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Abstract. We introduce a structural approach to study Lagrangian submanifolds of the

complex hyperquadric in arbitrary dimension by using its family of non-integrable almost

product structures. In particular, we define local angle functions encoding the geometry of the
Lagrangian submanifold at hand. We prove that these functions are constant in the special case

that the Lagrangian immersion is the Gauss map of an isoparametric hypersurface of a sphere
and give the relation with the constant principal curvatures of the hypersurface. We also use

our techniques to classify all minimal Lagrangian submanifolds of the complex hyperquadric

which have constant sectional curvature and all minimal Lagrangian submanifolds for which
all, respectively all but one, local angle functions coincide.

1. Introduction

In this paper, we investigate the geometry of Lagrangian submanifolds of the complex hy-
perquadric Qn, which is a homogeneous complex n-dimensional Kähler manifold. The study
of Lagrangian submanifolds originates from symplectic geometry and classical mechanics. Let
(N,ω) be a 2n-dimensional symplectic manifold with a symplectic form ω, we call a submanifold
f : M → (N,ω) Lagrangian, if f∗ω = 0 and the dimension of M is half the dimension of N .
In particular, if N is a Kähler manifold, then N admits complex, Riemannian and symplectic
structures which are compatible with each other, and the condition f∗ω = 0 is equivalent to
the complex structure J of N interchanging the tangent and the normal spaces. The study of
Lagrangian submanifolds of Kähler manifolds is a classic topic and was initiated in the 1970’s
by Chen and Ogiue [5]. For a review on Riemannian geometry of Lagrangian submanifolds we
refer to [3, 4] and the references therein. The simplest examples of Kähler manifolds are com-
plex space forms which have constant holomorphic sectional curvatures, and the geometry of
Lagrangian submanifolds of complex space forms have been widely studied and well understood
in some sense. Meanwhile, Lagrangian submanifolds of other Kähler manifolds have not been
deeply understood.

The complex hyperquadric Qn is a compact complex hypersurface of the complex projective
space CPn+1 defined by the homogeneous quadratic equation z20 + z21 + . . . + z2n+1 = 0. It
can be identified with the Grassmann manifold of oriented 2-planes, is a compact Hermitian
symmetric space of rank 2 and provides a very good example of a Kähler-Einstein manifold.
There is a fundamental fact which concerns the relation between Lagrangian geometry of the
complex hyperquadric and hypersurface geometry of the unit sphere, that is, the Gauss map of
any oriented hypersurface of the unit sphere Sn+1 is always a Lagrangian submanifold in the
complex hyperquadric Qn. In a special case, given an isoparametric hypersurface of the unit
sphere, one can get a minimal Lagrangian submanifold of the complex hyperquadric by using
its Gauss map. The minimality can be proved by applying Palmer’s nice formula involving
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the mean curvature form of the Lagrangian submanifold of the complex hyperquadric and the
principal curvatures of the hypersurface of the unit sphere (see [19, 20]). The geometry of
Lagrangian submanifolds of Qn obtained by the Gauss map of isoparametric hypersurfaces of the
unit sphere have been systematically studied from the point of view of Lie theory and Hamiltonian
deformation theory by the second author and Ohnita (see [11, 12, 13]), where they obtain a
classification of all compact homogeneous Lagrangian submanifolds of the complex hyperquadric
and determine the Hamiltonian stability for the Gauss maps of all the known homogeneous
isoparametric hypersurfaces. Notwithstanding, the geometry of Lagrangian submanifolds of the
complex hyperquadric is far from being well understood, especially from the geometric point
of view. This motivates our study and the aim of this paper is to understand the geometry of
Lagrangian submanifold of the complex hyperquadric in a more geometric way.

It is well known that Qn carries a family of almost product structures, see for example [23]. In
this paper, we introduce a new structural approach to study Lagrangian submanifolds of Qn. By
using one of the almost product structures, we define two symmetric operators and n local angle
functions on every such Lagrangian submanifold. It turns out that these angle functions have
very nice relations with the second fundamental form and can determine most of the geometry of
the Lagrangian submanifold. By use of our new approach, we obtain a correspondence theorem
between minimal Lagrangian submanifolds of Qn with constant angle functions and the Gauss
maps of isoparametric hypersurfaces of Sn+1.

Theorem 1.1. Let a : Mn → Sn+1(1) be an isoparametric hypersurface with unit normal b and
principal curvatures λ1, . . . , λn. Then the Gauss map G : Mn → Qn is a minimal Lagrangian
immersion and the difference between any two local angle functions is constant. Moreover,

(i) if the almost product structure A ∈ A is chosen as in Example 3.3 for the canonical

horizontal lift Ĝ given in (4.2), then all the angle functions θ1, . . . , θn are constant and,
when put in the right order, they are given by

λj = cot θj ; (1.1)

(ii) if the almost product structure A ∈ A is chosen as in Example 3.4, then again all the
angle functions are constant and, when put in the right order,

λj = cot(θj + c) (1.2)

for a real constant c which is independent of the index j.

Conversely, consider a minimal Lagrangian immersion f : Mn → Qn of a simply connected
manifold with constant angle functions θ1, . . . , θn. Then for every real constant c with sin(θj+c) 6=
0 for all j = 1, . . . , n, there is an isoparametric immersion Mn → Sn+1(1) with Gauss map f ,
whose principal curvatures are given by (1.2).

By applying Theorem 1.1, we can find all minimal Lagrangian submanifolds with constant
local angle functions starting from isoparametric hypersurfaces of the unit sphere, see Corollary
4.1. We also obtain the classification of Lagrangian submanifolds which are totally geodesic
(Theorem 4.2) and the classification of minimal Lagrangian submanifolds for which all local
angle functions are the same (Theorem 4.3). Although Theorem 1.1 is stated only in the case of
constant angle functions, from the proof of this theorem, one can get similar local correspondence
between a general minimal Lagrangian submanifold of Qn and the Gauss map of a hypersurface of
Sn+1, with the same relation between the angle functions of the Lagrangian submanifold and the
principal curvatures of the hypersurface, while the angle functions and the principal curvatures
are not necessarily constant.

Note that the classification of minimal Lagrangian submanifolds of constant sectional curva-
ture in complex space forms is a classic result proved by Ejiri [7], using essentially the Gauss and
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Codazzi equations. In the case of the complex hyperquadric Qn, it is impossible to get a similar
classification following Ejiri’s method, as the curvature tensor of Qn is much more complicated
than that of a complex space form and the Gauss equations become very difficult to solve di-
rectly. Therefore, we use a quite different approach, by making full use of the angle functions.
We obtain the following classification theorem.

Theorem 1.2. let f : Mn → Qn, n ≥ 2, be a minimal Lagrangian immersion such that Mn has
constant sectional curvature c. Then f is one of the following:

(i) f is the Gauss map of a part of the standard embedding Sn(r)→ Sn+1(1);
(ii) n = 2 and f the Gauss map of a part of the standard embedding S1(r1)×S1(r2)→ S3(1);
(iii) n = 3 and f is the Gauss map of a part of a tube around the Veronese surface in S4(1).

The constant sectional curvatures in these three cases are c = 2, c = 0 and c = 1/8 respectively.

As another successful application of our new techniques, we classify all minimal Lagrangian
submanifolds for which all but one local angle functions coincide, see Theorem 6.1 for more
details. As proposed in [24], one can expect that our approach via Lagrangian submanifolds of
Qn, will provide some new understanding of the isoparametric theory in the unit sphere. For
more results about isoparametric theory and its applications, we refer to [8], [21], [26] and the
references therein.

The paper is organized as follows. In Section 2, we review some basic definitions and properties
of the complex hyperquadric Qn. In Section 3, starting from an almost product structure on
Qn, we first define two endomorphisms on the tangent spaces of a Lagrangian submanifold Mn

of Qn, and then introduce n local angle functions on M . We give two examples to show that
we can choose appropriate almost product structure to make the angle functions having special
properties. We prove some relations among the angle functions, the second fundamental form and
the Levi-Civita connection form. We also give the Gauss and Codazzi equations for a Lagrangian
submanifold of Qn. In Section 4, we study the correspondence between Lagrangian submanifolds
of Qn and hypersurfaces of Sn+1, and prove Theorem 1.1. Section 5 is devoted to the proof
of Theorem 1.2, where Lemma 5.1 is the key step, which gives us more information about the
second fundamental form and the angle functions, under the assumption of constant sectional
curvature. In Section 6, we classify all minimal Lagrangian submanifolds with n− 1 equal local
angle functions.
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2. The geometry of the complex hyperquadric

Let CPn+1(4) be the complex projective space of complex dimension n+ 1 equipped with the
Fubini-Study metric gFS of constant holomorphic sectional curvature 4. Then the Hopf fibration

π : S2n+3(1) ⊂ Cn+2 → CPn+1(4) : z 7→ [z] (2.1)

is a Riemannian submersion from the unit sphere of real dimension 2n+3 to CPn+1(4). Remark
that for any z ∈ S2n+3(1) we have π−1{[z]} = {eitz | t ∈ R} and ker(dπ)z = span{iz}. The



4 HAIZHONG LI, HUI MA, JOERI VAN DER VEKEN, LUC VRANCKEN, AND XIANFENG WANG

complex structure J on CPn+1(4) is induced from multiplication by i on TS2n+3(1) and it is
well-known that (CPn+1(4), gFS , J) is a Kähler manifold.

We define the complex hyperquadric of complex dimension n as the following complex hyper-
surface of CPn+1(4):

Qn = {[(z0, z1, . . . , zn+1)] ∈ CPn+1(4) | z20 + z21 + · · ·+ z2n+1 = 0}. (2.2)

If Qn is equipped with the induced metric gFS |Qn , which we will denote by g, and the induced
almost complex structure J |Qn , which we will again denote by J , then (Qn, g, J) is of course a
Kähler manifold itself. The inverse image of Qn under the Hopf fibration is the Stiefel manifold

V2(Rn+2) =

{
u+ iv

∣∣∣∣ u, v ∈ Rn+2, 〈u, u〉 = 〈v, v〉 =
1

2
, 〈u, v〉 = 0

}
⊂ S2n+3(1) (2.3)

of real dimension 2n+ 1, where 〈·, ·〉 denotes the Euclidean inner product on Rn+2.
The normal space to V2(Rn+2) in S2n+3(1) at a point z is spanned by z̄ and iz̄, which

implies that the normal space to Qn in CPn+1(4) at a point [z] is spanned by (dπ)z(z̄) and
J(dπ)z(z̄) = (dπ)z(iz̄), where z is any representative of [z]. Remark that these vectors depend
on the chosen representative z. Denote by A the set of all shape operators of Qn in CPn+1(4)
associated with unit normal vector fields. Then A is a collection of (1, 1)-tensor fields on Qn and
one can deduce the following (see for example [23] or [25])).

Lemma 2.1. Any A ∈ A satisfies

(i) A2 = Id, i.e., A is involutive.
(ii) A is symmetric.
(iii) A anti-commutes with J .

Properties (i) and (ii) in Lemma 2.1 are equivalent to saying that A is a family of almost
product structures on Qn. However, these almost product structures are not always integrable.
In fact, we have the following result.

Lemma 2.2 ([25]). Let ξ be a unit normal vector field along Qn in CPn+1(4) with corresponding
shape operator A ∈ A. Then there exists a non-zero one-form s such that

∇CPn+1(4)
X ξ = −AX + s(X)Jξ, (2.4)

∇Q
n

X A = s(X)JA (2.5)

for all X tangent to Qn, where ∇CPn+1(4) and ∇Qn

are the Levi Civita connections of CPn+1(4)
and Qn respectively.

The equation of Gauss for Qn as a submanifold of CPn+1(4) yields the following expression
for the Riemannian curvature tensor of Qn:

RQ
n

(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(X, JZ)JY − g(Y, JZ)JX + 2g(X, JY )JZ (2.6)

+ g(AY,Z)AX − g(AX,Z)AY + g(JAY,Z)JAX − g(JAX,Z)JAY,

where A is any element of A and X, Y, Z ∈ TQn. We can calculate straightforwardly from (2.6)
that Qn is a Kähler-Einstein manifold with Einstein constant 2n.

3. Lagrangian submanifolds of the complex hyperquadric

In the following sections, we consider an immersion f : Mn → Qn of a manifold of real
dimension n into the complex hyperquadric of complex dimension n. If no confusion is possible,
we will identify Mn with its image and (df)p(TpM

n) with TpM
n for every p ∈ Mn. Moreover,

we will denote the metric on Mn induced from the metric g on Qn, constructed above, again by
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g. As usual in complex geometry, we say that f is Lagrangian if J maps the tangent space to
Mn at any point into the normal space to Mn at that point and vice versa.

Fixing an almost product structure A ∈ A on Qn, we can define at any point p of a Lagrangian
submanifold Mn of Qn two endomorphisms B and C of TpM

n by putting

AX = BX − JCX (3.1)

for all X ∈ TpM , i.e., BX is the component of AX tangent to Mn and CX is the image under
J of the component of AX normal to Mn. With these definitions, we have the following.

Lemma 3.1. B and C are symmetric endomorphisms of TpM
n which commute and satisfy

B2 + C2 = Id.

Proof. Since g(BX,Y ) = g(AX,Y ) and g(CX, Y ) = g(JAX, Y ) for all X,Y ∈ TpM
n, the

endomorphisms B and C are symmetric because A and JA are symmetric.
Furthermore, we have X = A2X = A(BX − JCX) = (B2 + C2)X + J(BC − CB)X for

an arbitrary X ∈ TpM
n. Since the first term on the right hand side is tangent to Mn and

the second term on the right hand side is normal to Mn, we must have (B2 + C2)X = X and
(BC − CB)X = 0, which proves the result. �

Lemma 3.1 implies that B and C are simultaneously diagonalizable and that the sum of the
squares of corresponding eigenvalues must be 1. Therefore, there exist an orthonormal basis
{e1, . . . , en} of TpM

n and real numbers θ1, . . . , θn, defined up to an integer multiple of π, such
that

Bej = cos(2θj)ej , Cej = sin(2θj)ej (3.2)

for j = 1, . . . , n. The factor 2 in front of the angles is just a choice for convenience, as it will
simplify some of the expressions in the sequel. We can rewrite (3.2) as Aej = cos(2θj)ej −
sin(2θj)Jej .

Working locally, we can look at B and C as symmetric (1, 1)-tensor fields on Mn which define
a local orthonormal frame {e1, . . . , en} and local angle functions θ1, . . . , θn in a similar way as
above. In general, these functions cannot be extended to global functions on Mn and they are
only determined up to an integer multiple of π.

The following result states that changing A ∈ A will change the angle functions θ1, . . . , θn,
but not the orthonormal frame {e1, . . . , en}.

Lemma 3.2. Let f : Mn → Qn be a Lagrangian immersion and A0, A ∈ A. Then there exists
a function ϕ : Mn → R such that, along the image of f ,

A = cosϕA0 + sinϕJA0. (3.3)

If {e1, . . . , en} is a local orthonormal frame such that A0ej = cos(2θ0j )ej − sin(2θ0j )Jej for j =
1, . . . , n, then Aej = cos(2θj)ej − sin(2θj)Jej for j = 1, . . . , n, with

θj = θ0j −
ϕ

2
. (3.4)

Proof. Assume that A0 and A are the shape operators associated with unit normal vector fields ξ0
and ξ respectively. SinceQn is a Kähler submanifold of CPn+1(4), there is a function ϕ : Mn → R
such that, at every point of Mn, ξ = cosϕ ξ0 + sinϕJξ0, which implies that A = cosϕA0 +
sinϕJA0 along the image of f . Now assume that A0ej = cos(2θ0j )ej−sin(2θ0j )Jej for j = 1, . . . , n.

Then it follows from a straightforward computation that Aej = cos(2θ0j −ϕ)ej − sin(2θ0j −ϕ)Jej
for j = 1, . . . , n. �

There are a few possible choices for the almost product structure A ∈ A on Qn which are
adapted to a given Lagrangian submanifold f : Mn → Qn. We present two of them in the next
examples.
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Example 3.3. Assume that, apart from a Lagrangian immersion f : Mn → Qn, also a horizontal

lift f̂ : Mn → V2(Rn+2) of f is given. Remark that it follows from [22] that any Lagrangian
immersion into Qn locally allows such a horizontal lift. If Mn is simply connected, the horizontal
lift can be defined globally. Since the normal space to V2(Rn+2) in S2n+3(1) ⊂ Cn+2 at a point
z is the complex span of z̄, one can take

ξf(p) = (dπ)f̂(p)

(
f̂(p)

)
as a unit normal vector field to Qn along the image of f , and the corresponding shape operator
is given by

AX = −(dπ)
(
X̂
)
, (3.5)

where X is any vector tangent to Qn at a point f(p) and X̂ is its horizontal lift to f̂(p).

Example 3.4. Given a Lagrangian immersion f : Mn → Qn, one can choose A ∈ A such that
the associated local angle functions satisfy

θ1 + · · ·+ θn = 0 mod π. (3.6)

Indeed, let A0 ∈ A be an arbitrary almost product structure with associated local angle functions
θ01, . . . , θ

0
n and put ϕ = 2(θ01 + · · ·+θ0n)/n. If we choose A ∈ A such that A = cosϕA0 +sinϕJA0

along the image of f , then it follows from (3.4) that the local angle functions associated with A
satisfy (3.6). Remark that we will always work modulo π for local angle functions, since they
are only defined up to an integer multiple of π.

Remark. The choice of ϕ, and hence of A ∈ A, in Example 3.4 is not uniquely determined.
Indeed, for any k ∈ {0, . . . , n − 1}, the function ϕ = 2(θ01 + · · · + θ0n)/n + 2kπ/n gives rise to a
different A ∈ A for which the angle functions satisfy (3.6).

Let h be the second fundamental form of the Lagrangian immersion f : Mn → Qn, we define

hkij = g(h(ei, ej), Jek) (3.7)

for all i, j, k = 1, . . . , n, to be the components of h. A fundamental property of Lagrangian
submanifolds of Kähler manifolds implies that the components hkij are totally symmetric in the
three indices (cf. [17, 18]). Furthermore, let ∇ denote the induced connection on Mn from the
Levi Civita connection ∇Qn

of (Qn, g), we define its connection forms by

ωkj (X) = g(∇Xej , ek) (3.8)

for all j, k = 1, . . . , n and all X tangent to Mn. Remark that this family of one-forms is anti-
symmetric in the indices. The following proposition relates the angle functions, the components
of the second fundamental form and the connection forms.

Proposition 3.5. Let Mn be a Lagrangian submanifold of Qn and assume that an almost product
structure A ∈ A on Qn is fixed. Let {e1, . . . , en} be a local orthonormal frame on Mn constructed
as above, then the following relations between the angle functions, the components of the second
fundamental form and the connection forms hold:

ei(θj) = hijj −
s(ei)

2
, (3.9)

sin(θj − θk)ωkj (ei) = cos(θj − θk)hkij , (3.10)

for all i, j, k = 1, . . . , n, with j 6= k. Here, s is the one-form associated with A as in Lemma 2.2.
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Proof. Combining the splitting AX = BX − JCX with formula (2.5), yields

(∇XB)Y = s(X)CY + Jh(X,CY ) + CJh(X,Y ), (3.11)

(∇XC)Y = −s(X)BY − Jh(X,BY )−BJh(X,Y ) (3.12)

for all vector fields X and Y tangent to Mn. Evaluating these expressions for X = ei and Y = ej
gives us two equalities between vectors.

Comparing the components in ej gives respectively

− 2 sin(2θj)ei(θj) = s(ei) sin(2θj)− 2 sin(2θj)h
j
ij ,

2 cos(2θj)ei(θj) = −s(ei) cos(2θj) + 2 cos(2θj)h
j
ij .

Since either sin(2θj) 6= 0 or cos(2θj) 6= 0, we conclude (3.9).
On the other hand, comparing the components in ek for some k 6= j gives respectively

(cos(2θj)− cos(2θk))ωkj (ei) = −(sin(2θj) + sin(2θk))hkij ,

(sin(2θj)− sin(2θk))ωkj (ei) = (cos(2θj) + cos(2θk))hkij ,

or, equivalently,

− sin(θj + θk) sin(θj − θk)ωkj (ei) = − sin(θj + θk) cos(θj − θk)hkij ,

cos(θj + θk) sin(θj − θk)ωkj (ei) = cos(θj + θk) cos(θj − θk)hkij .

Since either sin(θj + θk) 6= 0 or cos(θj + θk) 6= 0, we conclude (3.10). �

Corollary 3.6. Let f : Mn → Qn be a minimal Lagrangian immersion for which the sum of
the local angle functions is constant. This can for example be achieved by choosing A ∈ A as
in Example 3.4. Then the one-form s associated with A vanishes on tangent vectors to Mn. In

particular, for all X tangent to M , one has ∇Q
n

X A = 0 and, if A is the shape-operator associated
with a normal vector field ξ along Qn, also ∇⊥Xξ = 0, where ∇⊥ is the normal connection of Qn

in CPn+1(4).

Proof. Denote the angle functions by θ1, . . . , θn. Then

0 = ei (θ1 + · · ·+ θn) = hi11 + · · ·+ hinn − n
s(ei)

2
= −ns(ei)

2
(3.13)

for any i = 1, . . . , n, where we used (3.9) and the fact that hi11 + · · · + hinn is n times the Jei-
component of the mean curvature vector. Hence s(ei) = 0 for i = 1, . . . , n and thus s vanishes
on tangent vectors to Mn. The rest of the statement now follows directly from Lemma 2.2. �

To end this section, we state the equations of Gauss and Codazzi for a Lagrangian submanifold
of Qn.

Proposition 3.7 (Equations of Gauss and Codazzi). Let f : Mn → Qn be a Lagrangian immer-
sion with second fundamental form h. Define B and C as above for any choice of A ∈ A. Finally,
denote by R the Riemannian curvature tensor of Mn and by ∇ the Levi-Civita connection. Then

g(R(X,Y )Z,W ) = g(Y, Z)g(X,W )− g(X,Z)g(Y,W )

+ g(BY,Z)g(BX,W )− g(BX,Z)g(BY,W )

+ g(CY,Z)g(CX,W )− g(CX,Z)g(CY,W )

+ g(h(Y, Z), h(X,W ))− g(h(X,Z), h(Y,W ))

(3.14)

and
(∇h)(X,Y, Z)− (∇h)(Y,X,Z) = g(CY,Z)JBX − g(CX,Z)JBY

− g(BY,Z)JCX + g(BX,Z)JCY
(3.15)
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for any vector fields X, Y , Z and W tangent to Mn.

Proof. These follow immediately from the general forms of the equations of Gauss and Codazzi,

g(R(X,Y )Z,W ) = g(RQ
n

(X,Y )Z,W ) + g(h(Y, Z), h(X,W ))− g(h(X,Z), h(Y,W )),

(∇h)(X,Y, Z)− (∇h)(Y,X,Z) = (RQ
n

(X,Y )Z)⊥,

where the superscript ⊥ denotes the component normal to Mn, by using (2.6) and (3.1). �

Remark. If {e1, . . . , en} is the local orthonormal frame constructed above and θ1, . . . , θn are
the local angle functions, then it follows from (3.14) and (3.9) that the sectional curvature of the
plane spanned by ei and ej is given by

Kij = g(R(ei, ej)ej , ei)

= 2 cos2(θi − θj) + g(h(ei, ei), h(ej , ej))− g(h(ei, ej), h(ei, ej))

= 2 cos2(θi − θj) +

n∑
k=1

(
hkiih

k
jj − (hkij)

2
)

= 2 cos2(θi − θj) +
n∑
k=1

((
ek(θi) +

s(ek)

2

)(
ek(θj) +

s(ek)

2

)
− (hkij)

2

) (3.16)

for any i, j = 1, . . . , n, with i 6= j.

4. Lagrangian submanifolds of Qn and hypersurfaces of Sn+1(1)

Let a : Mn → Sn+1(1) ⊂ Rn+2 be an immersion and denote by b a unit normal vector field
along this immersion, tangent to Sn+1(1). Let λ1, . . . , λn be the principal curvatures and denote
by {e1, . . . , en} a local orthonormal frame given by principal directions such that Sej = λjej for
j = 1, . . . , n, where S is the shape operator associated with b. The Gauss map of the hypersurface
a is given by

G : Mn → Qn : p 7→ [a(p) + ib(p)]. (4.1)

Remark that

Ĝ : Mn → V2(Rn+2) : p 7→ 1√
2

(a(p) + ib(p)) (4.2)

is a map into the Stiefel manifold V2(Rn+2) such that G = π ◦ Ĝ, which shows that G indeed

takes values in Qn. In fact, Ĝ is horizontal since

(dĜ)ej =
1√
2

(1− iλj)ej (4.3)

is perpendicular to iĜ for all j = 1, . . . , n. It also follows from (4.3) that (dĜ)ej is perpendicular

to i(dĜ)ek for all j, k = 1, . . . , n, which implies that G is Lagrangian. The map Ĝ is, up to
multiplication with a factor eit for some constant t ∈ R, the unique horizontal lift of G.

If the hypersurface a is isoparametric in Sn+1(1), i.e., if the principal curvatures λ1, . . . , λn
are constant, then the Gauss map is a minimal Lagrangian immersion. This follows either by a
straightforward computation of the second order derivatives of Ĝ or from the following elegant
formula from [20]:

g(JH, ·) = − 1

n
d

Im

log

n∏
j=1

(1 + iλj)

 , (4.4)

where H is the mean curvature vector of the Gauss map.
As remarked in [11], any Lagrangian immersion f : Mn → Qn can locally be seen as the Gauss

map of a hypersurface of Sn+1(1). Indeed, inspired by (4.2), we can always take a horizontal lift
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f̂ : Mn → V2(Rn+2) such that (
√

2 times) its real part is locally an immersion into Sn+1(1). In
the following, we prove Theorem 1.1.

Proof of Theorem 1.1: As discussed above, it is well-known that the Gauss map G : Mn →
Qn : p 7→ [a(p) + ib(p)] of an isoparametric hypersurface a : Mn → Sn+1(1) with unit normal

b is a minimal Lagrangian immersion. Let A0 ∈ A be as in Example 3.3 for the lift Ĝ given
in (4.2) and let A ∈ A be arbitrary. Lemma 3.2 implies that, along the image of G, we have
A = cosϕA0 +sinϕJA0 for some function ϕ : Mn → R. Let {e1, . . . , en} be a local orthonormal
frame of principal directions for the immersion a on Mn. Then, using (3.5) and (4.3),

A0(dG)ej = −(dπ)
(

(dĜ)ej

)
= −(dπ)

(
1√
2

(1 + iλj)ej

)
= −(dπ)

(
1− λ2j
1 + λ2j

(dĜ)ej +
2λj

1 + λ2j
i(dĜ)ej

)
=
λ2j − 1

λ2j + 1
(dG)ej −

2λj
λ2j + 1

J(dG)ej .

This implies that the frame {e1, . . . , en} diagonalizes the operators B0 and C0, associated with
A0 as explained above, and that the angle functions are determined by

cos(2θ0j ) =
λ2j − 1

λ2j + 1
, sin(2θ0j ) =

2λj
λ2j + 1

. (4.5)

(4.5) implies that λj = cot θ0j . In particular, we obtain that θ01, . . . , θ
0
n are constant. It follows

from Lemma 3.2 that the angle functions associated with A are given by θj = θ0j − ϕ/2, which
implies that the difference between any two of them is constant. Now assume that A is chosen
as in Example 3.4. Since θ1 + · · · + θn = 0 mod π, we obtain that ϕ is also constant and
λj = cot(θ0j ) = cot(θj + ϕ/2) for j = 1, . . . , n.

Conversely, let f : Mn → Qn be a minimal Lagrangian immersion with constant angle func-
tions associated with some A ∈ A. Since Mn is simply connected, we can take a horizontal

lift f̂ : Mn → V2(Rn+2) of f , which can be written as f̂ = (a + ib)/
√

2 and hence defines two
maps a, b : Mn → Sn+1(1) such that a(p) and b(p) are orthogonal for every p ∈ Mn. For every
constant t ∈ R, there is another horizontal lift of f , namely,

f̂t =
eit√

2
(a+ ib) =

1√
2

(at + ibt), (4.6)

where at = (cos t)a − (sin t)b and bt = (sin t)a + (cos t)b. Now let ξ be a unit normal vector
field to Qn such that A is the shape operator associated with ξ. We can lift the restriction of

ξ to the image of f to a horizontal vector field along the image of f̂ , which can be written as

ξ̂ = eiϕ(a − ib)/
√

2 for some function ϕ : Mn → R. We know from Corollary 3.6 that, for
every vector X tangent to Mn, one has ∇⊥Xξ = 0, where ∇⊥ is the normal connection of Qn in

CPn+1(4). This implies that also ∇⊥X ξ̂ = 0, where ∇⊥ is now the normal connection of V2(Rn+2)

in S2n+3(1). Combining this with the expression for ξ̂ yields that ϕ is constant. If we lift ξ to

the immersion f̂t rather than to f̂ , we obtain

ξ̂t = eitξ̂ =
ei(ϕ+t)√

2
(a− ib) =

ei(ϕ+2t)

√
2

(at − ibt). (4.7)

It follows from (4.6) and (4.7) that

at =
1√
2

(f̂t + e−i(ϕ+2t)ξ̂t), bt = − i√
2

(f̂t − e−i(ϕ+2t)ξ̂t). (4.8)
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Let us investigate when at is an immersion. Let {e1, . . . , en} be an orthonormal frame such that

A(df)ej = cos(2θj)(df)ej − sin(2θj)J(df)ej . Since (dπ)(dξ̂)ej = −A(df)ej , we obtain

(dat)ej =
1√
2

(
(df̂t)ej − e−i(ϕ+2t)

(
cos(2θj)(df̂t)ej − i sin(2θj)(df̂t)ej

))
=

1√
2

(
1− e−i(2θj+ϕ+2t)

)
(df̂t)ej ,

(4.9)

which means that at is an immersion if and only if 2θj + ϕ + 2t is not a multiple of 2π for any
j = 1, . . . , n. Consequently, the equation for at in (4.8) defines an immersion into Sn+1(1) for
every choice of constant t, and hence of c = ϕ/2 + t, satisfying sin(θj + ϕ/2 + t) 6= 0 for any
j = 1, . . . , n. Moreover, bt, as defined by (4.8), must be a unit normal to this hypersurface tangent
to the sphere, since it is perpendicular to at and also to (dat)ej for all j = 1, . . . , n, as can be seen
from (4.9). This means that at is a hypersurface with Gauss map f . By comparing (4.2) and
(4.9), we see that the principal curvatures of this hypersurface are given by λj = cot(θj+ϕ/2+t).
In particular, they are constant and hence at is isoparametric. �

Remark. It follows from Theorem 1.1 that for a given Lagrangian immersion f : Mn → Qn,
which is minimal and, after choosing A as in Example 3.4, has constant angle functions, there
are several isoparametric hypersurfaces of Sn+1(1) with Gauss map f . It follows from the proof
that if a is such a hypersurface, with unit normal b, then at = (cos t)a + (sin t)b will define a
hypersurface with the same Gauss map for any t ∈ R, provided that at is an immersion. Indeed,

if a is
√

2 times the real part of a horizontal lift f̂ , then at is
√

2 times the real part of the

horizontal lift f̂t = eitf̂ . Remark that at is a so-called parallel hypersurface to a in Sn+1(1).

Remark. The formula λj = cot θj appeared before in the theory of isoparametric hypersurfaces,
for example in Münzner’s paper [14]. Theorem 1.1 gives an interpretation for the angles θj .

We can now translate everything that is known about the classification of isoparametric hy-
persurfaces of spheres to the theory of minimal Lagrangian submanifolds of Qn. For example,
we have the following.

Corollary 4.1. Let f : Mn → Qn be a minimal Lagrangian immersion with constant angle func-
tions. If g is the number of different constant angle functions modulo π, then g ∈ {1, 2, 3, 4, 6}.
Moreover,

• if g = 1, then f is the Gauss map of a part of the standard embedding Sn(r)→ Sn+1(1);
• if g = 2, then f is the Gauss map of a part of the standard embedding Sk(r1) ×
Sn−k(r2)→ Sn+1(1);

• if g = 3, then f is the Gauss map of a part of a tube around the standard embedding
RP 2 → S4(1), CP 2 → S7(1), HP 2 → S13(1) or OP 2 → S25(1) (in the first case, the
standard embedding is a Veronese embedding), which are known as Cartan’s isopara-
metric hypersurfaces.

Proof. The first part of the statement follows from Münzner’s theorem [14, 15] on the possible
number of distinct principal curvatures of an isoparametric hypersurface of Sn+1(1). Indeed, we
know from Theorem 1.1 that f is the Gauss map of an isoparametric hypersurface of Sn+1(1) and
that the number of different constant angle functions modulo π equals the number of distinct
principal curvatures of this hypersurface. The second part follows from the classification of
isoparametric hypersurfaces of spheres for g = 1, g = 2 and g = 3, known since the work of
Cartan [1]. �

Remark. The corollary above is only a partial result in the sense that we can translate everything
which is known about the classification of isoparametric hypersurfaces of spheres to minimal
Lagrangian submanifolds of Qn, also for the cases g = 4 and g = 6.
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The following theorem states that the first two examples in Corollary 4.1 are the only totally
geodesic Lagrangian submanifolds of Qn.

Theorem 4.2. Let f : Mn → Qn be a totally geodesic Lagrangian immersion. Then f is the
Gauss map of a part of the standard embedding Sn(r) → Sn+1(1) or Sk(r1) × Sn−k(r2) →
Sn+1(1). In the former case, the metric induced by f gives Mn constant sectional curvature 2.
In the latter case, the metric induced by f does not give Mn constant sectional curvature, unless
k = 1 and n = 2, in which case is makes M2 flat.

Proof. Choose A ∈ A as in Example 3.4. Then it follows from Corollary 3.6 that the one-form s
vanishes on tangent vectors to Mn and hence from (3.9) that all the angle functions are constant.
We then know from Theorem 1.1 that f is the Gauss map of an isoparametric hypersurface of
Sn+1(1) and from Corollary 4.1 that the number of different constant angle functions modulo π
is 1, 2, 3, 4 or 6.

The equation of Codazzi (3.15) for X = ei, Y = ej en Z = ek yields

sin(2(θi − θj))(δjkJei + δikJej) = 0,

which implies that 2θi = 2θj mod π for all indices i and j. This means that there can be at
most two different angle functions modulo π and we obtain the result from Corollary 4.1.

The claims about the sectional curvature follow from (3.16). �

The following theorem states that the first example in Corollary 4.1 describes the only family
of minimal Lagrangian submanifolds of Qn for which all angle functions are equal.

Theorem 4.3. Let f : Mn → Qn be a minimal Lagrangian immersion such that all angle
functions are equal. Then f is the Gauss map of a part of the standard embedding Sn(r) →
Sn+1(1).

Proof. Assume that the angle functions appearing in the statement of the theorem correspond
to A0 ∈ A and choose the almost product structure A ∈ A as in Example 3.4. By Lemma 3.2,
the angle functions corresponding to A are still all equal and, since their sum vanishes modulo
π, they are all constant. By Theorem 1.1, the immersion is the Gauss map of a totally umbilical
hypersurface of Sn+1(1), which proves the theorem. �

The following theorem explicitly describes minimal Lagrangian immersions with constant angle
functions in Q3.

Theorem 4.4. Let f : M3 → Q3 be a minimal Lagrangian immersion and choose A ∈ A as in
Example 3.4. Assume that the corresponding angle functions are constant and denote by g the
number of different constant angle functions modulo π. Then f is one of the following:

(i) f is the Gauss map of a part of the standard embedding S3(r)→ S4(1) if g = 1;
(ii) f is the Gauss map of a part of the standard embedding S1(r1)×S2(r2)→ S4(1) if g = 2;
(iii) f is the Gauss map of a part of one of Cartan’s isoparametric hypersurfaces: a tube

around the Veronese surface in S4(1) if g = 3.

In the third case, the metric induced by f gives M3 constant sectional curvature 1/8.

Proof. Corollary 3.6 and equation (3.9) imply that all components of the second fundamental
form for which at least two indices are the same, vanish. The only possibly non-zero component
of h is thus h312 and we distinguish two cases.

Case 1: h312 = 0. In this case, f is totally geodesic and hence it is the Gauss map of the
standard embedding S3(r)→ S4(1) or S1(r1)× S2(r2)→ S4(1) by Theorem 4.2.

Case 2: h312 6= 0. In this case, it follows from equation (3.10) that the constant angle functions
θ1, θ2 and θ3 are mutually different. It then follows from Corollary 4.1 that f is the Gauss map
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of one of Cartan’s isoparametric hypersurfaces of S4(1). Considering the Je1-component of
the Codazzi equation (3.15) for X = e1 and Y = Z = e2, using (3.10) and some elementary
trigonometric identities, we obtain

(h312)2 = − cos(θ1 − θ2) sin(θ2 − θ3) sin(θ3 − θ1). (4.10)

Similarly, the Je2-component of the Codazzi equation for X = e2 and Y = Z = e3 and the
Je3-component of the Codazzi equation for X = e3 and Y = Z = e1 yield

(h312)2 = − sin(θ1 − θ2) cos(θ2 − θ3) sin(θ3 − θ1), (4.11)

(h312)2 = − sin(θ1 − θ2) sin(θ2 − θ3) cos(θ3 − θ1). (4.12)

Combining equations (4.10)–(4.12), yields {θ1, θ2, θ3} = {0, π/3,−π/3}, as always modulo π, and
hence (h312)2 = 3/8. Finally, from (3.16), we obtain that the sectional curvature of any plane
span{ei, ej} is given by Kij = 2 cos2(θi − θj)− (h312)2 = 1/8. �

5. Minimal Lagrangian submanifolds of Qn with constant sectional curvature

The classifications in Theorem 4.2 and Theorem 4.4 include examples of minimal Lagrangian
submanifolds of Q3 with constant sectional curvature: the Gauss map of a round sphere and the
Gauss map of one of Cartan’s examples. In this section, we prove Theorem 1.2, i.e., we classify all
minimal Lagrangian submanifolds of Qn with constant sectional curvature, for arbitrary n ≥ 2.
This classification can be regarded as a counterpart of the classic result by Ejiri [7] for the case
of complex space form, while the proof is completely different from that in [7].

5.1. General results. We first prove some results which are valid for any dimension n ≥ 2.
This is the key step of the proof of Theorem 1.2.

Lemma 5.1. Let f : Mn → Qn be a Lagrangian submanifold with constant sectional curvature
c. Assume that an almost product structure A = cosϕAη + sinϕJAη ∈ A is fixed on Qn and let
{e1, . . . , en} be a local orthonormal frame on Mn diagonalizing the associated operators B and
C. Denote by θ1, . . . , θn the angle functions as defined above. Then

sin(θi − θj) sin(θi + θj − 2θk)(δk`h(ei, ej) + h`ijJek)

+ sin(θj − θk) sin(θj + θk − 2θi)(δi`h(ej , ek) + h`jkJei)

+ sin(θk − θi) sin(θk + θi − 2θj)(δj`h(ei, ek) + h`ikJej) = 0

(5.1)

for all i, j, k, ` = 1, . . . , n. In particular,

hkii sin(θi − θk) sin(θi + θk − 2θj) = hkjj sin(θj − θk) sin(θj + θk − 2θi), (5.2)

hkij sin(θi − θj) sin(θi + θj − 2θk) = 0 (5.3)

for i, j, k = 1, . . . , n mutually different, and

hkij sin(θi − θj) sin(θi + θj − 2θ`) = 0 (5.4)

for i, j, k, ` = 1, . . . , n mutually different.

Proof. We start by taking the covariant derivative of the Codazzi equation (3.15) along a vector
field W :

(∇2
h)(W,X, Y, Z)− (∇2

h)(W,Y,X,Z) = (∇T )(W,X, Y, Z), (5.5)

where T is the (1, 3)-tensor field taking values in the normal bundle, given by

T (X,Y, Z) = g(CY,Z)JBX − g(CX,Z)JBY − g(BY,Z)JCX + g(BX,Z)JCY (5.6)

for all X, Y and Z tangent to Mn. If we take a cyclic sum of (5.5) over W , X and Y , keeping Z
fixed, we see that the left hand side vanishes. Indeed, using the Ricci identity, denoting by R⊥
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the curvature tensor of the normal connection of Mn in Qn, by R the curvature tensor of Mn

and by c the constant sectional curvature of Mn, we have

cyclic∑
W,X,Y

(
(∇2

h)(W,X, Y, Z)− (∇2
h)(W,Y,X,Z)

)

=

cyclic∑
W,X,Y

(
(∇2

h)(W,X, Y, Z)− (∇2
h)(X,W, Y, Z)

)

=

cyclic∑
W,X,Y

(
R⊥(W,X)h(Y,Z)− h(R(W,X)Y,Z)− h(Y,R(W,X)Z)

)
=

cyclic∑
W,X,Y

(−JR(W,X)Jh(Y, Z)− h(R(W,X)Y, Z)− h(Y,R(W,X)Z))

= −c
cyclic∑
W,X,Y

(g(X, Jh(Y,Z))JW − g(W,Jh(Y, Z))JX + g(X,Y )h(W,Z)

−g(W,Y )h(X,Z) + g(X,Z)h(Y,W )− g(W,Z)h(Y,X))

= 0.

This implies that

cyclic∑
W,X,Y

(∇T )(W,X, Y, Z) = 0. (5.7)

From (5.6), we obtain immediately that

(∇T )(W,X, Y, Z) = g((∇WC)Y,Z)JBX + g(CY,Z)J(∇WB)X

−g((∇WC)X,Z)JBY − g(CX,Z)J(∇WB)Y

−g((∇WB)Y,Z)JCX − g(BY,Z)J(∇WC)X

+g((∇WB)X,Z)JCY + g(BX,Z)J(∇WC)Y,

which, by (3.11) and (3.12), is equivalent to

(∇T )(W,X, Y, Z) = −g(Jh(W,BY ), Z)JBX − g(BJh(W,Y ), Z)JBX

−g(CY,Z)h(W,CX) + g(CY,Z)JCJh(W,X)

+g(Jh(W,BX), Z)JBY + g(BJh(W,X), Z)JBY

+g(CX,Z)h(W,CY )− g(CX,Z)JCJh(W,Y )

−g(Jh(W,CY ), Z)JCX − g(CJh(W,Y ), Z)JCX

−g(BY,Z)h(W,BX) + g(BY,Z)JBJh(W,X)

+g(Jh(W,CX), Z)JCY + g(CJh(W,X), Z)JCY

+g(BX,Z)h(W,BY )− g(BX,Z)JBJh(W,Y ).
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Remark that the terms involving s(W ) cancel two by two. When taking the cyclic sum over W ,
X and Y , the expression simplifies to

cyclic∑
W,X,Y

(∇T )(W,X, Y, Z) =

cyclic∑
W,X,Y

(− g(Jh(W,BY ), Z)JBX − g(CY,Z)h(W,CX)

+ g(Jh(W,BX), Z)JBY + g(CX,Z)h(W,CY )

− g(Jh(W,CY ), Z)JCX − g(BY,Z)h(W,BX)

+ g(Jh(W,CX), Z)JCY + g(BX,Z)h(W,BY )).

(5.8)

By combining (5.7) and (5.8) for W = ei, X = ej , Y = ek and Z = e`, we obtain (5.1).
By taking i, j and k mutually different and ` = k in (5.1), we obtain (5.2), (5.3) and (5.4) up

to renaming the indices. �

Proposition 5.2. Let f : Mn → Qn be a minimal Lagrangian immersion such that Mn has
constant sectional curvature and choose A ∈ A as in Example 3.4. Then the local angle functions
are either all the same or mutually different modulo π. In the former case, the immersion is
totally geodesic and the Gauss map of a part of the standard embedding Sn(r)→ Sn+1(1).

Proof. Assume first that all angle functions are the same modulo π. Then the last part of the
proposition follows from Theorem 4.3.

Now consider the case that at least two angle functions are different modulo π. We have to
prove that this implies that all the angle functions are mutually different modulo π. This is
trivial for n = 2, so we assume from now on that n ≥ 3. Proceeding by contradiction, we assume
that θ1 = · · · = θm mod π for some m ∈ {2, . . . , n− 1} and that θ` 6= θ1 mod π for all ` > m.

Step 1: If X,Y ∈ span{e1, . . . , em} and X ⊥ Y , then h(X,Y ) = 0. After changing the
orthonormal frame {e1, . . . , em} if necessary, we may assume that X is a scalar multiple of e1
and Y is a scalar multiple of e2. It suffices to prove that h`12 = 0 for any ` ∈ {1, . . . , n}. If ` ≤ m,
putting i = `, j = 1 and k = 2 in (3.10), gives h`12 = 0. If ` > m on the other hand, taking i = 1,
j = ` and k = 2 in (5.3), gives h`12 = 0. This proves the claim.

Step 2: If X,Y ∈ span{e1, . . . , em} and ‖X‖ = ‖Y ‖, then h(X,X) = h(Y, Y ). This follows
immediately from Step 1 by noting that X + Y ⊥ X − Y and using the bilinearity and the
symmetry of h.

Step 3: Mn cannot have constant sectional curvature. By using (3.16), Step 1 and Step 2, we
obtain that the sectional curvature of the plane spanned by e1 and e2 satisfies

K12 = 2 + g(h(e1, e1), h(e2, e2))− g(h(e1, e2), h(e1, e2)) = 2 + ‖h(e1, e1)‖2 ≥ 2.

On the other hand, if ` > m, then, again by using (3.16), the sectional curvature of the plane
spanned by e1 and e` satisfies

K1` = 2 cos2(θ1 − θ`) + g(h(e1, e1), h(e`, e`))− g(h(e1, e`), h(e1, e`)) < 2 + g(h(e1, e1), h(e`, e`)).

Remark that the inequality is strict since θ1 6= θ` mod π. It is now sufficient to prove that there
is at least one `0 > m for which g(h(e1, e1), h(e`0 , e`0)) ≤ 0 since, for this particular index `0,
one has K1`0 < 2 and hence K1`0 6= K12. To prove the existence of such an index `0, we remark
that, due to minimality and Step 2,

mh(e1, e1) +

n∑
`=m+1

h(e`, e`) = 0.
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Taking the inner product with h(e1, e1) yields

m ‖h(e1, e1)‖2 +

n∑
`=m+1

g(h(e1, e1), h(e`, e`)) = 0,

which shows that indeed one of the terms in the sum must be non-positive.
This contradiction completes the proof. �

Proposition 5.3. Let f : Mn → Qn be a minimal Lagrangian immersion such that Mn has
constant sectional curvature. If there exist three mutually different indices i, j and k such that
hkij 6= 0, then n = 3 and the immersion is part of the Gauss map of a tube around the Veronese

surface in S4(1).

Proof. Without loss of generality, we assume that h312 6= 0. We will prove that the assumption
n ≥ 4 leads to a contradiction. Remark that, since f is not totally geodesic, it follows from
Proposition 5.2 that all the angle functions are different modulo π. Applying (5.3) for (i, j, k) =
(1, 2, 3), we obtain sin(θ1 + θ2− 2θ3) = 0 and applying (5.4) for (i, j, k, `) = (1, 2, 3, 4), we obtain
sin(θ1 + θ2−2θ4) = 0. By combining these two equations, we find that 2θ3 = 2θ4 mod π. Again
from (5.4), but now for (i, j, k, `) = (1, 3, 2, 4), we obtain sin(θ1 + θ3 − 2θ4) = 0. By combining
this with 2θ3 = 2θ4 mod π, we obtain sin(θ1 − θ3) = 0, and hence θ1 = θ3 mod π, which is a
contradiction. Hence, we obtain that n = 3.

To prove the second part of the theorem, it suffices, in view of Theorem 4.4 and its proof, to
prove that all the angle functions are constant. We choose A ∈ A as in Example 3.4, such that
θ1 + θ2 + θ3 = 0 mod π. By taking (i, j, k) = (1, 2, 3), respectively (i, j, k) = (1, 3, 2), in (5.3)
and using h312 6= 0, we obtain θ1 + θ2 − 2θ3 = 0 mod π, respectively θ1 + θ3 − 2θ2 = 0 mod π.
Combining all three relations for θ1, θ2 and θ3 implies that all three functions are constant. �

5.2. Classification in dimension n = 2. The complex hyperquadric Q2 is isometric to the
product of spheres S2(1/2)×S2(1/2), as can be deduced for example from [2] or [27]. Obviously,
the almost product structure related to this splitting is different from the non-integrable almost
product structures in A. It was proven in [2] that a minimal Lagrangian surface with constant
Gaussian curvature in S2(1) × S2(1) must be totally geodesic. In combination with Theorem
4.2, we obtain the following.

Proposition 5.4. Let f : M2 → Q2 be a minimal Lagrangian immersion such that M2 has
constant Gaussian curvature. Then the immersion is totally geodesic and f is the Gauss map of
the standard embedding S2(r) → S3(1) or S1(r1) × S1(r2) → S3(1). In the first case, M2 has
constant Gaussian curvature 2 and in the second case, M2 is flat.

5.3. Classification in dimension n = 3. The following theorem gives a complete classification
of minimal Lagrangian submanifolds of Q3 with constant sectional curvature.

Proposition 5.5. Let f : M3 → Q3 be a Lagrangian minimal immersion with constant sectional
curvature, then either M3 has constant sectional curvature 2 and f is the Gauss map of a part
of the standard embedding S3(r)→ S4(1), or M3 has constant sectional curvature 1/8 and f is
the Gauss map of a part of a tube around a Veronese surface in S4(1).

Proof. We choose A ∈ A as in Example 3.4, then we have that θ1+θ2+θ3 = 0 mod π. It follows
from Proposition 5.2 that the angle functions are either all equal modulo π or mutually different
modulo π and that, in the former case, we obtain the first case in the proposition. Assume from
now on that all the angle functions θ1, θ2, θ3 are different modulo π.

If h312 6= 0, it follows from Proposition 5.3 that we obtain the Gauss map of a part of a tube
around a Veronese surface in S4(1). We will assume from now on that h312 = 0 and prove that
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no new examples can occur. We denote

x = sin (θ1 − θ2) sin (θ1 + θ2 − 2θ3),

y = sin (θ2 − θ3) sin (θ2 + θ3 − 2θ1),

z = sin (θ3 − θ1) sin (θ3 + θ1 − 2θ2).

By using elementary trigonometric identities, we have that x + y + z = 0. Moreover, (5.2) is
equivalent to

h122x+ h133z = 0, h211x+ h233y = 0, h322y + h311z = 0. (5.9)

We now distinguish three cases.
Case 1: At least two of the local functions x, y and z are identically zero. Since the sum of the

three functions vanishes, we know that all three of them are identically zero. Moreover, since the
local angle functions θ1, θ2 and θ3 are mutually different modulo π, it follows that θ1 + θ2− 2θ3,
θ2 + θ3 − 2θ1 and θ3 + θ1 − 2θ2 are all integer multiples of π. Together with θ1 + θ2 + θ3 = 0
mod π, this implies that the angle functions are all constants that are different modulo π and it
follows from Theorem 4.4 that f is the Gauss map of a part of a tube around a Veronese surface
in S4(1), which contradicts h312 = 0.

Case 2: Exactly one of the local functions x, y and z is identically zero. Without loss of
generality, we may assume that x = 0, Remark that y = −z 6= 0. It follows from (5.9) that
h133 = h233 = 0 and h311 = h322. Since x = 0, we have θ1 + θ2 − 2θ3 = 0 mod π and deriving
this equality, using (3.9), yields hi11 + hi22 − 2hi33 = 0 for all i ∈ {1, 2, 3}. On the other hand,
the minimality condition implies hi11 + hi22 + hi33 = 0, so we obtain hi11 + hi22 = 0 and hi33 = 0
for all i ∈ {1, 2, 3}. Since we already have h312 = h133 = h233 = 0 and h311 = h322, the only
possibly non-zero components of the second fundamental form are h111 = −h122 and h211 = −h222.
By (3.16), the sectional curvatures of the planes spanned by {e1, e2}, {e1, e3} and {e2, e3} are
K12 = cos2(θ1− θ2)− 2(h111)2− 2(h211)2, K13 = cos2(θ1− θ3) and K23 = cos2(θ2− θ3). It follows
from the latter two equalities that θ1−θ3 and θ2−θ3 are constant, and hence, by taking derivatives
using (3.9) and hi33 = 0, that hi11 = 0 and hi22 = 0. We conclude that the submanifold is totally
geodesic, but by comparing K12 and K13, we then see that y = 0, which is a contradiction.

Case 3: None of the local functions x, y and z are identically zero. We work on an open subset
of Mn where none of the functions vanish. It follows from (5.9) and the minimality condition
that there are local functions α1, α2 and α3 on this subset such that

h122 = α1z, h133 = −α1x, h111 = α1(x− z),
h233 = α2x, h211 = −α2y, h222 = α2(y − x),

h311 = α3y, h322 = −α3z, h333 = α3(z − y).

(5.10)

From these equations and (3.9), we obtain expressions for the derivatives of the components of
h in terms of the α1, α2, α3 and their derivatives. Substituting these in the Codazzi equation
(3.15) for (X,Y, Z) = (e1, e2, e3) and using θ1 + θ2 + θ3 = 0 mod π to eliminate θ3, we obtain

e1(α3) =
1

4
α1 α3 csc(2θ1 + θ2)

(
5 cos(2θ1 + θ2)− 7 cos(3θ2) + 2 cos(4θ1 − θ2)

− cos(4θ1 + 5θ2) + cos(6θ1 + 3θ2)
)
,

e2(α3) =
1

4
α2 α3 csc(θ1 + 2θ2)

(
5 cos(θ1 + 2θ2)− 7 cos(3θ1) + 2 cos(θ1 − 4θ2)

− cos(5θ1 + 4θ2) + cos(3θ1 + 6θ2)
)
.
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Similarly, for (X,Y, Z) = (e2, e3, e1) we obtain

e2(α1) = −1

4
α1 α2 csc(θ1 − θ2)

(
5 cos(θ1 − θ2)− 7 cos(3θ1 + 3θ2) + 2 cos(θ1 + 5θ2)

− cos(5θ1 + θ2) + cos(3θ1 − 3θ2)
)
,

e3(α1) = −1

4
α1 α3 csc(2θ1 + θ2)

(
5 cos(2θ1 + θ2)− 7 cos(3θ2) + 2 cos(4θ1 + 5θ2)

− cos(4θ1 − θ2) + cos(6θ1 + 3θ2)
)

and for (X,Y, Z) = (e3, e1, e2) we obtain

e1(α2) =
1

4
α1 α2 csc(θ1 − θ2)

(
5 cos(θ1 − θ2)− 7 cos(3θ1 + 3θ2) + 2 cos(5θ1 + θ2)

− cos(θ1 + 5θ2) + cos(3θ1 − 3θ2)
)
,

e3(α2) = −1

4
α2 α3 csc(θ1 + 2θ2)

(
5 cos(θ1 + 2θ2)− 7 cos(3θ1) + 2 cos(5θ1 + 4θ2)

− cos(θ1 − 4θ2) + cos(3θ1 + 6θ2)
)
.

Note that we are in the case xyz 6= 0, using these expressions above for the derivatives of α1, α2

and α3, the Je1-component of the Codazzi equation for (X,Y, Z) = (e2, e1, e1) yields α1α2 = 0,
the Je2-component of the Codazzi equation for (X,Y, Z) = (e3, e2, e2) yields α2α3 = 0 and the
Je3-component of the Codazzi equation for (X,Y, Z) = (e1, e3, e3) yields α1α3 = 0. This implies
that at least two of the functions {α1, α2, α3} vanish identically. Because of the symmetry of the
problem, we may assume without loss of generality that α1 = α2 = 0.

The Je2-component of the Codazzi equation for (X,Y, Z) = (e1, e2, e1) then gives

α2
3 = −2 csc(3θ1) csc(3θ2) cos(θ1 − θ2), (5.11)

whereas the Je1-component of the Codazzi equation for (X,Y, Z) = (e3, e1, e3) gives

e3(α3) =
1

16
csc(3θ1) csc(θ1 + 2θ2) csc(2θ1 + θ2)[−32 sin2(2θ1 + θ2) cos(2θ1 + θ2)

− α2
3[15 cos(2θ1 + θ2)− cos(8θ1 + 7θ2) + cos(8θ1 + θ2) + 4 cos(6θ1 + 3θ2)

− cos(10θ1 + 5θ2) + 4 cos(6θ1 − 3θ2)− 16 cos(4θ1 − θ2) + cos(2θ1 − 5θ2)

− 8 cos(3θ2) + cos(2θ1 + 7θ2)]].

(5.12)

Substituting (5.11) and (5.12) in the Codazzi equation for (X,Y, Z) = (e3, e2, e3) gives

− 5 cos(θ1 − θ2) + 2 cos(3(θ1 − θ2)) + (1 + 2 cos(2(θ1 − θ2))) cos(3(θ1 + θ2)) = 0. (5.13)

On the other hand, the difference between the Gauss equations for (X,Y, Z,W ) = (e1, e2, e2, e1)
and (X,Y, Z,W ) = (e1, e3, e3, e1) gives the following equation for α3.

1 + α2
3

(
cos(2(θ1 − θ2))− cos(θ1 − θ2) cos(3(θ1 + θ2)

)
= 0. (5.14)

Substituting (5.11) in (5.14), we obtain

− 2 cos(θ1 − θ2)− cos(3(θ1 − θ2)) + (1 + 2 cos(2(θ1 − θ2))) cos(3(θ1 + θ2)) = 0. (5.15)

By combining (5.13) and (5.15), we obtain that all angle functions are constant. Since they are
mutually different modulo π, it follows from Theorem 4.4 that f , restricted to the open subset
of Mn on which we are working, is the Gauss map of a part of a tube around a Veronese surface
in S4(1), which contradicts h312 = 0. �
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5.4. Classification in dimension n = 4. The following proposition shows that, for n = 4,
no new examples of minimal Lagrangian submanifolds of Q4 with constant sectional curvature
occur.

Proposition 5.6. Let f : M4 → Q4 be a minimal Lagrangian immersion such that M4 has
constant sectional curvature. Then M4 has constant sectional curvature 2 and f is the Gauss
map of the standard embedding S4(r)→ S5(1).

Proof. Choose A ∈ A as in Example 3.4. By Theorem 4.2, it suffices to show that f is a totally
geodesic immersion. We know from Proposition 5.3 that hkij = 0 for all mutually different indices

i, j and k, so we only have to show that hijj = 0 for all i, j ∈ {1, 2, 3, 4}. We will proceed by
contradiction and distinguish three cases.

Case 1: There are at least three different indices i for which hi11, hi22, hi33 and hi44 are not all
zero. Without loss of generality we may assume that these three indices are 1, 2 and 3. Remark
that if hiii 6= 0, there exists also an index j 6= i such that hijj 6= 0 due to minimality. For every
i ∈ {1, 2, 3} we consider the following system of equations coming from (5.2):

sin(θj − θi) sin(θj + θi − 2θk)hijj − sin(θk − θi) sin(θk + θi − 2θj)h
i
kk = 0,

sin(θk − θi) sin(θk + θi − 2θ`)h
i
kk − sin(θ` − θi) sin(θ` + θi − 2θk)hi`` = 0,

sin(θ` − θi) sin(θ` + θi − 2θj)h
i
`` − sin(θj − θi) sin(θj + θi − 2θ`)h

i
jj = 0,

(5.16)

where {j, k, `} = {1, 2, 3, 4} \ {i}. By our assumption, the determinant of this system of linear
equations in hijj , h

i
kk and hi`` must vanish. A straightforward computation shows that this

determinant is

2 sin(θj − θi) sin(θk − θi) sin(θ` − θi) sin(θk − θj) sin(θ` − θj) sin(θ` − θk)

(cos(θi + θj − θk − θ`) + cos(θi − θj + θk − θ`) + cos(θi − θj − θk + θ`)). (5.17)

Since all angle functions are different modulo π by Proposition 5.2, we obtain

cos(θi + θj − θk − θ`) + cos(θi − θj + θk − θ`) + cos(θi − θj − θk + θ`) = 0. (5.18)

Taking the derivative of (5.18) in the direction of ei, using (3.9), Corollary 3.6, the minimality
condition and some elementary trigonometric identities, yields

sin(θi−θj) cos(θk−θ`)hijj +sin(θi−θk) cos(θj−θ`)hikk +sin(θi−θ`) cos(θj−θk)hi`` = 0. (5.19)

This is another linear equation in hijj , h
i
kk and hi`` and the determinant of the system formed by

any two equations from (5.16) and (5.19) must be zero. We will denote the determinant of (5.19)
and the first two equations from (5.16) (which both involve hikk) by ∆i

kk. A straightforward
computation shows that the equations

(∆1
33 + ∆1

44)/(sin (θ1 − θ3) sin (θ1 − θ4)) + (∆2
33 + ∆2

44)/(sin (θ2 − θ3) sin (θ2 − θ4)) = 0,

(∆2
11 + ∆2

44)/(sin (θ2 − θ1) sin (θ2 − θ4)) + (∆3
11 + ∆3

44)/(sin (θ3 − θ1) sin (θ3 − θ4)) = 0,

(∆3
22 + ∆3

44)/(sin (θ3 − θ2) sin (θ3 − θ4)) + (∆1
22 + ∆1

44)/(sin (θ1 − θ2) sin (θ1 − θ4)) = 0,

are equivalent to

sin(θ1 + θ2 − θ3 − θ4)(cos(θ4 − θ3) + cos(3(θ4 − θ3))) = 0,

sin(θ2 + θ3 − θ1 − θ4)(cos(θ4 − θ1) + cos(3(θ4 − θ1))) = 0, (5.20)

sin(θ3 + θ1 − θ2 − θ4)(cos(θ4 − θ2) + cos(3(θ4 − θ2))) = 0,

respectively. We distinguish two subcases.
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Case 1.1: sin(θ1 + θ2 − θ3 − θ4) sin(θ2 + θ3 − θ1 − θ4) sin(θ3 + θ1 − θ2 − θ4) = 0. Assume that
sin(θ1 + θ2− θ3− θ4) = 0, the other two cases are analogous. Together with θ1 + θ2 + θ3 + θ4 = 0
mod π, we obtain θ1 + θ2 = 0 mod π and θ3 + θ4 = 0 mod π, so that (5.18) is equivalent to

1 + 2 cos(2θ1) cos(2θ3) = 0. (5.21)

Deriving θ3 + θ4 = 0 mod π in the direction of e1 gives h133 + h144 = 0, so it follows from the
equation involving h133 and h144 in (5.16) for i = 1 that (cos(2θ1) cos(2θ3) − cos(4θ3))h133 = 0,
which, in combination with (5.21), yields (1 + 2 cos(4θ3))h133 = 0.

If 1 + 2 cos(4θ3) = 0, it follows from (5.21), θ1 + θ2 = 0 mod π and θ3 + θ4 = 0 mod π that
all local angle functions are constant. But from (3.9) we then obtain that all hijj are zero, which
contradicts the assumption that we made for Case 1.

If, on the other hand, h133 = 0, and hence also h144 = 0, the assumption for Case 1 yields h122 6= 0
and the equations involving h122 in (5.16) for i = 1 become sin(θ1+θ2−2θ3) = sin(θ1+θ2−2θ4) = 0.
Since θ1 + θ2 = 0 mod π and θ3 + θ4 = 0 mod π, both equations reduce to sin(2θ3) = 0. Again,
from (5.21), θ1 + θ2 = 0 mod π and θ3 + θ4 = 0 mod π, we obtain that all local angle functions
are constant, which is a contradiction.

Case 1.2: sin(θ1 + θ2 − θ3 − θ4) sin(θ2 + θ3 − θ1 − θ4) sin(θ3 + θ1 − θ2 − θ4) 6= 0. It follows
from (5.20) that there exist k1, k2, k3 ∈ Z \ 4Z such that θ1 = θ4 + k1π/4, θ2 = θ4 + k2π/4 and
θ3 = θ4 + k3π/4. By combining this with θ1 + θ2 + θ3 + θ4 = 0 mod π we obtain that all local
angle functions are constant, which is a contradiction as before.

Case 2: There are exactly two different indices i for which hi11, hi22, hi33 and hi44 are not all
zero. Without loss of generality, we may assume that these indices are 1 and 2. As before, we can
then obtain the first equation of (5.20). If sin(θ1 + θ2 − θ3 − θ4) = 0, we proceed as in Case 1.1
to obtain a contradiction. If cos(θ4 − θ3) + cos(3(θ4 − θ3)) = 0, then θ4 = θ3 + kπ/4 for some
k ∈ Z \ 4Z. Deriving this equation in the direction of ei gives hi33 = hi44 for all i ∈ {1, 2, 3, 4}
and the equations involving h133 and h144 in (5.16) for i = 1, respectively h233 and h244 in (5.16)
for i = 2, reduce to

sin(2θ3 − 2θ1 + kπ/4)h133 = 0,

sin(2θ3 − 2θ2 + kπ/4)h233 = 0.
(5.22)

We again distinguish two subcases.

Case 2.1: sin(2θ3−2θ1+kπ/4) sin(2θ3−2θ2+kπ/4) = 0. Assume that sin(2θ3−2θ1+kπ/4) = 0,
the other case is analogous. Then θ3 = θ1 − kπ/8 + `π/2, and hence θ4 = θ1 + kπ/8 + `π/2,
for some ` ∈ Z and k ∈ Z \ 4Z. Equation (5.18) is equivalent to cos(θ2 − θ1) = 0, such that
θ2 = θ1 + π/2 +mπ for some m ∈ Z. This means that all local angle functions can be written as
θ1 plus a constant and it follows from θ1 + θ2 + θ3 + θ4 = 0 mod π that they are all constant,
which gives the desired contradiction.

Case 2.2: sin(2θ3 − 2θ1 + kπ/4) sin(2θ3 − 2θ2 + kπ/4) 6= 0. It then follows from (5.22) that
h133 = h233 = 0 and hence also h144 = h244 = 0. By the assumption that we made for Case 2,
h122 6= 0. From the equations involving h122 in (5.16) for i = 1 we have sin(θ1 + θ2 − 2θ3) =
sin(θ1 + θ2 − 2θ4) = 0. If k is odd, this is a contradiction. If k is even, we can conclude from
sin(θ1 + θ2 − 2θ3) = 0, θ4 = θ3 + kπ/4 and θ1 + θ2 + θ3 + θ4 = 0 mod π that θ1 + θ2, θ3 and θ4
are constant. To finish the proof in this case, we compute the sectional curvature of the plane
spanned by e1 and e3 using (3.16). Since h133 = h233 = h311 = h411 = h312 = h413 = 0, we obtain
c = K13 = 2 cos2(θ3− θ1). Again, we see that all the local angle functions are constant, which is
a contradiction.

Case 3: There is exactly one index i for which hi11, hi22, hi33 and hi44 are not all zero. Without
loss of generality, we may assume that i = 1 and hence h2jj = h3jj = h4jj = 0 for all j. Denote



20 HAIZHONG LI, HUI MA, JOERI VAN DER VEKEN, LUC VRANCKEN, AND XIANFENG WANG

by c the constant sectional curvature of Mn. A straightforward computation of the sectional
curvatures using the definition of the curvature tensor and (3.10) gives

c = K23 = −h122h133 cot(θ2 − θ1) cot(θ3 − θ1),

c = K24 = −h122h144 cot(θ2 − θ1) cot(θ4 − θ1), (5.23)

c = K34 = −h133h144 cot(θ3 − θ1) cot(θ4 − θ1).

On the other hand, from (3.16), it follows that

c = K23 = 2 cos2(θ3 − θ2) + h122h
1
33,

c = K24 = 2 cos2(θ4 − θ2) + h122h
1
44, (5.24)

c = K34 = 2 cos2(θ4 − θ3) + h133h
1
44.

Remark that, for a fixed i ∈ {1, 2, 3, 4}, at most one of the functions cos(θi − θj), with
j ∈ {1, 2, 3, 4} \ {i}, can be zero since all the local angle functions are mutually different modulo
π by Proposition 5.2. In particular, this implies that c 6= 0. Indeed, for c = 0, (5.23) would imply
that h1jj = 0 for at least one j ∈ {2, 3, 4} and then (5.24) would imply that at least two of the
functions cos(θ3 − θ2), cos(θ4 − θ3) and cos(θ4 − θ2) are zero, which is impossible. As c 6= 0, we
obtain from (5.23) that d := h122 cot(θ2 − θ1) = h133 cot(θ3 − θ1) = h144 cot(θ4 − θ1) is a constant
satisfying c = −d2.

Without loss of generality, we will assume from now on that cos(θ3 − θ2) cos(θ4 − θ2) 6= 0.
From c 6= 0 and (5.23), we have that none of the functions cos(θj − θ1) with j ∈ {2, 3, 4} is zero.
When putting h1jj = d/ cot(θj − θ1) in the first two equations of (5.24), using the assumption
cos(θ3 − θ2) cos(θ4 − θ2) 6= 0, we obtain

c = 2 cos(θ3 − θ2) cos(θ2 − θ1) cos(θ3 − θ1),

c = 2 cos(θ4 − θ2) cos(θ2 − θ1) cos(θ4 − θ1),

from which we get that cos(θ3 − θ2) cos(θ3 − θ1) = cos(θ4 − θ2) cos(θ4 − θ1) or, equivalently,
sin(θ1 + θ2 − θ3 − θ4) = 0. We can now proceed as in Case 1.1 to obtain a contradiction. �

5.5. Classification in dimension n ≥ 5. The following proposition shows that, also for n ≥ 5,
no new examples of minimal Lagrangian submanifolds of Qn with constant sectional curvature
occur.

Proposition 5.7. For n ≥ 5, let f : Mn → Qn be a minimal Lagrangian immersion such that
Mn has constant sectional curvature. Then Mn has constant sectional curvature 2 and f is the
Gauss map of the standard embedding Sn(r)→ Sn+1(1).

Proof. Choose A ∈ A as in Example 3.4. By Proposition 5.2, we know that the angle functions
are either all the same modulo π or all mutually different modulo π and that in the former case,
the immersion is totally geodesic. Hence, assume that all angle functions are mutually different
modulo π. We know from Proposition 5.3 that all components hkij of the second fundamen-
tal form, where i, j and k are mutually different, vanish. Hence, it suffices to show that the
components of the second fundamental form for which at least two indices are the same also
vanish.

Step 1: For any fixed i, if there exists a j 6= i such that hijj = 0, then hijj = 0 for all j.

Without loss of generality, we assume that i = 1 and j = 2, so h122 = 0. We will prove the claim
by contradiction, so suppose that h1jj 6= 0 for some j. Remark that if h111 6= 0, there will be a

j 6= 1, 2 for which h1jj 6= 0. Indeed, this follows from the fact that h111 +h122 +h133 + · · ·+h1nn = 0

due to minimality. For simplicity, we can hence assume that h133 6= 0. From (5.2) for i ≥ 3, j = 2
and k = 1, we obtain h1ii sin(θi + θ1 − 2θ2) = 0. For i = 3, this implies that θ3 + θ1 − 2θ2 = 0
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mod π and for i ≥ 4, this implies that h144 = h155 = · · ·h1nn = 0, since all the angle functions are
mutually different modulo π. A similar argument, but now for j = 4, respectively j = 5, instead
of j = 2, yields θ3 + θ1 − 2θ4 = 0 mod π, respectively θ3 + θ1 − 2θ5 = 0 mod π. Summarizing
the relations between the angle functions, we have that 2θ2, 2θ4 and 2θ5 are all equal to θ1 + θ3
modulo π. This means that at least two of the angle functions θ2, θ4 and θ5 must be equal
modulo π, which is a contradiction.

Step 2. For any fixed i, there exists a j 6= i such that hijj = 0. It follows from (5.2) that for any

choice of mutually different indices j, k and `, all different from i, the variables hijj , h
i
kk and hi``

satisfy the system (5.16). It suffices to show that for some choice of j, k and `, the determinant
of this system is non zero. Indeed, this will imply that for that particular choice of j, k and `, one
has hijj = hikk = hi`` = 0. The determinant of the system is given by (5.17) and it is clear that
the only factor which could possibly be zero is the last one. We assume that this factor is zero
for all choices of mutually different j, k and `, different from i, and we will prove a contradiction.
Define the function f1(θ) := cos(θi + θj − θk − θ) + cos(θi − θj + θk − θ) + cos(θi − θj − θk + θ).
Since it satisfies the differential equation f ′′1 + f1 = 0, we can write it as f(θ) = a1 sin(θ+ b1) for
some constants a1 and b1 depending on θi, θj and θk. By our assumption, f1(θ) = 0 for at least
two values of θ which are different modulo π. This implies that a1 = 0 and hence that f1 = 0
identically. In particular, f1(0) = cos(θi + θj − θk) + cos(θi − θj + θk) + cos(θi − θj − θk) = 0
for all mutually different j and k, different from i. We can basically repeat the same argument
by defining the function f2(θ) := cos(θi + θj − θ) + cos(θi − θj + θ) + cos(θi − θj − θ). Since
f ′′2 + f2 = 0, we have f2(θ) = a2 sin(θ+ b2) for some constants a2 and b2 depending on θi and θj .
Since f2(θ) = 0 for at least two values of θ which are different modulo π, we conclude that a2 = 0
and hence f2 = 0 identically. Since f2(θ) = (cos(θi + θj) + 2 cos(θi− θj)) cos θ+ sin(θi + θj) sin θ,
we obtain that sin(θi + θj) = 0 for all j different from i modulo π. This implies that all angles
θj , with j 6= i, are equal modulo π, a contradiction. �

5.6. Proof of Theorem 1.2. Combining the results in Sections 5.2-5.5, we obtain the classifi-
cation result in Theorem 1.2.

6. Minimal Lagrangian submanifolds of Qn with n− 1 equal angle functions

In this section, we give a classification theorem for minimal Lagrangian submanifolds of Qn

with n− 1 equal angle functions.

Theorem 6.1. Let f : Mn → Qn (n ≥ 3) be a minimal Lagrangian submanifold for which n− 1
local angle functions are the same. If A ∈ A is chosen as in Example 3.4, then θ1 = (n − 1)α
mod π and θ2 = · · · = θn = −α mod π for some local function α.

(i) If α = 0 mod π, then f is the Gauss map of a part of the standard embedding Sn(r)→
Sn+1(1).

(ii) If α is a non-zero constant modulo π, then f is the Gauss map of a part of the standard
embedding S1(r1)× Sn−1(r2)→ Sn+1(1).

(iii) If α is not a constant modulo π, then Mn must be a warped product I ×ρ Sn−1(1) with

ρ(α) = |c1(sinnα)−
1
n | for some positive constant c1, and the angle function α satisfies

the following first order ordinary differential equation:

(c1(sin(nα))−
1
n )2(2 + (

dα

ds
)2(sinnα)−2) = 1, (6.1)

where d
ds = e1 is the tangent vector on the base I of the warped product I ×ρ Sn−1(1).

Moreover, f is locally isometric to the Gauss map of a rotational hypersurface of Sn+1(1)
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with the profile curve γ(θ) ⊂ S2(1) given by

γ(θ) =
(
− sinα

√
1− (

dα

dθ
)2, cosα sin θ − sinα cos θ

dα

dθ
,− cosα cos θ − sinα sin θ

dα

dθ

)
, (6.2)

where α is the angle function and satisfies the following second order ordinary differential
equation:

d2α

dθ2
= (1− (

dα

dθ
)2) cot (nα), |dα

dθ
| < 1. (6.3)

Proof. We use the same notations as in Section 3. Case (i) and Case (ii) follow immediately from
Corollary 4.1. In the following, we assume that α is not a constant modulo π. We first show
that Mn must be a warped product I ×ρ Sn−1(1) with ρ(α) = |c1(sinnα)−

1
n | for some positive

constant c1, and the angle function α satisfies the first order ordinary differential equation (6.1).
First, as θ1 = (n − 1)α mod π and θ2 = · · · = θn = −α mod π, we obtain that the one-form
s vanishes on TMn from Corollary 3.6. It follows from (3.10) that hkij = 0 for any i and any
mutually different j, k ∈ {2, . . . , n}. Using (3.9), for any i ∈ {2, . . . , n}, as n ≥ 3, we have that
hiii = ei(θi) = ei(θk) = hikk = 0 and hi11 = ei(θ1) = −(n − 1)ei(θk) = −(n − 1)hikk = 0 for any
k ∈ {2, . . . , n}, different from i. Therefore, we obtain that the only non-zero components of the
second fundamental form are h111 = (n − 1)e1(α) and h122 = · · · = h1nn = −e1(α) and ek(α) = 0
for any k ∈ {2, . . . , n}.

By applying (3.10) again, we obtain g(∇e1e1, ek) = ωk1 (e1) = 0 for any k ∈ {2, . . . , n},
which means that the distribution spanned by e1 is autoparallel. We also have g(∇ekej , e1) =
ω1
j (ek) = − cot (nα)h1jk = cot (nα)e1(α)δjk for any mutually different j, k ∈ {2, . . . , n}, and since

ek(α) = 0 for any k ∈ {2, . . . , n}, we obtain that the distribution spanned by {e2, . . . , en} is
spherical. Hence, by applying a theorem of Hiepko [9] (see also a general result in [16]), we
conclude that Mn is a warped product I ×ρ Nn−1 and the warping function ρ satisfies that
e1(ρ)
ρ = − cot (nα)e1(α). Hence, ρ = |c1(sinnα)−

1
n | for some positive constant c1.

We can further show that Nn−1 has positive constant sectional curvature. In fact, the sectional
curvature KN of the plane spanned by ej and ek, for mutually different j, k ∈ {2, . . . , n}, can be
calculated as follows:

KN
jk = ρ2(Kjk + (

e1(ρ)

ρ
)2)

= ρ2(2 cos2 (θj − θk) + e1(θj)e1(θk) + (
e1(ρ)

ρ
)2)

= ρ2(2 + e21(α) + (− cot (nα)e1(α))2)

= (c1(sin(nα))−
1
n )2(2 + e21(α)(sinnα)−2),

(6.4)

where we used (3.16) in the second equality. For any k ∈ {2, . . . , n}, by considering the Jek-
component of the Codazzi equation for (X,Y, Z) = (ek, e1, e1), we get that

e1(e1(α))− (n+ 1) cot (nα)(e1(α))2 − sin (2nα) = 0. (6.5)

We take the derivative of KN
jk with respect to e1 and obtain that

e1(KN
jk) = 2c21(sin(nα))−

2
n−2e1(α)

(
e1(e1(α))− (n+ 1) cot (nα)(e1(α))2 − sin (2nα)

)
= 0,

which means that Nn−1 has constant sectional curvature c0. From the expression (6.4), we know
that c0 is a positive constant and we can always choose c1 such that c0 = 1. Therefore, we have
proved that Mn is a warped product I ×ρ Sn−1(1) with ρ(α) = |c1(sinnα)−

1
n | for some positive

constant c1, and the angle function α satisfies the first order ordinary differential equation (6.1).
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Secondly, we show that f is locally isometric to the Gauss map of a rotational hypersurface
of Sn+1(1) with the profile curve γ(θ) ⊂ S2(1) given by (6.2). As θ1 = (n − 1)α mod π and
θ2 = · · · = θn = −α mod π, from the proof of Theorem 1.1, we know that M is the Gauss map
of a hypersurface of Sn+1(1) with principal curvatures given by

λ1 = cot (θ1) = cot ((n− 1)α) 6= λ2 = · · · = λn = cot (θ2) = − cot (α), (6.6)

which immediately implies that M is the Gauss map of a rotational hypersurface of Sn+1(1) by
applying a theorem of do Carmo and Dajczer (see Theorem 4.2 in [6]). In order to finish the proof
of Case (iii), we only need to check that the principal curvatures of a rotational hypersurface of
Sn+1(1) with the profile curve γ(θ) ⊂ S2(1) given by (6.2) and α satisfying (6.3) are the same
as that in (6.6). This can be verified straightforwardly by applying the formulas of the principal
curvatures computed in [10], we omit the details here.

Finally, we note that the differential equation (6.3) is equivalent to (6.5). If we define a

new parameter s by ds
dθ = − 1√

2

√
1− (dαdθ )2(sin (nα))−1, then α satisfies the following differential

equation with respect to the new parameter s:

d2α

ds2
− (n+ 1) cot (nα)(

dα

ds
)2 − sin (2nα) = 0. (6.7)

We can also calculate the length of d
ds directly by using the induced metric of the Gauss map

and find that d
ds is a unit vector. Hence, d

ds = ±e1, which implies the equivalence of (6.3) and
(6.5). This completes the proof of Case (iii). �
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