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In this paper, we study locally strongly convex affine hyperspheres in the unimodular affine space R n+1 which, as Riemannian manifolds, are locally isometric to the Riemannian product of two Riemannian manifolds both possessing constant sectional curvatures. As the main result, a complete classification of such affine hyperspheres is established. Moreover, as direct consequences, affine hyperspheres of dimensions 3 and 4 with parallel Ricci tensor are also classified.

Introduction

In this paper, we study locally strongly convex affine hypersurfaces in the unimodular affine space R n+1 . It is well known that on a nondegenerate affine hypersurface M n in R n+1 there exists a canonical transversal vector field ξ which is called the affine normal vector field. If all the affine normal lines of M n pass through a fixed point (resp. if all the affine normals are parallel), M n is called a proper (resp. improper) affine hypersphere. The second fundamental form h associated with the affine normal vector field is called the (Blaschke) affine metric. As we consider only locally strongly convex affine hypersurfaces, the affine metric h is assumed to be positive definite, and in such situation, the proper affine hyperspheres are divided into two classes, i.e., the elliptic affine hyperspheres and the hyperbolic ones.

The affine hyperspheres form a very important class of affine hypersurfaces. From the global point of view that the affine metric h is complete, the improper (also called parabolic) affine hypersphere has to be the elliptic paraboloid, whereas the elliptic affine hypersphere has to be the ellipsoid. However, the class of locally strongly convex hyperbolic affine hyperspheres is very large and have been widely studied, see amongst others the works of [START_REF] Calabi | Complete affine hyperspheres, I[END_REF][START_REF] Cheng | Complete affine hypersurfaces, I, The completeness of affine metrics[END_REF][START_REF] Gigena | On a conjecture of E. Calabi[END_REF][START_REF] Li | Some theorems in affine differential geometry[END_REF][START_REF] Li | Calabi conjecture on hyperbolic affine hyperspheres[END_REF][START_REF] Li | Calabi conjecture on hyperbolic affine hyperspheres[END_REF][START_REF] Sasaki | Hyperbolic affine hyperspheres[END_REF] and also the recent monograph [START_REF] Li | Global affine differential geometry of hypersurfaces[END_REF], or the survey paper [START_REF] Loftin | Survey on affine spheres[END_REF]. Indeed, even assuming global conditions, the class of hyperbolic affine hyperspheres is surprisingly large, and one is still far from having a complete geometric understanding of them for all dimensions.

On the other hand, affine hyperspheres with constant sectional curvature are classified in [START_REF] Li | Uniqueness theorems in affine differential geometry II[END_REF] and [START_REF] Vrancken | Affine spheres with constant affine sectional curvature[END_REF] (see also [START_REF] Simon | Local classification of two-dimensional affine spheres with constant curvature metric[END_REF][START_REF] Vrancken | The Magid-Ryan conjecture for equiaffine hyperspheres with constant sectional curvature[END_REF] for the general non-degenerate case), whereas in [START_REF] Hu | On four-dimensional Einstein affine hyperspheres[END_REF] it was further shown that all locally strongly convex Einstein affine hyperspheres in R 5 are of constant sectional curvature. Contrary to the result of [START_REF] Hu | On four-dimensional Einstein affine hyperspheres[END_REF], the cases for locally strongly convex Einstein affine hyperspheres in R n+1 with n ≥ 5 are different, and there exist Einstein affine hyperspheres which are not of constant sectional curvatures; actually, such examples occur for the standard embeddings of the noncompact symmetric spaces E 6(-26) /F 4 , and SL(m, R)/SO(m), SL(m, C)/SU(m), SU * (2m)/Sp(m) for each m ≥ 3 (cf. [START_REF] Birembaux | Isotropic affine spheres[END_REF][START_REF] Hu | Locally strongly convex affine hypersurfaces with parallel cubic form[END_REF] and [START_REF] Cheng | An optimal inequality on locally strongly convex centroaffine hypersurfaces[END_REF][START_REF] Cheng | On the isolation phenomena of Einstein manifolds -Submanifolds versions[END_REF]). However, at present the complete classification of locally strongly convex Einstein affine hyperspheres in R n+1 is still an interesting and open problem.

In order to get further knowledge of the affine hyperspheres, the above mentioned facts motivate us to consider the following natural and interesting problem:

Classify all locally strongly convex affine hyperspheres which are locally isometric to the product M n1 1 (c 1 ) × M n2 2 (c 2 ), such that n 1 + n 2 = n and M ni i (c i ) is an n idimensional Riemannian manifold with constant sectional curvature c i for i = 1, 2.

To consider this problem, we are sufficient to assume that n ≥ 3. As the results of this paper, we have solved the above problem. More precisely, we have proved the following theorems.

Theorem 1.1. Let x : M n → R n+1 be a locally strongly convex affine hypersphere. If (M n , h) is locally isometric to the Riemannian product M n1 1 (c 1 ) × M n2 2 (c 2 ) for n 1 ≥ 2 and n 2 ≥ 2, such that n 1 + n 2 = n and M ni i (c i ) is an n i -dimensional Riemannian manifold with constant sectional curvature c i for i = 1, 2. Then we have c 1 c 2 = 0, and one of the following cases occurs:

(i) c 1 = c 2 = 0 and x : M n → R n+1 is locally affinely equivalent to either the paraboloid

x n+1 = 1 2 [(x 1 ) 2 + • • • + (x n ) 2 ] or Q(1, n) : x 1 x 2 • • • x n+1 = 1; (ii) c 1 c 2 = 0 and c 2
1 + c 2 2 = 0, assuming that c 1 = 0 and c 2 = 0, then c 2 < 0, x : M n → R n+1 is locally affinely equivalent to the Calabi composition

(x 1 • • • x n1 ) 2 (x 2 n+1 -x 2 n1+1 -• • • -x 2 n ) n2+1 = 1
, where (x 1 , . . . , x n+1 ) are the standard coordinates of R n+1 . Theorem 1.2. Let x : M n → R n+1 (n ≥ 3) be a locally strongly convex affine hypersphere. If (M n , h) is locally isometric to a Riemannian product I × M n-1 (c), with I ⊂ R and M n-1 (c) an (n-1)-dimensional Riemannian manifold with constant sectional curvature c = 0. Then we have c < 0, and x : M n → R n+1 is locally affinely equivalent to the Calabi composition

x 2 1 (x 2 n+1 -x 2 2 -• • • -x 2 n ) n = 1, where (x 1 , . . . , x n+1 ) are the standard coordinates of R n+1 .
As direct consequences of these theorems, we further have the following results.

Corollary 1.1. Let x : M 3 → R 4 be a locally strongly convex affine hypersphere with parallel Ricci tensor. Then either M 3 is an open part of a locally strongly convex hyperquadric, or x : M 3 → R 4 is locally affinely equivalent to one of the following two hypersurfaces:

(i) x 1 x 2 x 3 x 4 = 1, (ii) x 2 1 (x 2 4 -x 2 2 -x 2 3 ) 3 = 1, where (x 1 , x 2 , x 3 , x 4 ) are the standard coordinates of R 4 .
Corollary 1.2. Let x : M 4 → R 5 be a locally strongly convex affine hypersphere with parallel Ricci tensor. Then either M 4 is an open part of a locally strongly convex hyperquadric, or x : M 4 → R 5 is locally affinely equivalent to one of the following hypersurfaces:

(i) x 1 x 2 x 3 x 4 x 5 = 1, (ii) (x 1 x 2 ) 2 (x 2 5 -x 2 3 -x 2 4 ) 3 = 1, (ii) x 2 1 (x 2 5 -x 2 2 -x 2 3 -x 2 4 ) 4 = 1, where (x 1 , x 2 , x 3 , x 4 , x 5 ) are the standard coordinates of R 5 .
Remark 1.1. The above corollaries and the main results of [START_REF] Dillen | 3-dimensional affine hypersurfaces in R 4 with parallel cubic form[END_REF] and [START_REF] Dillen | Affine hypersurfaces with parallel cubic form[END_REF] imply that for locally strongly convex affine hyperspheres in both R 4 and R 5 , the parallelism of the intrinsic invariant Ricci tensor and that of the extrinsic invariant cubic form are actually equivalent.

The paper is arranged as follows: In section 2, we fix notations and briefly recall the local theory of equiaffine hypersurfaces. In section 3, the most technical parts of this paper are given and we prove the crucial lemmas which imply the existence of canonical local frame so that the difference tensor can be sufficiently determined. Finally, in section 4 we complete the proof of the preceding theorems and corollaries.

Preliminaries

In this section, we briefly recall the local theory of equiaffine hypersurfaces. For more details, we refer to the monographs [START_REF] Li | Global affine differential geometry of hypersurfaces[END_REF][START_REF] Nomizu | Affine differential geometry. Geometry of affine immersions[END_REF].

Let R n+1 be the standard (n + 1)-dimensional real unimodular affine space that is equipped with its usual flat connection D and a parallel volume form given by the determinant. Let x : M n → R n+1 be a locally strongly convex hypersurface with affine normal ξ. Then, for any vector fields X and Y on M n , we have

D X x * (Y ) = x * (∇ X Y ) + h(X, Y )ξ, (2.1) D X ξ = -x * (SX), (2.2)
where ∇, S and h are the induced affine connection, the affine shape operator and the affine metric, respectively. It is well known that M n is an affine hypersphere if and only if S = H id with H being a constant; moreover, x : M n → R n+1 is a proper (resp. improper) affine hypersphere if and only if H = 0 (resp. H = 0).

Let ∇ denote the Levi-Civita connection of the affine metric h. The difference tensor K is defined by K(X, Y ) := K X Y := ∇ X Y -∇X Y ; it is symmetric as both connections are torsion free. Moreover, h(K(X, Y ), Z) is a totally symmetric cubic form. For affine hyperspheres with affine shape operator S = H id, the Riemannian curvature tensor R of the affine metric and the difference tensor K satisfy the following fundamental equations of Gauss and Codazzi:

(2.3) R(X, Y )Z = H h(Y, Z)X -h(X, Z)Y -[K X , K Y ]Z, (2.4) ( ∇X K)(Y, Z) = ( ∇Y K)(X, Z).
As usual, we denote ( ∇K)(Z, X, Y ) := ( ∇Z K)(X, Y ), and define the second covariant differentiation ∇2 K of K by

(2.5) ( ∇2 K)(W, Z, X, Y ) := ∇W (( ∇K)(Z, X, Y )) -( ∇K)( ∇W Z, X, Y ) -( ∇K)(Z, ∇W X, Y ) -( ∇K)(Z, X, ∇W Y ).
Then we have the following Ricci identity:

( ∇2 K)(W, X, Y, Z) -( ∇2 K)(X, W, Y, Z) = R(W, X)K(Y, Z) -K( R(W, X)Y, Z) -K(Y, R(W, X)Z). (2.6)
Moreover, for unimodular affine hypersurfaces of R n+1 , K satisfies the so-called apolarity condition (2.7) trace K X = 0, ∀X ∈ T M.

In the following, we will prove an additional relation that is very useful in our computations. To do so, we will make use of the technique introduced in [START_REF] Antić | Affine hypersurfaces with constant sectional curvature[END_REF], as the Tsinghua Principle. First, take the covariant derivative of (2.4) with respect to W , and use (2.4) and (2.5), to obtain straightforwardly that

(2.8) ( ∇2 K)(W, X, Y, Z) -( ∇2 K)(W, Y, X, Z) = 0.
Then we sum over cyclic permutations of the first three vector fields in the above equation and use the Ricci identity (2.6). It follows that

0 = R(W, X)K(Y, Z) -K( R(W, X)Z, Y ) + R(X, Y )K(W, Z) -K( R(X, Y )Z, W ) + R(Y, W )K(X, Z) -K( R(Y, W )Z, X). (2.9) Additionally, if (M n , h) = M n1 1 (c 1 )×M n2 2 (c 2
) and applying Corollary 58 on page 89 in [START_REF] O'neill | Semi-Riemannian Geometry with Applications to Relativity[END_REF], we know that

R(X, Y )Z =c 1 h(Y 1 , Z 1 )X 1 -h(X 1 , Z 1 )Y 1 + c 2 h(Y 2 , Z 2 )X 2 -h(X 2 , Z 2 )Y 2 , (2.10) where, for p ∈ M n and i = 1, 2, X i , Y i , Z i are the T p M ni i -component of X, Y, Z ∈ T p M n , respectively.

Lemmas on the Calculations of the Difference Tensor

In this section, we consider the n-dimensional locally strongly convex affine hypersphere x :

M n → R n+1 , such that (M n , h) is locally isometric to a Riemannian product M n1 1 (c 1 ) × M n2 2 (c 2 ) for n 1 ≥ 2 and n 2 ≥ 2, n 1 + n 2 = n.
Here, for i = 1, 2, M ni i (c i ) denotes an n i -dimensional Riemannian manifold with constant sectional curvature c i . We first assume that c 2 1 + c 2 2 = 0 in this section. Now, we would emphasize that when we dealing with the product manifold M n1

1 × M n2 2 , one should be aware that throughout the paper we will work with tangent vectors on M n denoted by X and Y . In general, the X notation (as well as X i , 1 ≤ i ≤ n 1 ) will denote a tangent vector at p = (p 1 , p 2 ) ∈ M n , with zero component on M n2

2 . Notice that, a priori, it means that X depends on p 2 as well, not only on p 1 . A corresponding meaning is given to Y (or Y j , 1 ≤ j ≤ n 2 ), having zero components on M n1

1 and depending a priory on both p 1 and p 2 . One should have in mind this meaning when reading X ∈ T p M n1 1 , respectively, Y ∈ T p M n2 2 . Nonetheless, a complete understanding will be acquired with the proofs of Lemmas 4.1 and 4.2.

We begin with the following result. Lemma 3.1. If c 2 1 + c 2 2 = 0, then the difference tensor K vanishes nowhere. Proof. Suppose on the contrary that the difference tensor K vanishes at the point 

p = (p 1 , p 2 ) ∈ M n = M n1 1 × M n2 2 . Then, from (2.3) we know that (3.1) R(X, Y )Z = H h(Y, Z)X -h(X, Z)Y at p.

Thus (M

, Y = Z ∈ T p M n2
2 with X ⊥ Y in both (2.10) and (3.1), we get c 2 = 0.

Hence, c 1 = c 2 = 0. This is a contradiction to that c 2 1 + c 2 2 = 0. Notice that if c 1 c 2 = 0, then without loss of generality we can assume that c 1 = 0 and c 2 = 0. Thus, in sequel we are sufficient to consider the following two cases:

Case C 1 : c 1 = 0 and c 2 = 0; Case C 2 : c 1 = 0 and c 2 = 0.

In the remaining of this section, we consider only Case C 1 . In order to decide the difference tensor, first of all we have the following lemma. 

Lemma 3.2. For p ∈ M n1 1 × M n2 2 ,
K Xi Y α = µ(X i )Y α , 1 ≤ i ≤ n 1 , 1 ≤ α ≤ n 2 ,
where µ(X i ) =: µ i depends only on X i for i = 1, . . . , n 1 . Moreover, it holds that

(3.3) µ(X 1 ) 2 + • • • + µ(X n1 ) 2 = -n1 n2+1 H. Proof. Let {X 1 , . . . , X n1 } (resp. {Y 1 , . . . , Y n2 }) be an orthonormal basis of T p M n1 1 (resp. T p M n2 2 ). Taking X = X i , Y = Y α and Z = W = Y β (α = β) in (2.9
), then using (2.10) we obtain

(3.4) 0 = c 2 n2 m=1 (δ βm Y α -δ αm Y β )h(K Xi Y β , Y m ) -c 2 K Xi Y α .
Taking the component of (3.4) on Y β , we have that

(3.5) h(K Xi Y α , Y β ) = 0, 1 ≤ i ≤ n 1 , 1 ≤ α = β ≤ n 2 .
Taking the component of (3.4) on Y α , we have

(3.6) h(K Xi Y α , Y α ) = h(K Xi Y β , Y β ), 1 ≤ i ≤ n 1 , 1 ≤ α, β ≤ n 2 .
Similarly, taking X = Y α , Y = X i , Z = X j and W = Y β in (2.9), then using (2.10) we obtain

(3.7) 0 = c 2 n2 m=1 (δ mα Y β -δ βm Y α )h(K Xi X j , Y m ). Let α = β, then (3.7) implies that (3.8) h(K Xi X j , Y α ) = 0, 1 ≤ i, j ≤ n 1 , 1 ≤ α ≤ n 2 .
Combining (3.5), (3.6) and (3.8), the assertion (3.2) immediately follows.

Next, we compute the sectional curvature K(π(X i , Y j )) of the plane π spanned by X i and Y j , for some fixed i ∈ {1, . . . , n 1 } and j ∈ {1, . . . , n 2 }. For that purpose, using (2.10) on the one hand, and (2.3) on the other hand, together with applying (3.2), we obtain

0 =H -h(K Yj Y j , K Xi X i ) + h(K Xi Y j , K Yj X i ) =H + µ(X i ) 2 -h(K Yj Y j , K Xi X i ), 1 ≤ i ≤ n 1 , 1 ≤ j ≤ n 2 .
Then, taking summation over i = 1, . . . , n 1 , and using (3.2), we get (3.9)

0 = n 1 H + n1 i=1 µ(X i ) 2 -h(K Yj Y j , n1 i=1 K Xi X i ) = n 1 H + n1 i=1 µ(X i ) 2 - n1 k=1 n1 i=1 h(K X k X i , X i )µ(X k ).
On the other hand, the apolarity condition implies that, for each k = 1, . . . , n 1 ,

(3.10) 0 = n1 i=1 h(K X k X i , X i ) + n2 j=1 h(K X k Y j , Y j ) = n1 i=1 h(K X k X i , X i ) + n 2 µ(X k ).
Therefore, from (3.9) and (3.10), we obtain

(3.11) µ(X 1 ) 2 + • • • + µ(X n1 ) 2 = -n1 n2+1
H. This completes the proof of Lemma 3.2. Now, before going to show the next lemma, we will describe the construction of a typical orthonormal basis, which was introduced by N. Ejiri and has been widely applied, and proved to be very useful for various situations, see e.g. [START_REF] Hu | On locally strongly convex affine hypersurfaces with parallel cubic form. Part I[END_REF] and [START_REF] Li | A basic inequality and new characterization of Whitney spheres in a complex space form[END_REF][START_REF] Montiel | Isotropic totally real submanifolds[END_REF]. The idea is to construct a basis from a self-adjoint operator at a point; then one extends the basis to local orthonormal vector fields. In this paper, we have the general principle as below:

For an arbitrary

p ∈ M n = M n1 1 ×M n2 2 , let U p M n1 1 = {u ∈ T p M n1 1 | h(u, u) = 1} and E p ⊂ T p1 M n1 1 × {0} a vector subspace. Since M n is locally strongly convex, U p M n1
1 ∩ E p is compact. We define on this set the function

f 1 (u) = h(K u u, u), u ∈ U p M n1 1 ∩ E p . Then there is an element e 1 ∈ U p M n1 1 ∩ E p at which the function f 1 (u) attains the absolute maximum. Let u ∈ U p M n1
1 ∩ E p such that h(u, e 1 ) = 0, and define a function g by g(t) := f 1 cos t e 1 + sin t u . Then we have

(3.12) g ′ (0) = 3 h(K e1 e 1 , u), g ′′ (0) = 6 h(K e1 u, u) -3 f 1 (e 1 ).
Since g attains an absolute maximum at t = 0, we have g ′ (0) = 0, g ′′ (0) ≤ 0, i.e.,

) h(K e1 e 1 , u) = 0, h(K e1 e 1 , e 1 ) ≥ 2h(K e1 u, u), h(u, u) = 1, u ⊥ e 1 . (3.13 
Analogously, we can define a function

f 2 on U p M n2 2 ∩ Ẽp , where U p M n2 2 = {u ∈ T p M n2 2 | h(u, u) = 1} and Ẽp ⊂ {0} × T p2 M n2 2 a vector subspace. We can choose e 1 ∈ U p M n2 2 ∩ Ẽp such that (3.13) holds for u ∈ U p M n2 2 ∩ Ẽp with u ⊥ e 1 .
In the following, we will apply the above principle of choosing the unit vector e 1 many times. Now, as a supplement to Lemma 3.2, we can prove the following lemma.

Lemma 3.3. Given p = (p 1 , p 2 ) ∈ M n1 1 × M n2 2 .
Let {X i } 1≤i≤n1 and {Y j } 1≤j≤n2 be the orthonormal bases of T p M n1 1 and T p M n2 2 , respectively. Then, in Case C 1 , we have

(3.14) K Yα Y β = δ αβ (µ 1 X 1 + • • • + µ n1 X n1 ), 1 ≤ α, β ≤ n 2 ,
Moreover, we have c 2 = n+1 n2+1 H < 0.

Proof. Let {X i } 1≤i≤n1 and {Y j } 1≤j≤n2 be orthonormal bases of T p M n1 1 and T p M n2 2 , respectively. Then, according to Lemma 3.2, there are constants {θ γ αβ } such that

K Yα Y β = δ αβ (µ 1 X 1 + • • • + µ n1 X n1 ) + n2 γ=1 θ γ αβ Y l , 1 ≤ α, β ≤ n 2 .
We will show that θ γ αβ = 0 for 1 ≤ α, β, γ ≤ n 2 , or equivalently, (3.15)

h(K Yα Y β , Y γ ) = 0, 1 ≤ α, β, γ ≤ n 2 .
We will prove (3.15) by contradiction. Suppose on the contrary that (3.15) does not hold. Then, following the preceding stated procedure, we can choose a unit vector in U p M n2 2 , denoted by Ȳ1 , such that

θ 1 := h(K Ȳ1 Ȳ1 , Ȳ1 ) > 0 is the maximum of the function f 2 defined on U p2 M n2 2 . Define an operator A : T p M n2 2 → T p M n2 2 by A(Y ) := K Ȳ1 Y -h(K Ȳ1 Y, X 1 )X 1 -• • • -h(K Ȳ1 Y, X n1 )X n1 .
Then, it is easy to show that A is self-adjoint and satisfies A( Ȳ1 ) = θ 1 Ȳ1 . We can choose orthonormal vectors in U p M n2 2 orthogonal to Ȳ1 , denoted by Ȳ2 , . . . , Ȳn2 , which are the remaining eigenvectors of the operator A, with associated eigenvalues θ 2 , . . . , θ n2 , respectively. Thus, by Lemma 3.2, we get the conclusion that (3.16)

K Ȳ1 Ȳ1 = µ 1 X 1 + • • • + µ n1 X n1 + θ 1 Ȳ1 , K Ȳ1 Ȳi = θ i Ȳi , 2 ≤ i ≤ n 2 .
In order to solve

{θ i } in (3.16), taking X = Z = Ȳ1 and Y = Ȳi , 2 ≤ i ≤ n 2 , in (2.
3), using (2.10), (3.16) and Lemma 3.2, we can obtain (3.17)

θ 2 i -θ 1 θ i + n1+1 n2+1 H -c 2 = 0, 2 ≤ i ≤ n.
From (3.17) and the statement of (3.13), we obtain that (3.16), (3.18) and trace K Y1 = 0, we get

(3.18) θ 2 = • • • = θ n2 = 1 2 θ 1 -θ 2 1 -4( n+1 n2+1 H -c 2 ) . Using (3.2),
(3.19) (n 2 + 1)θ 1 = (n 2 -1) θ 2 1 -4( n+1 n2+1 H -c 2 ). Then, we have 4 c 2 -n+1 n2+1 H = n2+1 n2-1 2 -1 θ 2 1 > 0. It follows that c 2 > n+1 n2+1 H and (3.20) θ 1 = (n 2 -1) (n2+1)c2-(n+1)H n2(n2+1)
.

Next, we intend to extend Ȳ1 ∈ U p M n2 2 , that satisfying (3.16), to be a local unit vector field around p ∈ M n . For that purpose, we first make the following Claim.

Claim 1. For every p = (p 1 , p 2 ) ∈ M n , the set

Ω p := λ ∈ R | V ∈ U p M n2 2 s. t. K V V = λV + n1 i=1 µ i X i
consists of finite numbers, which are independent of the point p ∈ M n .

To verify the claim, we notice that, for any fixed p ∈ M n , the above discussion implies that we have θ 1 ∈ Ω p with V = Ȳ1 . Thus, the set Ω p is non-empty.

Next, assume an arbitrary

λ ∈ Ω p associated with V ∈ U p M n2 2 such that K V V = λV + µ 1 X 1 + • • • + µ n1 X n1 .
Then we put Ỹ1 = V , θ1 = λ and define an operator B :

T p M n2 2 → T p M n2 2 by B(Y ) = K Ỹ1 Y -h(K Ỹ1 Y, X 1 )X 1 -• • • -h(K Ỹ1 Y, X n1 )X n1 .
It is easily seen that B is self-adjoint and B( Ỹ1 ) = θ1 Ỹ1 . Then, we may complete Ỹ1 to get an orthonormal basis { Ỹi } 1≤i≤n2 of T p M n2 2 by letting Ỹ2 , . . . , Ỹn2 to be the eigenvectors of B, with eigenvalues θ2 , . . . , θn2 , respectively.

Similar to the proof of (3.17), we have the existence of an integer n 2,1 with 0 ≤ n 2,1 ≤ n 2 -1 such that, if necessary, after renumbering the basis, it holds

(3.21)        θ2 = • • • = θn2,1+1 = 1 2 θ1 + θ2 1 -4( n+1 n2+1 H -c 2 ) , θn2,1+2 = • • • = θn2 = 1 2 θ1 -θ2 1 -4( n+1 n2+1 H -c 2 ) .
Then, by trace K Ỹ1 = 0, we find that

(3.22) (n 2 + 1) θ1 -(n 2 -2n 2,1 -1) θ2 1 -4( n+1 n2+1 H -c 2 ) = 0.
This implies that θ1 = λ is independent of the point p and takes value of only finite possibilities. The assertion of Claim 1 immediately follows.

To extend Ȳ1 differentiably to a unit vector field on a neighbourhood U ⊂ M n around p, which is still denoted by Ȳ1 , such that, at every point q ∈ U , f 2 attains an absolute maximum at Ȳ1 (q), we first take differentiable h-orthonormal vector fields {E 1 , . . . , E n2 } defined on a neighbourhood U ′ of p and satisfying

E i (q) ∈ T q M n2 2 , q ∈ U ′ , 1 ≤ i ≤ n 2 , such that E i (p) = Ȳi for 1 ≤ i ≤ n 2 .
Then, we define a function γ by

γ : R n2 × U ′ → R n2 by (a 1 , . . . , a n2 , q) → (b 1 , . . . , b n2 ), where (3.23) b k = n2 i,j=1 a i a j h(K Ei E j , E k ) -θ 1 a k , 1 ≤ k ≤ n 2 , are regarded as functions on R n2 × U ′ : b k = b k (a 1 , . . . , a n2 , q).
Using (3.16) and the fact that f 2 attains an absolute maximum at E 1 (p), we then obtain that

∂b k ∂am (1, 0, . . . , 0, p) = 2h(K E1(p) E m (p), E k (p)) -θ 1 δ km =      0, if k = m, θ 1 , if k = m = 1, 2θ k -θ 1 , if k = m ≥ 2.
Notice that, by assumption, (3.18) and (3.19), we have θ 1 > 0 and 2θ k -θ 1 = 0 for 2 ≤ k ≤ n 2 . Then, the implicit function theorem shows that there exist differentiable functions {a i (q)} 1≤i≤n2 defined on a neighbourhood U ′′ ⊂ U ′ of p, such that

(3.24) a 1 (p) = 1, a 2 (p) = • • • = a n2 (p) = 0, b i (a 1 (q), . . . , a n2 (q), q) ≡ 0, 1 ≤ i ≤ n 2 .
Define the local vector field V on U ′′ by

V (q) = a 1 (q)E 1 (q) + • • • + a n2 (q)E n2 (q), q ∈ U ′′ .
Then, for local basis of T M n1 1 around U ′′ , still denoted by {X i } 1≤i≤n1 , from (3.23), (3.24) and Lemma 3.2, we have

K Xi Y = µ i Y for any Y ∈ T M n2
2 , and that

K V V = θ 1 V + µ 1 h(V, V )X 1 + • • • + µ n1 h(V, V )X n1 . Let us define V = h(V, V ). Since V (p) = 1, there exists a neighbourhood U ⊂ U ′′ of p such that V = 0 on U . Then, W = V V is a unit vector field on U that satisfies K W W = θ1 √ h(V,V ) W + µ 1 X 1 + • • • + µ n1 X n1 . Denote θ1 = θ 1 / h(V, V ).
Then, the proof of Claim 1 implies that, as a function on U , θ1 takes values of finite number, which satisfy (3.22) for some 0 ≤ n 2,1 ≤ n 2 -1. This further implies from the fact h(V, V )(p) = 1 and the continuity of the function

θ 1 / h(V, V ) that h(V, V ) ≡ 1 on U .
Let Ȳ1 = W and take orthonormal vector fields Ȳ2 , . . . , Ȳn2 orthogonal to Ȳ1 so that { Ȳ1 , . . . , Ȳn1 } forms a local orthonormal basis of T M n2 2 on U . Then, according to (3.16), (3.18) and (3.20), we have a constant

θ 2 = • • • = θ n2 such that the difference tensor satisfies (3.25) K Ȳ1 Ȳ1 = µ 1 X 1 + • • • + µ n1 X n1 + θ 1 Ȳ1 , K Ȳ1 Ȳi = θ i Ȳi , 2 ≤ i ≤ n 2 .
Now, we can apply the Codazzi equation (2.4) to the basis { Ȳi } 1≤i≤n2 . By the property h( ∇ Ȳi Ȳj , X k ) = 0 of product manifold and (3.25), we have the following calculations:

(3.26) ( ∇ Ȳi K)( Ȳ1 , Ȳ1 ) = ∇ Ȳi K( Ȳ1 , Ȳ1 ) -2K( ∇ Ȳi Ȳ1 , Ȳ1 ) = (θ 1 -2θ 2 ) ∇ Ȳi Ȳ1 + n1 k=1 µ k ∇ Ȳi X k + Ȳi (µ k )X k , = (θ 1 -2θ 2 ) n2 j=1 h( ∇ Ȳi Ȳ1 , Ȳj ) Ȳj + n1 k=1 µ k ∇ Ȳi X k + Ȳi (µ k )X k , (3.27) ( ∇ Ȳ1 K)( Ȳi , Ȳ1 ) = ∇ Ȳ1 K( Ȳi , Ȳ1 ) -K( ∇ Ȳ1 Ȳi , Ȳ1 ) -K( ∇ Ȳ1 Ȳ1 , Ȳi ) = θ 2 ∇ Ȳ1 Ȳi -K( ∇ Ȳ1 Ȳi , Ȳ1 ) -K( ∇ Ȳ1 Ȳ1 , Ȳi ) = θ 2 h( ∇ Ȳ1 Ȳi , Ȳ1 ) Ȳ1 -h( ∇ Ȳ1 Ȳi , Ȳ1 )K( Ȳ1 , Ȳ1 ) - n2 j=2 h( ∇ Ȳ1 Ȳ1 , Ȳj )K( Ȳj , Ȳi ).
Then, using h((

∇ Ȳi K)( Ȳ1 , Ȳ1 ), Ȳ1 ) = h(( ∇ Ȳ1 K)( Ȳi , Ȳ1 ), Ȳ1
) for i ≥ 2 we get ∇ Ȳ1 Ȳ1 = 0. This and (3.27) give that ( ∇ Ȳ1 K)( Ȳi , Ȳ1 ) = 0 for 1 ≤ i ≤ n 2 . Thus, using (2.4) and (3.26), we can finally get

(3.28) ∇ Ȳi Ȳ1 = 0, 1 ≤ i ≤ n 2 .
It follows that c 2 = h( R( Ȳ2 , Ȳ1 ) Ȳ1 , Ȳ2 ) = 0 and as desired we get a contradiction. Therefore, (3.15) does hold.

Finally, taking X = Ȳ2 and Y = Z = Ȳ1 in (2.3), with using (2.10), (3.2) and (3.14), we easily get the relation c 2 = n+1 n2+1 H. This together with (3.3) further implies that H < 0.

We have completed the proof of Lemma 3.3.

For the difference tensor, besides the conclusions as stated in Lemmas 3.2 and 3.3, we shall construct in the following Lemma 3.4 a typical local orthonormal frame on M n so that more information of the difference tensor can be derived for Case C 1 . However, the proof of Lemma 3.4 becomes more complicated when we compare it with that of Lemma 3.3. Lemma 3.4. In Case C 1 , given p ∈ M n , there exist local orthonormal vector fields {X i } 1≤i≤n1 defined on a neighbourhood U of p, and satisfying X i (q) ∈ T q M n1 1 for q ∈ U and 1 ≤ i ≤ n 1 , such that the difference tensor K takes the following form:

(3.29)          K X1 X 1 = λ 1,1 X 1 , K Xi X i = µ 1 X 1 + • • • + µ i-1 X i-1 + λ i,i X i , 2 ≤ i ≤ n 1 , K Xi X j = µ i X j , 1 ≤ i < j ≤ n 1 , K Xi Y = µ i Y, Y (q) ∈ T q M n2 2 , 1 ≤ i ≤ n 1 ,
where λ i,i and µ i (1 ≤ i ≤ n 1 ) are constants, and they satisfy the relations

(3.30) λ i,i + (n -i)µ i = 0, 1 ≤ i ≤ n 1 , λ i,i > 0, 1 ≤ i ≤ n 1 -1; λ n1,n1 ≥ 0.
Proof. We give the proof by induction on the subscript i of K Xi . According to the general principle of induction method, this consists of two steps as below.

The first step of induction.

In this step, we should verify the assertion for i = 1. To do so, we have to show that, around any given p ∈ M n1 1 × M n2 2 , there exist orthonormal vector fields {X i } 1≤i≤n1 defined on a neighbourhood U of p and satisfying X i (q) ∈ T q M n1 1 for q ∈ U and 1 ≤ i ≤ n 1 , and real numbers λ 1,1 > 0 and µ 1 , so that we have

     K X1 X 1 = λ 1,1 X 1 , K X1 X i = µ 1 X i , 2 ≤ i ≤ n 1 , K X1 Y = µ 1 Y, Y (q) ∈ T q M n2 2 , λ 1,1 + (n -1)µ 1 = 0.
The proof of the above assertion will be divided into four claims as below.

Claim I-(1). Given p ∈ M n1

1 × M n2 2 , there exists an orthonormal basis

{X i } 1≤i≤n1 of T p M n1 1 , real numbers λ 1,1 > 0, λ 1,2 = • • • = λ 1,n1 and µ 1 , such that λ 1,1 is the maximum of f 1 defined on U p M n1
1 , and the following relations hold:

(3.31) K X1 X 1 = λ 1,1 X 1 , K X1 X i = λ 1,i X i , 2 ≤ i ≤ n 1 , K X1 Y = µ 1 Y, Y ∈ T p M n2 2 .
Proof of Claim I- [START_REF] Antić | Affine hypersurfaces with constant sectional curvature[END_REF]. First, if for an orthonormal vectors {X i } 1≤i≤n1 and for any i, j, k = 1, . . . , n 1 , it holds h(K Xi X j , X k ) = 0. Then in (2.3) taking X = X 1 and Y = Z = X 2 , using (2.10) and (3.2), we obtain H = 0. This is a contradiction to Lemma 3.3.

Next, let p

∈ M n = M n1 1 (c 1 ) × M n2 2 (c 2 ). We choose X 1 ∈ U p M n1 1 such that λ 1,1 = h(K X1 X 1 , X 1 ) is the maximum of f 1 (u) on U p M n1
1 and it must be the case λ 1,1 > 0. Then, according to (3.2) and the statement of (3.13), we know that X 1 is an eigenvector of K X1 and we can choose orthonormal vectors X 2 , . . . , X n1 ∈ T p M n1

1 orthogonal to X 1 such that K X1 X i = λ 1,i X i for 1 ≤ i ≤ n 1 , and 
K X1 Y = µ 1 Y for any Y ∈ T p M n2 2 .
Taking in (2.3) X = Z = X 1 and Y = X k , and using (2.10), we can obtain

(3.32) λ 2 1,k -λ 1,1 λ 1,k + H = 0, 2 ≤ k ≤ n 1 . Similar to the proof of (3.13), we have λ 1,1 ≥ 2λ 1,k for 2 ≤ k ≤ n 1 . Thus, solving (3.32) we obtain λ 1,2 = • • • = λ 1,n1 with (3.33) λ 1,k = 1 2 λ 1,1 -λ 2 1,1 -4H , 2 ≤ k ≤ n 1 . Furthermore, taking in (2.3) X = Z = X 1 and Y ∈ T p M n2
2 be a unit vector, using (2.10) and (3.2), we get 

(3.34) µ 2 1 -µ 1 λ 1,1 + H = 0. Hence we have (3.35) µ 1 = 1 2 λ 1,1 + ε 1 λ 2 1,1 -4H , ε 1 = ±1.
λ 1,2 = • • • = λ 1,n1 = µ 1 and λ 1,1 + (n -1)µ 1 = 0.
Proof of Claim I-(2). From (3.33), (3.35) and trace K X1 = 0, the assertions are equivalent to that ε 1 = -1. Suppose on the contrary that ε 1 = 1. Then we have (3.38) µ 1 λ 1,2 = H, and (3.36) implies that (3.39)

n 1 > n 2 + 1 ≥ 3. Put V 1 = {u ∈ T p M n1 1 | u ⊥ X 1 }.
Then, by arguments as in the beginning of the proof for Claim I- [START_REF] Antić | Affine hypersurfaces with constant sectional curvature[END_REF] shows that the function

f 1 = 0 restricting on V 1 ∩ U p M n1 1 . We rechoose a unit vector X 2 ∈ V 1 such that λ 2,2 = h(K X2 X 2 , X 2 ) > 0 is the maximum of f 1 (u) restricted on {u ∈ U p M n1 1 | u ⊥ X 1 }.
Then, according to Lemma 3.2, we can define a linear mapping A :

V 1 → V 1 by A(X) := K X2 X -h(K X2 X, X 1 )X 1 .
It is easily seen that A is self-adjoint and X 2 is one of its eigenvector. We can choose orthonormal vectors X 3 , . . . , X n1 ∈ T p M n1 1 orthogonal to X 2 , which are the remaining eigenvectors of the operator A, associated to the eigenvalues λ 2,3 , . . . , λ 2,n1 , respectively. Therefore, we have

(3.40) K X2 X 2 = λ 1,2 X 1 + λ 2,2 X 2 , K X2 X i = λ 2,i X i , 3 ≤ i ≤ n 1 .
Now, we can make use of (3.40) to derive the expected contradiction.

Taking in (2.3) X = Z = X 2 and Y = X k , using (2.10) and (3.40), we can obtain

(3.41) λ 2 2,k -λ 2,2 λ 2,k + H -λ 2 1,2 = 0, 3 ≤ k ≤ n 1 .
Similar to the proof of (3.13), we have λ 2,2 ≥ 2λ 2,k for 3 ≤ k ≤ n 1 . Then, solving (3.13), we get

λ 2,3 = • • • = λ 2,n1 with (3.42) λ 2,k = 1 2 λ 2,2 -λ 2 2,2 -4(H -λ 2 1,2 ) , 3 ≤ k ≤ n 1 .
Similarly, taking in (2.3) 

X = Z = X 2 and Y ∈ T p M n2 2 a unit
µ 2 = 1 2 (λ 2,2 + ε 2 λ 2,2
), ε 2 = ±1. Then, by trace K X2 = 0, and using (3.2), (3.40), (3.42) and (3.45), we have

(3.46) (n 1 + n 2 + ε 2 n 2 )λ 2,2 = (n 1 -2) λ 2 2,2 + 4(λ 2 1,2 -H), which implies that (3.47) λ 2,2 = 4(λ 2 1,2 -H) n1+n2+ε2n2 n1-2 2 -1
.

Note that ε 1 = 1, from (3.37) we have

(3.48) λ 1,1 = -4H n1+n2+1 n1-n2-1 2 -1 .
Noticing that n 2 ≥ 2 and, by (3.39), n 1 ≥ n 2 + 2, we have

n1+n2+1 n1-n2-1 -n1+n2+ε2n2 n1-2 > n1+n2+1 n1-n2-1 -n1+2n2 n1-2 = 2(n2+1)(n2-1) (n1-n2-1)(n1-2) > 0.
This, together with H < 0, implies that λ 2,2 > λ 1,1 . This is a contradiction.

Hence, we have

ε 1 = -1 and λ 1,2 = • • • = λ 1,n1 = µ 1 .
Then, by trace K X1 = 0 we get the second assertion.

Claim I-(3).

For every point p = (p 1 , p 2 ) ∈ M n , the set

Ω p := λ ∈ R | V ∈ U p M n1 1 s. t. K V V = λV consists of finite numbers, which are independent of p ∈ M n .
Proof of Claim I-(3). Claim I-(1) implies that Ω p is non-empty. Assume that there exists a unit vector V ∈ T p M n1 1 such that K V V = λV . Let X 1 := V and λ 1,1 = λ. Then, according to Lemma 3.2, we may complete X 1 to obtain an orthonormal basis {X i } 1≤i≤n1 of T p M n1 1 such that, for each 2 ≤ k ≤ n 1 , X k is the eigenvector of K X1 with eigenvalue λ 1,k .

Then we have (3.32), from which we have an integer n 1,1 , 0 ≤ n 1,1 ≤ n 1 -1, such that, if necessary after renumbering the basis, we have

(3.49)      λ 1,2 = • • • = λ 1,n1,1+1 = 1 2 λ 1,1 + λ 2 1,1 -4H , λ 1,n1,1+2 = λ 1,n1 = 1 2 λ 1,1 -λ 2 1,1 -4H .
Similarly, we have (3.35). Then, by trace K X1 = 0, we have

(3.50) (n + 1)λ 1,1 + (2n 1,1 -n 1 + 1 + ε 1 n 2 ) λ 2 1,1 -4H = 0. If 2n 1,1 -n 1 + 1 + ε 1 n 2 = 0, then λ 1,1 = 0. If 2n 1,1 -n 1 + 1 + ε 1 n 2 < 0, then we have (3.51) λ 1,1 = 4H 1-( n1+n2+1 
2n1,1-n1+ε1n2+1 ) 2 . It follows that λ 1,1 has finite possibilities, and Claim I-( 3) is verified.

Claim I-(4). The unit vector X 1 ∈ U p M n1
1 given in Claim-I-( 1) can be extended differentiably to a unit vector field, still denoted by X 1 , in a neighbourhood U ⊂ M n of p, such that, for each q ∈ U , the function f 1 defined on U q M n1 1 attains its absolute maximum at X 1 (q).

Proof of Claim I-(4).

Let {E 1 , . . . , E n1 } be differentiable orthonormal vector fields defined on a neighbourhood U ′ of p and satisfying

E i (q) ∈ T q M n1 1 , q ∈ U ′ , 1 ≤ i ≤ n 1 , such that E i (p) = X i for 1 ≤ i ≤ n 1 .
Then, from the fact K X1 X 1 = λ 1,1 X 1 at p, we define a function γ by γ : R n1 × U ′ → R n1 by (a 1 , . . . , a n1 , q) → (b 1 , . . . , b n1 ), where

(3.52) b k = n1 i,j=1 a i a j h(K Ei E j , E k ) -λ 1,1 a k , k = 1, 2, . . . , n 1 ,
are regarded as functions on R n1 × U ′ : b k = b k (a 1 , . . . , a n1 , q). Here, according to (3.37) and the proof of Claim I-( 2), the maximum of f 1 defined on U q M n1 1 is independent of q ∈ U ′ , and it is equal to λ 1,1 = (n -1) -H/n.

Using (3.31) and the fact that f 1 attains the absolute maximum λ 1,1 at E 1 (p), we obtain that

∂b k ∂am (1, 0, . . . , 0, p) = 2h(K E1(p) E m (p), E k (p)) -λ 1,1 δ km =      0, if k = m, λ 1,1 , if k = m = 1, 2λ 1,k -λ 1,1 , if k = m ≥ 2.
From the proof of Claim-I-(1) we have λ 1,1 > 0 and λ 1,1 > 2λ 1,k for 2 ≤ k ≤ n 1 . Then, the implicit function theorem shows that there exist differentiable functions {a i (q)} 1≤i≤n1 , defined on a neighbourhood U ′′ ⊂ U ′ of p, such that

(3.53) a 1 (p) = 1, a 2 (p) = • • • = a n1 (p) = 0, b i (a 1 (q), . . . , a n1 (q), q) ≡ 0, 1 ≤ i ≤ n 1 .
such that T = (T t l ) k+1≤l,t≤n1 is an orthogonal matrix, and the difference tensor K takes the following form:

(3.57)            K X1 X1 = λ 1,1 X1 , K Xi Xi = µ 1 X1 + • • • + µ i-1 Xi-1 + λ i,i Xi , 2 ≤ i ≤ k + 1, K Xi Xj = µ i Xj , 1 ≤ i ≤ k + 1, i + 1 ≤ j ≤ n 1 , K Xi Y = µ i Y, Y (q) ∈ T q M n2 2 , 1 ≤ i ≤ k + 1
, where, µ i and λ i,i , for 1 ≤ i ≤ k + 1, are real numbers, and they satisfy the relations

(3.58) λ i,i + (n -i)µ i = 0, 1 ≤ i ≤ k + 1.
Moreover, at any q around p, the number λ i,i is the maximum of the function

f 1 defined on u ∈ U q M n1 1 | u ⊥ span{ X1 (q), . . . , Xi-1 (q)} , for each 1 ≤ i ≤ k + 1.
In order to prove the above conclusions, similar to the proof in the first step, we also divide it into the verification of the following four claims.

Claim II-(1). For any p ∈ M n1

1 ×M n2 2 , there exist an orthonormal basis { Xi } 1≤i≤n1 of T p M n1 1 and, real numbers λ k+1,k+1 > 0, λ k+1,k+2 = • • • = λ k+1,n1 and µ k+1 , such that the following relations hold:

(3.59)                  K X1 X1 = λ 1,1 X1 , K Xi Xi = µ 1 X1 + • • • + µ i-1 Xi-1 + λ i,i X i , 2 ≤ i ≤ k + 1, K Xi Xj = µ i Xj , 1 ≤ i ≤ k, i + 1 ≤ j ≤ n 1 , K Xk+1 Xi = λ k+1,i Xi , k + 2 ≤ i ≤ n 1 , K Xk+1 Y = µ k+1 Y, Y ∈ T p M n2
2 . Proof of Claim II- [START_REF] Antić | Affine hypersurfaces with constant sectional curvature[END_REF]. By the assumption of induction, we have local orthonormal vector fields {X i } 1≤i≤n1 defined on a neighborhood U of p and satisfying X i (q) ∈ T q M n1 1 for q ∈ U and 1 ≤ i ≤ n 1 , such that (3.55) and (3.56) hold. We first take X1 = X 1 (p), . . . , Xk = X k (p) and put

V k = {u ∈ T p M n1 1 | u ⊥ X1 , .
. . , u ⊥ Xk }. Then, similar argument as in the proof of Claim I- [START_REF] Antić | Affine hypersurfaces with constant sectional curvature[END_REF] shows that when restricting on V k ∩ U p M n1 1 the function f 1 = 0. Thus, we can choose a unit vector Xk+1

∈ V k such that λ k+1,k+1 = h(K Xk+1 Xk+1 , Xk+1 ) is the maximum of f 1 on V k ∩ U p M n1 1 with λ k+1,k+1 > 0.
Define a linear transformation A :

V k → V k by A(X) = K Xk+1 X - k i=1 h(K Xk+1 X, Xi ) Xi , ∀ X ∈ V k .
It is easily seen that A is self-adjoint and A( Xk+1 ) = λ k+1,k+1 Xk+1 . We can choose orthonormal vectors Xk+2 , . . . , Xn1 ∈ V k orthogonal to Xk+1 , which are the remaining eigenvectors of A with associated eigenvalues λ k+1,k+2 , . . . , λ k+1,n1 , respectively. Then, by the assumption (3.55) of induction, we can show that (3.60)

K Xk+1 Xk+1 = µ 1 X1 + • • • + µ k-1 Xk-1 + µ k Xk + λ k+1,k+1 Xk+1 , K Xk+1 Xi = λ k+1,i Xi , k + 2 ≤ i ≤ n 1 .
Taking X = Z = Xk+1 and Y = Xi in (2.3) for k + 2 ≤ i ≤ n 1 , using (2.10) and (3.60), we can obtain

(3.61) λ 2 k+1,i -λ k+1,k+1 λ k+1,i + H - k l=1 µ 2 l = 0, k + 2 ≤ i ≤ n 1 .
Similar to the proof of (3.13), we have λ k+1,k+1 ≥ 2λ k+1,i for k + 2 ≤ i ≤ n 1 . Then, solving (3.61), we get

λ k+1,k+2 = • • • = λ k+1,n1 with (3.62) λ k+1,i = 1 2 λ k+1,k+1 -λ 2 k+1,k+1 -4(H - k l=1 µ 2 l ) 1/2 , k + 2 ≤ i ≤ n 1 .
Similarly, taking in (2.3) X = Z = X k+1 and Y ∈ T p M n2 2 a unit vector, then using (2.10) and (3.2), we get

(3.63) µ 2 k+1 -µ k+1 λ k+1,k+1 + H - k l=1 µ 2 l = 0.
Hence, we have

(3.64) µ k+1 = 1 2 λ k+1,k+1 + ε k+1 λ 2 k+1,k+1 -4(H - k l=1 µ 2 l ) 1/2 , ε k+1 = ±1.
On the other hand, by applying trace

K Xk+1 = 0, we get n 1 -n 2 ε k+1 -k -1 > 0 and that (3.65) λ k+1,k+1 = 2(n 1 -n 2 ε k+1 -k -1) k l=1 µ 2 l -H (n1+n2-k+1) 2 -(n1-n2ε k+1 -k-1) 2 .
From (3.62), (3.64), (3.65) and the assumption that µ 1 , . . . , µ k are real numbers, we see that, as claimed, λ k+1,k+2 = • • • = λ k+1,n1 and µ k+1 are also constants.

Moreover, by (3.60) and the assumption (3.55) of induction, we get the assertion that (3.59) holds.

Claim II-(2). The real numbers described in Claim II-(1) satisfy the relations:

λ k+1,k+2 = • • • = λ k+1,n1 = µ k+1 and λ k+1,k+1 + (n -k -1)µ k+1 = 0.
Proof of Claim II- [START_REF] Birembaux | Isotropic affine spheres[END_REF]. From (3.62) and (3.64), the first assertion is equivalent to showing that ε k+1 = -1. Suppose on the contrary that ε k+1 = 1. Then we have

(3.66) µ k+1 λ k+1,i = H - k l=1 µ 2 l , k + 2 ≤ i ≤ n 1 .
Now from trace K Xk+1 = 0 and λ k+1,k+1 > 0 we obtain

(3.67) n 1 -n 2 -k -1 > 0,
and that

(3.68) λ k+1,k+1 = 2(n 1 -n 2 -k -1) k l=1 µ 2 l -H (n1+n2-k+1) 2 -(n1-n2-k-1) 2 . Put V k+1 = {u ∈ T p M n1 1 | u ⊥ X1 , . . . , u ⊥ Xk+1 }. Then (3.67) shows that dim V k+1 = n 1 -k -1 ≥ n 2 + 1 ≥ 3.
Again, similar argument as in the proof of Claim I- [START_REF] Antić | Affine hypersurfaces with constant sectional curvature[END_REF] shows that, restricting on V k+1 ∩ U p M n1 1 , the function f 1 = 0. Now, by a totally similar argument as in the proof of Claim II-(1), we can choose a new orthonormal basis { Xi } 1≤i≤n1 of T p M n1 1 with Xj = Xj for 1

≤ j ≤ k + 1, such that f 1 , restricting on V k+1 ∩ U p M n1 1 , attains its maximum λ k+2,k+2 > 0 at Xk+2 so that λ k+2,k+2 = h(K Xk+2 Xk+2 , Xk+2 ).
Similar as before, we define a self-adjoint operator B :

V k+1 → V k+1 by B(X) = K Xk+2 X - k+1 i=1 h(K Xk+2 X, Xi ) Xi .
Then B( Xk+2 ) = λ k+2,k+2 Xk+2 . As before we can choose orthonormal vectors Xk+3 , . . . , Xn1 ∈ V k+1 , orthogonal to Xk+2 , which are the remaining eigenvectors of B : V k+1 → V k+1 , with associated eigenvalues λ k+2,k+3 , . . . , λ k+2,n1 , respectively.

In this way, by using (3.59), we can show that

(3.69) K Xk+2 Xk+2 = µ 1 X1 + • • • + µ k Xk + λ k+1,k+2 Xk+1 + λ k+2,k+2 Xk+2 , K Xk+2 Xi = λ k+2,i Xi , k + 3 ≤ i ≤ n 1 .
Taking in (2.3) that X = Z = Xk+2 and Y = Xi for k + 3 ≤ i ≤ n 1 , and using (2.10), we can obtain

(3.70) λ 2 k+2,i -λ k+2,k+2 λ k+2,i + H - k l=1 µ 2 l -λ 2 k+1,i = 0, k + 3 ≤ i ≤ n 1 . Notice that λ k+2,k+2 ≥ 2λ k+2,i for k + 3 ≤ i ≤ n 1 . Then, solving (3.70), we get (3.71) 
λ k+2,i = 1 2 λ k+2,k+2 -λ 2 k+2,k+2 -4(H - k l=1 µ 2 l -λ 2 k+1,i ) 1/2 for k + 3 ≤ i ≤ n 1 . Thus, λ k+2,k+3 = • • • = λ k+2,n1 .
On the other hand, taking in (2.3) X = Z = Xk+2 and Y ∈ T p M n2 2 a unit vector, then using (2.10) and (3.2), we get

(3.72) µ 2 k+2 -µ k+2 λ k+2,k+2 + H -λ k+1,i µ k+1 - k l=1 µ 2 l = 0, k + 2 ≤ i ≤ n 1 .
From (3.66) and (3.72), we get (3.73) µ 2 k+2 -µ k+2 λ k+2,k+2 = 0, and, equivalently,

(3.74) µ k+2 = 1 2 (λ k+2,k+2 + ε k+2 λ k+2,k+2 ), ε k+2 = ±1. Then, from trace K Xk+2 = 0 and λ k+2,k+2 > 0, we get n 1 -k -2 > 0 and that (3.75) λ k+2,k+2 = 2(n 1 -k -2) λ 2 k+1,k+2 + k l=1 µ 2 l -H (n1+n2-k+ε k+2 n2) 2 -(n1-k-2) 2 .
From (3.67) and that n 2 ≥ 2, we have the following calculations

(3.76) n1+n2-k+1 n1-n2-k-1 -n1+n2+ε k+2 n2-k n1-k-2 > n1+n2-k+1 n1-n2-k-1 -n1+2n2-k n1-k-2 = 2(n2+1)(n2-1) (n1-n2-k-1)(n1-k-2) > 0.
Then, by (3.68) and (3.75), we get λ k+2,k+2 > λ k+1,k+1 , which is a contradiction. Hence, as claimed we have ε k+1 = -1 and λ k+1,k+2 = • • • = λ k+1,n1 = µ k+1 . Finally, by trace K Xk+1 = 0 and (3.59), we get the second assertion that

λ k+1,k+1 + (n -k -1)µ k+1 = 0.

This completes the proof of Claim II-(2).

Claim II- [START_REF] Calabi | Complete affine hyperspheres, I[END_REF]. Under the assumptions of induction, the set

Ω p,k := λ ∈ R |V ∈ U p M n1 1 \ span{X i (p)} k i=1 s. t. K V V = λV + k i=1 µ i X i consists of finite numbers, which are independent of p ∈ M n .
Proof of Claim II- [START_REF] Calabi | Complete affine hyperspheres, I[END_REF]. We first notice that, for any fixed p ∈ M n , Claim II- [START_REF] Antić | Affine hypersurfaces with constant sectional curvature[END_REF] shows that λ k+1,k+1 ∈ Ω p,k with V = Xk+1 . Thus, the set Ω p,k is non-empty.

Next, with the local orthonormal vector fields

{X i } 1≤i≤n1 around p ∈ M n1 1 × M n2
2 , given by the assumption of induction, we assume an arbitrary λ ∈ Ω p,k associated with

V ∈ U p M n1 1 \ span{X i (p)} k i=1 such that K V V = λV + µ 1 X 1 + • • • + µ k X k .
Then, at p, we put Xk+1 := V , Xi = X i (p) for 1 ≤ i ≤ k and λk+1,k+1 = λ.

Put W k = {u ∈ T p M n1 1 | u ⊥ X1 , . . . , u ⊥ Xk } and define F : W k → W k by F(X) = K Xk+1 X - k i=1 h(K Xk+1 X, Xi ) Xi , X ∈ W k .
Then F is a self-adjoint linear transformation and that F( Xk+1 ) = λk+1,k+1 Xk+1 . Thus, we can choose an orthonormal basis { Xi } k+1≤i≤n1 of W k , such that

F( Xi ) = λk+1,i Xi , k + 2 ≤ i ≤ n 1 .
Then, just like having did with equation (3.61), we have an integer n 1,k+1 with 0 ≤ n 1,k+1 ≤ n 1 -(k + 1) such that, if necessary after renumbering the basis of W k , it holds (3.77)

                   λk+1,k+2 = • • • = λk+1,n 1,k+1 +k+1 = 1 2 λk+1,k+1 + λ2 k+1,k+1 -4(H - k l=1 µ 2 l ) 1/2 , λk+1,n 1,k+1 +k+2 = • • • = λk+1,n1 = 1 2 λk+1,k+1 -λ2 k+1,k+1 -4(H - k l=1 µ 2 l ) 1/2
. Similar as deriving (3.64), now we also have

(3.78) µ k+1 = 1 2 λk+1,k+1 + ε k+1 λ2 k+1,k+1 -4(H - k l=1 µ 2 l ) 1/2
, ε k+1 = ±1.

. Then, computing trace K Xk+1 = 0, gives that

(3.79) (n 1 + n 2 -k + 1) λk+1,k+1 + (2n 1,k+1 -n 1 + n 2 ε k+1 + k + 1) λ2 k+1,k+1 -4(H - k l=1 µ 2 l ) 1/2 = 0.
From (3.79) we have proved the assertion that λ = λk+1,k+1 takes values of only finite possibilities and they are independent of the point p.

Claim II- [START_REF] Cheng | An optimal inequality on locally strongly convex centroaffine hypersurfaces[END_REF]. Under the assumptions of induction, the unit vector Xk+1 ∈ T p M n1 1 , determined by Claim II- [START_REF] Antić | Affine hypersurfaces with constant sectional curvature[END_REF], can be extended differentiably to a local unit vector field in a neighbourhood U of p, denoted by Xk+1 , such that for each q ∈ U the function f 1 , defined on

U k (q) = {u ∈ U q M n1
1 | u ⊥ X 1 (q), . . . , u ⊥ X k (q)}, attains its absolute maximum at Xk+1 (q). Proof of Claim II- [START_REF] Cheng | An optimal inequality on locally strongly convex centroaffine hypersurfaces[END_REF]. First of all, according to (3.65) and the proof of Claim II-(2), we notice that for any q around p, the maximum of f 1 defined on U k (q) is independent of q, and it equals to λ k+1,k+1 = (n -k -1) ( k l=1 µ 2 l -H)/(n -k). Now, we choose arbitrary differentiable orthonormal vector fields {E k+1 , . . . , E n1 }, defined on a neighbourhood U ′ of p such that, for k + 1 ≤ i ≤ n 1 and q ∈ U ′ , we have E i (p) = Xi and E i (q) ∈ U k (q).

Next, we define a function γ by

γ : R n1-k × U ′ → R n1-k ,
(a k+1 , . . . , a n1 , q) → (b k+1 , . . . , b n1 ), where

(3.80) b l = n1 i,j=k+1 a i a j h(K Ei E j , E l ) -λ k+1,k+1 a l , k + 1 ≤ l ≤ n 1 ,
are regarded as functions on R n1-k × U ′ : b l = b l (a k+1 , . . . , a n1 , q). Using Claim II-(1), the fact that f 1 attains its absolute maximum λ k+1,k+1 at E k+1 (p), and that

h(K E k+1 E i , E j )| p = λ k+1,i δ ij , k + 1 ≤ i, j ≤ n 1 ,
where λ k+1,i is given by (3.62), we then obtain that

∂b l ∂am (1, 0, . . . , 0, p) = 2h(K E k+1 (p) E m (p), E l (p)) -λ k+1,k+1 δ lm =      0, if l = m, λ k+1,k+1 , if l = m = k + 1, 2λ k+1,l -λ k+1,k+1 , if k + 2 ≤ l = m ≤ n 1 .
Given that λ k+1,k+1 > 0 and λ k+1,k+1 -2λ k+1,l > 0 for k + 2 ≤ l ≤ n 1 , the implicit function theorem shows that in a neighbourhood U ′′ ⊂ U ′ of p there exist differentiable functions {a k+1 , . . . , a n1 } satisfying

(3.81) a k+1 (p) = 1, a k+2 (p) = • • • = a n1 (p) = 0,
b l (a k+1 (q), . . . , a n1 (q), q) ≡ 0, q ∈ U ′′ , k + 1 ≤ l ≤ n 1 .

Define a local vector field V on U ′′ by V (q) = a k+1 (q)E k+1 (q) + • • • + a n1 (q)E n1 (q), q ∈ U ′′ .

Then V (p) = Xk+1 , there exists a neighbourhood U ⊂ U ′′ of p, such that V = 0 on U . Using (3.80), (3.81) and (3.2), we easily see that

K V V = λ k+1,k+1 V + µ 1 h(V, V )X 1 + • • • + µ k h(V, V )X k ,
direction of X j , we get h( ∇Xj X 1 , X k ) = 0 for 2 ≤ j, k ≤ n 1 . This, together with the fact that h( ∇Xj X 1 , Y ) = 0 for Y (q) ∈ T q M n2 2 , implies that (4.4) ∇Xj X 1 = 0, 1 ≤ j ≤ n 1 .

Take a unit vector field Y with Y (q) ∈ T q M n2 2 . By a direct calculation of h(( ∇Y K)(X 1 , X i ), X 1 ) = h(( ∇X1 K)(Y, X i ), X 1 ), we obtain h( ∇Y X 1 , X i ) = 0 for 2 ≤ i ≤ n 1 . This, together with h( ∇Y X 1 , Y ′ ) = 0 for Y ′ (q) ∈ T q M n2 2 , implies that (4.5) ∇Y X 1 = 0.

Combining (4.4) and (4.5), we have proved the assertion ∇X 1 = 0.

Next, by induction we show that if for any fixed 2 ≤ i ≤ n 1 -1 satisfying

(4.6) ∇X k = 0, k = 1, . . . , i -1,
then it holds ∇X i = 0.

To state a proof of the above second step, we consider five cases below:

(i) By (4.6) and that h(X k , X l ) = δ kl , we get

(4.7) h( ∇Xj X i , X k ) = -h( ∇Xj X k , X i ) = 0, 1 ≤ j ≤ n 1 , k ≤ i h( ∇Y X i , X k ) = -h( ∇Y X k , X i ) = 0, 1 ≤ k ≤ i ≤ n 1 , .
(ii) For j ≤ i -1, by using (3.29), (4.6) and (4.7), we can show that

(4.8) ( ∇Xj K)(X i , X i ) = ∇Xj K(X i , X i ) -2K( ∇Xj X i , X i ) = (λ i,i -2µ i ) ∇Xj X i , (4.9) 
( ∇Xi K)(X j , X i ) = ∇Xi K(X j , X i ) -K( ∇Xi X j , X i ) -K( ∇Xi X i , X j ) = µ j ∇Xi X i -K( ∇Xi X i , X j ). Then, by ( ∇Xj K)(X i , X i ) = ( ∇Xi K)(X j , X i ), for k ≥ i + 1 we obtain (λ i,i -2µ i )h( ∇Xj X i , X k ) = µ j h( ∇Xi X i , X k ) -h(K( ∇Xi X i , X j ), X k ) = µ j h( ∇Xi X i , X k ) -h( ∇Xi X i , K Xj X k ) = 0. It follows that (4.10) h( ∇Xj X i , X k ) = 0, j ≤ i -1, k ≥ i + 1.
(iii) Similar to the above case (ii), for j ≥ i + 1, we have

(4.11) ( ∇Xj K)(X i , X i ) = ∇Xj K(X i , X i ) -2K( ∇Xj X i , X i ) = (λ i,i -2µ i ) ∇Xj X i , (4.12) 
( ∇Xi K)(X j , X i ) = ∇Xi K(X j , X i ) -K( ∇Xi X j , X i ) -K( ∇Xi X i , X j ) = µ i ∇Xi X j -K( ∇Xi X j , X i ) -K( ∇Xi X i , X j ).
Then, taking the X i -components of ( ∇Xj K)(X i , X i ) = ( ∇Xi K)(X j , X i ), with using (3.29) and (4.6), we obtain

0 = (λ i,i -2µ i )h( ∇Xj X i , X i ) = µ i h( ∇Xi X j , X i ) -h(K( ∇Xi X j , X i ), X i ) -h(K( ∇Xi X i , X j ), X i ) = -µ i h( ∇Xi X i , X j ) -h( ∇Xi X j , K Xi X i ) -h( ∇Xi X i , K Xi X j ) = (λ i,i -2µ i )h( ∇Xi X i , X j ).
Hence, we obtain (4.13) h( ∇Xi X i , X j ) = 0, j ≥ i + 1.

(iv) By using ( ∇Xj K)(X i , X i ) = ( ∇Xi K)(X j , X i ) and taking its X k -components for j, k ≥ i + 1, then applying (4.13) we obtain

(λ i,i -2µ i )h( ∇Xj X i , X k ) = µ i h( ∇Xi X j , X k ) -h(K( ∇Xi X j , X i ), X k ) = µ i h( ∇Xi X j , X k ) -h( ∇Xi X j , K Xi X k ) = 0. (4.14) h( ∇Xj X i , X k ) = 0, j, k ≥ i + 1. (v) If Y is a unit vector field with Y (q) ∈ T q M n2 2 , by a direct calculation of h(( ∇Y K)(X i , X k ), X i ) = h(( ∇Xi K)(Y, X k ), X i ) for i + 1 ≤ k, we obtain (4.15) h( ∇Y X i , X k ) = 0, i + 1 ≤ k.
For Y, Y ′ with Y (q), Y ′ (q) ∈ T q M n2 2 , we have h( ∇Xj X i , Y ) = h( ∇Y X i , Y ′ ) = 0. Hence, combining (4.7), (4.10) and (4.13)-(4.15), we finally get (4.16) ∇X i = 0.

Therefore, by induction we have proved that (4.17)

∇X i = 0, 1 ≤ i ≤ n 1 -1.
Finally, for vector fields X, Y with X(q) ∈ T q M n1 1 , Y (q) ∈ T q M n2 2 and k ≤ n 1 -1, from (4.17) it is easily seen the following

h( ∇X X n1 , X k ) = -h( ∇X X k , X n1 ) = 0, h( ∇X X n1 , X n1 ) = 0, h( ∇Y X n1 , X k ) = -h( ∇Y X k , X n1 ) = 0, h( ∇Y X n1 , X n1 ) = 0,
so that it holds also ∇X n1 = 0.

We have completed the proof of Lemma 4.1.

Moreover, we have the following further conclusion.

Lemma 4.2. Let x : M n → R n+1 be an n-dimensional locally strongly convex affine hypersphere such that Case C 1 in section 3 occurs, then the difference tensor is parallel, i.e., ∇K = 0.

Proof. Let {X 1 , . . . , X n1 } be the local orthonormal vector fields as described by Lemma 3.4. Then Lemma 4.1 shows that (4.18)

∇X i = 0, 1 ≤ i ≤ n 1 .
On the other hand, as (M n , h) = M n1 1 (c 1 ) × M n2 2 (c 2 ), by Proposition 56 in p.89 of [START_REF] O'neill | Semi-Riemannian Geometry with Applications to Relativity[END_REF], we can choose local orthonormal vector fields {Y

1 , . . . , Y n2 } with Y i (q) ∈ T q M n2 2 , such that (4.19) ∇Xi Y α = 0, 1 ≤ i ≤ n 1 , 1 ≤ α ≤ n 2 .
Then, using (4.18), (4.19) and properties of the difference tensor established by Lemmas 3.2, 3.3 and 3.4, direct calculations immediately give the assertion that ∇K = 0. Theorem 4.1. Let x : M n → R n+1 be an n-dimensional locally strongly convex affine hypersphere such that Case C 1 in section 3 occurs. Then x : M n → R n+1 is locally affinely equivalent to the Calabi composition

(4.20) (x 1 • • • x n1 ) 2 (x 2 n+1 -x 2 n1+1 -• • • -x 2 n ) n2+1 = 1,
where (x 1 , . . . , x n+1 ) are the standard coordinates of R n+1 .

Proof. By Lemma 3.4 and Lemma 4.2, we can apply Theorem 4.1 of [START_REF] Hu | On locally strongly convex affine hypersurfaces with parallel cubic form. Part I[END_REF] with X 1 being regarded as e 1 there. Then

x : M n → R n+1 is a Calabi product of a point G 1 with a hyperbolic affinesphere G ′ 2 : M n-1 1 
→ R n with parallel cubic form and affine mean curvature H 2 , so that we have the decomposition

M n = I 1 × M n-1 1 , I ⊂ R, and the parametrization x(s 1 , p1 ) = -µ1 H 2 +µ 2 1 e -s1 G 1 + 1 H 2 +µ 2 1 e s1/n G ′ 2 (p 1 ), s 1 ∈ I 1 , p1 ∈ M n-1 1 .
Moreover, the affine metric of G ′ 2 : M n-1 1 → R n is (µ 2 1 -H)h| T Mn-1 1 (cf. [START_REF] Hu | On locally strongly convex affine hypersurfaces with parallel cubic form. Part I[END_REF]).

Notice that T M n-1 

           K 1 Xi X i = µ 2 X 2 + • • • + µ i-1 X i-1 + λ i,i X i , 2 ≤ i ≤ n 1 , K 1 Xi X j = µ i X j , 2 ≤ i < j ≤ n 1 , K 1 Xi Y α = µ i Y α , 2 ≤ i ≤ n 1 , 2 ≤ α ≤ n 1 , K 1 Yα Y β = δ αβ (µ 2 X 2 + • • • + µ n1 X n1 ), 1 ≤ α, β ≤ n 2 .
Notice also that, up to scaling a constant multiple, {X 2 , . . . , X n1 , Y 1 , . . . , Y n2 } are the orthomormal basis of the affine metric of G x(s 1 , . . . , s n1 , p 2 ) = -µ1

H 2 +µ 2 1 e -s1 G 1 -1 H 2 +µ 2 1 µ2 H 2 2 +µ 2 2 e s1 n1+n2 -s2 G 2 -• • • -1 H 2 +µ 2 1 1 H 2 2 +µ 2 2 • • • 1 H 2 n 1 -1 +µ 2 n 1 -1 µn 1 H 2 n 1 +µ 2 n 1 e s1 n1+n2 +•••+ sn 1 -1 n2+2 -sn 1 G n1 + 1 H 2 +µ 2 1 1 H 2 2 +µ 2 2 • • • 1 H 2 n 1 +µ 2 n 1 e s1 n1+n2 +•••+ sn 1 n2+1 G ′ n1+1 (p 2 ), p 2 ∈ M n2 2 ,
where, (s 1 , . . . , s n1 ) ∈ M n1 1 , {G i } 1≤i≤n1 are constant vectors and G ′ n1+1 : M n2 2 → R n2+1 is a hyperbolic affine hypersphere with parallel cubic form.

Furthermore, from the above procedure of induction, it can be easily seen that G ′ n1+1 : M n2 2 → R n2+1 has vanishing difference tensor. This implies that G ′ n1+1 : M n2 2 → R n2+1 is a hyperboloid. Therefore, up to an affine transformation, there exist constant vectors G n1+1 , . . . , G n+1 such that Hence, x : M n → R n+1 is affinely equivalent to the affine hypersphere (4.20).

Next, we consider Case C 2 as stated in section 3 such that x : M n → R n+1 is an n-dimensional locally strongly convex affine hypersphere with (M n , h) = M n1 1 (c 1 )× M n2 2 (c 2 ), n 1 ≥ 2, n 2 ≥ 2 and c 1 c 2 = 0. Then, similar to that in Lemma 3.2 for the proof of (3.8), we can obtain the following result. Lemma 4.3. For p ∈ M n1 1 × M n2 2 , let {X i } 1≤i≤n1 and {Y j } 1≤j≤n2 be orthonormal bases of T p M n1 1 and T p M n2 2 , respectively. Then, in Case C 2 , the difference tensor satisfies

(4.24) h(K Xi X j , Y γ ) = 0, 1 ≤ i, j ≤ n 1 , 1 ≤ γ ≤ n 2 , h(K Yα Y β , X k ) = 0, 1 ≤ α, β ≤ n 2 , 1 ≤ k ≤ n 1 .
Moreover, we have the following further conclusion.

Theorem 4.2. Let x : M n → R n+1 be a locally strongly convex product affine hypersphere, then Case C 2 in section 3 does not occur.

Proof. If otherwise, we assume that Case C 2 does occur. Then, as by Lemma 3.1 the difference tensor K vanishes nowhere, we may assume that for an arbitrary fixed p ∈ M n = M n1 1 × M n2 2 there exists X ∈ T p M n1 1 such that K X = 0. Now, similar to the proof for the first step of induction in the proof of Lemma 3.4, we can show that around p ∈ M n there exist local orthonormal vector fields {X 1 , . . . , X n1 } with X i (q) ∈ T q M n1 1 , 1 ≤ i ≤ n 1 , such that the difference tensor takes the form (4.25)

K X1 X 1 = λ 1 X 1 , K X1 X i = λ 2 X i , 2 ≤ i ≤ n 1 ,

1 .

 1 Finally, by (3.2), (3.33),(3.35) and trace K X1 = 0, we obtain(3.36) (n + 1)λ 1,1 + (-n 1 + 1 + ε 1 n 2 )From (3.33), (3.35) and (3.37), we have completed the proof of Claim I-(1).Claim I-(2). The real numbers described in Claim I-(1) satisfy the relations:

1 = span{X 2 1 →

 121 , . . . , X n1 , Y 1 , . . . , Y n2 }. Let us denote by K 1 the difference tensor of G ′ 2 : M n-1 R n , then from the proof of Theorem 4.1 of [10] and Lemmas 3.3 and 3.4, we can derive that K 1 has the expressions as follows:(4.21) 

′ 2 : M n-1 1 → 1 → 2 → 1 = I 2 × M n-2 2 , I 2 ⊂ 1 e 1 H 2 G 2 + 1 H 2 2 . 1 ∼

 2112122211221221 R n . Applying Theorem 4.1 in[START_REF] Hu | On locally strongly convex affine hypersurfaces with parallel cubic form. Part I[END_REF] once again by regarding X 2 as e 1 there, then G ′ 2 : M n-1 R n is a Calabi product of a point G 2 with a hyperbolic affinesphere G ′ 3 : M n-2 R n-1 with parallel cubic form, so that we have the decomposition M n-1 R, and the further parametrizationx(s 1 , s 2 , p2 ) = -µ1 H 2 +µ 2 -s1 G 1 -G ′ 3 (p 2 ), (s 1 , s 2 ) ∈ I 1 × I 2 , p2 ∈ M n-2Continuing in this way n 1 times, we finally see thatM n = M n1 1 × M n2 2 , with M n1 = I 1 × I 2 × • • • × I n1 ,and x : M n → R n+1 has a parametrization(4.22) 

  (4.23)G ′ n1+1 = y 1 G n1+1 + y 2 G n1+2 + • • • + y n2+1 G n+1 , where y 2 1 + • • • + y 2 n2 -y 2 n2+1 = -1. Combining (4.22) and (4.23), we finally see that, up to an affine transformation,x : M n = M n1 1 × M n2 2 → R n+1 can be written as x = (x 1 , . . . , x n1 , x n1+1 , . . . , x n+1 ) = e -s1 , e s1 n -s2 , . . . , e s1 n1+n2 +•••+ sn 1 -1 n2+2 -sn 1 , e s1 n1+n2 +•••+ sn 1n2+1 (y 1 , . . . , y n2+1 ) .

  let {X i } 1≤i≤n1 and {Y j } 1≤j≤n2 be orthonormal bases of T p M n1 1 and T p M n2 2 , respectively. Then, in Case C 1 , we have (3.2)
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Define the local vector field V on U ′′ by V (q) = a 1 (q)E 1 (q) + • • • + a n1 (q)E n1 (q), q ∈ U ′′ .

Then, from (3.52), (3.53) and (3.2), we get (3.54)

Let us define V = h(V, V ). Since V (p) = 1, there exists a neighbourhood U ⊂ U ′′ of p, such that V = 0 on U , and it holds that

.

From Claim I-(3), we know that

takes values of finite number. On the other hand,

is continuous and h(V, V )(p) = 1. Thus h(V, V ) ≡ 1. It follows from (3.54) that, for any point q ∈ U , the function f 1 attains its absolute maximum in V (q). Define X 1 := V on U . Then we have completed the proof of Claim I- [START_REF] Cheng | An optimal inequality on locally strongly convex centroaffine hypersurfaces[END_REF].

Finally, having determined the unit vector field X 1 as in Claim I-(4), we can further choose orthonormal vectors X 2 , . . . , X n1 orthogonal to X 1 , defined on U and satisfying

Then, it is easily seen that, combining with Lemma 3.2, Claim I-(1), Claim I-(2) and their proofs, {X 1 , . . . , X n1 } turns into the desired local orthonormal vector fields so that we have completed the proof for the first step of induction.

The second step of induction

In this step, we first assume the assertion of Lemma 3.4 for all 1 ≤ i ≤ k, where k ∈ {1, 2, . . . , n 1 -2} is a fixed integer. Thus, we have:

Around any given p ∈ M n1 1 × M n2 2 , there exist local orthonormal vector fields {X i } 1≤i≤n1 defined on a neighborhood U of p and satisfying X i (q) ∈ T q M n1 1 , q ∈ U, 1 ≤ i ≤ n 1 , such that the difference tensor K takes the form:

2 , 1 ≤ i ≤ k, where, µ i and λ i,i for 1 ≤ i ≤ k are real numbers, and they satisfy the relations:

Moreover, at any q ∈ U , the number λ i,i is the maximum of the function

Then, as purpose of the second step, we should verify the assertion of Lemma 3.4 for i = k + 1. To do so, we are sufficient to show that:

There exist an orthonormal frame { Xi } 1≤i≤n1 on T M n1 1 around p, given by

or, equivalently,

Now, according to Claim II-(3), the function

takes values of only finite possibilities. On the other hand,

and for any q ∈ U , f 1 attains its absolute maximum λ k+1,k+1 at Xk+1 (q).

Let X1 = X 1 , . . . , Xk = X k and choose vector fields Xk+2 , . . . , Xn1 such that, with Xk+1 obtained as in Claim II-(4), { X1 , X2 , . . . , Xn1 } is a local orthonormal frame of T M n1 1 defined on a neighborhood U of p and satisfies X i (q) ∈ T q M n1 1 for q ∈ U and 1 ≤ i ≤ n 1 . Then, with respect to { Xi } 1≤i≤n1 and combining with Lemma 3.2, we immediately fulfil the second step of induction.

In this way, the method of induction allows us to obtain the desired orthonormal vector fields {X 1 , . . . , X n1-1 } defined on a neighborhood U of p and satisfying X i (q) ∈ T q M n1 1 for q ∈ U and 1 ≤ i ≤ n 1 -1. Finally, we choose a unit vector field X n1 that is orthogonal to {X 1 , . . . , X n1-1 } and that satisfies X n1 (q) ∈ T q M n1 1 , such that λ n1,n1 ≥ 0 (if necessary we change X n1 by -X n1 ). Then, it is easy to see that {X 1 , . . . , X n1 } are the desired orthonormal vector fields. Accordingly, we have completed the proof of Lemma 3.4.

Proofs of the Theorems and Corollaries

First of all, continuing with the study of Case C 1 in last section, we show that the local orthonormal vector fields {X i } 1≤i≤n1 , as determined in Lemma 3.4, consist of parallel vector fields such that ∇X i = 0. Lemma 4.1. The local orthonormal vector fields {X 1 , . . . , X n1 }, as described by Lemma 3.4, consist of parallel vector fields, i.e.,

Proof. We shall give the proof by induction on i. First of all, we prove ∇X 1 = 0.

In fact, for j ≥ 2, applying (3.29), we have the following calculations

Then, taking the component of (4.3) in direction of X 1 for each j ≥ 2 and using the fact that h( ∇X1 X 1 , Y ) = 0 for Y (q) ∈ T q M n2 2 , and (3.29) again, we get ∇X1 X 1 = 0. Substituting ∇X1 X 1 = 0 into (4.3), and then taking its component in where, λ 1 and λ 2 are real numbers with λ 1 > 0 and λ 1 + (n -1)λ 2 = 0. Then, similar to the proof of (3.28), we can show that ∇Xi X 1 = 0 for 1 ≤ i ≤ n 1 . It follows that R(X 1 , X 2 )X 1 = 0, which is a contradiction to that c 1 c 2 = 0.

The Completion of Theorem 1.1's Proof.

If c 1 = c 2 = 0, it follows from (2.10) that (M n , h) is flat. Then, according to the result of [START_REF] Vrancken | Affine spheres with constant affine sectional curvature[END_REF], we get the assertion (i) of Theorem 1.1.

If c 2 1 + c 2 2 = 0, we have two cases: Case C 1 and Case C 2 , as preceding described. If Case C 1 occurs, then by Theorem 4.1, we obtain the hypersphere as stated in (ii) of Theorem 1.1. Moreover, according to Theorem 4.2, Case C 2 does not occur.

We have completed the proof of Theorem 1.1.

Next, we come to give the proof of Theorem 1.2. First of all, similar to the proof of Lemma 3.1, we can obtain the following result. Lemma 4.4. Let x : M n → R n+1 (n ≥ 3) be a locally strongly convex affine hypersphere such that

Next, similar to the proofs of (3.5) and (3.6), we have Lemma 4.5. Let x : M n → R n+1 be a locally strongly convex affine hypersphere as described in Lemma 4.4. For p ∈ M n , assume that {Y α } 1≤α≤n-1 is an orthonormal basis of T p M n-1 2 and X ∈ T p R is a unit vector, then we have

where µ(X) =: µ depends only on X.

Now, we will prove a lemma which plays the same important role as Lemma 3.4.

Lemma 4.6. Let x : M n → R n+1 be a locally strongly convex affine hypersphere as described in Lemma 4.4 with S = H id. Then, around any point p ∈ M n , there exists a local orthonormal frame

Moreover, we have c 2 = (n + 1)H/n < 0 and ∇K = 0.

Proof. Around any point p ∈ M n = I × M n-1

2

, we take local unit vector fields X and Y , with X(q) ∈ T q R and Y (q) ∈ T q M n-1

2

. Then, similar to the proof of (3.8), and applying Lemma 4.5, we obtain (4.28)

Moreover, by using (2.3) and the fact R(Y, X)X = 0, we have (4.29) µ 2 -λµ + H = 0.

On the other hand, by trace K X = 0, we get λ + (n -1)µ = 0. This together with (4.29) implies that, if necessary replacing X by -X, (4.30) H ≤ 0, λ = (n -1) -H n , µ = --H n . Similar to the proof of Lemma 3.3, we can also show that

, by Proposition 56 in p.89 of [START_REF] O'neill | Semi-Riemannian Geometry with Applications to Relativity[END_REF], we can take an orthonormal frame

Then, w.r. Under the assumptions of Theorem 1.2, we can apply Lemma 4.6, then as a direct consequence of Theorem 4.1 in [START_REF] Hu | On locally strongly convex affine hypersurfaces with parallel cubic form. Part I[END_REF] we easily get the assertion.

Proof of Corollaries.

Let x : M n → R n+1 , with n = 3 (resp. n = 4), be a locally strongly convex affine hypersphere whose Ricci tensor is parallel with respect to the Levi-Civita of the affine metric. Then, by the classical de Rham-Wu's decomposition theorem [START_REF] Wu | Holonomy groups of indefinite metrics[END_REF], (M n , h) is locally isometric to a Riemannian product of Einstein manifolds.

If n = 3, then either (M 3 , h) is Einstein and thus M 3 is of constant sectional curvature, or (M 3 , h) is locally isometric to a Riemannian product R × M 2 , where M 2 is a Riemannian manifold with constant sectional curvature. For both of these cases, according to [START_REF] Vrancken | Affine spheres with constant affine sectional curvature[END_REF] and Theorem 1.2, we obtain Corollary 1.1.

If n = 4, then either (M 4 , h) is Einstein, or (M 4 , h) is locally isometric to a Riemannian product R × M 3 , or (M 4 , h) is locally isometric to a Riemannian product M 2 1 ×M 2 2 , where M 3 , M 2 1 and M 2 2 are Riemannian manifolds with constant sectional curvature. Then, for each of these three cases, applying the results of [START_REF] Hu | On four-dimensional Einstein affine hyperspheres[END_REF], Theorem 1.1 and Theorem 1.2, we obtain Corollary 1.2.