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In this paper we consider the discounted 0–1 knapsack problem (DKP), which is an extension of the clas- 

sical knapsack problem where a set of items is decomposed into groups of three items. At most one item

can be chosen from each group and the aim is to maximize the total profit of the selected items while

respecting the knapsack capacity constraint. The DKP is a relatively recent problem in the literature. It

was considered in several recent works where metaheuristics are implemented to solve instances from

the literature. In this paper we propose a two-phase approach in which the problem is reduced by ap- 

plying exact and / or heuristic fixation rules in a first phase that can be viewed as a preprocessing phase.

The remaining problem can then be solved by dynamic programming. Experiments performed on avail- 

able instances in the literature show that the fixation techniques are very useful to solve these instances.

Indeed, the preprocessing phase greatly reduces the size of these instances, leading to a significant re- 

duction in the time required for dynamic programming to provide an optimal solution. Then, we generate

a new set of instances that are more difficult to solve by exact methods. The hardness of these instances

is confirmed experimentally by considering both the use of CPLEX solver and our approach.
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. Introduction

Knapsack problems arise in many applications from various ar- 

as and several variants were derived from the original knapsack 

roblem (KP). The KP is defined as follows. Given a set N of n 

tems, where each item j ∈ N has associated profit c j and weight 

 j , the aim of the KP is to select a subset of N in order to maximize

he profit of the selected items without exceeding a given capac- 

ty b of the knapsack. The KP is among the optimization problems 

ith the simplest linear integer programming formulation since it 

an be formulated with only one capacity (or resource) constraint. 

he binary (0–1) variant of the KP may be defined by using binary 

ariables x j , associated to each item j, that specify if item j is se-

ected ( x j = 1 ) or not ( x j = 0 ). Then, the 0–1 KP is given as follows:
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 0-1 KP ) 

⎧ ⎪⎪ ⎪ ⎪ ⎪⎨
⎪ ⎪ ⎪⎪⎪⎩

max 

n ∑ 

j=1

c j x j (1) 

subject to: 

n ∑ 

j=1

a j x j ≤ b (2) 

x j ∈ { 0 , 1 } j ∈ N = { 1 , . . . , n } (3)

he KP has been intensively studied from the middle of the twen- 

ieth century, starting especially with works of Lorie & Savage 

1955) , Gilmore & Gomory (1966) or Nemhauser & Ullmann (1969) . 

he success of the KP is due to the fact that it can be extended

asily to several interesting and challenging variants by adding 

ide constraints (e.g., the multidimensional knapsack problem), by 

hanging the objective (e.g., the quadratic knapsack problem) or 

y partitioning the set of variables (e.g., knapsack problem with 

etup) for instance. In fact the KP appears frequently as a sub- 

roblem of other hard optimization problems and a wide range 

f practical applications can be listed for these family of prob- 

ems such as cargo loading, cutting stock, capital budgeting or 

roject selection for instance. Several review papers and books 

ere dedicated to the KP and some of its variants (see for instance 

mailto:christophe.wilbaut@uphf.fr
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mailto:said.hanafi@uphf.fr
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ellerer, Pferschy, & Pisinger (2004) ; Salkin & Kluyver (1975) ; 

ilbaut, Hanafi, & Salhi (2007) among others). The discounted 0–

 knapsack problem (DKP) is one of the extensions of the 0–1 KP 

n which variables are partitioned. It was introduced in 2007 by 

uldan in his Master thesis ( Guldan, 2007 ). The word discounted 

omes from the promotional discounts activities of real merchants: 

n the same way as buying two items at the same time during the 

romotion season, a discount is defined when buying both. In the 

KP items are grouped by three and the value of the discounted 

tem is the sum of the other two items in the group. In addition

he discounted item consumes less resources than the total de- 

letion of the other two items. Finally, it is allowed to select at 

ost one item from the group. The aim of the DKP is to max- 

mize the total value associated with the selected items without 

xceeding the knapsack capacity. Formally, the DKP involves a set 

of m groups of three items denoted by N i = { 3 i, 3 i + 1 , 3 i + 2 }
or i ∈ M = { 0 , . . . , m − 1 } , which thus contains items to be possibly

acked into the knapsack of capacity b. Each item 3 i + k in group

 i , k ∈ { 0 , 1 , 2 } and i ∈ M, is characterized by a profit c 3 i + k and

 weight a 3 i + k such that c 3 i +2 = c 3 i + c 3 i +1 and max { a 3 i , a 3 i +1 } <
 3 i +2 < a 3 i + a 3 i +1 . The aim of the DKP is to choose at most one

tem from each group N i such that the total profit of chosen ele- 

ents is maximized without having the weight sum to exceed b. 

n the following we use notation N = { 0 , . . . , 3 m − 1 } to refer to the

ndex set of items whereas n = | N| = 3 m is the number of items.

s in the KP all the coefficients c j , a j , ∀ j ∈ N and the capacity b are

nteger and are assumed to be non negative. A linear formulation 

f the DKP ( Rong, Figueira, & Klamroth, 2012 ) is obtained by in-

roducing three binary variables x 3 i , x 3 i +1 and x 3 i +2 associated with 

ach group i ∈ M, such that x 3 i + k = 1 if and only if the k th item of

roup i is selected, for k ∈ { 0 , 1 , 2 } . Hence, the standard 0–1 linear

rogramming formulation of DKP is given as follows: 

 DKP ) 

⎧ ⎪ ⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max 
∑ 

i ∈ M 

c 3 i x 3 i + c 3 i +1 x 3 i +1 + c 3 i +2 x 3 i +2 (4)

s.t.:
∑ 

i ∈ M
a 3 i x 3 i + a 3 i +1 x 3 i +1 + a 3 i +2 x 3 i +2 ≤ b (5)

x 3 i + x 3 i +1 + x 3 i +2 ≤ 1 i ∈ M (6)
x 3 i , x 3 i +1 , x 3 i +2 ∈ { 0 , 1 } i ∈ M (7)

In this model objective function (4) aims to maximize the total 

rofit of selected items. Constraint (5) is the knapsack constraint 

elated to the n = 3 m items in the problem, whereas constraints 

6) force the choice of at most one item from each group i ∈ M.

he all variables are binary variables as stated in (7). As mentioned

n Rong et al. (2012) additional conditions can be imposed to avoid

rivial solutions and to guarantee that each item in a given group

as a chance to be selected. In particular it is generally assumed

hat a 3 i < a 3 i +1 < a 3 i +2 , c 3 i < c 3 i +1 < c 3 i +2 , and a 3 i + a 3 i +1 > a 3 i +2 .

inally, it is also assumed that 
∑ 

i ∈ M 

a 3 i +2 > b and a 3 i +2 ≤ b, i ∈ M.

t may be observed that by deleting constraints (6) the DKP re- 

uces to the KP. As the KP is an NP-hard problem, this implies 

he DKP is NP-hard as well ( Guldan, 2007 ). The DKP can also

e viewed as a particular case of the multiple-choice KP (MCKP) 

here items are also grouped. However, unlike to the DKP, in 

he MCKP groups do not necessarily contain the same number of 

tems. In addition specific relations between items in a group are 

efined in the DKP, which is not the case in the MCKP. 

The literature on the DKP started with Guldan (2007) where 

uldan presented an exact algorithm based on dynamic 

rogramming ( Bellman, 1957 ). Then, Rong et al. (2012) 

resented a natural formulation of the DKP and solved it by 

ombining the core concept used to solve the KP with the dy- 

amic programming. They proposed three variants based on 

artitioning the problem according to the type of instance and 

sing or not dominance rules. The results showed that the de- 

ection of dominated states leads to an increase of the average 
2

unning time needed to solve an instance. He et al. also used 

ynamic programming to solve the DKP in He, Wang, He, Zhao, & 

i (2016b) . Authors derived a recursive formula based on the prin- 

iple of minimizing the total weight rather than maximizing the 

otal profit. This new variant of dynamic programming has clearly 

 lower complexity than the previous one when the sum of profit 

oefficients is less than the knapsack capacity. They also proposed 

 fully polynomial-time approximation scheme, a 2-approximation 

lgorithm and a particle swarm optimization (PSO) heuristic for 

he DKP. The fully polynomial-time approximation scheme is based 

n the construction of a new instance by modifying only the set of 

riginal profit coefficients. This new instance is then solved by a 

ynamic programming algorithm. Then, authors proposed a greedy 

lgorithm and show that it is a 2-approximation algorithm for the 

KP. They demonstrated that the relationship between the ratios 

f the three items in a given group can be induced by only four 

ases and they exploited this property in the greedy algorithm. 

inally, authors proposed a greedy repair algorithm to deal with 

nfeasible solutions and incorporate it in a PSO algorithm. Some 

ther references related to evolutionary algorithms dedicated to 

he DKP can be found in the literature. He et al. proposed in He,

ang, Li, Zhang, & Chen (2016a) two elitist genetic algorithms 

nd two types of greedy strategies to repair and to optimize the 

ndividuals. Feng et al. proposed in Feng, Wang, Li, & Li (2018) a 

ulti-strategy monarch butterfly optimization heuristic for solving 

he DKP. They introduced two effective strategies based on a 

eighborhood mutation with crowding and a Gaussian perturba- 

ion to improve the behavior of the approach. Then, Feng and 

ang designed ten types of moth search in Feng & Wang (2018) . 

hu et al. considered in Zhu, He, Wang, & Tsang (2017) three 

ifferential evolution algorithms for the DKP that mainly differ 

n the encoding mechanisms used to represent (feasible) solu- 

ions of the problem. The first variant is an adaptation of the 

ybrid-encoding binary differential evolution algorithm proposed 

n He, Wang, & Kou (2007) to solve the KP and the SAT problem.

uthors also introduced the repair operator proposed in He et al. 

2016a) to manage infeasible solutions. This variant mimics the 

lassical formulation of the DKP with 3 m binary variables by using 

n encoding conversion function to transform a 3 m -dimensional 

eal vector into a 3 m -dimensional binary vector. The other two 

ariants exploit another encoding in which a feasible solution is 

n integer vector in { 0 , 1 , 2 , 3 } m allowing a direct application of

he standard differential evolution mechanism. Authors considered 

wo different encoding conversion functions corresponding to the 

wo variants. More recently, He et al. proposed in He, Wang, & Gao 

2019) a new kind of method to design an evolutionary algorithm 

y using algebraic theory. The proposition is mainly based on two 

volution operators using the addition, multiplication and inverse 

peration of the direct product of rings. The first one is called 

lobal exploration operator and build a new individual by learning 

rom four different elements that are randomly selected from the 

hole search space. The second one is called local development 

perator and is based on random changes in a given individual. 

n the new evolutionary algorithm authors propose to apply these 

wo operators successively and to replace an existing individual 

n the population if the new one produced by these operations 

as a better fitness. The approach is adapted to the DKP by using 

he repair operator proposed in He et al. (2016a) . He and Wang 

onsidered very recently a similar approach to solve the set-union 

napsack problem, the bounded knapsack problem and the DKP 

 He & Wang, 2021 ) and obtained competitive results compared 

ith He et al. (2016a) . Wu et al. proposed in Wu, Zhao, Feng, &

ee (2020) a discrete hybrid teaching-learning-based optimization 

lgorithm. They introduced self-learning factors in the teacher and 

earner phases, which balances the exploitation and exploration 

f the algorithm. They also used to types of crossover to improve 
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he search. The proposed method is evaluated and compared with 

 other population-based algorithms (( Feng et al., 2018; Feng & 

ang, 2018; He et al., 2016a; He et al., 2016b; Wu, He, & Chen,

017; Zhu et al., 2017 )) on a set of 80 available instances in

he literature. The results showed that their approach obtained 

n average the best solutions. We also noted the recent works 

n Truong (2021a,b) where the author considered some specific 

omponents in PSO and a new moth-flame optimization algorithm 

or the DKP. The proposed approaches obtained better results in 

verage than some of the works in the literature. 

In this paper we consider reduction techniques to solve the DKP 

fficiently. One of the objective of this work is to show that such 

echniques can be used in a heuristic or an exact process to obtain 

ear optimal or optimal solutions of the input problem in a very 

hort time. More precisely, the main contributions of this work are: 

 i ) we propose heuristic and exact fixation rules for the DKP that 

an be used in a preprocessing phase in order to reduce the size 

f a given instance; ( ii ) we show that using these techniques is an

fficient way to solve all the existing instances in the literature in 

ust a few seconds when applying dynamic programming; ( iii ) we 

ropose a new variant of a generator to provide harder instances. 

e demonstrate that these instances are effectively harder to solve 

hen using a solver like CPLEX . The new instances are available

or the community so that colleagues can consider them in future 

orks. 

The paper is organized as follows. In Section 2 we present 

he fixation rules that can be applied in a preprocessing phase 

o reduce the size of the initial problem. Then, we provide in 

ection 3 computational results over two sets of instances from the 

iterature when the reduced problem is solved with dynamic pro- 

ramming. Section 4 is devoted to the use of the new generator 

o provide harder instances and the experimental evaluation per- 

ormed both with CPLEX and our approach. Section 5 concludes

he paper. 

. Fixation rules

Fixation techniques and reduction rules are often used to solve 

ptimization problems in general and knapsack problems in partic- 

lar. In many cases the aim is to set values for a subset of variables

efore solving the reduced problem with a dedicated exact method 

see e.g., Rong & Figueira (2013) ). In other cases a decomposition 

ethod is applied for solving more efficiently the initial problem 

 Chen & Hao, 2014; Dahmani, Hifi, & Wu, 2016 ). Another solution 

s to solve the reduced problem obtained when fixing a subset of 

ariables with a metaheuristic ( Wilbaut, Hanafi, Fréville, & Balev, 

006 ). Considering the KP several approaches were proposed to 

educe the size before applying a branch-and-bound method or a 

ynamic programming algorithm (see, e.g., Martello & Toth (1988) ; 

isinger (1997) ), whereas other implicit enumeration algorithms 

nclude a reduction phase (see, e.g., Fayard & Plateau (1975, 1982) ). 

n this section we consider the use of both heuristic and exact fix- 

tion rules to solve the DKP. In particular, we consider techniques 

riginally proposed for solving the MCKP or other knapsack vari- 

nts to the DKP case. We start this section with the notion of LP- 

ominance that can be used to set variables’ values in a heuristic 

ay. Then we present a simple reduction process to remove defini- 

ively some groups from the initial problem without eliminating 

ny optimal solution of the problem. 

.1. LP-Dominance 

The first fixation rule is adapted from an existing result for the 

CKP. It is based on the notion of LP-dominance which can be used 

o solve efficiently the LP-relaxation of the MCKP ( Sinha & Zolt- 

ers, 1979 ). As mentioned previously the DKP can be viewed as 
3

 special case of the MCKP. Then, a given instance P of DKP can

e formulated as a special instance P ′ of MCKP by introducing for 

ach group a dummy item with a null profit and a null weight. 

ore formally, we construct P ′ from the original DKP instance by 

onsidering m groups of four items N 

′ 
i 
= { 4 i, 4 i + 1 , 4 i + 2 , 4 i + 3 }

or i ∈ M such that c ′
i,k 

= c 3 i + k −1 and a ′ 
i,k

= a 3 i + k −1 for k ∈ { 1 , 2 , 3 }
nd c ′

i, 0 
= a ′ 

i, 0 
= 0 ∀ i ∈ M. Then, by introducing a binary variable

 i,k which takes value 1 if and only if item k in group N 

′ 
i 

(i.e., item

 i + k ) is chosen, for k ∈ { 0 , 1 , 2 , 3 } , the problem instance P ′ can be

ormulated as: 

P ′ ) 

⎧ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max 
∑ 

i ∈ M

3 ∑ 

k =0

c ′ i,k x i,k (8) 

s.t.:
∑ 

i ∈ M

3 ∑ 

k =0

a ′ i,k x i,k ≤ b (9) 

3 ∑ 

k =0 

x i,k = 1 i ∈ M ( 10) 

x i,k ∈ { 0 , 1 } i ∈ M, k ∈ { 0 , 1 , 2 , 3 } ( 11)

Problem instance P ′ can be viewed as a reformulation of the 

revious standard model DKP where the m groups are explicitly 

entioned in the objective function and in the knapsack con- 

traint, leading to a double sum in (8) and in (9). The particularity 

f this model comes from the use of the dummy items allowing us 

o force the choice of exactly one item from each group (10). Please 

ote that in the rest of the paper we use both notations 4 i + k or

i, k ) to refer to item k in group N 

′ 
i 
. 

When dealing with the MCKP the LP-dominance may be used 

o set some variables at value 0 in an optimal solution of the LP- 

elaxation. One of the interest of this property is that it can be 

sed as a pre-processing phase since it is only based on the data 

 Sinha & Zoltners, 1979 ). The following definition introduces the 

P-dominance when considering instance P ′ from the original def- 

nition for the MCKP. 

efinition 1. Let P’ be the reformulated instance of the DKP and 

et i ∈ M be a given group of items. If some items j, k, l ∈ N 

′ 
i 

with

 

′ 
i, j 

< a ′ 
i,k

< a ′ 
i,l

and c ′
i, j 

< c ′
i,k

< c ′
i,l

satisfy 

c ′ 
i,l 

− c ′ 
i,k 

a ′ 
i,l 

− a ′ 
i,k

≥
c ′ 

i,k 
− c ′ 

i, j

a ′ 
i,k 

− a ′ 
i, j

(12) 

hen item k is said to be LP-dominated by items j and l. 

From this initial definition we can observe that when dealing 

ith the DKP we know by hypothesis that the profits and the 

eights of items are always in non-decreasing order into each 

roup, from the fictive item to the last one (i.e., c ′
i, 0 

< c ′
i, 1 

< c ′
i, 2

<

 

′
i, 3 

and a ′ 
i, 0 

< a ′ 
i, 1 

< a ′ 
i, 2 

< a ′ 
i, 3 

for every i ∈ M). In addition only

tems (i, 1) and (i, 2) can be dominated in a group. Those obser- 

ations lead to the following restricted definition. 

efinition 2. Let P’ be the reformulated instance of the DKP and 

et i ∈ M be a given group of items. Item (i,1) is LP-dominated if 

nd only if (13) or (14) is satisfied. 

c 
′ 
i, 2

− c 
′ 
i, 1 

a 
′ 
i, 2 

− a 
′ 
i, 1

≥ c 
′ 
i, 1

a 
′ 
i, 1

(13) 

c 
′ 
i, 3

− c 
′ 
i, 1 

a 
′ 
i, 3 

− a 
′ 
i, 1

≥ c 
′ 
i, 1

a 
′ 
i, 1

(14) 

n the same way item (i,2) is LP-dominated if and only if (15) or

16) is satisfied.

c 
′ 
i, 3

− c 
′ 
i, 2 

a 
′ 
i, 3 

− a 
′ 
i, 2

≥ c 
′ 
i, 2

− c 
′ 
i, 1

a 
′ 
i, 2 

− a 
′ 
i, 1

(15) 
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Algorithm 1: Solving the LP-relaxation and building a greedy 

solution. 

Function LP-Greedy () 
1 F 0 ← � ; 

/* Step 1: Eliminate LP-dominated items and 
build an instance of KP */ 

2 for i from 1 to m do 

/* Check if item (i, 1) is LP-dominated */ 
3 if equation (13) or equation (14) is satisfied then 

4 c ′′
i, 1 

= a ′′
i, 1 

← 0 ; e ′′
i, 1 

← −∞ ; F 0 ← F 0 ∪ (i, 1) ; 

else 

5 c ′′
i, 1 

← c ′
i, 1 

; a ′′
i, 1 

← a ′ 
i, 1 

; e ′′
i, 1 

← c ′′ 
i, 1 

/a ′′
i, 1 

; 

end 

/* Check if item (i, 2) is LP-dominated */ 
6 if equation (15) or equation (16) is satisfied then 

7 c ′′
i, 2 

= a ′′
i, 2 

← 0 ; e ′′
i, 2 

← −∞ ; F 0 ← F 0 ∪ (i, 2) ; 

8 c ′′
i, 3 

← c ′
i, 3

− c′′
i, 1 

; a ′′
i, 3 

← a ′ 
i, 3

− a′′
i, 1 

; e ′′
i, 3 

← c ′′ 
i, 3 

/a ′′
i, 3 

; 

else 

9 c ′′
i, 2 

← c ′
i, 2

− c′′
i, 1 

; a ′′
i, 2 

← a ′ 
i, 2

− a′′
i, 1 

; e ′′
i, 2 

← c ′′ 
i, 2 

/a ′′
i, 2 

; 

10 c ′′
i, 3 

← c ′
i, 3

− c′′
i, 2 

; a ′′
i, 3 

← a ′ 
i, 3

− a′′
i, 2 

; e ′′
i, 3 

← c ′′ 
i, 3 

/a ′′
i, 3 

; 

end 

end 

/* Step 2: Solve the KP instance in a greedy way */ 
11 v = v ← 0 ; b ← b; j ← 1 ; 

12 x̄ i,k = x i,k ← 0 , ∀ i ∈ M, k ∈ { 1 , 2 , 3 } ;
13 Sort the items according to non-increasing order of e ′′

i,k
values, 

∀ i ∈ M, k ∈ { 1 , 2 , 3 } ; 
14 while b > 0 do 

15 Let (i ′ , k ′ ) the original indexes of next item in the order ; 

16 if b > a ′′ 
i ′ ,k′ then 

17 v ← v + c ′′ 
i ′ ,k′ ; b ← b̄ − a ′′ 

i ′ ,k′ ; 
18 x̄ i ′ ,k ′ = x i ′ ,k ′ ← 1 ; 

19 x̄ i ′ ,k = x i ′ ,k ← 0 , ∀ k ∈ { 1 , 2 , 3 } such that k � = k′ ; 

else 

20 v ← v ; 
21 x̄ i ′ ,k ′ ← b /a ′′

i ′ ,k ′ ; v ← v + c ′′ 
i ′ ,k ′ ̄x i ′ ,k ′ ; b̄ ← 0 ;

22 if ∃ k � = k ′ in group i ′ such that x̄ i ′ ,k = 1 then 

23 x̄ i ′ ,k ← 1 − x̄ i ′ ,k ′ ; x i ′ ,k ← 0 ; 

end 

end 

24 j ← j + 1 ; 

end 

/* Step 3: Try to fill the feasible solution */ 
25 while j ≤ 3 m −

∣∣F 0 ∣∣ do 

26 Let (i ′ , k ′ ) the original indexes of next item in the order ; 

27 if b > a ′′ 
i ′ ,k ′ and x i ′ ,k = 0 , ∀ k ∈ { 1 , 2 , 3 } then

28 x i ′ ,k ′ ← 1 ; v ← v + c ′′ 
i ′ ,k ′ ; b ← b − a ′′ 

i ′ ,k ′ ;

end 

29 j ← j + 1 ; 

end 

30 Return ( ̄x , v ) , (x, v ) and F 0 ; 

a

c

t  

w

s

t

o

m

c 
′ 
i, 3

− c 
′ 
i, 2 

a 
′ 
i, 3 

− a 
′ 
i, 2

≥ c 
′ 
i, 2

a 
′ 
i, 2

(16) 

From this definition we can apply the following proposition (a 

roof can be found for instance in Sinha & Zoltners (1979) ). 

roposition 1. Let i ∈ M be a group of items. If item (i,1) (resp. (i,2))

s LP-dominated then an optimal solution to the LP relaxation of P’ 

ith x i, 1 = 0 (resp. x i, 2 = 0 ) exists. 

The characteristics of the DKP allow us not to have to sort the 

tems into the groups, leading to a very short pre-processing phase. 

lease note that another dominance rule exists to set some vari- 

bles definitively at their optimal value in an optimal solution of 

he MCKP (see Sinha & Zoltners (1979) ). It can be applied if there

xist items (i, j) and (i, j ′ ) in a group i satisfying c ′ 
i, j 

≥ c ′ 
i, j ′ and

 

′ 
i, j 

≤ a ′ 
i, j ′ . However, in the case of the DKP the corresponding pro- 

riety cannot be satisfied (here again due to the hypothesis on the 

rofits and the weights). In this paper we apply Proposition 1 to 

et some variables at value 0 in a heuristic way. To achieve this 

e adapt the algorithm proposed by Zemel (1980) to solve the LP- 

elaxation of the MCKP. This approach first reformulates the orig- 

nal LP-relaxation of the MCKP into a corresponding LP-relaxation 

f a KP. Then, this relaxation can be solved efficiently based on the 

ell-known greedy algorithm. Proposition 1 can be applied while 

olving the LP-relaxation. Our method is described in Algorithm 1 . 

t consists in the same two main steps. The first step aims at build-

ng the KP instance composed by at most 3 m items (since we can

liminate some variables according to Proposition 1 ). In the KP 

nstance we associate with each item k ∈ { 1 , 2 , 3 } in group i ∈ M

f the DKP a profit noted c ′′
i,k

and a weight a ′′ 
i,k

. The procedure

o build the KP was initially presented and justified by Zemel in 

emel (1980) . In the case of the DKP it can be summarized as

ollows. Based on the fact that items are already sorted in each 

roup according to their weight in the knapsack constraint, the fic- 

ive item is first eliminated in all the groups. Then, when consid- 

ring a group composed only by items that are not LP-dominated, 

 Eqs. 17 –18 ) and ( 19 –20 ) are applied respectively to compute the

rofit and weight values in the KP instance: 

 

′′ 
i, 1 = c 

′ 
i, 1 (17) 

 

′′ 
i,k = c 

′ 
i,k − c 

′ 
i,k −1 k = 2 , 3 (18) 

 

′′ 
i, 1 = a 

′ 
i, 1 (19) 

 

′′ 
i,k = a 

′ 
i,k − a 

′ 
i,k −1 k = 2 , 3 (20) 

he incremental profit c 
′′
i,k

in group k is a measure of how much 

e gain if item k is chosen instead of item k − 1 . The incremen-

al weight a 
′′
i,k

has a similar interpretation. One can observe that 

f a given item is LP-dominated then the procedure is adapted to 

iscard this value as shown in Algorithm 1 . In this algorithm we 

se the following convention: an LP-dominated item has its profit 

nd weight fixed to 0 in the KP instance. The step consisting of 

liminating the LP-dominated items and building the KP instance 

s described between line 2 and line 10. The LP-dominated items 

re added into a set denoted to as F 0 (and defined in line 1) which

hus contains variables that can be set at 0 in an optimal solution 

f the LP-relaxation. In the second step of the algorithm (from line 

1 to line 24) the LP-relaxation of the KP instance is solved with 
4

 greedy algorithm when items are ordered according to their in- 

remental efficiencies denoted to as e ′′
i,k 

in Algorithm 1 . By conven- 

ion the efficiency of an LP-dominated item is set to −∞ so that it

ould not be added in the solution (see lines 4 and 7). During this 

olving a feasible solution is also obtained by discarding the frac- 

ional item in the LP solution. Line 19 is used to avoid the selection 

f more than one item in a given group, whereas lines 20 to 24 

anage the case where the LP solution has two fractional items. 
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n that case they are necessarily in the same group (see Proposi- 

ion 3 in Zemel (1980) ). The last part of the algorithm (from line

5 to line 29) can be used to try adding a few items in the cur-

ent feasible solution x in a greedy way, where we only consider 

on LP-dominated items and groups where no item were previ- 

usly selected. Variables returned by Algorithm 1 in set F 0 can be 

et definitively in the problem if we want to use the fixation as a 

euristic. 

This algorithm can be used to solve the LP-relaxation of the 

roblem and to build an initial solution in a very short time. In 

ddition, set F 0 can be used to fix variables in a heuristic way, and

hus to reduce the initial problem, as we will see in the compu- 

ational results. In the next section we introduce another property 

hat can be used to reduce the size of the problem by fixing defini-

ively variables at their optimal value. 

.2. Reducing the number of groups 

In the previous section we presented a technique that can be 

sed to fix variables in a heuristic way. In this section we con- 

ider another technique to set variables definitively at their op- 

imal value in an optimal solution of the DKP. Thus in that case 

he fixation is valid for the original problem. This fixation rule 

omes from a well-known property often used when solving vari- 

nts of knapsack problems. Let P be an instance of the DKP and 

et (P 
∣∣x i,k = α ) be instance P in which we fix only variable k in

roup i at α ∈ { 0 , 1 } , for i ∈ M and k ∈ { 1 , 2 , 3 } . In addition, let

 (P 
∣∣x i,k = α ) be an upper bound of problem (P 

∣∣x i,k = α ) and v be 

 lower bound on the optimal value of the original problem P . Fi-

ally, let y be the feasible solution associated with v . We can then 

pply the following Property 1 , where notation 
 γ � is used to re-

er to the rounding function, which returns the maximum integer 

umber not greater than γ . 

roperty 1. If 
 v (P 
∣∣x i,k = α ) � ≤ v , then there exists an optimal so- 

ution x ∗ of problem P where x ∗
i,k 

= 1 − α or solution y is optimal for

roblem P . 

Our idea is to exploit the optimal solution x̄ of the LP-relaxation 

f the DKP provided by Algorithm 1 as a starting point. In fact, we

o not consider all the variables in the fixation process. Indeed, 

hen considering the DKP the most interesting result is the fix- 

tion of one variable in a group since that allows to remove this 

roup since the other two variables are automatically set to value 

. In addition, according to the special structure of the DKP and the

oefficients in the problem it is clear that in a given group i vari-

ble x i, 3 is the one for which the fixation is most probable. Thus, 

e apply Property 1 only with α = 0 and for every item (i, 3) ,

 ∈ M such that x̄ i, 3 = 1 . Indeed, if x̄ i, 3 = 0 for a given i then the

alue 
 v (P 
∣∣x i, 3 = α ) � = 
 ̄v � . Even if in practice most of items (i, 3)

re chosen in solution x in the worst case we thus need to solve m

P-relaxations. 

Solving the LP-relaxation of problem (P 
∣∣x i, 3 = 0 ) for a given 

roup i requires some adjustments in steps 1 and 2 of Algorithm 1 .

ndeed, some LP-dominated items in the original problem are not 

et dominated when item (i, 3) is eliminated (when variable x i, 3 
s set to 0), thus implying some modifications in the construction 

f the knapsack instance and in the order of items when con- 

idering the efficiency measure. However, it is not necessary to 

estart from scratch and step 1 can be almost avoided since only 

tems (i, 1) and (i, 2) can be impacted. Once the KP instance is

uilt its LP-relaxation can be solved with the same principle as in 

lgorithm 1 to provide both the upper bound v (P 
∣∣x i, 3 = 0 ) and a 

ower bound for problem (P 
∣∣x i, 3 = 0 ) which is also valid for the 

nitial DKP. We use notations v i (resp. v i ) for this upper (resp.

ower) bound and notation xg for the greedy solution correspond- 
i 

5

ng to this lower bound. Thus, during the process we generate sev- 

ral greedy solutions, in such a way we may improve our initial 

easible solution and improve the number of variables that can be 

et. The procedure is summarized in Algorithm 2 . 

Algorithm 2: Reducing the number of groups in the DKP. 

Function UB-Fix( x , v , F 0 ) 
1 F 1 ← � ; v best ← v 2 for i from 1 to m do 

3 if x i, 3 = 1 then 

/* Adapt the construction of the KP instance only 
for group i */ 

4 Save the values of c ′′ 
i,k

, a ′′ 
i,k

and e ′′
i,k

in the KP instance 

associated with x , ∀ k ∈ { 1 , 2 , 3 } ; 
5 if (i, 1) ∈ F 0 then 

6 if equation 13 is satisfied then 

7 c ′′
i, 1 

= a ′′
i, 1 

← 0 ; e ′′
i, 1 

← −∞ ; 

else 

8 c ′′
i, 1 

← c ′
i, 1 

; a ′′
i, 1 

← a ′ 
i, 1 

; e ′′
i, 1 

← c ′′ 
i, 1 

/a ′′
i, 1 

; 

end 

else 

9 c ′′
i, 1 

← c ′
i, 1 

; a ′′
i, 1 

← a ′ 
i, 1 

; e ′′
i, 1 

← c ′′ 
i, 1 

/a ′′
i, 1 

; 

10 c ′′
i, 2 

← c ′
i, 2

− c′′
i, 1 

; a ′′
i, 2 

← a ′ 
i, 2

− a′′
i, 1 

; e ′′
i, 2 

← c ′′ 
i, 2 

/a ′′
i, 2 

; 

end 

11 c ′′
i, 3 

← 0 ; a ′′
i, 3 

← 0 ; e ′′
i, 3 

← −∞ ; 

/* Solve the LP and obtain the upper and lower 
bounds */ 

12 Apply Steps 2 and 3 of Algorithm 1 to solve the current 

KP instance ; 

13 Obtain v i , v i and xg i ;

14 if v i ≥ v best then

15 v best ← v i ; x best ← xg i ;

end 

16 if 
 v i � ≤ v best then

17 F 1 ← F 1 ∪ { i } ; 
end 

18 Restore values c ′′ 
i,k

, a ′′
i,k

and e ′′
i,k

∀ k ∈ { 1 , 2 , 3 } ; 
end 

19 Return F 1 , v best , x best ; 

end 

In this algorithm we consider as inputs the results of 

lgorithm 1 , in particular the optimal solution x of the LP- 

elaxation of the DKP, the initial lower bound v , the set F 0 to know

P-dominated items. To simplify the presentation we also suppose 

hat the KP instance (i.e., vectors c ′′ , a ′′ and e ′′ ) built to solve the 

P-relaxation remains available. We use the following notations. 

et F 1 refers to the set of groups that can be eliminated by fixing 

he corresponding last item at value 1. Thus, we just store in this 

et the index i of such a group if necessary. Notation v best (resp. 

 

best ) is used to refer to the best lower bound (resp. feasible solu- 

ion) during the process. 

As explained above the main loop in the algorithm explores the 

 sub-problems restricted to those where x i, 3 = 1 . Between lines 

 and 11 we first modify the KP instance by checking if items that 

ere previously LP-dominated are always dominated. In fact in our 

ase when considering group i at the current iteration item (i, 2) 

annot be LP-dominated since it is the last item in the group. In 

ddition item (i, 1) can be only dominated by item (i, 2) , thus only

q. 13 can be satisfied. 

Then, we apply steps 2 and 3 of Algorithm 1 to obtain the cur- 

ent upper (resp. lower) bound u i (resp. v i ) and the corresponding

easible solution (lines 12 and 13). Once we have the bounds we 
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hen can check if a better lower bound (and feasible solution) has 

een obtained and if the current group i can be definitively fixed 

ccording to Property 1 between lines 14 and 17. The algorithm re- 

urns the set F 1 , the best lower bound and the corresponding best 

easible solution. 

Fixation rules described in this section can be used in different 

ays. For example it is possible to fix LP-dominated variables ac- 

ording to Proposition 1 and then to solve the reduced problem. In 

hat case we say that the fixation is heuristic since it is valid when

olving the LP-relaxation of the DKP only. Another strategy consists 

n applying Algorithm 2 and Property 1 to fix definitively some 

ariables x 3 i +2 and thus to eliminate the corresponding groups. In 

hat case we say the fixation is optimal since this property is valid 

hen solving the original DKP. 

In our experiments we consider the use of these two techniques 

ith dynamic programming (DP) to solve the instances from the 

iterature. Dynamic programming was already applied on the DKP 

n Rong et al. (2012) and in He et al. (2016b) . Rong et al. pre-

ented in Rong et al. (2012) a natural extension of the sequential 

P algorithm from the classical 0–1 KP to the DKP. In that case the 

rinciple is to look for maximizing the total profit value with the 

iven sum of weight coefficients. Later, He et al. proposed in He 

t al. (2016b) a variant in which the principle is to minimize the 

otal weight with the given sum of value coefficients. The princi- 

le of both methods is quite similar and their complexity depends 

ainly on the size of the problem (in particular the value b or the 

alue 
∑ 

i ∈ M 

c 3 i +2 ). In this paper we use the natural recursion for- 

ula based on the capacity of the knapsack b. For the DKP the DP

rocess is based on m stages where each stage corresponds to a set 

f three variables, where at most one variable can be set to value 

ne. This property allows the use of a similar structure of the DP 

lgorithm to that for solving the knapsack problem. Then, a stage is 

ade up of b + 1 states defined by the recursive equation accord- 

ng the data of the problem. For the sake of clarity we reintroduce 

his recursion formula ( Rong et al., 2012 ). Let us denote by v i (β)

he objective value of state β ∈ { 0 , . . . , b} at stage i ∈ { 0 , . . . , m − 1 } .
hen i = 0 we have : 

 0 (β) = 

⎧ ⎪ ⎨
⎪ ⎩

0 if 0 ≤ β < a 0 
c 0 if a 0 ≤ β < a 1 
c 1 if a 1 ≤ β < a 2 
c 2 if a 2 ≤ β ≤ b 

(21) 

hen, values v i (β) associated with the following stages 1 , . . . , m −
 and β = 0 , . . . , b can be defined as follows: 

 i (β) = 

⎧ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎨ 

⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎩

v i −1 (β) if 0 ≤ β < a 3 i

max { v i −1 (β) , v i −1 (β − a 3 i ) + c 3 i } if a 3 i ≤ β < a 3 i +1

max { v i −1 (β) , v i −1 (β − a 3 i )
+ c 3 i , v i −1 (β − a 3 i +1 ) + c 3 i +1 } if a 3 i +1 ≤ β < a 3 i +2 

max { v i −1 (β) , v i −1 (β − a 3 i )
+ c 3 i , v i −1 (β − a 3 i +1 ) + c 3 i +1 ,

v i −1 (t − a 3 i +2 ) + c 3 i +2} if a 3 i +2 ≤ β ≤ b 

(22) 

he optimal value corresponds to v m −1 (b) . 

It is important to note that in the rest of the paper when we 

se the DP to solve a given instance we use a classical implemen- 

ation of the previous recursive equations and we do not imple- 

ent any optimization or dominance techniques. For instance we 

se the traditional way to find an optimal solution by applying a 

acktracking phase through the set of states. This technique needs 

 × (b + 1) memory space to save a variable value (i.e., an integer

o know which item is selected from the group associated with the 

tage) for each state corresponding to each stage. Our objective is 

o show that combining the techniques based on the fixation of 

ariables with DP is an efficient approach to solve the DKP. 
6

. Solving the instances from the literature

In this section we consider the instances available in the liter- 

ture to evaluate our approaches. All the algorithms presented in 

his paper were coded in C++ language, implemented and com- 

iled with Visual Studio tools on a Windows 10 platform. The

ests were carried out on an HP EliteBook with 8GB of RAM

nd an Intel CORE i7 processor with 2.60GHz. We used -O2
Oi -Ot options in Visual Studio to optimize the code and

o further accelerate the program. All the CPU times reported were 

btained using clock function and CLOCKS_PER_SEC macro. We

sed CPLEX 12.7.1.0 with the Concert technology with de- 

ault parameters and a limited running time of 1 h, unless other- 

ise stated, to solve the instances. 

Rong et al. (2012) provided some characteristics and domi- 

ance rules between items according to the correlation of the data 

nd the difficulty of the instance. Then they proposed a generator 

or three types of instances: uncorrelated, weakly correlated and 

trongly correlated, respectively. The results obtained by Rong et al. 

2012) showed that: i) correlated instances are easier to solve than 

ncorrelated instances for the DKP and ii) strongly correlated in- 

tances are easier to solve than weakly correlated instances. It can 

e observed that the instances used in most of the papers avail- 

ble in the literature are those provided later by He et al. (2016b) .

e et al. proposed a few adjustments to the generator of Rong 

t al. and developed a fourth type of instances, so-called inverse 

trongly correlated instances. All available instances are organized 

nto two data sets (or groups), each one containing 40 instances: 

0 instances for each correlation type with m varying between 100 

nd 10 0 0. 

It should be noted that papers in the literature dealing with 

etaheuristics to solve the DKP used these data sets to eval- 

ate the performance of the proposed approaches. We provide 

n Table 1 a synthesis of the results observed with these two 

ata sets. Results related to data set 1 are in the left part of 

able 1 whereas data set 2 is considered in the right part. We first 

eport in this table the time required by CPLEX to solve each in- 

tance. Then, column DP corresponds to the time needed to solve

he instance with the initial dynamic programming algorithm (i.e., 

ithout any reduction). Next two columns report the percentage 

f variables that are LP-dominated according to Proposition 1 (col- 

mn %Dom. ) and the percentage of groups that can be eliminated

y fixing variable x 3 i +2 at value 1 according to Property 1 (column 

Fix. ), respectively. Finally, column DP+ gives the time needed to

olve the instance if we consider dynamic programming with the 

eduction rule (i.e., by deleting groups via Algorithm 2 ). 

Values reported in Table 1 clearly show that all the available in- 

tances in the literature can be solved instantly by a software like 

PLEX . If the use of such an optimization tool is not possible the

esults also show that dynamic programming is an interesting al- 

ernative when considering these instances. We can observe a real 

ifference with values reported in columns DP : the DP algorithm

s able to solve all the instances in data set 2 in less than 3 sec-

nds, whereas the running time increases until approximately one 

inute for a few instances in data set 1. That can be explained by 

he generator used to produce the instances. As mentioned previ- 

usly He et al. proposed in He et al. (2016b) a variant of the gen-

rator proposed in Rong et al. (2012) to evaluate the advantage of 

oth recurrence formula. As a result the value of b in the first set 

f instances is largely superior, inevitably leading to an increased 

unning time when using the natural recursion formula (interest- 

ng readers are invited to consult ( He et al., 2016b ) for more de-

ails). In practice high values for coefficient b can be a limit for 

he DP algorithm according to the resources available on the ma- 

hine test. It was for example impossible for us to solve instance 
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Table 1

Computational results over data sets 1 and 2 from the literature.

data set 1 data set 2

Instance CPLEX DP %Dom. %Fix. DP + Instance CPLEX DP %Dom. %Fix. DP + 

udkp1_1 0.10 0.22 49.33 68.00 0.05 udkp2_1 0.04 0.06 46.00 60.00 0.02

udkp1_2 0.12 0.68 47.67 49.50 0.13 udkp2_2 0.07 0.13 44.50 47.50 0.04

udkp1_3 0.24 1.93 46.33 61.00 0.21 udkp2_3 0.31 0.30 44.56 68.00 0.04

udkp1_4 0.28 4.11 46.50 64.25 0.46 udkp2_4 0.20 0.52 46.25 61.00 0.05

udkp1_5 0.24 8.60 46.27 54.00 0.69 udkp2_5 0.33 0.88 43.73 62.00 0.15

udkp1_6 0.25 12.49 46.56 50.33 0.83 udkp2_6 0.37 1.41 44.94 64.83 0.20

udkp1_7 0.24 27.39 46.19 58.57 1.07 udkp2_7 0.58 1.70 47.14 67.29 0.24

udkp1_8 0.29 36.61 46.96 51.25 1.38 udkp2_8 1.17 1.85 46.00 58.25 0.30

udkp1_9 0.26 58.61 46.22 60.78 1.79 udkp2_9 0.49 2.28 45.74 58.56 0.30

udkp1_10 0.37 O/M 

a 46.93 69.50 1.38 udkp2_10 0.34 2.76 45.27 50.80 0.55

wdkp1_1 0.08 0.16 65.33 60.00 0.02 wdkp2_1 0.11 0.06 58.00 57.00 0.01

wdkp1_2 0.09 0.40 64.83 45.50 0.07 wdkp2_2 0.12 0.17 57.83 55.00 0.02

wdkp1_3 0.07 1.10 63.56 60.00 0.05 wdkp2_3 0.16 0.32 57.33 66.00 0.04

wdkp1_4 0.12 1.84 64.58 52.75 0.12 wdkp2_4 0.22 0.45 58.67 61.50 0.06

wdkp1_5 0.14 6.36 64.20 69.60 0.11 wdkp2_5 0.20 0.93 58.73 65.20 0.10

wdkp1_6 0.12 9.22 65.00 68.00 0.15 wdkp2_6 0.11 1.11 58.89 63.33 0.10

wdkp1_7 0.28 8.85 65.10 50.71 0.34 wdkp2_7 0.32 1.48 58.33 63.71 0.18

wdkp1_8 0.18 20.52 64.63 68.88 0.38 wdkp2_8 0.52 1.74 59.08 58.88 0.20

wdkp1_9 0.17 22.89 64.41 60.78 0.42 wdkp2_9 0.56 2.50 58.56 56.89 0.23

wdkp1_10 0.26 31.01 64.53 55.80 0.57 wdkp2_10 0.54 2.52 58.77 54.50 0.26

sdkp1_1 0.05 0.20 60.67 65.00 0.02 sdkp2_1 0.20 0.08 54.00 66.00 0.01

sdkp1_2 0.04 0.52 60.67 52.50 0.06 sdkp2_2 0.10 0.21 53.50 61.50 0.02

sdkp1_3 0.08 1.29 60.00 58.33 0.16 sdkp2_3 0.27 0.24 52.89 58.00 0.05

sdkp1_4 0.36 2.30 60.17 67.25 0.09 sdkp2_4 0.17 0.48 53.42 62.00 0.06

sdkp1_5 0.19 4.19 60.60 70.80 0.18 sdkp2_5 0.24 0.79 52.53 65.40 0.16

sdkp1_6 0.17 4.07 60.83 62.50 0.24 sdkp2_6 0.17 1.02 50.89 57.00 0.15

sdkp1_7 0.32 12.44 60.52 66.86 0.28 sdkp2_7 0.23 1.82 52.24 65.14 0.23

sdkp1_8 0.24 13.94 60.13 58.38 0.41 sdkp2_8 0.27 1.74 53.08 61.13 0.27

sdkp1_9 0.41 29.38 60.22 70.00 0.39 sdkp2_9 0.23 2.17 52.63 60.89 0.31

sdkp1_10 0.21 31.01 60.47 58.10 0.56 sdkp2_10 0.30 2.24 51.83 59.00 0.36

idkp1_1 0.05 0.16 63.33 51.00 0.03 idkp2_1 0.07 0.06 61.00 51.00 0.01

idkp1_2 0.07 0.54 64.50 52.50 0.04 idkp2_2 0.10 0.22 58.50 48.50 0.01

idkp1_3 0.20 1.48 65.22 65.67 0.09 idkp2_3 0.18 0.39 59.78 62.33 0.03

idkp1_4 0.16 2.26 64.75 59.50 0.16 idkp2_4 0.14 0.68 60.25 58.50 0.04

idkp1_5 0.20 3.20 65.47 51.80 0.26 idkp2_5 0.14 0.92 59.53 57.20 0.04

idkp1_6 0.15 6.27 65.06 67.67 0.24 idkp2_6 0.20 1.29 60.06 64.00 0.07

idkp1_7 0.22 17.18 64.95 66.14 0.22 idkp2_7 0.21 1.40 59.90 54.86 0.13

idkp1_8 0.32 26.17 65.00 71.25 0.30 idkp2_8 0.23 1.78 59.71 48.63 0.25

idkp1_9 0.20 24.90 64.74 50.44 0.47 idkp2_9 0.27 2.09 59.89 47.56 0.15

idkp1_10 0.44 41.63 64.80 63.30 0.65 idkp2_10 0.27 2.76 59.67 46.40 0.23

a Out of Memory.
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dkp1_10 of set 1 as mentioned in Table 1 by O/M for “Out of

emory”. 

Values reported in columns %Dom. indicate that a large part

f the variables are LP-dominated. That can be used for example 

o solve the problem after fixing the corresponding variables in a 

euristic way. In that case we can solve the reduced problem with 

P to build very quickly a feasible solution. According to the re- 

ults obtained both by CPLEX and the basic DP algorithm we do

ot report the corresponding values. We observed that applying 

his heuristic fixation before the DP algorithm leads to the visit 

f 75 optimal solutions over the 80 instances. Thus, this technique 

an be considered as a good heuristic if the size of the instance 

emains reasonable. 

An interesting result is related to columns DP+ . Indeed the val- 

es in these columns clearly indicate that applying the reduction 

rocedure described in Algorithm 2 followed by the DP algorithm 

s a good strategy to solve these instances. Even if the running 

imes is in general superior to the one observed with CPLEX we

an notice that it is always less than 2 seconds. To the best of our

nowledge these results overpass previously published results for 

olving these two sets of instances. It should be emphasized that 

P+ solved all instances from the literature unlike standard DP .
The results presented in this section show that available in- 

tances of DKP in the literature do not offer a high level of oppo-

ition for exact approaches. Some additional experiments showed 
t

7

s that CPLEX can fix in general more than 90% of the variables.

oncerning our approach values reported in column %Fix. show

hat in general more than half of the groups can be deleted thanks 

o Algorithm 2 . Thus, we concluded that these instances are proba- 

ly too impacted by reduction mechanisms. In the next section we 

ropose a variant of the existing generator to provide harder in- 

tances. 

. Generating and solving harder instances

In this section we first propose to adapt the generators pro- 

osed in He et al. (2016b) ; Rong et al. (2012) to produce harder 

KP instances. The generator is described in Section 4.1 . Then, we 

onsider both the use of CPLEX and our dynamic programming- 

ased approaches to solve these instances. The corresponding re- 

ults are reported in Section 4.2 . 

.1. A new generator 

As mentioned previously two papers deal with a generator for 

KP instances ( He et al., 2016b; Rong et al., 2012 ). Rong et al. pro-

osed in Rong et al. (2012) a first generator, whereas He et al. 

roposed in He et al. (2016b) some modifications. Both generators 

ere used to build the two sets of instances in the literature. In 

his paper we propose to adapt the generator of He et al. to build 



C. Wilbaut, R. Todosijevic, S. Hanafi et al.

ARTICLE IN PRESS
JID: EOR [m5G; May 16, 2022;15:27] 

m

o

l

h

t

p

[  

i  

f

(  

r  

g  

i

t

s

T

i  

c

m

t  

t

i

w

[  

b  

(

a

c

d  

e

w  

c

i  

e  

p

o

s

s

c

 

 

 

 

 

g

f  

a

t

b

4

o

r

c

a

a

u

b

(

l

v

s

w

s

D

t

m

w

l

s

p

f

b

D

w

w

s

w

x

t

t

l

s

i

i

s

D

M

l

a

c

o

d

t

2 https://oae.uphf.fr/content/UVHC/paAEJHcO0 .
3 CPLEX may find an optimal solution without being able to prove its optimality 

in the allotted time
ore complicated instances. To achieve this we tighten the range 

f values of the weights of item. This should make it possible to 

imit the fixing of variables x 3 i +2 at value one, and thus to prevent 

aving a reduced problem that is too small to solve. For example in 

he case of uncorrelated instances authors in He et al. (2016b) pro- 

osed to select randomly coefficients c 3 i and c 3 i +1 in group i 

128,3072]. As c 3 i +2 = c 3 i + c 3 i +1 in DKP this wide range of values

s highly likely to favor the third object of the group. This is rein-

orced by the selection of the weights a 3 i and a 3 i +1 in [256,4098] 

with a 3 i < a 3 i +1 ) and a 3 i +2 ∈ [ a 3 i +1 + 1 , a 3 i + a 3 i +1 + 1] . With these

anges of values item 3 i + 2 in group i can have a weight slightly

reater than that of item 3 i + 1 for a much greater coefficient

n the objective function. Preliminary experiments showed that 

he difference between coefficients of the three items has to be 

mall enough to balance the selection chance among the group. 

hese tests confirmed that difficult instances can be obtained us- 

ng [40 0 0,420 0] to select a 3 i and a 3 i +1 , and using [30 0 0,320 0] to

hoose c 3 i and c 3 i +1 . According to these observations and to re- 

ain with values of the same order of magnitude as those men- 

ioned in He et al. (2016b) we decided to use these intervals for all

ypes of instances. As shown above the definition of weight a 3 i +2 

s also important in order to complicate the instance. In this work 

e consider a more general rule by selecting this weight in interval 

 a 3 i +1 + (1 − ε) a 3 i + 1 , a 3 i + a 3 i +1 + 1[ , where ε is a decimal num-

er in [0,1]. When ε = 1 we obtain the rule proposed in He et al.

2016b) with a possible large interval. On the contrary if ε = 0 then 

 3 i +2 = a 3 i + a 3 i +1 corresponding to an extreme case. Experiments 

onfirmed that, in general, the closer the value ε is to 0, the more 

ifficult the instances are. Thus, we decided to set ε = 0 . 01 to gen-

rate the instances without enforcing a 3 i +2 = a 3 i + a 3 i +1 . Finally, 

e use the same rules as in He et al. (2016b) to set coefficients

 3 i and c 3 i +1 in correlated instances. The capacity of the knapsack 

s based on the same formula as in He et al. (2016b) with param-

ter r ∈ [0 . 25 , 0 . 75] rather than [0.5,0.75] to increase the range of

ossible values. As in the previous works we consider four kinds 

f instances: uncorrelated instances, weakly correlated instances, 

trongly correlated instances, and inverse strongly correlated in- 

tances. For each type of instances, the profit coefficients, weight 

oefficients, and knapsack capacity are generated as follows: 

1. uncorrelated instances:
• a 3 i ∈ [40 0 0 , 420 0[ , a 3 i +1 ∈ [40 0 0 , 420 0] with a 3 i <

a 3 i +1 , a 3 i +2 ∈ [ a 3 i +1 + (1 − ε) a 3 i + 1 , a 3 i + a 3 i +1 + 1[ ,

with ε a decimal number in [0,1]. 
• c 3 i ∈ [30 0 0 , 320 0[ , c 3 i +1 ∈ [30 0 0 , 320 0] with

c 3 i < c 3 i +1 , and c 3 i +2 = c 3 i + c 3 i +1 

• b = r
∑ m −1 

i =0 w 3 i +2 , with r a random decimal number in 

[0 . 25 , 0 . 75] . 

2. weakly correlated instances:
• a 3 i ∈ [40 0 0 , 420 0[ , a 3 i +1 ∈ [40 0 0 , 420 0] with a 3 i <

a 3 i +1 , a 3 i +2 ∈ [ a 3 i +1 + (1 − ε) a 3 i + 1 , a 3 i + a 3 i +1 + 1[ ,

with ε a decimal number in [0,1].
• c 3 i ∈ [ a 3 i − 100 , a 3 i + 100[ , c 3 i +1 ∈ [ a 3 i +1 − 100 , a 3 i +1 +

100] with c 3 i < c 3 i +1 , and c 3 i +2 = c 3 i + c 3 i +1

• b = r
∑ m −1 

i =0 w 3 i +2 , with r a random decimal number in 

[0 . 25 , 0 . 75] . 

3. strongly correlated instances:
• a 3 i ∈ [40 0 0 , 420 0[ , a 3 i +1 ∈ [40 0 0 , 420 0] with a 3 i <

a 3 i +1 , a 3 i +2 ∈ [ a 3 i +1 + (1 − ε) a 3 i + 1 , a 3 i + a 3 i +1 + 1[ ,

with ε a decimal number in [0,1].
• c 3 i = a 3 i + 100 , c 3 i +1 = a 3 i +1 + 100 , and c 3 i +2 = c 3 i +

c 3 i +1 

• b = r
∑ m −1 

i =0 w 3 i +2 , with r a random decimal number in 

[0 . 25 , 0 . 75] . 

4. inverse strongly correlated instances:
8

• c 3 i ∈ [40 0 0 , 420 0[ , c 3 i +1 ∈ [40 0 0 , 420 0] with

c 3 i < c 3 i +1 , and c 3 i +2 = c 3 i + a 3 i +1 . 
• a 3 i = c 3 i + 100 , a 3 i +1 = c 3 i +1 + 100 , and a 3 i +2 ∈

[ a 3 i +1 + (1 − ε) a 3 i + 1 , a 3 i + a 3 i +1 + 1[ 
• b = r

∑ m −1 
i =0 w 3 i +2 , with r a random decimal number in 

[0 . 25 , 0 . 75] , with ε a decimal number in [0,1]. 

We vary the number of groups m from 100 to 1 0 0 0, and we

enerate 10 instances for every value of m , leading to 100 instances 

or each type, and 400 instances in total. The new data set is avail-

ble on the Internet 2 . The size of these instances are similar to 

hose existing in the literature. This makes it easy to compare the 

ehavior of algorithms between the sets of instances. 

.2. Solving the new instances with CPLEX or dynamic programming

We report in Tables 2 and 3 a synthesis of the results obtained 

ver the 400 new instances. In these tables a row contains the 

esults over 10 distinct instances related to every value of m . In 

olumns CPLEX we report the number of instances the solver was

ble to solve in a maximum running time of 1 h (column solved )
nd the number of solutions returned that are not optimal (col- 

mn not opt. ), respectively 3 . Then, column DP gives the num- 

er of instances that can be solved with the basic DP algorithm 

i.e., without using fixation) without encountering a memory prob- 

em. Column %Fix. have the same meaning as in Table 1 , whereas

alues in column DP+ report the number of instances that can be

olved when applying Algorithm 2 before DP. 

Tables 2 and 3 seem to indicate that uncorrelated instances and 

eakly correlated instances are, in general, harder to solve than 

trongly correlated and inverse strongly correlated ones for the 

KP. Indeed, the number of instances not solved by CPLEX and

he number of non optimal solutions provided by the solver are 

ore important for these two correlation types. This observation 

as made in other works when dealing with instances from the 

iterature ( He et al., 2016b; Rong et al., 2012 ). An interesting ob- 

ervation from values in these two columns is the fact that it is 

ossible to generate some relatively hard instances of DKP even 

or small values of n , when considering exact methods based on 

ranch-and-bound. However, when the number of groups is small 

P can always be applied without any problem since the profit, 

eight and knapsack values are obviously reasonable. Despite this 

e can also observe that the basic DP cannot solve all the in- 

tances with n = 800 in our experiments. 

As shown by values in column %Fix. having tightened the

eights of the objects clearly reduces the fixation of variables 

 3 i +2 , which explains the difficulty of these instances compared to 

hose of the literature. This lower fixation can be observed for all 

he correlation type, even if the difference with values in Table 1 is 

ess important in general for the inverse strongly correlated in- 

tances. The fact less groups can be dropped from the instances 

mpacts logically the capability of the DP+ method to solve all the

nstances. However values reported in this column are interesting 

ince they show that the reduction phase can be used to help the 

P algorithm to solve more instances for all type of correlation. 

ore precisely, DP algorithm can solve instances with m ≤ 700 in 

ess than one minute, in general. When the reduction rule can be 

pplied then a few larger instances can be solved as shown in 

olumns DP+ . In that case the algorithm requires at most 30 sec- 

nds. Thus, the combination of the reduction rule and the use of 

ynamic programming makes it possible to solve more instances 

han CPLEX for the largest uncorrelated and weakly correlated

https://oae.uphf.fr/content/UVHC/paAEJHcO0
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Table 2

Solving new uncorrelated and weakly correlated instances with CPLEX and DP. 

uncorrelated instances weakly correlated instances

m

CPLEX 
DP %Fix. DP + m 

CPLEX 
DP %Fix. DP + 

solved not opt. solved not opt.

100 0 3 10 0.00 10 100 5 0 10 0.00 10

200 3 4 10 4.60 10 200 0 5 10 0.00 10

300 4 1 10 5.40 10 300 0 5 10 0.00 10

400 1 1 10 0.43 10 400 2 2 10 8.20 10

500 3 4 10 10.00 10 500 3 0 10 9.18 10

600 4 3 10 14.62 10 600 5 1 10 0.12 10

700 3 4 10 5.09 10 700 3 2 10 14.16 10

800 5 3 7 14.04 8 800 4 1 9 14.83 10

900 4 0 8 8.98 9 900 2 0 1 3.87 2

1000 4 3 1 17.99 5 1000 2 1 3 0.00 3

Table 3

Solving new strongly correlated and inverse strongly correlated instances with CPLEX and DP. 

strongly correlated instances inverse strongly correlated instances

m

CPLEX 
DP %Fix. DP + m

CPLEX 
DP %Fix. DP + 

solved not opt. solved not opt.

100 10 0 10 0.90 10 100 10 0 10 16.70 10

200 1 5 10 0.00 10 200 10 0 10 23.70 10

300 5 2 10 6.57 10 300 9 1 10 22.43 10

400 8 0 10 3.98 10 400 9 1 10 19.75 10

500 8 0 10 0.00 10 500 9 0 10 20.96 10

600 8 1 10 5.93 10 600 10 0 10 21.83 10

700 4 3 10 0.00 10 700 10 0 10 4.87 10

800 8 0 7 18.71 8 800 9 0 4 19.14 4

900 10 0 3 24.37 5 900 10 0 1 5.54 2

1000 5 1 1 9.60 3 1000 10 0 1 14.31 3

Table 4

Results over new uncorrelated and weakly correlated instances with heuristics.

uncorrelated instances weakly correlated instances

m

CPLEX DP as a heuristic Algo.2 
m

CPLEX DP as a heuristic Algo.2 

avg. gap %Dom. nb.opt. avg. gap avg. gap avg. gap %Dom. nb.opt. avg. gap avg. gap

100 0.269 40.77 1 0.234 0.617 100 0.028 43.17 6 0.028 0.673

200 0.031 39.50 5 0.018 0.200 200 0.032 43.82 8 0.016 0.295

300 0.028 39.24 4 0.019 0.154 300 0.019 43.74 5 0.013 0.172

400 0.009 41.64 6 0.008 0.102 400 0.006 39.13 6 0.006 0.098

500 0.007 36.93 7 0.004 0.065 500 0.002 38.88 9 0.002 0.051

600 0.003 35.28 9 0.002 0.039 600 0.002 43.51 8 0.002 0.083

700 0.003 39.28 8 0.003 0.056 700 0.001 36.33 8 0.001 0.039

800 0.002 35.52 6 N/A 0.042 800 0.001 35.92 8 N/A 0.041

900 0.002 37.67 7 N/A 0.038 900 0.001 41.28 1 N/A 0.035

1000 0.001 33.83 2 N/A 0.029 1000 0.001 43.40 3 N/A 0.063
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nstances we considered in these data sets. The situation is not 

he same for strongly correlated instances where CPLEX can solve

ore larger instances (but less instances with m ≤ 700 ) and for in- 

erse strongly correlated instances. For this last category CPLEX is
ot able to find only 2 optimal solutions over the 100 instances. 

lobally the difference between the time required by the basic 

P and the DP+ variant is very important. In fact detailed results

howed that the reduction rule, when it can be applied, helps in 

educing the running time of DP by 70% to 83% on average accord- 

ng to the correlation type of the instances, leading to a significant 

mprovement. 

Since some instances cannot be solved by CPLEX and the DP

lgorithm it can be interesting to consider heuristic approaches to 

eal with these data sets. We provide in Tables 4 and 5 a synthe-
9

is of the results obtained when: ( i ) using DP as a heuristic (i.e.,

hen we apply Proposition 1 to fix LP-dominated variables); ( ii ) 

pplying Algorithm 2 alone. In these tables columns avg. gap re- 

er to the average percentage gap of solutions returned by a given 

lgorithm from the optimal LP-solutions. On a given instance this 

ap is computed as 100 × LP −lb 
LP 

, where LP is the optimal value of 

he LP-relaxation of the problem and lb is the lower bound corre- 

ponding to the value of the solution returned by the algorithm. 

hus, columns CPLEX provide the average gap of solutions pro- 

ided by CPLEX . Then, the next three columns give information

hen using DP as a heuristic: column %Dom. corresponds to the

ercentage of LP-dominated variables that can be fixed at value 0 

n a heuristic way, nb. opt. reports the number of solutions re- 

urned by DP on the corresponding reduced problem that are op- 
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Table 5

Results over new strongly correlated and inverse strongly correlated instances with heuristics.

strongly correlated instances inverse strongly correlated instances

m

CPLEX DP as a heuristic Algo.2 
m

CPLEX DP as a heuristic Algo.2 

avg. gap %Dom. nb.opt. avg. gap avg. gap avg. gap %Dom. nb.opt. avg. gap avg. gap

100 0.010 65.53 10 0.010 0.233 100 0.002 54.83 10 0.002 0.023

200 0.006 66.10 5 0.005 0.260 200 < 0.001 50.05 10 < 0.001 0.072

300 0.002 61.58 5 0.002 0.176 300 < 0.001 51.09 10 < 0.001 0.053

400 < 0.001 63.31 6 < 0.001 0.093 400 < 0.001 52.81 10 < 0.001 0.037

500 0.001 65.89 9 0.001 0.052 500 < 0.001 52.01 10 < 0.001 0.013

600 < 0.001 62.03 7 < 0.001 0.044 600 < 0.001 51.43 10 < 0.001 0.018

700 0.001 65.87 9 0.001 0.075 700 < 0.001 62.75 10 < 0.001 0.024

800 < 0.001 53.49 4 N/A 0.029 800 < 0.001 53.27 4 N/A 0.019

900 < 0.001 49.76 3 N/A 0.015 900 < 0.001 62.30 1 N/A 0.039

1000 < 0.001 59.61 0 N/A 0.033 1000 < 0.001 56.50 1 N/A 0.033

t

n

p

c

p

L

t

a

t

u  

h

C
c

t

r

b

b

t

a

u

f

w  

b

4

i

a

5

(

g

i

fi

b

d

t

s

l

t

w

i

s

o

p

h

d

t

i

c

m

h

s

t

e

A

a

t

R

B

C

D

F

F

F  

F

G

G

H

H

H  

H

H  

K

L

M  

N

imal, whereas avg. gap gives the associated average gap. Please

ote that mention N/A in this column means that we do not com- 

ute the average gap since at least one instance cannot be pro- 

essed with DP (for memory limitation). Finally, column Algo.2
rovides the gap of the solution returned by Algorithm 2 . 

Values in columns %Dom. show that the average percentages of

P-dominated variables in the new instances tend to be lower than 

hose observed with instances from the literature for uncorrelated 

nd weakly correlated instances (see Table 1 ). This is not always 

he case for strongly and inverse strongly correlated instances. Val- 

es reported in the other two columns related to the use of DP as a

euristic show that this approach can provide better solutions than 

PLEX in many cases, in particular for uncorrelated and weakly

orrelated instances when m ≤ 700 . Thus this approach can be in- 

eresting to provide good feasible solutions, even if its application 

emains limited by the size of the problem. When it is not possi- 

le to apply this method we can always use the solution returned 

y Algorithm 2 . The quality of this solution is logically inferior but 

he corresponding running time is always less than 1 second for 

ll the instances addressed in this section. This solution could be 

sed as a starting solution for another heuristic or metaheuristic 

or example. 

Results presented in this section show that some new instances 

ith m ≤ 10 0 0 can be difficult to solve, even if a part of them can

e sufficiently reduced to be solved by DP. We believe that these 

00 new instances made available to the community represent an 

mportant data set to consider when developing and validating ex- 

ct, heuristic and metaheuristic approaches for the DKP. 

. Conclusion

This paper deals with the discounted 0–1 knapsack problem 

DKP), an extension of the knapsack problem, where items are 

rouped by three, and at most one item from a group can be 

ncluded in a solution. To tackle the problem we proposed two 

xation techniques. The first one can be used in a heuristic way 

y discarding some variables of the problem according to a LP- 

ominance rule. This process can discard an optimal solution of 

he problem but it can be used to provide a near optimal feasible 

olution. The second one removes some groups from the problem, 

eading to a smaller problem to solve, without discarding any op- 

imal solution of the original problem. Computational experiments 

ere conducted to show that both fixation techniques can be used 

n a preprocessing phase before applying dynamic programming to 

olve the instances proposed in the literature in at most two sec- 

nds. According to these results we proposed a new generator to 

rovide a set of 400 harder instances that can be considered by 

euristics and metaheuristics. The hardness of these instances is 

emonstrated experimentally by using CPLEX since it was not able
10
o solve an important number of these new instances with a lim- 

ted running time of one hour. Thus, we hope that these instances 

an be useful to the community when proposing and evaluating 

etaheuristics for solving the DKP. 

In future works we will consider the use of more sophisticated 

euristics and metaheuristics to solve efficiently the new set of in- 

tances. The structure of the DKP can also be studied in more de- 

ails to look for some properties that can help its solving in gen- 

ral. 
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