_{n_{1}}\left(p^{\prime}, q^{\prime}\right),\left(p^{\prime}, q^{\prime}\right)\right) \equiv 0 \\
\quad \cdots \\
\quad b_{n_{1}}\left(a_{1}\left(p^{\prime}, q^{\prime}\right), \ldots, a_{n_{1}}\left(p^{\prime}, q^{\prime}\right),\left(p^{\prime}, q^{\prime}\right)\right) \equiv 0
\end{array}\right.
$$

Therefore, the local vector field V defined by

$$
V=a_{1} E_{1}+\cdots+a_{n_{1}} E_{n_{1}}
$$

satisfies $V(p, q)=X_{1}$ and $A_{J V} V=\lambda_{1,1} V$. Hence

$$
\begin{equation*}
A_{J \frac{V}{\sqrt{\langle V, V\rangle}}} \frac{V}{\sqrt{\langle V, V\rangle}}=\frac{\lambda_{1,1}}{\sqrt{\langle V, V\rangle}} \frac{V}{\sqrt{\langle V, V\rangle}} \tag{3.50}
\end{equation*}
$$

According to Claim I-(3), there is a finite number of possible values that the function $\frac{\lambda_{1,1}}{\sqrt{\langle V, V\rangle}}$ can take. On the other hand, since $\frac{\lambda_{1,1}}{\sqrt{\langle V, V\rangle}}$ is continuous and $\langle V, V\rangle(p, q)=1$, it must be that $\langle V, V\rangle=1$ identically. Define on U a vector field $X_{1}:=V$. By Claim I-(1) and its proof we know that, for any point $\left(p^{\prime}, q^{\prime}\right) \in U$, $f_{\left(p^{\prime}, q^{\prime}\right)}$ attains an absolute maximum at $X_{1}\left(p^{\prime}, q^{\prime}\right)$. This verifies the assertion of Claim I-(4).

Finally, having determined the unit vector field X_{1} as in Claim I-(4), we further choose vector fields $X_{2}, \ldots, X_{n_{1}}$ (which are orthogonal to X_{1}) such that $\left\{X_{i}\right\}_{1 \leq i \leq n_{1}}$ is a local orthonormal frame of $T M_{1}^{n_{1}}$. Then, combining with Lemma 3.2, we complete immediately the proof for the first step of induction.

The second step of induction.

In this step, we first assume the assertion of Lemma 3.5 for all $i \leq k$, where $k \in\left\{2, \ldots, n_{1}-1\right\}$ is a fixed integer. Therefore, there exists a local orthonormal
frame of vector fields $\left\{X_{i}\right\}_{1 \leq i \leq n_{1}}$ of $M_{1}^{n_{1}}$, such that the operator A_{J} takes the following form:

$$
\left\{\begin{array}{l}
A_{J X_{1}} X_{1}=\lambda_{1,1} X_{1} \tag{3.51}\\
A_{J X_{i}} X_{i}=\mu_{1} X_{1}+\cdots+\mu_{i-1} X_{i-1}+\lambda_{i, i} X_{i}, 1<i \leq k \\
A_{J X_{i}} X_{j}=\mu_{i} X_{j}, 1 \leq i \leq k, i<j \leq n_{1}, \\
A_{J X_{i}} Y=\mu_{i} Y, 1 \leq i \leq k, Y \in T M_{2}^{n_{2}}
\end{array}\right.
$$

where μ_{i} and $\lambda_{i, i}$ for $1 \leq i \leq k$ are constants that satisfy the relations:

$$
\begin{equation*}
\lambda_{i, i}+(n-i) \mu_{i}=0, \quad 1 \leq i \leq k \tag{3.52}
\end{equation*}
$$

Moreover, for $1 \leq i \leq k$ and $\left(p^{\prime}, q^{\prime}\right)$ around $(p, q), \lambda_{i, i}$ is the maximum of $f_{\left(p^{\prime}, q^{\prime}\right)}$ defined on

$$
\left\{u \in T_{p^{\prime}} M_{1}^{n_{1}} \mid\langle u, u\rangle=1, u \perp X_{1}, \ldots, X_{i-1}\right\}
$$

Then, as purpose of the second step, we should verify the assertion of Lemma 3.5 for $i=k+1$. To do so, we have to show that there exists a local orthonormal frame of vector fields $\left\{\tilde{X}_{i}\right\}_{1 \leq i \leq n_{1}}$ of $T M_{1}^{n_{1}}$ given by

$$
\tilde{X}_{1}=X_{1}, \ldots, \tilde{X}_{k}=X_{k} ; \quad \tilde{X}_{l}=\sum_{t=k+1}^{n_{1}} T_{l}^{t} X_{t}, k+1 \leq l \leq n_{1}
$$

such that $T=\left(T_{l}^{t}\right)_{k+1 \leq l, t \leq n_{1}}$ is an orthogonal matrix, and the operator A_{J} takes the following form:

$$
\left\{\begin{array}{l}
A_{J \tilde{X}_{1}} \tilde{X}_{1}=\lambda_{1,1} \tilde{X}_{1} \tag{3.53}\\
A_{J \tilde{X}_{i}} \tilde{X}_{i}=\mu_{1} \tilde{X}_{1}+\cdots+\mu_{i-1} \tilde{X}_{i-1}+\lambda_{i, i} \tilde{X}_{i}, 2 \leq i \leq k+1 \\
A_{J \tilde{X}_{i}} \tilde{X}_{j}=\mu_{i} \tilde{X}_{j}, 1 \leq i \leq k+1, i+1 \leq j \leq n_{1} \\
A_{J \tilde{X}_{i}} Y=\mu_{i} Y, 1 \leq i \leq k+1, Y \in T M_{2}^{n_{2}}
\end{array}\right.
$$

where μ_{i} and $\lambda_{i, i}$ for $1 \leq i \leq k+1$ are constants and satisfy the relations

$$
\begin{equation*}
\lambda_{i, i}+(n-i) \mu_{i}=0, \quad 1 \leq i \leq k+1 \tag{3.54}
\end{equation*}
$$

Moreover, for $1 \leq i \leq k+1$ and $\left(p^{\prime}, q^{\prime}\right)$ around $(p, q), \lambda_{i, i}$ is the maximum of $f_{\left(p^{\prime}, q^{\prime}\right)}$ defined on

$$
\left\{u \in T_{p^{\prime}} M_{1}^{n_{1}} \mid\langle u, u\rangle=1, u \perp \tilde{X}_{1}, \ldots, u \perp \tilde{X}_{i}\right\}
$$

Similarly to the first step, the proof of the above conclusion will also be divided into the verification of four claims.

Claim II-(1). For any $(p, q) \in M_{1}^{n_{1}} \times M_{2}^{n_{2}}$, there exists an orthonormal basis $\left\{\bar{X}_{i}\right\}_{1 \leq i \leq n_{1}}$ of $T_{p} M_{1}^{n_{1}}$ and real numbers $\lambda_{k+1, k+1}>0, \lambda_{k+1, k+2}=\cdots=\lambda_{k+1, n_{1}}$ and μ_{k+1}, such that the following relations hold:

$$
\left\{\begin{array}{l}
A_{J \bar{X}_{1}} \bar{X}_{1}=\lambda_{1,1} \bar{X}_{1} \\
A_{J \bar{X}_{i}} \bar{X}_{i}=\mu_{1} \bar{X}_{1}+\cdots+\mu_{i-1} \bar{X}_{i-1}+\lambda_{i, i} X_{i}, 2 \leq i \leq k+1 \\
A_{J \bar{X}_{k+1}} \bar{X}_{i}=\lambda_{k+1, i} \bar{X}_{i}, \quad i \geq k+2 \\
A_{J \bar{X}_{k+1}} Y=\mu_{k+1} Y, \quad Y \in T_{q} M_{2}^{n_{2}}
\end{array}\right.
$$

Proof of Claim II-(1). By the induction assumption, we have an orthonormal basis $\left\{X_{i}\right\}_{1 \leq i \leq n_{1}}$ such that (3.51) and (3.52) hold. We first take $\bar{X}_{1}=X_{1}(p, q), \ldots, \bar{X}_{k}=$ $X_{k}(p, q)$. Then, putting

$$
V_{k}=\left\{u \in T_{p} M_{1}^{n_{1}} \mid u \perp \bar{X}_{1}, \ldots, u \perp \bar{X}_{k}\right\}
$$

we will show that, restricting on $U_{p} M_{1}^{n_{1}} \cap V_{k}$, the function $f_{(p, q)} \neq 0$.
Indeed, suppose on the contrary that $\left.f_{(p, q)}\right|_{V_{k}}=0$. Then, letting $\left\{u_{i}\right\}_{k+1 \leq i \leq n_{1}}$ be an orthonormal basis of V_{k}, we have $\left\langle A_{J u_{i}} u_{j}, u_{k}\right\rangle=0, k+1 \leq i, j, k \leq n_{1}$. Taking in (2.4) that $X=u_{k+2}, Y=Z=u_{k+1}$, by assumption of induction and Lemma 3.2, we obtain $\mu_{1}^{2}+\cdots+\mu_{k}^{2}+\tilde{c}=0$. This is a contradiction to the fact $\tilde{c}>0$.

Now, we can choose \bar{X}_{k+1} such that $f_{(p, q)}$, restricted on $U_{p} M_{1}^{n_{1}} \cap V_{k}$, attains its maximum with value

$$
\lambda_{k+1, k+1}:=\left\langle A_{J \bar{X}_{k+1}} \bar{X}_{k+1}, \bar{X}_{k+1}\right\rangle>0
$$

Consider the self-adjoint operator $\mathcal{A}: V_{k} \rightarrow V_{k}$ defined by

$$
\mathcal{A}(X)=A_{J \bar{X}_{k+1}} X-\sum_{i=1}^{k}\left\langle A_{J \bar{X}_{k+1}} X, \bar{X}_{i}\right\rangle \bar{X}_{i} .
$$

It is easy to see that $\mathcal{A}\left(\bar{X}_{k+1}\right)=\lambda_{k+1, k+1} \bar{X}_{k+1}$. Hence, by the assumption of induction, we have:

$$
\begin{aligned}
\lambda_{k+1, k+1} \bar{X}_{k+1} & =A_{J \bar{X}_{k+1}} \bar{X}_{k+1}-\sum_{i=1}^{k}\left\langle A_{J \bar{X}_{k+1}} \bar{X}_{k+1}, \bar{X}_{i}\right\rangle \bar{X}_{i} \\
& =A_{J \bar{X}_{k+1}} \bar{X}_{k+1}-\sum_{i=1}^{k}\left\langle A_{J \bar{X}_{i}} \bar{X}_{k+1}, \bar{X}_{k+1}\right\rangle \bar{X}_{i} \\
& =A_{J \bar{X}_{k+1}} \bar{X}_{k+1}-\sum_{i=1}^{k} \mu_{i} \bar{X}_{i}
\end{aligned}
$$

Next, we choose $\bar{X}_{k+2}, \ldots, \bar{X}_{n_{1}}$ as the remaining unit eigenvectors of \mathcal{A}, with corresponding eigenvalues $\lambda_{k+1, k+2}, \ldots, \lambda_{k+1, n_{1}}$, respectively. Thus, by Lemma 3.2 we have μ_{k+1}, and the following relations:

$$
\left\{\begin{array}{l}
A_{J \bar{X}_{k+1}} \bar{X}_{k+1}=\mu_{1} \bar{X}_{1}+\cdots+\mu_{k} \bar{X}_{k}+\lambda_{k+1, k+1} \bar{X}_{k+1} \tag{3.55}\\
A_{J \bar{X}_{k+1}} \bar{X}_{i}=\lambda_{k+1, i} \bar{X}_{i}, \quad k+2 \leq i \leq n_{1} \\
A_{J \bar{X}_{k+1}} Y=\mu_{k+1} Y, \quad Y \in T_{q} M_{2}^{n_{2}}
\end{array}\right.
$$

Now, taking in (2.4) that $X=Z=\bar{X}_{k+1}$ and $Y=\bar{X}_{j}$ with $j \geq k+2$, combining with (2.12), we can obtain

$$
\begin{equation*}
\lambda_{k+1, j}^{2}-\lambda_{k+1, k+1} \lambda_{k+1, j}-\tilde{c}-\left(\mu_{1}^{2}+\cdots+\mu_{k}^{2}\right)=0 \tag{3.56}
\end{equation*}
$$

It follows that

$$
\begin{align*}
& \lambda_{k+1, k+2}=\cdots=\lambda_{k+1, n_{1}} \\
& =\frac{1}{2}\left(\lambda_{k+1, k+1}-\sqrt{\lambda_{k+1, k+1}^{2}+4\left(\tilde{c}+\mu_{1}^{2}+\cdots+\mu_{k-1}^{2}+\mu_{k}^{2}\right)}\right) \tag{3.57}
\end{align*}
$$

On the other hand, taking in (2.4) that $X=Z=\bar{X}_{k+1}$, and $Y \in T_{q} M_{2}^{n_{2}}$ be a unit vector, combining with (2.12), we can obtain

$$
\begin{equation*}
\mu_{k+1}^{2}-\lambda_{k+1, k+1} \mu_{k+1}-\tilde{c}-\left(\mu_{1}^{2}+\cdots+\mu_{k}^{2}\right)=0 \tag{3.58}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left.\mu_{k+1}=\frac{1}{2}\left(\lambda_{k+1, k+1}+\varepsilon_{k+1} \sqrt{\lambda_{k+1, k+1}^{2}+4\left(\tilde{c}+\mu_{1}^{2}+\cdots+\mu_{k}^{2}\right.}\right)\right) \tag{3.59}
\end{equation*}
$$

where $\varepsilon_{k+1}= \pm 1$. Then, using that trace $A_{J \bar{X}_{k+1}}=0$, we get $n_{1}-n_{2} \varepsilon_{k+1}-k-1>0$ and

$$
\begin{equation*}
\lambda_{k+1, k+1}=2 \sqrt{\frac{\tilde{c}+\mu_{1}^{2}+\cdots+\mu_{k-1}^{2}+\mu_{k}^{2}}{\left(\frac{n_{1}+n_{2}-k+1}{n_{1}-n_{2} \varepsilon_{k+1}-k-1}\right)^{2}-1}} . \tag{3.60}
\end{equation*}
$$

By the assumption that μ_{1}, \ldots, μ_{k} are constants we see that, as claimed, $\lambda_{k+1, k+2}=$ $\cdots=\lambda_{k+1, n_{1}}$ and μ_{k+1} are also constants.
Claim II-(2). $\lambda_{k+1, k+2}=\cdots=\lambda_{k+1, n_{1}}=\mu_{k+1}$ and $\lambda_{k+1, k+1}+(n-k-1) \mu_{k+1}=0$.
Proof of Claim II-(2). From (3.57) and (3.59), the first assertion is equivalent to showing that $\varepsilon_{k+1}=-1$. Suppose, on the contrary, that $\varepsilon_{k+1}=1$. Then we have

$$
\begin{equation*}
\mu_{k+1} \lambda_{k+1, i}=-\left(\tilde{c}+\mu_{1}^{2}+\cdots+\mu_{k}^{2}\right), \quad i \geq k+2 \tag{3.61}
\end{equation*}
$$

Similar to getting (3.60), now we have

$$
\begin{equation*}
n_{1}-n_{2}-k-1>0 \tag{3.62}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{k+1, k+1}=2 \sqrt{\frac{\tilde{c}+\mu_{1}^{2}+\cdots+\mu_{k}^{2}}{\left(\frac{n_{1}+n_{2}-k+1}{n_{1}-n_{2}-k-1}\right)^{2}-1}} . \tag{3.63}
\end{equation*}
$$

Put

$$
V_{k+1}=\left\{u \in T_{p} M_{1}^{n_{1}} \mid u \perp \bar{X}_{1}, \ldots, u \perp \bar{X}_{k+1}\right\} .
$$

Then, a similar argument as in the proof of Claim II-(1) shows that, restricting on $U_{p} M_{1}^{n_{1}} \cap V_{k+1}$, the function $f_{(p, q)} \neq 0$.
Now, by a totally similar process as in the proof of Claim II-(1), we can choose another orthonormal basis $\left\{X_{i}^{\prime}\right\}_{1 \leq i \leq n_{1}}$ of $T_{p} M_{1}^{n_{1}}$ with $X_{j}^{\prime}=\bar{X}_{j}$ for $1 \leq j \leq k+1$, such that $f_{(p, q)}$, restricting on $U_{p} M_{1}^{n_{1}} \cap V_{k+1}$, attains its maximum $\lambda_{k+2, k+2}>0$ at X_{k+2}^{\prime} so that $\lambda_{k+2, k+2}=h\left(A_{J X_{k+2}^{\prime}} X_{k+2}^{\prime}, X_{k+2}^{\prime}\right)$.
As before, we define a self-adjoint operator $\mathcal{A}: V_{k+1} \rightarrow V_{k+1}$ by

$$
\mathcal{A}(X)=A_{J X_{k+2}^{\prime}} X-\sum_{i=1}^{k+1}\left\langle A_{J X_{k+2}^{\prime}} X, X_{i}^{\prime}\right\rangle X_{i}^{\prime}
$$

Then we have $\mathcal{A}\left(X_{k+2}^{\prime}\right)=\lambda_{k+2, k+2} X_{k+2}^{\prime}$. As before we will choose $X_{k+3}^{\prime}, \ldots, X_{n_{1}}^{\prime}$ as the remaining unit eigenvectors of \mathcal{A}, with corresponding eigenvalues $\lambda_{k+2, k+3}$, $\ldots, \lambda_{k+2, n_{1}}$, respectively. In this way, we can prove that

$$
\left\{\begin{array}{l}
A_{J X_{k+2}^{\prime}} X_{k+2}^{\prime}=\mu_{1} X_{1}^{\prime}+\cdots+\mu_{k} X_{k}^{\prime}+\lambda_{k+1, k+2} X_{k+1}^{\prime}+\lambda_{k+2, k+2} X_{k+2}^{\prime} \tag{3.64}\\
A_{J X_{k+2}^{\prime}} X_{i}^{\prime}=\lambda_{k+2, i} X_{i}^{\prime}, \quad k+3 \leq i \leq n_{1}
\end{array}\right.
$$

Taking $X=Z=X_{k+2}^{\prime}$ and $Y=X_{i}^{\prime}$ for $k+3 \leq i \leq n_{1}$ in (2.4) and using (2.12), we obtain

$$
\begin{equation*}
\lambda_{k+2, i}^{2}-\lambda_{k+2, k+2} \lambda_{k+2, i}-\tilde{c}-\left(\mu_{1}^{2}+\cdots+\mu_{k}^{2}+\lambda_{k+1, i}^{2}\right)=0, \quad k+3 \leq i \leq n_{1} . \tag{3.65}
\end{equation*}
$$

Noting that for $k+3 \leq i \leq n_{1}$ we have $\lambda_{k+2, k+2} \geq 2 \lambda_{k+2, i}$, it follows from (3.65) that

$$
\begin{array}{r}
\lambda_{k+2, i}=\frac{1}{2}\left(\lambda_{k+2, k+2}-\sqrt{\lambda_{k+2, k+2}^{2}+4\left(\tilde{c}+\mu_{1}^{2}+\cdots+\mu_{k}^{2}+\lambda_{k+1, i}^{2}\right)}\right) \tag{3.66}\\
i \geq k+3
\end{array}
$$

Similarly, let $X=Z=X_{k+2}^{\prime}$ and $Y \in T_{q} M_{2}^{n_{2}}$ be a unit vector in (2.4). Using (2.12) we get

$$
\begin{equation*}
\mu_{k+2}^{2}-\mu_{k+2} \lambda_{k+2, k+2}-\tilde{c}-\left(\mu_{1}^{2}+\cdots+\mu_{k}^{2}+\lambda_{k+1, i} \mu_{k+1}\right)=0, i \geq k+2 \tag{3.67}
\end{equation*}
$$

Combining (3.61) and (3.67) we obtain

$$
\begin{equation*}
\mu_{k+2}^{2}-\mu_{k+2} \lambda_{k+2, k+2}=0 \tag{3.68}
\end{equation*}
$$

and therefore it holds that

$$
\begin{equation*}
\mu_{k+2}=\frac{1}{2}\left(\lambda_{k+2, k+2}+\varepsilon_{k+2} \lambda_{k+2, k+2}\right), \varepsilon_{k+2}= \pm 1 \tag{3.69}
\end{equation*}
$$

Then, using trace $A_{J X_{k+2}^{\prime}}=0$, we can get $n_{1}-k-2>0$ and

$$
\begin{equation*}
\lambda_{k+2, k+2}=2 \sqrt{\frac{\tilde{c}+\mu_{1}^{2}+\cdots+\mu_{k}^{2}+\lambda_{k+1, i}^{2}}{\left(\frac{n_{1}+n_{2}-k+\varepsilon_{k+2} n_{2}}{n_{1}-k-2}\right)^{2}-1}}, \quad i \geq k+2 \tag{3.70}
\end{equation*}
$$

Given (3.62), we have the following calculations

$$
\begin{align*}
\frac{n_{1}+n_{2}-k+1}{n_{1}-n_{2}-k-1}-\frac{n_{1}+n_{2}+\varepsilon_{k+2} n_{2}-k}{n_{1}-k-2} & >\frac{n_{1}+n_{2}-k+1}{n_{1}-n_{2}-k-1}-\frac{n_{1}+2 n_{2}-k}{n_{1}-k-2} \\
& =\frac{2\left(n_{2}+1\right)\left(n_{2}-1\right)}{\left(n_{1}-n_{2}-k-1\right)\left(n_{1}-k-2\right)} \tag{3.71}
\end{align*}
$$

Then, by (3.63) and (3.70), we get $\lambda_{k+2, k+2}>\lambda_{k+1, k+1}$, which is a contradiction. Therefore, $\varepsilon_{k+1}=-1$ and $\lambda_{k+1, k+2}=\cdots=\lambda_{k+1, n_{1}}=\mu_{k+1}$, as claimed.

Finally, from trace $A_{J \bar{X}_{k+1}}=0$, we get

$$
\lambda_{k+1, k+1}+(n-k-1) \mu_{k+1}=0
$$

This completes the verification of Claim II-(2).

Claim II-(3). Let $\left\{X_{i}\right\}_{1 \leq i \leq n_{1}}$ be the local orthonormal vector fields of M^{n} which form a basis for the first component as in the assumption of induction. If a unit vector field V of $T M_{1}^{n_{1}} \backslash \operatorname{span}\left\{X_{1}, \ldots, X_{k}\right\}$ has the property that $A_{J V} V=\lambda V+$ $\mu_{1} X_{1}+\cdots+\mu_{k} X_{k}$, then the function λ takes values of only finite possibilities.

Proof of Claim II-(3). We first carry the discussion at an arbitrary fixed point (p, q) Let $X_{k+1}^{\prime}:=V, X_{1}^{\prime}=X_{1}, \ldots, X_{k}^{\prime}=X_{k}, \lambda_{k+1, k+1}:=\lambda$.

Put $V_{k}=\left\{u \in T_{p} M_{1}^{n_{1}} \mid u \perp X_{1}, \ldots, u \perp X_{k}\right\}$. Define $\mathcal{A}: V_{k} \rightarrow V_{k}$ by

$$
\mathcal{A}(X)=A_{J V} X-\sum_{i=1}^{k}\left\langle A_{J V} X, X_{i}\right\rangle X_{i} .
$$

It is easily seen that \mathcal{A} is a self-adjoint transformation and that $\mathcal{A}(V)=\lambda V$. Thus, we can choose an orthonormal basis $\left\{X_{i}^{\prime}\right\}_{k+1 \leq i \leq n_{1}}$ of V_{k}, such that $\mathcal{A}\left(X_{i}^{\prime}\right)=\lambda_{i, i} X_{i}^{\prime}$ for $k+2 \leq i \leq n_{1}$. Then, as before we see that (3.56) holds, and thus there exists an
integer $n_{1, k+1}, 0 \leq n_{1, k+1} \leq n_{1}-(k+1)$ such that, if necessary after renumbering the basis, we have

$$
\left\{\begin{array}{l}
\lambda_{k+1, k+2}=\cdots=\lambda_{k+1, n_{1, k+1}+k+1} \tag{3.72}\\
=\frac{1}{2}\left(\lambda_{k+1, k+1}+\sqrt{\lambda_{k+1, k+1}^{2}+4\left(\tilde{c}+\mu_{1}^{2}+\cdots+\mu_{k-1}^{2}+\mu_{k}^{2}\right.}\right) \\
\lambda_{k+1, n_{1, k+1}+k+2}=\cdots=\lambda_{k+1, n_{1}} \\
=\frac{1}{2}\left(\lambda_{k+1, k+1}-\sqrt{\lambda_{k+1, k+1}^{2}+4\left(\tilde{c}+\mu_{1}^{2}+\cdots+\mu_{k-1}^{2}+\mu_{k}^{2}\right.}\right)
\end{array}\right)
$$

Then, using trace $A_{J X_{k+1}^{\prime}}=0$, we can show that

$$
\begin{equation*}
\lambda_{k+1, k+1}=2 \sqrt{\frac{\tilde{c}+\mu_{1}^{2}+\cdots+\mu_{k-1}^{2}+\mu_{k}^{2}}{\left(\frac{n_{1}+n_{2}-k+1}{2 n_{1, k+1}-n_{1}+n_{2} \varepsilon_{k+1}+k+1}\right)^{2}-1}} . \tag{3.73}
\end{equation*}
$$

Finally, noticing that by assumption μ_{1}, \ldots, μ_{k} are constants, and that the set

$$
\left\{n_{1, k+1}(p) \mid p \in M_{1}^{n_{1}}\right\}
$$

consists of finite numbers, we get the assertion that $\lambda=\lambda_{k+1, k+1}$ takes values of only finite possibilities.

Claim II-(4). Let $\left\{X_{i}\right\}_{1 \leq i \leq n_{1}}$ be the local vector fields on M^{n} as in the assumption of induction, $V_{k}=\left\{u \in \bar{T}_{p} \bar{M}_{1}^{n_{1}} \mid\langle u, u\rangle=1, u \perp X_{1}, \ldots, u \perp X_{k}\right\}$. The unit vector $\bar{X}_{k+1} \in T_{p} M_{1}^{n_{1}}$ determined in Claim II-(1) can be extended differentiably to be a unit vector field, denoted by \tilde{X}_{k+1}, in a neighbourhood U of (p, q), such that for each $\left(p^{\prime}, q^{\prime}\right) \in U, f_{\left(p^{\prime}, q^{\prime}\right)}$ defined on V_{k} attains the absolute maximum at $\tilde{X}_{k+1}\left(p^{\prime}, q^{\prime}\right)$.

Proof of Claim II-(4). Let $\left\{E_{k+1}, \ldots, E_{n_{1}}\right\}$ be arbitrary differentiable orthonormal vector fields of V_{k} defined on a neighbourhood U^{\prime} of (p, q) such that $E_{k+1}(p, q)=$ \bar{X}_{k+1}. Then, we define a function γ by

$$
\begin{aligned}
\gamma: & \mathbb{R}^{n_{1}-k} \times U^{\prime} \rightarrow \mathbb{R}^{n_{1}-k} \\
& \left(a_{k+1}, \ldots, a_{n_{1}},\left(p^{\prime}, q^{\prime}\right)\right) \mapsto\left(b_{k+1}, \ldots, b_{n_{1}}\right)
\end{aligned}
$$

where $b_{l}=\sum_{i, j=k+1}^{n_{1}} a_{i} a_{j}\left\langle A_{J E_{i}} E_{j}, E_{l}\right\rangle-\lambda_{k+1, k+1} a_{l}, l=k+1 \leq l \leq n_{1}$. Using the fact that $f_{(p, q)}$ attains an absolute maximum in $E_{k+1}(p, q)$ so that

$$
\left.\left\langle A_{J E_{k+1}} E_{l}, E_{l}\right\rangle\right|_{(p, q)}=\lambda_{k+1, l}, \quad l \geq k+1
$$

we then obtain that

$$
\begin{aligned}
\frac{\partial b_{l}}{\partial a_{m}}(1,0, \ldots, 0,(p, q)) & =2\left\langle A_{J E_{k+1}(p, q)} E_{m}(p, q), E_{l}(p, q)-\lambda_{k+1, k+1} \delta_{l m}\right. \\
& =\left\{\begin{array}{l}
0, \quad \text { if } l \neq m, \\
\lambda_{k+1, k+1}, \quad \text { if } l=m=k+1, \\
2 \lambda_{k+1, l}-\lambda_{k+1, k+1}, \quad \text { if } l=m \geq k+2
\end{array}\right.
\end{aligned}
$$

As $\tilde{c}>0$, then from (3.57) we obtain that $2 \lambda_{k+1, l}-\lambda_{k+1, k+1} \neq 0$. Hence, similar to the proof of Claim I-(4), the implicit function theorem shows that there exist differentiable functions $a_{k+1}, \ldots, a_{n_{1}}$, defined on a neighbourhood U of (p, q), such that the local vector field V, defined by

$$
V=a_{k+1} E_{k+1}+\cdots+a_{n_{1}} E_{n_{1}}
$$

has the property $V(p, q)=X_{k+1}$ and satisfies that

$$
A_{J V} V=\lambda_{k+1, k+1} V+\mu_{1}\langle V, V\rangle X_{1}+\cdots+\mu_{k}\langle V, V\rangle X_{k}
$$

Hence

$$
\begin{equation*}
A_{J \frac{V}{\sqrt{\langle V, V\rangle}}} \frac{V}{\sqrt{\langle V, V\rangle}}=\frac{\lambda_{k+1, k+1}}{\sqrt{\langle V, V\rangle}} \frac{V}{\sqrt{\langle V, V\rangle}}+\mu_{1} X_{1}+\cdots+\mu_{k} X_{k} \tag{3.74}
\end{equation*}
$$

According to Claim II-(3), the function $\frac{\lambda_{k+1, k+1}}{\sqrt{\langle V, V\rangle}}$ can take a finite number of values. On the other hand, $\frac{\lambda_{k+1, k+1}}{\sqrt{\langle V, V\rangle}}$ is continuous and $\langle V, V\rangle(p, q)=1$. Thus $\langle V, V\rangle=1$ holds identically. Let $\tilde{X}_{k+1}:=V$. Then, (3.74) and $\langle V, V\rangle=1$ imply that for any $\left(p^{\prime}, q^{\prime}\right) \in U, f_{\left(p^{\prime}, q^{\prime}\right)}$ defined on $V_{k}\left(p^{\prime}, q^{\prime}\right)$ attains an absolute maximum at $\tilde{X}_{k+1}\left(p^{\prime}, q^{\prime}\right)$.

Finally, we choose vector fields $\tilde{X}_{1}=X_{1}, \ldots, \tilde{X}_{k}=X_{k}$ and $\tilde{X}_{k+2}, \ldots, \tilde{X}_{n_{1}}$ such that $\left\{\tilde{X}_{1}, \tilde{X}_{2}, \ldots, \tilde{X}_{n_{1}}\right\}$ are orthonormal vector fields of M^{n} which together span a basis for the first component of the tangent space. Then, combining with Lemma 3.2 , we immediately fulfil the second step of induction.

Accordingly, we have completed the proof of Lemma 3.5.
In the following part, we aim at giving the explicit parametrization of $\psi: M^{n} \rightarrow$ $\tilde{M}^{n}(4 \tilde{c})$. For this we will use Theorems 2.1 and 2.2 from [17].

Firstly, we will prove that the submanifold M^{n} has parallel second fundamental form. We will do this by direct computations: for the local orthonormal frame $\left\{X_{i}\right\}_{1 \leq i \leq n_{1}}$ of $M_{1}^{n_{1}}$ as determined in Lemma 3.5, we will use the Codazzi equation in (2.5) to show that, for each $1 \leq i \leq n_{1}, X_{i}$ is a parallel vector field. Then we will further prove that $\psi: M^{n} \rightarrow \tilde{M}^{n}(4 \tilde{c})$ has parallel second fundamental form.

Lemma 3.6. Let $\left\{X_{1}, \ldots, X_{n_{1}}\right\}$ be the local orthonormal vector fields of M^{n}, as determined in Lemma 3.5 and let $\left\{Y_{1}, \ldots, Y_{n_{2}}\right\}$ be a local vector fields on M which form a basis for the second component, and moreover, we assume that $\left\{Y_{i}\right\}$ depend only on the second component. Then

$$
\nabla X_{i}=0, \quad 1 \leq i \leq n_{1}
$$

Proof. We will proceed by induction on the subscript of X_{i} and prove separately that $\nabla_{X} X_{i}=0, X \in T M_{1}^{n_{1}}$ and $\nabla_{Y} X_{i}=0, Y \in T M_{2}^{n_{2}}$, where $1 \leq i \leq n_{1}$.

Let us check first that $\nabla_{X} X_{i}=0, X \in T M_{1}^{n_{1}}$.
For $i \geq 2$, by using (2.3) and (3.28), we have

$$
\left\{\begin{array}{l}
J(\nabla h)\left(X_{i}, X_{1}, X_{1}\right)=\left(2 \mu_{1}-\lambda_{1,1}\right) \nabla_{X_{i}} X_{1} \\
J(\nabla h)\left(X_{1}, X_{i}, X_{1}\right)=-\mu_{1} \nabla_{X_{1}} X_{i}+A_{J X_{1}}\left(\nabla_{X_{1}} X_{i}\right)+A_{J X_{i}}\left(\nabla_{X_{1}} X_{1}\right) .
\end{array}\right.
$$

Then, the Codazzi equations $J(\nabla h)\left(X_{i}, X_{1}, X_{1}\right)=J(\nabla h)\left(X_{1}, X_{i}, X_{1}\right)$ give that

$$
\begin{equation*}
\left(2 \mu_{1}-\lambda_{1,1}\right) \nabla_{X_{i}} X_{1}=-\mu_{1} \nabla_{X_{1}} X_{i}+A_{J X_{1}}\left(\nabla_{X_{1}} X_{i}\right)+A_{J X_{i}}\left(\nabla_{X_{1}} X_{1}\right) . \tag{3.75}
\end{equation*}
$$

Taking the component in the direction of X_{1} in (3.75) we can get $\nabla_{X_{1}} X_{1}=0$. Substituting $\nabla_{X_{1}} X_{1}=0$ into (3.75), and then taking the component in the direction of X_{i}, we get $\left\langle\nabla_{X_{i}} X_{1}, X_{k}\right\rangle=0$ for $2 \leq i, k \leq n_{1}$.

The above facts immediately verify for the first step of induction that

$$
\nabla_{X} X_{1}=0, X \in T M_{1}^{n_{1}}
$$

Next, assume by induction that for a fixed $j \geq 2$ it holds

$$
\begin{equation*}
\nabla_{X} X_{k}=0, \quad X \in T M_{1}^{n_{1}}, k=1, \ldots, j-1 \tag{3.76}
\end{equation*}
$$

We claim that $\nabla X_{j}=0$. The proof of the claim will be given in four cases:
(1) From the induction assumption and the fact that $\left\langle X_{i}, X_{l}\right\rangle=\delta_{i l}$, we get

$$
\left\langle\nabla_{X_{i}} X_{j}, X_{k}\right\rangle=-\left\langle\nabla_{X_{i}} X_{k}, X_{j}\right\rangle=0,1 \leq i \leq n_{1}, k \leq j .
$$

(2) For $i \leq j-1$, by the induction assumption we have

$$
\begin{aligned}
J(\nabla h)\left(X_{i}, X_{j}, X_{j}\right) & =-\nabla_{X_{i}} A_{J X_{j}} X_{j}+2 A_{J X_{j}} \nabla_{X_{i}} X_{j} \\
& =\lambda_{j, j} \nabla_{X_{i}} X_{j}-2 A_{J X_{j}} \nabla_{X_{i}} X_{j} \\
& =\left(\lambda_{j, j}-2 \mu_{j}\right) \nabla_{X_{i}} X_{j} ; \\
J(\nabla h)\left(X_{j}, X_{i}, X_{j}\right) & =-\nabla_{X_{j}} A_{J X_{i}} X_{j}+A_{J X_{j}} \nabla_{X_{j}} X_{i}+A_{J X_{i}} \nabla_{X_{j}} X_{j} \\
& =-\mu_{i} \nabla_{X_{j}} X_{j}+A_{J X_{j}} \nabla_{X_{j}} X_{i}+A_{J X_{i}} \nabla_{X_{j}} X_{j} \\
& =-\mu_{i} \nabla_{X_{j}} X_{j}+A_{J X_{i}} \nabla_{X_{j}} X_{j} .
\end{aligned}
$$

Then, by $J(\nabla h)\left(X_{i}, X_{j}, X_{j}\right)=J(\nabla h)\left(X_{j}, X_{i}, X_{j}\right)$, we immediately get

$$
\left\langle\nabla_{X_{i}} X_{j}, X_{j_{0}}\right\rangle=0, \quad i \leq j-1, j+1 \leq j_{0} \leq n_{1}
$$

(3) For $j+1 \leq j_{0} \leq n_{1}$, similar and direct calculations give that

$$
\begin{aligned}
J(\nabla h)\left(X_{j_{0}}, X_{j}, X_{j}\right) & =-\nabla_{X_{j_{0}}} A_{J X_{j}} X_{j}+2 A_{J X_{j}} \nabla_{X_{j_{0}}} X_{j} \\
& =\lambda_{j, j} \nabla_{X_{j_{0}}} X_{j}-2 A_{J X_{j}} \nabla_{X_{j_{0}}} X_{j} \\
& =\left(\lambda_{j, j}-2 \mu_{j}\right) \nabla_{X_{j_{0}}} X_{j} ; \\
J(\nabla h)\left(X_{j}, X_{j_{0}}, X_{j}\right) & =-\nabla_{X_{j}} A_{J X_{j_{0}}} X_{j}+A_{J X_{j}} \nabla_{X_{j}} X_{j_{0}}+A_{J X_{j_{0}}} \nabla_{X_{j}} X_{j} \\
& =-\mu_{j} \nabla_{X_{j}} X_{j_{0}}+A_{J X_{j}} \nabla_{X_{j}} X_{j_{0}}+A_{J X_{j_{0}}} \nabla_{X_{j}} X_{j} .
\end{aligned}
$$

By $J(\nabla h)\left(X_{j}, X_{j_{0}}, X_{j}\right)=J(\nabla h)\left(X_{j}, X_{j_{0}}, X_{j}\right)$ and taking the component in the direction of X_{j}, we obtain that

$$
\left\langle\nabla_{X_{j}} X_{j}, X_{j_{0}}\right\rangle=0, \quad j+1 \leq j_{0} \leq n_{1}
$$

(4) For $i \geq j+1$, by similar calculations for both sides of

$$
J(\nabla h)\left(X_{i}, X_{j}, X_{j}\right)=J(\nabla h)\left(X_{j}, X_{i}, X_{j}\right)
$$

and taking the component in the direction of $X_{j_{0}}$ for $j_{0} \geq j+1$, we can get

$$
\left\langle\nabla_{X_{i}} X_{j}, X_{j_{0}}\right\rangle=0, \quad i \geq j+1, \quad j_{0} \geq j+1
$$

Summing up the above four cases, we finally get the assertion

$$
\nabla_{X} X_{j}=0, \quad X \in T M_{1}^{n_{1}}
$$

Finally, we must prove that $\nabla_{Y} X_{i}=0$ for $Y \in T M_{2}^{n_{2}}$ and $1 \leq i \leq n_{1}$. The proof follows the same steps as before. For instance, we start with the Codazzi equation $J(\nabla h)\left(X_{i}, Y_{1}, X_{1}\right)=J(\nabla h)\left(Y_{1}, X_{i}, X_{1}\right), i>1$. Multiplying once by X_{1} and once by $Y_{j}, j \leq n_{1}$, we get that $\nabla_{Y_{1}} X_{1}=0$. Then, $\nabla_{Y_{j}} X_{1}=0, j>1$ follows similarly from $J(\nabla h)\left(Y_{i}, X_{1}, X_{1}\right)=J(\nabla h)\left(X_{1}, Y_{i}, X_{1}\right), i>1$. We then complete the proof of this part by following the same steps as for $\nabla_{X} X_{i}=0, X \in T M_{1}^{n_{1}}$.

By induction we have completed the proof of Lemma 3.6.
Lemma 3.7. Under the condition of Theorem 3.1, the submanifold $\psi: M^{n} \rightarrow$ $\tilde{M}^{n}(4 \tilde{c})$ has parallel second fundamental form: $\nabla h=0$.

Proof. We have that $M^{n}=M_{1}^{n_{1}}\left(c_{1}\right) \times M_{2}^{n_{2}}\left(c_{2}\right)$, for $c_{1}=0, c_{2}>0$ and $\tilde{c}=1$. Let $\left\{X_{i}\right\}_{1 \leq i \leq n_{1}}$ and $\left\{Y_{j}\right\}_{1 \leq j \leq n_{2}}$ be the local orthonormal frames of vector fields of $M_{1}^{n_{1}}$ and $M_{2}^{n_{2}}$, respectively, as described in Lemma 3.5. Consider arbitrarily $X \in T M_{1}^{n_{1}}$ and $Y \in T M_{2}^{n_{2}}$. We will make use of the Codazzi equation (2.5), equations (3.17), (3.28) and the fact that $\nabla X_{i}=0,1 \leq i \leq n_{1}$. We need, additionally, to know that $\nabla_{X_{i}} Y_{j}=0$ for $i<n_{1}$ and each j, where for every Y_{j} chosen in the basis of $T_{q} M_{2}^{n_{2}}$, we take its horizontal lift on $T_{(p, q)}\left(M_{1}^{n_{1}} \times M_{2}^{n_{2}}\right)$, which we denote still by Y_{j}. Our setting corresponds now to [20, Proposition 56, p. 89]. Hence, $\nabla_{X} Y_{j}=0$.

Given the symmetries of ∇h, it is enough to evaluate the following terms such as $\nabla h\left(X_{k}, Y_{i}, Y_{j}\right), \nabla h\left(Y_{i}, X_{k}, Y_{j}\right), \nabla h\left(X, X_{i}, X_{j}\right), \nabla h\left(Y, Y_{i}, Y_{j}\right)$ and $\nabla h\left(Y, X_{i}, X_{j}\right)$. Then finally by direct calculations we obtain $\nabla h=0$.

Completion of the Proof of Theorem 3.1.

Let $\left\{X_{i}\right\}_{1 \leq i \leq n_{1}}$ and $\left\{Y_{j}\right\}_{1 \leq j \leq n_{2}}$ be the local orthonormal frames of vector fields of $M_{1}^{n_{1}}$ and $M_{2}^{n_{2}}$, respectively, as described in Lemma 3.5. Now, we consider the two distributions \mathcal{D}_{1} spanned by X_{1}, and \mathcal{D}_{2} spanned by $\left\{X_{2}, \ldots, X_{n_{1}}, Y_{1}, \ldots, Y_{n_{2}}\right\}$. Given the form of $A_{J X_{1}}$ in (3.28), we may apply Theorem 2.1 and obtain that $\psi: M^{n} \rightarrow \mathbb{C P}^{n}(4)$ is locally a Calabi product Lagrangian immersion of an $(n-1)$ dimensional Lagrangian immersion $\psi_{1}: M_{1,1}^{n-1} \rightarrow \mathbb{C P}^{n-1}(4)$ and a point, i.e., $M^{n}=$ $I_{1} \times M_{1,1}^{n-1}, I_{1} \subset \mathbb{R}$. As ψ is minimal in our case, we may further apply Theorem 2.1 (2). Therefore, we get that

$$
\mu_{1}= \pm \frac{1}{\sqrt{n}} \text { and } \psi_{1} \text { is minimal }
$$

and $\psi=\Pi \circ \tilde{\psi}$ for

$$
\tilde{\psi}(t, p)=\left(\sqrt{\frac{n}{n+1}} e^{i \frac{1}{n+1} t} \tilde{\psi}_{1}(p), \sqrt{\frac{1}{n+1}} e^{-i \frac{n}{n+1} t}\right),(t, p) \in I_{1} \times M_{1,1}^{n-1}
$$

where $\Pi: \mathbb{S}^{2 n+1}(1) \rightarrow \mathbb{C P}^{n}(4)$ is the Hopf fibration and $\tilde{\psi}_{1}: M_{1,1}^{n-1} \rightarrow \mathbb{S}^{2 n-1}(1)$ is the horizontal lift of ψ_{1}.

Consider next the immersion $\psi_{1}: M_{1,1}^{n-1} \rightarrow \mathbb{C P}^{n-1}(4)$. From (3.28) we may see that the restriction A_{J}^{1} of the shape operator A_{J} on $\left\{X_{2}, \ldots, X_{n_{1}}, Y_{1}, \ldots, Y_{n_{2}}\right\}$ (which spans $T M_{1,1}^{n-1}$) is defined as

$$
\left\{\begin{align*}
A_{J X_{2}}^{1} X_{2} & =\lambda_{2,2} X_{2} \tag{3.77}\\
A_{J X_{i}}^{1} X_{i} & =\mu_{2} X_{2}+\cdots+\mu_{i-1} X_{i-1}+\lambda_{i, i} X_{i}, \quad 3 \leq i \leq n_{1} \\
A_{J X_{i}}^{1} X_{j} & =\mu_{i} X_{j}, \quad 2 \leq i \leq j-1 \\
A_{J X_{i}}^{1} Y_{j} & =\mu_{i} Y_{j}, \quad 2 \leq i \leq n_{1}, \quad 1 \leq j \leq n_{2} \\
A_{J Y_{i}}^{1} Y_{j} & =\delta_{i j}\left(\mu_{2} X_{2}+\cdots+\mu_{n_{1}} X_{n_{1}}\right)
\end{align*}\right.
$$

We then apply Theorem 2.1 on $M_{1,1}^{n-1}$, by identifying \mathcal{D}_{1} with $\operatorname{span}\left\{X_{2}\right\}$ and \mathcal{D}_{2} with $\operatorname{span}\left\{X_{3}, \ldots, X_{n_{1}}, Y_{1}, \ldots, Y_{n_{2}}\right\}$, and obtain that $\psi_{1}: M_{1,1}^{n-1} \rightarrow \mathbb{C P}^{n-1}(4)$ is locally a Calabi product Lagrangian immersion of an ($n-2$)-dimensional Lagrangian immersion $\psi_{2}: M_{1,2}^{n-2} \rightarrow \mathbb{C P}^{n-2}(4)$ and a point, thus $M_{1,1}^{n-1}=I_{2} \times M_{1,2}^{n-2}$ and $M^{n}=I_{1} \times I_{2} \times M_{1,2}^{n-2}, I_{2} \subset \mathbb{R}$.

As ψ_{2} is minimal, we further apply Theorem 2.1 (2), and we get

$$
\mu_{2}= \pm \frac{1}{\sqrt{n-1}}, \quad \psi_{2} \text { is minimal }
$$

and $\psi_{1}=\Pi_{1} \circ \tilde{\psi}_{1}$ for

$$
\tilde{\psi}_{1}(t, p)=\left(\sqrt{\frac{n-1}{n}} e^{i \frac{1}{n} t} \tilde{\psi}_{2}(p), \sqrt{\frac{1}{n}} e^{-i \frac{n-1}{n} t}\right), \quad(t, p) \in I_{2} \times M_{1,2}^{n-2},
$$

where $\Pi_{1}: \mathbb{S}^{2 n-1}(1) \rightarrow \mathbb{C P}^{n-1}(4)$ is the Hopf fibration, and $\tilde{\psi}_{2}: M_{1,2}^{n-2} \rightarrow \mathbb{S}^{2 n-3}(1)$ is the horizontal lift of ψ_{2}.

In this way, we can apply Theorem 2.1 for the $\left(n_{1}-1\right)^{\text {th }}$ time because, inductively, we have that $\psi_{n_{1}-2}: M_{1, n_{1}-2}^{n-\left(n_{1}-2\right)} \rightarrow \mathbb{C P}^{n-\left(n_{1}-2\right)}(4)$ is a Lagrangian immersion and the restriction $A_{J}^{n_{1}-2}$ of the shape operator A_{J} on $\left\{X_{n_{1}-1}, X_{n_{1}}, Y_{1}, \ldots, Y_{n_{2}}\right\}$ (which spans $\left.T M_{1, n_{1}-2}^{n-\left(n_{1}-2\right)}\right)$ is defined as

$$
\left\{\begin{array}{l}
A_{J X_{n}-1}^{n_{1}-2} X_{n_{1}-1}=\lambda_{n_{1}-1, n_{1}-1} X_{n_{1}-1}, \tag{3.78}\\
A_{J X_{n}-1}^{n_{1}-2} X_{n_{1}}=\mu_{n_{1}-1} X_{n_{1}}, \\
A_{J X_{n_{1}-1}}^{n_{1}-2} Y_{j}=\mu_{n_{1}-1} Y_{j}, \quad 1 \leq j \leq n_{2}, \\
A_{J Y_{i}-2}^{n_{1}-2} Y_{j}=\delta_{i j} \mu_{n_{1}-1} X_{n_{1}-1}, \quad 1 \leq i, j \leq n_{2} .
\end{array}\right.
$$

Then applying Theorem 2.2 by identifying \mathcal{D}_{1} with $\operatorname{span}\left\{X_{n_{1}-1}\right\}$, and \mathcal{D}_{2} with $\operatorname{span}\left\{X_{n_{1}}, Y_{1}, \ldots, Y_{n_{2}}\right\}$, respectively, we obtain that $M_{1, n_{1}-2}$ is locally a Calabi product Lagrangian immersion of an $\left(n-\left(n_{1}-1\right)\right)$-dimensional Lagrangian immersion $\psi_{n_{1}-1}: M_{1, n_{1}-1} \rightarrow \mathbb{C P}^{n-\left(n_{1}-1\right)}(4)$ and a point. Thus $M_{1, n_{1}-2}=I_{n_{1}-1} \times$ $M_{1, n_{1}-1}$ and $M^{n}=I_{1} \times I_{2} \times \cdots \times I_{n_{1}-1} \times M_{1, n_{1}-1}, I_{n_{1}-1} \subset \mathbb{R}$.

As $\psi_{n_{1}-2}$ is minimal, we further apply Theorem 2.1 (2) to see that

$$
\mu_{n_{1}-1}= \pm \frac{1}{\sqrt{n-\left(n_{1}-1\right)+1}}, \quad \psi_{n_{1}-1} \text { is minimal }
$$

and $\psi_{n_{1}-2}=\Pi_{n_{1}-2} \circ \tilde{\psi}_{n_{1}-2}$ for

$$
\begin{aligned}
\tilde{\psi}_{n_{1}-2}(t, p)= & \left(\sqrt{\frac{n-\left(n_{1}-2\right)}{\left(n-\left(n_{1}-2\right)\right)+1}} e^{i \frac{1}{n-\left(n_{1}-2\right)+1} t} \tilde{\psi}_{n_{1}-1}(p),\right. \\
& \left.\sqrt{\frac{1}{n-\left(n_{1}-2\right)+1}} e^{-i \frac{n-\left(n_{1}-2\right)}{n-\left(n_{1}-2\right)+1} t}\right),(t, p) \in I_{n_{1}-1} \times M_{1, n_{1}-1} .
\end{aligned}
$$

Here, $\Pi_{n_{1}-2}: \mathbb{S}^{2 n-2 n_{1}+5}(1) \rightarrow \mathbb{C P}^{n-\left(n_{1}-2\right)}(4)$ is the Hopf fibration, and $\tilde{\psi}_{n_{1}-1}:$ $M_{1, n_{1}-1} \rightarrow \mathbb{S}^{2 n-2 n_{1}+3}(1)$ is the horizontal lift of $\psi_{n_{1}-1}$.

We want to apply Theorem 2.1 for the $n_{1}^{t h}$ time, for the Lagrangian immersion $\psi_{n_{1}-1}: M_{1, n_{1}-1}^{n-\left(n_{1}-1\right)} \rightarrow \mathbb{C P}^{n-\left(n_{1}-1\right)}(4)$, given that the restriction $A_{J}^{n_{1}-1}$ of the shape operator A_{J} on $\left\{X_{n_{1}}, Y_{1}, \ldots, Y_{n_{2}}\right\}$ (which spans $T M_{1, n_{1}-1}$) is defined as

$$
\left\{\begin{array}{l}
A_{J X_{n_{1}}}^{n_{1}-1} X_{n_{1}}=\lambda_{n_{1}, n_{1}} X_{n_{1}}, \tag{3.79}\\
A_{J X_{n_{1}}}^{n_{1}-1} Y_{j}=\mu_{n_{1}} Y_{j}, \quad 1 \leq j \leq n_{2}, \\
A_{J Y_{i}}^{n_{1}-1} Y_{j}=\delta_{i j} \mu_{n_{1}} X_{n_{1}} .
\end{array}\right.
$$

Applying Theorem 2.2 again by identifying \mathcal{D}_{1} with $\operatorname{span}\left\{X_{n_{1}}\right\}$, and \mathcal{D}_{2} with $\operatorname{span}\left\{Y_{1}, \ldots, Y_{n_{2}}\right\}$, we obtain that $\psi_{n_{1}-1}: M_{1, n_{1}-1} \rightarrow \mathbb{C P}^{n-\left(n_{1}-1\right)}(4)$ is locally a Calabi product Lagrangian immersion of an $\left(n-n_{1}\right)$-dimensional Lagrangian immersion $\psi_{n_{1}}: M_{1, n_{1}} \rightarrow \mathbb{C P}^{n-n_{1}}(4)$ and a point. Thus $M_{1, n_{1}-1}=I_{n_{1}} \times M_{1, n_{1}}$ and

$$
\begin{equation*}
M^{n}=I_{1} \times I_{2} \times \cdots \times I_{n_{1}} \times M_{1, n_{1}}, I_{n_{1}} \subset \mathbb{R} \tag{3.80}
\end{equation*}
$$

As $\psi_{n_{1}-1}$ is minimal, we further apply Theorem 2.1 (2) and we get

$$
\mu_{n_{1}}= \pm \frac{1}{\sqrt{n-n_{1}+1}}, \quad \psi_{n_{1}} \text { is minimal }
$$

and $\psi_{n_{1}-1}=\Pi_{n_{1}-1} \circ \tilde{\psi}_{n_{1}-1}$ for

$$
\begin{aligned}
\tilde{\psi}_{n_{1}-1}(t, p)= & \left(\sqrt{\frac{n-\left(n_{1}-1\right)}{\left(n-\left(n_{1}-1\right)\right)+1}} e^{i \frac{1}{n-\left(n_{1}-1\right)+1} t} \tilde{\psi}_{n_{1}}(p),\right. \\
& \left.\sqrt{\frac{1}{n-\left(n_{1}-1\right)+1}} e^{-i \frac{n-\left(n_{1}-1\right)}{n-\left(n_{1}-1\right)+1} t}\right),(t, p) \in I_{n_{1}} \times M_{1, n_{1}}
\end{aligned}
$$

where $\Pi_{n_{1}-1}: \mathbb{S}^{2 n-2 n_{1}+3}(1) \rightarrow \mathbb{C P}^{n-n_{1}+1}(4)$ is the Hopf fibration and $\tilde{\psi}_{n_{1}}$: $M_{1, n_{1}} \rightarrow \mathbb{S}^{2 n-2 n_{1}+1}(1)$ is the horizontal lift of $\psi_{n_{1}}$.

Notice that the restriction $A_{J}^{n_{1}}$ of the shape operator A_{J} on $\left\{Y_{1}, \ldots, Y_{n_{2}}\right\}$ is $A_{J Y_{i}}^{n_{1}} Y_{j}=0$. Therefore, we eventually have that M^{n} is locally a Calabi product Lagrangian immersion of n_{1} points and an n_{2}-dimensional Lagrangian immersion

$$
\psi_{n_{1}}: M_{2}^{n_{2}} \rightarrow \mathbb{C P}^{n-n_{1}}(4)
$$

for $M_{2}^{n_{2}}:=M_{1, n_{1}}$ which has vanishing second fundamental form. Moreover,

$$
M^{n}=I_{1} \times I_{2} \times \cdots \times I_{n_{1}} \times M_{2}^{n_{2}}, \quad I_{1}, \ldots, I_{n_{1}} \subset \mathbb{R}
$$

Finally, for $q \in M_{2}^{n_{2}}$ the parametrization of $\psi: M^{n} \rightarrow \mathbb{C P}^{n}(4)$ is given by:

$$
\begin{aligned}
\psi\left(t_{1}, \ldots, t_{n_{1}}, q\right)= & \left(\sqrt{\frac{n-\left(n_{1}-1\right)}{n+1}} e^{i\left(\frac{t_{1}}{n+1}+\frac{t_{2}}{n}+\cdots+\frac{t_{n_{1}-1}}{n-\left(n_{1}-2\right)+1}+\frac{t_{n_{1}}}{n-\left(n_{1}-1\right)+1}\right)} \tilde{\psi}_{n_{1}}(q),\right. \\
& \frac{1}{\sqrt{n+1}} e^{i\left(\frac{t_{1}}{n+1}+\frac{t_{2}}{n}+\cdots+\frac{t_{n_{1}-1}}{n-\left(n_{1}-2\right)+1}-\frac{n-\left(n_{1}-1\right)}{n-\left(n_{1}-1\right)+1} t_{n_{1}}\right)} \\
& \frac{1}{\sqrt{n+1}} e^{i\left(\frac{t_{1}}{n+1}+\frac{t_{2}}{n}+\cdots+\frac{t_{n_{1}-2}}{n-\left(n_{1}-3\right)+1}-\frac{n-\left(n_{1}-2\right)}{n-\left(n_{1}-2\right)+1} t_{n_{1}-1}\right)} \\
& \cdots \\
& \frac{1}{\sqrt{n+1}} e^{i\left(\frac{t_{1}}{n+1}+\frac{t_{2}}{n}-\frac{n-2}{(n-2)+1} t_{3}\right)}, \frac{1}{\sqrt{n+1}} e^{i\left(\frac{t_{1}}{n+1}-\frac{n-1}{n} t_{2}\right)} \\
& \left.\frac{1}{\sqrt{n+1}} e^{-i \frac{n}{n+1} t_{1}}\right)
\end{aligned}
$$

which, writing $\tilde{\psi}_{n_{1}}(q)=:\left(y_{1}, \ldots, y_{n_{2}+1}\right)$, is equivalent to

$$
\begin{align*}
\psi\left(t_{1}, \ldots, t_{n_{1}}, q\right)= & \left(\frac{1}{\sqrt{n+1}} e^{i u_{1}}, \ldots, \frac{1}{\sqrt{n+1}} e^{i u_{n_{1}}}\right. \tag{3.81}\\
& \left.\sqrt{\frac{n_{2}+1}{n+1}} e^{i u_{n_{1}+1}}\left(y_{1}, y_{2}, \ldots, y_{n_{2}+1}\right)\right)
\end{align*}
$$

where, $\left\{u_{i}\right\}_{1 \leq i \leq n_{1}+1}$ are defined by

$$
\left\{\begin{array}{l}
u_{1}=-\frac{n}{n+1} t_{1}, \\
\quad \ldots \\
u_{n_{1}}=\frac{t_{1}}{n+1}+\frac{t_{2}}{n}+\cdots+\frac{t_{n_{1}-1}}{n-\left(n_{1}-2\right)+1}-\frac{n-\left(n_{1}-1\right)}{n-\left(n_{1}-1\right)+1} t_{n_{1}}, \\
u_{n_{1}+1}=\frac{t_{1}}{n+1}+\frac{t_{2}}{n}+\cdots+\frac{t_{n_{1}-1}}{n-\left(n_{1}-2\right)+1}+\frac{t_{n_{1}}}{n-\left(n_{1}-1\right)+1},
\end{array}\right.
$$

and they satisfy $u_{1}+u_{2}+\cdots+u_{n_{1}}+\left(n_{2}+1\right) u_{n_{1}+1}=0$.
This completes the proof of Theorem 3.1.

3.2.

Now, we deal with Case (ii), that is, we treat the case when $c_{1} \neq 0$ and $c_{2} \neq 0$.
We begin with the following result whose proof is similar to that of (3.4).
Lemma 3.8. If Case (ii) occurs, then we have

$$
\begin{equation*}
\left\langle Y_{l}, A_{J X_{i}} X_{j}\right\rangle=\left\langle X_{i}, A_{J Y_{l}} Y_{m}\right\rangle=0,1 \leq i, j \leq n_{1}, 1 \leq l, m \leq n_{2} . \tag{3.82}
\end{equation*}
$$

Then, as main result of this subsection we can prove the following lemma.
Lemma 3.9. Case (ii) does not occur.
Proof. Suppose on the contrary that Case (ii) does occur. From Lemma 3.1 we know that A_{J} vanishes nowhere. We may assume that there exist $X \in T_{p} M_{1}^{n_{1}}$ such that $A_{J X} \neq 0$ at the point p. Given Lemma 3.8, similarly to the proof of Lemma 3.5, we can show that there exists a local orthonormal frame $\left\{X_{1}, \ldots, X_{n_{1}}\right\} \in T M_{1}^{n_{1}}$ on a neighbourhood of p such that the shape operator satisfies

$$
\begin{equation*}
A_{J X_{1}} X_{1}=\lambda_{1} X_{1}, \quad A_{J X_{1}} X_{i}=\lambda_{2} X_{i}, 2 \leq i \leq n_{1} \tag{3.83}
\end{equation*}
$$

where λ_{1} and λ_{2} are constants. Then, similarly to the proof of (3.27), we can show that $\nabla_{X} X_{1}=0$ for any $X \in T M_{1}^{n_{1}}$. This implies that $R\left(X_{1}, X_{2}\right) X_{1}=0$, which is a contradiction to $c_{1} c_{2} \neq 0$.

Completion of the Proof of the Main Theorem.

If $c_{1}=c_{2}=0$, it follows from (2.12) that $\left(M^{n},\langle\cdot, \cdot\rangle\right)$ is flat. According to the result of $[12,15]$ and [7] (see the Gauss equation (3.5) in [7]), we get item (1) of the Main Theorem.

If $c_{1}^{2}+c_{2}^{2} \neq 0$, we have two cases: Case (i) and Case (ii).
For Case (i), by Theorem 3.1, we obtain the minimal Lagrangian submanifold as stated in item (2) of the Main Theorem.

Whereas for Case (ii), by Lemma 3.9, it does not occur.
Hence, we have completed the proof of the Main Theorem.

References

[1] Antić, M., Li, H., Vrancken, L., Wang, X.: Affine hypersurfaces with constant sectional curvature. Preprint, 2017.
[2] Barros, M., Romero, A.: Indefinite Kähler manifolds. Math. Ann. 261, 55-62 (1982)
[3] Castro, I., Li, H., Urbano F.: Hamiltonian-minimal Lagrangian submanifolds in complex space forms. Pac. J. Math. 227(1), 43-63 (2006)
[4] Castro, I., Urbano, F.: On a minimal Lagrangian submanifold of \mathbb{C}^{n} foliated by spheres. Michigan Math. J. 46(1), 71-82 (1999)
[5] Chen, B.-Y.: Riemannian geometry of Lagrangian submanifolds. Taiwan. J. Math. 5, 681723 (2001)
[6] Chen, B.-Y., Dillen, F., Verstraelen, L., Vrancken L.: Lagrangian isometric immersions of a real-space-form $M^{n}(c)$ into a complex-space-form $\tilde{M}^{n}(4 c)$, Math. Proc. Cambridge Philos. Soc. 124(1), 107-125 (1998)
[7] Chen, B.-Y., Ogiue K.: On totally real submanifolds. Trans. Am. Math. Soc. 193, 257-266 (1974)
[8] Chen, B.-Y., Vrancken L.: Lagrangian minimal isometric immersions of a Lorentzian real space form $M_{1}^{n}(c)$ into a Lorentzian complex space form $\tilde{M}_{1}^{n}(4 c)$. Tôhoku Math. J. 54(1), 121-143 (2002)
[9] Cheng, X., Hu, Z., Moruz, M., Vrancken, L.: On product affine hyperspheres in \mathbb{R}^{n+1}. Sci. China Math. Doi: 10.1007/s11425-018-9457-9. arXiv:1812.07901v1 [math.DG]
[10] Dajczer, M., Tojeiro R.: Flat totally real submanifolds of $\mathbf{C P}^{n}$ and the symmetric generalized wave equation. Tôhoku Math. J. 47, 117-123 (1995)
[11] Dillen, F., Li, H., Vrancken, L., Wang, X.: Lagrangian submanifolds in complex projective space with parallel second fundamental form. Pac. J. Math. 255, 79-115 (2012)
[12] Ejiri, N.: Totally real minimal immersions of n-dimensional real space forms into n dimensional complex space forms. Proc. Am. Math. Soc. 84, 243-246 (1982)
[13] Hu, Z., Li, H., Vrancken, L.: On four-dimensional Einstein affine hyperspheres. Differ. Geom. Appl. 50, 20-33 (2017)
[14] Kriele, M., Vrancken, L.: Minimal Lagrangian submanifolds of Lorentzian complex space forms with constant sectional curvature. Arch. Math. (Basel) 72, 223-232 (1999)
[15] Li, A.-M., Zhao, G.S.: Totally real minimal submanifolds in $\mathbf{C P}^{n}$. Arch. Math. 62, 562-568 (1994)
[16] Li, H., Wang, X.: Isotropic Lagrangian submanifolds in complex Euclidean space and complex hyperbolic space. Result. Math. 56, 387-403 (2009)
[17] Li, H., Wang, X.: Calabi product Lagrangian immersions in complex projective space and complex hyperbolic space. Result. Math. 59, 453-470 (2011)
[18] Li, H., Wang, X.: A differentiable sphere theorem for compact Lagrangian submanifolds in complex Euclidean space and complex projective space. Commun. Anal. Geom. 22(2), 269-288 (2014)
[19] Ma, H., Ohnita, Y.: Differential Geometry of Lagrangian Submanifolds and Hamiltonian Variational Problems. Harmonic Maps and Differential Geometry. pp.115-134. Contemp. Math., 542, American Mathmatical Society, Providence (2011)
[20] O'Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York, 1983.
[21] Tojeiro, R.: Lagrangian submanifolds of constant sectional curvature and their Ribaucour transformation. Bull. Belg. Math. Soc. Simon Stevin 8(1), 29-46 (2001)
[22] Vrancken, L., Li, A.-M., Simon, U.: Affine spheres with constant affine sectional curvature. Math. Z. 206, 651-658 (1991)
[23] Wang, X., Li, H., Vrancken, L.: Lagrangian submanifolds in 3-dimensional complex space forms with isotropic cubic tensor. Bull. Belg. Math. Soc. Simon Stevin 18(3), 431-451 (2011)
[24] Wang, X., Li, H., Vrancken, L.: Minimal Lagrangian isotropic immersions in indefinite complex space forms. J. Geom. Phys. 62, 707-723 (2012)

Xiuxiu Cheng and Zejun Hu:
School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
E-mails: chengxiuxiu1988@163.com; huzj@zzu.edu.cn.
Marilena Moruz:
Department of Mathematics, KU Leuven, Celestiunenlaan 200B, Box 2400, BE-3001 Leuven, Belgium.
E-mail: marilena.moruz@kuleuven.be.
Luc Vrancken:
Université Polytechnique Hauts de France, F-59313 Valenciennes, FRANCE; Department of Mathematics, KU Leuven, Celestijnenlaan
200B, Box 2400, BE-3001 Leuven, Belgium.
E-mails: luc.vrancken@univ-valenciennes.fr.

[^0]: Key words and phrases. Complex space form, product submanifold, minimal Lagrangian submanifold, Calabi product immersion.

 2010 Mathematics Subject Classification. 53B25, 53C42, 53D12.
 The first two authors were supported by NSF of China, Grant Number 11771404. The third author is a postdoctoral fellow of FWO - Flanders, Belgium.

