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Abstract

In this paper, we deal with the two-scenario max–min knapsack (MNK) problem. First, we consider several
formulations of MNK as a mixed integer programming problem. Then, we propose a hybrid method as
an alternative to solve the MNK exactly. The approach combines relaxation technique and the temporary
setting of variables to improve iteratively two sequences of upper and lower bounds. More precisely, pseudo-
cuts are added to the problem to strengthen the bounds and reduce the gap between the best lower bound
and the best upper bound. The algorithm stops when the proof of the optimality of the best solution is
found. We also use a reduction technique to set some variables definitively at their optimal values. Numerical
experiments demonstrate the robustness of the approach. In particular, our algorithm is efficient to solve large
and correlated instances of MNK.

Keywords: Knapsack problem; max–min optimization; relaxation; mixed integer programming hybrid method

1. Introduction

The family of knapsack problems (KPs) is varied and includes numerous problems that are much
studied in operations research and combinatorial optimization communities. KP is a well-known
combinatorial optimization problem (Kellerer et al., 2004). From a set of N items, each characterized
by an integer nonnegative weight and an integer nonnegative profit, the aim of the 0–1 KP is to select
a subset of N such that the associated total profit is maximized and the associated total weight does
not exceed a given knapsack capacity. KP can be formulated as the following 0–1 linear program:

(KP) → max

⎧⎨
⎩

∑
j∈N

c jx j :
∑
j∈N

ajx j ≤ b, xj ∈ {0, 1}, j ∈ N

⎫⎬
⎭ ,
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where n = |N| is the number of items, cj and aj refer to the profit and the weight of item j ∈ N,
respectively, and b is the capacity of the knapsack. Although the KP has a natural and simple
formulation, it remains a challenge because of its complexity as it is a nondeterministic polynomial
time NP-hard problem (Garey and Johnson, 1979). KP has been studied extensively by the opera-
tional research community, in particular because of its applications such as cutting stock (Gilmore
and Gomory, 1966) or capital budgeting (Lorie and Savage, 1955), among others. Based on the
dynamic programming, branch-and-bound, or the core concept for instance, several efficient exact
and heuristic approaches can be found in the literature (Balas and Zemel, 1980; Martello and Toth,
1990; Pisinger, 1995a; Toth, 1980). Many other problems can be derived from KP by integrating
other constraints and/or changing the objective function. For instance, the multidimensional KP
(Boussier et al., 2010; Fréville, 2004; Fréville and Hanafi, 2005; Wilbaut et al., 2008) is obtained
from the KP when considering more than one resource constraint, whereas the multiple-choice
(multidimensional) KP introduces a partition of the items and choice constraints associated to each
group (or class) of items (Cherfi and Hifi, 2009; Kellerer et al., 2004; Pisinger, 1995b).

Max–min multiscenarios KP (MNK) is a particular case in which items’ profit changes according
to a set S of scenarios. As in KP, we have to choose a subset of items under a capacity constraint.
However, in the case of MNK the choice of items is made so that the minimum value of the s = |S|
objective linear functions associated to items is maximized. In this paper, we address particularly
the case where s = 2 that corresponds to the two-scenario max–min KP (Eben-Chaime, 1996; Yu,
1996). This problem can be formulated in the following form:

(MNK ) → max { min {c1x,c2x} :ax ≤ b,x ∈ {0, 1}n

where c1 and c2 represent the two profit vectors of the n items, a is the weight vector of the n
items, and b represents the total capacity of the knapsack. Binary variable xj is the decision variable
that takes the value 1 if item j is selected and 0 otherwise for j = 1, 2, . . . , n. We assume that all
components c1

j, c2
j, aj of associated input vector and the capacity b are nonnegative integer.

MNK is related to the particular “max–min optimization” approach of multiobjective optimiza-
tion in which we look only for a solution maximizing the minimum profit value (Du and Pardalos,
1995; Aissi, 2005; Roy, 2010). Such approach is also referred to as the robust optimization in the
literature (Yu, 1996). MNK can be reduced to KP when we consider only one objective function,
implying MNK is NP-hard. In addition, MNK is strongly NP-hard when the number of scenarios
is unbounded (Yu, 1996).

We found some papers in the literature dealing with the exact solution of MNK when s > 2.
First, four branch-and-bound-based algorithms were proposed (Iida, 1999; Kouvelis and Yu, 1997;
Yu, 1996; Amrani, 1997). In all the cases, authors use the surrogate relaxation of MNK to derive
both upper and lower bounds. Iida also proposed the use of a Lagrangian relaxation to obtain
other bounds. According to experiments reported in these papers, the algorithms were able to solve
instances with n ≤ 90 items, and s ≤ 30 scenarios. Then, Taniguchi et al. (2008) proposed the use
of a pegging test to reduce the size of the problem instance by setting variables at their optimal
values in a first phase, and to optimally solve the remaining MNK using again a branch-and-bound
approach in a second phase. According to their conclusions, the algorithm is able to solve optimally
instances with up to 1000 items and 30 scenarios. Finally, another recent paper (Sbihi, 2010) presents
a heuristic approach to tackle larger instances. The approach is a cooperative local-search-based
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algorithm, which combines a greedy heuristic to build an initial solution, a restricted guided local
search, and a very large local search. The cooperative local search controls the algorithm, using the
previous subroutines to intensify and diversify the search. The algorithm is validated on instances
with up to 10,000 items and 100 scenarios.

MNK with two scenarios has been studied by Taniguchi et al. (2009). It is an additional paper to
Taniguchi et al. (2008), in which the authors introduce a specific technique to solve more efficiently
the case with s = 2. The main difference lies in the use of a virtual pegging test allowing the fixing
process to be improved and hence the size of the search tree of the branch-and-bound method to be
limited. The method is based on the estimation of a lower bound of the problem as close as possible
to the optimal value of the problem. If the algorithm does not find a solution corresponding to this
bound in the current iteration, the value of the lower bound decreases, and the value used previously
can serve as an upper bound. Experiments reported in the paper showed that this algorithm is very
efficient for weakly correlated instances for which it can set a large number of variables in the first
phase.

In this paper, we are interested in MNK with s = 2, and we propose an alternative approach
to the one of Taniguchi et al. (2009) based on a similar philosophy: apply a heuristic to set as
many variables of the initial problem as possible, and then solve the remaining problem with an
exact method. The first phase also contributes to the solution of the MNK by reducing the gap
between the lower and upper bounds. Contributions of our work can be summed up as following:
(a) we propose several equivalent mixed integer linear program (MIP) formulations of MNK and
compare these formulations when they are used in CPLEX MIP solver; (b) we propose another new
hybrid approach allowing the setting of a large number of variables in the problem. This method
can also be used as a convergent method, and so as an exact method to solve the initial problem.
We strengthen it with the addition of cuts during the search. Our approach allows the reduction of
large size instances (up to n = 20,000).

The rest of the paper is organized as follows. In Section 2, we present several models equivalent
to MNK that will be evaluated and compared in our numerical experiments. Section 3 describes
a surrogate heuristic to generate a feasible solution of MNK. Section 4 is devoted to the presen-
tation of our method to reduce the initial problem by setting variables at their optimal values,
and also to generate good lower and upper bound values. Section 5 presents a detailed analy-
sis of the experiments performed to validate the approach on a set of 900 large and correlated
instances.

2. Equivalent MIP formulations

In this section, we propose several alternative and equivalent formulations for MNK. In the rest of
the paper, we consider the special case with s = 2. The most used equivalent formulation for the
MNK in the literature is the reformulation as an MIP. This reformulation is obtained by introducing
a new continuous variable z representing the minimum value between the two objective functions (i.e.
min{c1x, c2x}). The use of this continuous variable allows the writing of MNK as a mono-objective
mixed integer linear program

C© 2012 The Authors.
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(MIP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max z

s.t.

z ≤ c1x (1a)

z ≤ c2x (1b)

ax ≤ b (1c)

x ∈ {0, 1}n z ≥ 0.

In the (MIP) problem, we maximize the lower bound z on the two objective functions c1x and
c2x, which is equal to the minimum of c1x and c2x at the optimality. In the following, the resulting
MIP formulation for the problem MNK will be referred to as the standard MIP formulation. The
standard MIP formulation has n binary variables, one continuous variable, and three constraints.
We will consider this formulation in our experiments.

The following proposition provides another equivalent formulation of MNK with n binary
variables and one continuous variable, but only two constraints.

Proposition 1. If v(P) denotes the optimal value of problem P, then we have v(MNK) = v(MIP1) =
v(MIP2), where

(MIP1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max c1x − y
s.t.

c1x − y ≤ c2x
ax ≤ b
x ∈ {0, 1}n y ≥ 0

and → (MIP2) →

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max c2x − y
s.t.

c2x − y ≤ c1x
ax ≤ b
x ∈ {0, 1}n y ≥ 0.

Proof. The MIP1 formulation is obtained from the MIP formulation as follows. First, we transform
the inequality constraint (1a) into equality constraint z = c1x – y, where variable y ≥ 0 corresponds
to the slack variable, and such that c1x – y is nonnegative. Next, we replace the value z = c1x – y into
the objective function and into constraint (1b). Then, we can drop constraint (1a). Thus, we obtain
the MIP1 formulation. Similarly, the MIP2 formulation is obtained from the MIP formulation by
replacing inequality constraint (1b) by z = c2x – y. �

Another formulation of MNK with only two constraints is possible. In that case, solving the MNK
is equivalent to solving two bi-dimensional KPs (BKPs), as shown in the following proposition.

Proposition 2. We have v(MNK) = max{v(BKP1), v(BKP2)}, where

(BKP1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max c1x
s.t.

c1x ≤ c2x
ax ≤ b
x ∈ {0, 1}n

→ and → (BKP2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max c2x
s.t.

c2x ≤ c1x
ax ≤ b
x ∈ {0, 1}n .
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Proof. Let x* be an optimal solution of MNK. Then, by definition we have v(MNK) = min{c1x*,
c2x*}. If c1x* ≤ c2x* then we have v(MNK) = c1x* and x* is a feasible solution of BKP1, so we have
v(MNK) ≤ v(BKP1). Similarly, if c2x* ≤ c1x* then we have v(MNK) = c2x* and x* is a feasible
solution of BKP2, thus we have v(MNK) ≤ v(BKP2). Thus we have v(MNK) ≤ min{v(BKP1),
v(BKP2)}. By definition of the problems BKP1 and BKP2, we have v(BKP1) ≤ v(MNK) and
v(BKP2) ≤ v(MNK). Therefore, we have max{v(BKP1), v(BKP2)} ≤ v(MNK). Hence we showed
that v(MNK) = max{v(BKP1), v(BKP2)}. �

To formulate MNK as a mono-objective problem, we can also use a quadratic formulation as
shown in the next proposition.

Proposition 3. We have v(MNK) = v(Q), where

(Q)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max y(c1 − c2)x + c2x
s.t.

(2y − 1)(c1 − c2)x ≤ 0
ax ≤ b
x ∈ {0, 1}n y ∈ {0, 1}.

Proof. Let x1 and x2 the optimal solutions of BKP1 and BKP2, respectively. We introduce a binary
variable y in order to put together the models BKP1 and BKP2 in one quadratic model (Q), where

y =
{

1 if an optimal solution is associated to BKP1 problem

0 if an optimal solution is associated to BKP2 problem.

Then if y = 1, the objective function must be c1x and the constraints are (c1 − c2) x ≤ 0 and
ax ≤ b, and if y = 0 the objective function must be c2x and the constraints are (c2 − c1) x ≤ 0 and
ax ≤ b. So, unifying these two cases provides the quadratic objective function yc1x + (1 − y)c2x,
and the constraints y(c1 − c2)x+(1 − y)(c2 − c1) x ≤ 0 and ax ≤ b, i.e.

(Q)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max yc1x + (1 − y) c2x
s.t.

y(c1 − c2)x + (y − 1)(c1 − c2)x ≤ 0
ax ≤ b x ∈ {0, 1}n y ∈ {0, 1}.

Note that if y = 1 then (Q) ≡ (BKP1), whereas if y = 0 then (Q) ≡ (BKP2). �

Recall that obtaining the optimal value of y allows us to identify the problem among BKP1 and
BKP2 for which we find an optimal solution of MNK. Note that solving the MNK from BKP1 and
BKP2 is easier than solving directly MNK because we solve a reduced model in this case. Solving a
quadratic problem is generally very difficult in practice. In the following, we present a linearization
of Q with the aim to simplify the search of an optimal value for y. We can use the linearization (LQ)
of the previous quadratic model (Q), defined by:

C© 2012 The Authors.
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(LQ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max z + c2x
s.t.
(c1 − c2)x − M(1 − y) ≤ z ≤ (c1 − c2)x
z ≤ M(1 − y)

−My ≤ z ≤ My
ax ≤ b
x ∈ {0, 1}n, y ∈ {0, 1}, (z)

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max z + c2x
s.t.
(c1 − c2)x ≤ M(1 − y)

(c2 − c1)x ≤ My
(c1 − c2)x − M(1 − y) ≤ z ≤ (c1 − c2)x
−My ≤ z ≤ My
ax ≤ b
x ∈ {0, 1}n, y ∈ {0, 1}, (z).

We also propose another linearization denoted as (L) for the previous quadratic model (Q)
without a big parameter M.

Proposition 4. We have v(MNK) = v(L), where

(L)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max(c1 − c2)u + c2x (2a)

s.t.
(c1 − c2)(2u − x) ≤ 0 (2b)

ax ≤ b (2c)
u ≤ ye (2d)

u ≤ x + (1 − y)e (2e)
u ≥ x + (y − 1)e (2f)
(x, y) ∈ {0, 1}n+1, u ∈ [0, 1]n

where e denotes the vector of ones (1,1, . . . ,1) with an appropriate dimension.

Proof. It is obvious that v(L) = max{v(L|y = 0), v(L|y = 1)}. Now we will show that v(L|y = 0) =
v(BKP2) and v(L|y = 1) = v(BKP1). If y = 0, then constraint (2d) implies that u = 0. Therefore the
constraints (2e) and (2f) become redundant and we obtain the problem BKP2. So, we have v(L|y =
0) = v(BKP2). If y = 1, then constraint (2d) is redundant and the constraints (2e) and (2f) imply
that u = x. So, we have v(L|y = 1) = v(BKP1). Now, from the Proposition 2, we have v(MNK) =
v(L). �

3. Upper and lower bounds of max–min KP

Relaxation and duality methods are very useful tools for mixed integer programming. They provide
bounds for an optimization problem. Relaxing integrality constraints (LP-relaxation) provides di-
rectly an upper bound for the MNK problem. In the literature, some important properties related
to the strength of the bounds are obtained with Lagrangian relaxation, surrogate relaxation, and
composite relaxation. Lagrangian relaxation was introduced in the early 1970s through the pio-
neering work of Held and Karp (1970) on the traveling salesman problem. Subsequently, Geoffrion
(1974) in the mid 1970s developed a general theory for applying the method by exploiting special
problem structures. Many combinatorial optimization problems consist of an easy problem that is

C© 2012 The Authors.
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complicated by the addition of extra constraints. Applying Lagrangian relaxation to these problems
involves identifying these complicating constraints, then relaxing them by attaching penalties to
the complicating constraints, and then absorbing them into the objective function. These penalties
are known as the Lagrange multipliers. Due to the relaxation of the complicating constraints, the
relaxed problem becomes much easier to solve. The next aim is to find tight upper and lower bounds
to the problem by iteratively processing a sequence of modified subproblems. The surrogate relax-
ation, introduced by Glover (1975), replaces the original constraints with a single new constraint
called a surrogate constraint.

As mentioned in the review of the literature, several authors used surrogate relaxation to derive
upper and lower bounds for the MNK. This relaxation is then exploited in a branch-and-bound
method to solve MNK exactly. Problem S(μ), for a given μ = (μ1, μ2) ≥ 0, defines a surrogate
relaxation of MNK as follows:

S(μ) → max{μ1c1x + μ2c2x : ax ≤ b, x ∈ {0, 1}n}.

Then the associated surrogate dual problem is defined as

(S) → min {v(S(μ)) : μ ≥ 0}.

It is well known (see Glover, 1975) that, if for a multiplier μ, the optimal solution to S(μ) is
feasible for MNK, then it is also optimal for MNK, because the two problems have the same
objective function. Fréville and Plateau (1993, 1996) proposed a specific procedure able to find
the solution of the surrogate dual within a finite number of iterations, practically independent of
the number of variables. The property v(S(λμ)) = v(S(μ)) for any λ > 0 and μ ≥ 0 allows the
surrogate dual S to be solved in a one-dimensional search by normalizing the multiplier μ. The
impact of the normalization on the convergence speed was studied by Hanafi (1993), and the author
gives a unified proof of the finite convergence of the extended dichotomic procedure. Therefore,
by exchanging the two constraints if necessary, a dichotomic-type search can be performed on
a compact interval, using the information provided by the surrogate relaxation solution at each
iteration. Extensive numerical experiments with randomly generated instances and up to 1,000
variables showed that this approach was superior to both Dyer’s quasi-subgradient algorithm
(Dyer, 1980) and simple dichotomic search, both in accuracy and computing time. In this paper, we
consider the normalization L1 for the multiplier μ, i.e. μ ∈ {(μ1, μ2) : μ1 + μ2 = 1, μ1, μ2≥ 0}.
Using this normalization, the surrogate dual S can be solved in a one-dimensional search, i.e.

(S) → min{v(S(α)) : α ∈ [0, 1]},

where the surrogate relaxation is

S(α) → max{αc1x + (1 − α)c2x : ax ≤ b, x ∈ {0, 1}n}.

In the following, we will consider LP(S) = min{v(LP(S(α))) : α ∈ [0, 1]}, where LP(S(α)) is the
LP-relaxation of S(α). The LP-relaxation LP(S(α)) can be easily solved (see Dantzig, 1957) by

sorting the items so that
cα

j

a j
≥ cα

j+1

a j+1
for j = 1, . . . , n – 1, with cα

j = αc1
j + (1 − α)c2

j , and determining

C© 2012 The Authors.
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the critical item sα defined by sα = min{i :
∑i

j=1 a j > b}. An optimal solution of LP(S(α)) denoted
as xα is given by

xα
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 for j = 1, . . . , sα − 1

b −
sα−1∑
i=1

ai

asα

for j = sα

0 for j = sα + 1, . . . , n.

The solution xα can also be computed in O(n) time, without sorting the items, by determining the
critical item through median-finding techniques (see Balas and Zemel, 1980).

The binary search method to solve problem LP(S) is described in Algorithm 1. We use this
procedure to compute an initial feasible solution for MNK. In steps 2 and 3 of Algorithm 1, an
integer feasible solution x̃α is generated from the optimal solution xαof the associated LP-relaxation
LP(S(α) by setting the variable corresponding to the critical item sα to 0, i.e. x̃α

sα = 0.

Algorithm 1. Dichotomic Surrogate Heuristic

Input: An instance P of the problem
Step 1: Let αL = 0 and αR = 1, solve LP(S(αR)) and LP(S(αL)) to obtain xαL and xαR , respectively.
Step 2: Set v = min{v(LP(S(αR))), v(LP(S(αL)))}. Set x̃αL = xαL , x̃αL

sαL
= 0 and x̃αR = xαR , x̃αR

sαR
= 0.

Let v = max{min{c1x̃αL, c2x̃αL}, min{c1x̃αR, c2x̃αR}}.
Step 3: Let α = (αL + αR)/2 and solve LP(S(α)) to obtain xα. Set x̃α = xα, x̃α

sα = 0 and v =
max{min{c1x̃α, c2x̃α}, v}.

Step 4: If axα ≤ b, or αR – αL ≤ ε then stop.
Step 5: If c1xα > c2xα then set αR = α, else set αL = α. Go to Step 2.
Output : v and v.

We can also reinforce the lower bound found by applying a local-search process at each iteration
of Algorithm 1 around the current feasible solution x̃α. Note that in our implementation we use the
value ε = 0.01 in Algorithm 1 as a stopping condition.

4. Iterative linear programming based heuristic

Solving hard combinatorial optimization problems remains a challenge, in particular when the size
of the instances grows. Several recent publications are devoted to hybrid methods, in which projection
techniques are used to set some variables at particular values, to generate reduced problems that
are easier to solve at optimality. Different fixation processes can be identified, such as the use of
adaptive memory as in Glover (2005) or the use of external branching framework as in Fischetti
and Lodi (2003). Generally speaking, these methods at each iteration build a neighborhood, which
is explored optimally or heuristically. Additional information is also introduced to guide the search
process. In this paper, we propose the use of another hybrid method, based also on a temporary
fixation of variables, and the construction of reduced problems that are easier to solve at optimality.

C© 2012 The Authors.
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This approach can be considered as a general method to solve 0–1 mixed integer programming
problems.

Recently, Hanafi and Wilbaut (2011) proposed a general method that can be used for solving
0–1 mixed integer programming problems, and they call it the iterative relaxation-based heuristic
(IRH). This approach can be considered as an extension and a generalization of the previous work
for solving pure 0–1 integer programming problems (Soyster et al., 1978). The main idea of the
method is to generate a sequence of nonincreasing upper bounds (in the case of a maximization
problem), and a sequence of nondecreasing lower bounds, to converge to an optimal solution of
the problem. This can be done with the addition of pseudo-cuts to the problem, to strengthen the
search and avoid the blocking of the search process. Generally speaking, an instantiation of the IRH
follows three main steps: (a) solve one or more relaxations of the current problem P to generate
one or more pseudo-cuts, and update the best upper bound of the problem; (b) solve one or more
reduced problems induced by the optimal solutions of the previous relaxations to obtain one or
more feasible solutions of the initial problem, and update the best lower bound of the problem; (c)
if the stopping criterion is satisfied then return the best lower bound and the best upper bound.
Otherwise, add the pseudo-cuts generated in the first step to P and repeat the process.

From this general description, we can easily observe that several versions can be considered,
according to the relaxation(s) we use, the way we solve the reduced problem(s) (heuristically or at
optimality), the stopping condition we define, etc.

In this paper, we use the Linear Programming (LP) relaxation, and denote as the iterative LP
based heuristic (ILPH) the method we propose. To ensure an easier comprehension of the paper,
we briefly recall the main principles of the ILPH. Let P be a 0–1 integer programming problem
formulation as proposed in Section 2. From now, we assume that the MNK is formulated as the
following 0–1 MIP:

(P) →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max cx
s.t.

Ax ≤ b
xj ∈ {0, 1}, j ∈ N.

First, we introduce the notion of a reduced problem. Given an arbitrary binary solution x◦ and a
subset of variables J ⊆ N, the problem reduced from the original problem P and associated with x◦

and J is derived from P by setting variables with indices in J at values of x◦. This problem is referred
to as P(x◦, J). A major element in the ILPH is the use of pseudo-cuts. A pseudo-cut is a linear
inequality that excludes certain points from being feasible as solutions to the input problem. More
precisely, let x and y be two binary solutions of problem P. The distance between x and y is defined
as δ(x, y) = ∑

j∈N |xj − y j|. From this definition, it is easy to define the partial distance between x
and y relative to a given subset J of N as δ(J, x, y) = ∑

j∈J |xj − y j|. Let x be an optimal solution
of the LP relaxation of P, and let B(x) = { j ∈ N|xj ∈ {0, 1}} (i.e. the set of indices of variables in
x with integer values). Then, for J ⊆ B(x) : δ(J, x, x) = ∑

j∈J x j(1 − xj ) + xj(1 − xj ). With these
different ingredients, we are able to give an algorithmic description of a standard implementation
of the ILPH, as in Algorithm 2.
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Algorithm 2. An instantiation of the ILPH.

Input: An instance P of the problem.

Output: An optimal solution x∗ of P

Q = P; stop = false;
Find an initial solution x∗ of P;
v = + ∝; v = cx∗;
while stop = false do

Let x be an optimal solution of LP(Q);
Update the best upper bound value v if c x < v;
if x ∈ {0, 1}n then update v and x∗ and return x∗;
Let x◦ be an optimal solution of problem P(x◦, B(x));
Update the best lower bound value and vx∗ if cx◦ > cx∗;
Apply a fixation technique to set some variables at their optimal values;
Add a pseudo-cut to Q : Q = (Q|δ(B(x), x, x) ≥ 1);
ifv̄ − v� < 1 then stop = true;

end while
return x*;

According to Algorithm 2, the ILPH repeats the solution of the LP-relaxation of the current
problem Q, then the exact solving of the reduced problem associated with an optimal solution
of this relaxation. After that, the pseudo-cut δ(B(x), x, x) ≥ 1 is added to the current problem to
discard solution x from the search space. It is easy to prove that the addition of this pseudo-cut
guarantees that reduced problems already explored are not revisited. In addition, the use of this
pseudo-cut strengthens the problem, and helps the method to construct a nonincreasing sequence
of upper bounds. Then, it can be proved that the ILPH converges to an optimal solution of the input
problem (under some conditions) in a finite number of iterations (for more details, see Hanafi and
Wilbaut, 2011). That is why condition v̄ − v� < 1 is used in Algorithm 2. The convergence of the
algorithm can be very time consuming, in particular if the gap between the LP-value of the initial
problem and an optimal solution is large. In that case, it is possible to use the ILPH as a heuristic,
by fixing the number of iterations to be performed in the loop, or by fixing a maximum running
time for example. Recall that for MNK we use the search heuristic described in Section 3 to obtain
an initial feasible solution x∗.

In this paper, we propose to enhance the behavior of the ILPH for the MNK, by using a
fixation technique. Fixation techniques are frequently used to solve hard combinatorial optimization
problems (Savelsberg, 1994). This is particularly the case when solving KPs (Fayard and Plateau,
1977). In this paper, we propose the use of the well-known reduced cost constraint, in particular to
exploit the improvement of the upper bound and the lower bound during the search process.

In the family of KPs, the reduced cost constraints have been used intensively with success
for solving the 0–1 multidimensional KP (Boussier et al., 2010; Vimont et al., 2008). To in-
troduce this technique, we consider the problem formulation P introduced previously in which
we suppose we have n binary variables and m constraints. The associated LP relaxation in
the standard form, obtained by introducing s—a vector of m slack variables, is defined by:
max{cx|Ax + Es = b, xj ≤ 1, j ∈ N, x, s ≥ 0}. Let v be the optimal value of the LP-relaxation,
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B+(x) = { j ∈ N|xj = 1}, B−(x) = { j ∈ N|xj = 0}, M = {1, 2, . . . , m} and E the identity matrix.
Then, the LP relaxation can be rewritten in an optimal basis as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max v +
∑

j∈B−(x)

c jx j −
∑

j∈B+(x)

c j(1 − xj ) +
∑
j /∈N

c jx j +
∑
i∈M

ds

s.t.

Ax + Es = b

xj ≤ 1, j ∈ N

x, s ≥ 0

with x an optimal solution, (c, d ) the vector of the reduced costs corresponding to variables (x,
s) for the basic solution (x, s), and A, E, and b the values for the basis associated with (x, s).
Then, if v is the lower bound value associated with the current best feasible solution found during
the search, each better solution x must satisfy the following so-called reduced cost constraint:∑

j∈B−(x) |c j|xj + ∑
j∈B+(x) |c j|(1 − xj ) ≤ v − v. It follows from this constraint that the simplest rule

that attempts to set a variable xj( j ∈ N) to the complement of the LP-relaxation value of x̄ j , is: if
|c j| > v − v then xj = xj.

It is easy to integrate the use of the reduced cost constraints in the ILPH for the MNK, taking into
account a given MIP formulation. At each iteration, after solving the LP-relaxation of the current
problem, we try to set some new variables by applying the previous test. In addition, the associated
reduced cost constraints are added, if necessary. In the next section, we present the results obtained
with the ILPH, when using different models for the MNK presented in the previous section.

5. Computational experiments

5.1. Environment of experiments

In this section, we provide a summary of experiments performed to evaluate both our approaches
and the different MIP formulations presented in Section 2 for MNK. We used a set of randomly
generated instances, obtained by applying the same method as in Taniguchi et al. (2009), which can
be described as follows. For a given number of variables n, weight aj for item j is randomly and
uniformly distributed over [1, 1,000]. Knapsack capacity b is set to 500 × n × ρ, where ρ is either
0.25, 0.5, or 0.75. As for other KPs, three kinds of correlation degree are used.

(1) Uncorrelated: In this case c1
j and c2

j associated with item j are distributed independently and
uniformly over [1, 1,000].

(2) Weakly correlated: In this case, weight aj of item j is considered to generate c1
j and c2

j, which are
distributed independently and uniformly over [aj, aj + 200].

(3) Strongly correlated: In this case, c1
j is set to aj + 100, and c2

j is distributed independently and
uniformly over [aj, aj + 200].

We note in what follows σ is used to refer to the correlation degree of the instance. All our
algorithms are coded in C++ language, compiled with g++ compiler and option –O2. We use a
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Table 1
Parameters used in randomly generated instances.

σ n ρ σ n ρ σ n ρ

Uncorrelated 5,000 0.25 Weakly correlated 5,000 0.25 Strongly correlated 500 0.25
7,000 0.5 7,000 0.5 1,000 0.5

10,000 0.75 10,000 0.75 4,000 0.75
13,000 13,000 5,000
15,000 15,000 7,000
18,000 18,000 10,000
20,000 20,000

Pentium IV computer with 3.4 GHz processor and 4 GB RAM to run the algorithms. To compare
models of MNK and compute upper bounds, we use the general purpose MIP solver CPLEX 11.2.
Preliminary experiments demonstrated that CPLEX is able to optimally solve instances with a high
number of items in a reasonable CPU time (less than 10 minutes). According to this observation,
we set the values of parameters (σ , n, ρ) as in Table 1, and we generate 15 instances for each value.

We have a total of 315 uncorrelated instances, 315 weakly correlated instances, and 270 strongly
correlated instances. All the instances are available upon request. When solving MNK instances,
we use the total limit time of 10 minutes for all the algorithms. In addition, we set parameter
CPX_PARAM_EPGAP of CPLEX to 0.0 due to numerical sensitivity when the size of instances
grows and to avoid an anticipated stop of the search by the solver without an optimal solution for
the instance. Indeed, some experiments with value 1 × 10–06 (default value is 1 × 10–04) provide
possible termination for CPLEX with status 102, corresponding to a solution considered as an
optimal solution with a tolerance, although this solution was not an optimal solution.

5.2. Comparison of models for MNK

In this section, we compare the potential of models presented in Section 2 for MNK. Thus, we apply
directly the CPLEX MIP solver to solve all the instances using the different models. The aim of this
phase is to identify a better model for MNK when using an exact approach. The first data we can
consider to compare the models are the associated LP relaxation. In fact, we observe that models
MIP, MIP1, and MIP2 show the same LP values for all the instances. When considering the models
BKP1 and BKP2, the conclusions are the same in most of the cases. For a few instances, one of the
two models has an associated LP-value less than the other models. However, it happens when the
associated optimal value does not correspond to an optimal value of the initial MNK instance (due
to the max in the formulation between the two models, v(MNK) = max{v(BKP1), v(BKP2)}).

The situation is different when we consider the linearization (L) of the quadratic model. In that
case, the optimal LP values are larger than the optimal LP values for other models (with the values
of parameters reported in Table 1). In addition, the CPU time needed to solve the relaxation is
also largely more important. In particular, it is not possible for CPLEX MIP solver to solve the LP
relaxation in 600 seconds for some large instances. In that case, the status returned by CPLEX is
11, which means that a feasible or an infeasible solution is obtained before the time limit is reached.
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That can be explained by the size and the structure of the problem. We have in model (L) 2n + 1
variables, whereas other models imply n or n + 1 variables, and the number of constraints is also
clearly more important. In the case of linearization (LQ), we have, in addition, to deal with an
additional parameter M. According to these observations, we do not consider the linearization LQ
in the following, in particular due to the size of our instances (CPLEX is not able to solve optimally
any of the instances).

In Tables 2–4, we provide elements to compare the efficiency of the different models over uncor-
related, weakly correlated, and strongly correlated instances, respectively. In these tables, columns
n and ρ correspond, respectively, to the number of variables and the correlation of the instance.
Then, column gap provides the average gap values obtained by CPLEX when solving the instances
(i.e. the difference between the initial upper bound and the final lower bound). We observe that the
average gap obtained with models MIP1, MIP2, MIP, or BKP is almost the same. Thus, to avoid
an overload of the presentation, we only report one value for all these models. We also use the
notation BKP to refer to the use of both models BKP1 and BKP2. Then, we report for each model
the number of instances solved exactly (#opt) over the 15 instances we considered, and the average
CPU time (in seconds) needed to solve one instance. From these three tables, we can observe the
following:

Table 2
Average results obtained over uncorrelated instances.

MIP1 MIP2 MIP BKP

n ρ gap #opt CPU #opt CPU #opt CPU #opt CPU

5,000 0.25 7.74 15 20.46 15 17.75 15 26.74 15 22.21
7,000 6.07 15 43.03 15 41.37 15 54.75 15 43.76

10,000 4.38 15 103.51 15 78.28 15 135.83 15 59.60
13,000 4.00 14 186.60 15 151.71 15 193.59 15 70.74
15,000 3.08 15 141.06 15 125.92 15 192.09 15 67.88
18,000 2.58 15 273.75 15 245.76 11 405.60 15 68.02
20,000 2.58 12 415.82 10 384.37 7 485.33 15 72.77

5,000 0.5 6.71 15 25.77 15 22.97 15 37.61 15 29.30
7,000 5.07 15 86.20 15 83.57 15 114.12 15 51.97

10,000 3.85 14 262.19 13 247.78 13 334.75 15 105.38
13,000 3.32 13 310.39 13 311.64 10 413.14 15 85.86
15,000 3.04 13 354.22 10 351.59 10 441.57 15 92.72
18,000 2.69 1 594.44 4 536.70 1 594.25 15 116.82
20,000 2.17 7 564.81 11 401.35 7 555.63 15 114.69

5,000 0.75 7.84 15 19.24 15 15.61 15 22.02 15 16.35
7,000 5.65 15 31.66 15 30.61 15 42.93 15 26.66

10,000 3.96 15 87.73 15 55.86 15 122.21 15 34.23
13,000 3.58 15 135.88 15 143.80 14 194.72 15 52.03
15,000 2.73 14 203.10 15 141.38 14 314.15 15 61.55
18,000 2.70 14 221.97 14 248.95 9 505.75 15 46.45
20,000 2.60 11 346.70 12 364.26 3 585.08 15 67.50
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Table 3
Average results obtained over weakly correlated instances.

MIP1 MIP2 MIP BKP

n ρ gap #opt CPU #opt CPU #opt CPU #opt CPU

5,000 0.25 2.07 15 4.26 15 3.81 15 174.39 15 10.99
7,000 1.63 15 5.91 15 4.83 11 424.40 15 11.94

10,000 1.26 15 4.95 15 3.47 0 600.08 15 9.64
13,000 1.19 15 5.64 15 4.97 0 600.10 15 12.25
15,000 0.97 15 13.38 15 6.28 6 432.22 15 15.30
18,000 0.97 0 600.17 0 600.11 0 600.11 15 9.97
20,000 0.82 0 600.07 0 600.11 0 600.08 15 13.05
5,000 0.5 1.50 15 8.98 15 4.89 14 171.09 15 12.31
7,000 1.17 15 7.61 15 5.28 13 254.56 15 15.76

10,000 1.05 15 11.03 15 7.38 6 424.48 15 20.39
13,000 0.83 15 12.37 15 6.71 7 444.98 15 13.22
15,000 0.73 15 14.11 15 8.09 6 425.98 15 15.48
18,000 0.94 0 600.12 0 600.12 0 600.07 15 18.61
20,000 0.82 0 600.07 0 600.09 0 600.08 15 19.10
5,000 0.75 1.71 15 6.65 15 5.59 14 102.81 15 11.98
7,000 1.45 15 11.42 15 5.96 12 258.44 15 14.06

10,000 1.02 15 8.82 15 4.01 11 266.98 15 14.91
13,000 0.82 15 11.06 15 6.38 10 388.95 15 15.20
15,000 0.94 15 11.58 15 5.64 0 600.05 15 16.88
18,000 0.89 2 558.85 2 541.42 0 600.07 15 18.04
20,000 0.76 0 600.07 1 587.55 0 600.07 15 20.87

Table 4
Average results obtained over strongly correlated instances.

MIP1 MIP2 MIP BKP

n ρ gap #opt CPU #opt CPU #opt CPU #opt CPU

500 0.25 58.26 0 600.15 0 600.14 0 600.23 0 1200.25
1,000 49.21 0 600.09 0 600.06 0 600.09 0 1200.21
4,000 51.20 0 600.02 1 560.06 1 560.05 0 1200.13
5,000 34.77 0 600.09 0 600.04 1 560.06 0 1200.15
7,000 42.77 0 600.05 1 560.04 0 600.05 0 1200.10

10,000 41.34 0 600.03 1 560.06 1 560.06 0 1200.11
500 0.5 53.43 0 600.09 1 560.14 1 560.09 2 1000.35

1,000 50.19 0 600.14 0 600.12 0 600.04 0 1160.21
4,000 45.65 0 600.04 1 560.03 0 600.04 0 1200.06
5,000 37.05 0 600.09 1 560.09 1 560.03 0 1200.08
7,000 54.61 5 400.33 5 400.17 5 400.06 1 965.43

10,000 54.75 2 520.75 2 520.22 2 520.05 0 1120.77
500 0.75 65.16 1 560.15 2 520.07 2 520.25 1 1080.22

1,000 60.53 3 509.09 4 440.12 6 360.04 2 1047.62
4,000 47.59 0 600.03 2 520.09 1 560.06 0 1160.08
5,000 46.87 2 520.06 2 520.10 2 520.03 1 1080.15
7,000 43.49 0 600.05 0 600.03 0 600.06 0 1200.12

10,000 47.39 0 600.05 0 600.05 0 600.04 0 1200.10

C© 2012 The Authors.
International Transactions in Operational Research C© 2012 International Federation of Operational Research Societies



S. Hanafi et al. / Intl. Trans. in Op. Res. 19 (2012) 353–378 367

(1) When comparing models MIP1, MIP2, MIP, and BKP, we can observe a worse performance for
model MIP for uncorrelated instances (in particular for n ≥ 18,000, and for weakly correlated
instances when n ≥ 10,000).

(2) The number of instances solved exactly decreases in general with the size of the instances and
the correlation degree for all the models. However, we can observe that using models BKP
shows very impressive results for uncorrelated and weakly correlated instances, since CPLEX
MIP solver is able to prove the optimality of the solution obtained in all the cases. In general,
instances with ρ = 0.5 are the most difficult to solve with CPLEX MIP solver.

(3) The average gap is very small for uncorrelated and weakly correlated instances. When consid-
ering strongly correlated instances, a more important average value is observed.

According to previous observations 1 and 2, we can conclude that CPLEX MIP solver is able
to find an optimal solution for almost all the uncorrelated and weakly correlated instances with
models MIP1, MIP2, MIP, and BKP. The main difference between these models is the number of
times the solution can be proved to be optimal within the imposed running time.

Columns #opt demonstrate the following:

� Globally, model MIP is dominated by models with two constraints. In particular, we can observe
that CPLEX is able to obtain an optimal solution with this model for 249 uncorrelated instances,
whereas it obtains 278, 282, and 315 optimal solutions with model MIP1, MIP2, and BKP,
respectively. The difference is more important for weakly correlated instances for which the
number of optimal solutions found with model MIP decreases to 125, against 227, 228, and 315
with model MIP1, MIP2, and BKP, respectively. However, we can also observe a better behavior
for strongly correlated instances with 23 optimal solutions, against 13, 23, and 7 for MIP1, MIP2,
and BKP, respectively.

� Solving model MIP1 or model MIP2 shows on average equivalent results. In fact, model MIP1
obtains better results in a few cases (for instance when considering uncorrelated instances with
ρ = 0.25), but model MIP2 obtains on average slightly better results (in particular for strongly
correlated instances with 23 optimal solutions whereas model MIP1 obtains 13 optimal solutions).
Globally, model MIP2 obtains 533 optimal solutions against 518 for model MIP1.

� Finally, using model BKP seems to be an interesting way for solving MNK instances, in particular
for uncorrelated and weakly correlated instances. However, strongly correlated instances are
clearly difficult to solve with this model. A simple explanation comes from the fact that we have to
solve exactly two models to find the optimal value of the problem. In the case of strongly correlated
instances, CPLEX is not able, in almost all the cases, to solve the two models at optimality (even if
we use the time limit of 10 minutes to solve each of the two models. That explains why the average
running time for strongly correlated instances with model BKP can be more than 600 seconds).

Experiments presented in this section seem to demonstrate that no model totally dominates
the others. In fact, model BKP show better average results for uncorrelated and weakly correlated
instances. For strongly correlated instances, CPLEX solves more instances when using models MIP2
and MIP. If we consider only the number of instances solved at optimality, model BKP is ranked
first with 637 instances out of 900, followed by model MIP2 with 533, model MIP1 with 518, and
model MIP with 397.
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5.3. Using ILPH to improve models’ efficiency

In this section, we propose the use of the ILPH as a preprocessing phase to obtain good lower and
upper bounds, and to set variables at their optimal values, and then to solve the remaining problem
with CPLEX MIP solver, taking into account information generated by the ILPH. In that case, we
apply the algorithm with a limited number of iterations:

� To find an initial feasible solution and improve it in a short number of iterations. The lower bound
associated with this solution can be used to cut-off the tree of the search later by CPLEX.

� To improve the upper bound on the optimal value because of the addition of the pseudo-cuts into
the problem. With this process we wish to reduce the gap between the upper bound and the lower
bound quickly.

� To set a large part of the variables to their optimal value by using reduced cost constraints. If the
fixation process is sufficiently efficient, we can expect the final reduced problem easier to solve
with an exact method.

According to preliminary experiments, we set to 20 the number of iterations performed with the
ILPH. As we see in the following, it is sufficient to obtain an interesting performance.

In Tables 5–7, we give average results to evaluate the efficiency of this approach. We apply the
ILPH based on models MIP1, MIP2, MIP, and BKP, and denoted as ILPH-MIP1, ILPH-MIP2,
ILPH-MIP, and ILPH-BKP, respectively. In all the cases, we provide the relative error associated
with the initial solution provided by the heuristic. If LP(P) denotes the objective value of the LP-
relaxation of problem P and if v denotes the objective value of the initial solution, the relative error
is computed as ((LP(P) – v)/v) × 100. These values are reported in column rerror0. Note that this
value is the same for all the ILPH-based algorithms, since the initial surrogate heuristic used is
the same regardless of the model used. Then, for each variant, we report the average relative error
obtained at the end of the ILPH in column rerror. This value depends on the final lower bound
provided by the ILPH (after 20 iterations) and the final upper bound refined with pseudo-cuts
added iteratively. Columns fix provide the average percentage of variables set at their optimal value
at the end of the ILPH. Then, columns �(opt) give the difference between the number of optimal
solutions found by the method “ILPH + CPLEX” and the number of optimal solutions found by
CPLEX alone. Thus, a positive value in column �(opt) means that using ILPH as a preprocessing
phase increases the number of instances solved exactly. In the same way, values reported in columns
�(cpu) correspond to the difference between the average running time of the method “ILPH +
CPLEX” and the average running time needed by CPLEX alone. A negative value in column
�(cpu) means that using the ILPH as a preprocessing phase decreases the average running time
to solve MNK. Note that we do not use columns rerror and fix when using BKP. Indeed, in that
case we have to solve two different problems, so the average values do not have exactly the same
meaning.

According to values reported in Tables 5–7, we can observe the following:

� The use of ILPH with models MIP1 and MIP2 is an efficient way to improve the behavior of
CPLEX MIP solver with these two models. In particular, we can see that the number of optimal
solutions found increases from 278, 227, and 13 when using CPLEX alone with model MIP1
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to 309, 277, and 21 with the ILPH, for uncorrelated, weakly correlated, and strongly correlated
instances, respectively. In the same way, the number of optimal solutions found increases from
282 and 228 when using CPLEX alone with model MIP2 to 310 and 287 with the ILPH, for
uncorrelated and weakly correlated instances, respectively. However, ILPH-MIP2 obtains average
worse results than CPLEX with model MIP2 for strongly correlated instances, with 19 optimal
solutions found against 23. A consequence of these results is the decrease of the average running
time needed to solve instances at optimality when using the ILPH, in particular for uncorrelated
and large weakly correlated instances. This efficiency is clearly in correlation with the fixation
process. Indeed, we can observe the very important values in columns fix for uncorrelated and
weakly correlated instances. As for other KPs, the fixation process is less efficient for strongly
correlated instances, even if it is in general greater than 30%. For strongly correlated instances,
values in columns �(cpu) clearly depend on the number of instances solved at optimality. Finally,
the average final gap values and the average fixations observed are very similar for both ILPH-
MIP1 and ILPH-MIP2. Some differences occur for strongly correlated instances, for example
when n = 1,000 and ρ = 0.5 or n = 1,000 and ρ = 0.75.

� Results obtained by ILPH-MIP are similar. In particular, the number of optimal solutions found
increases significantly from 249 and 125 to 294 and 153 for uncorrelated and weakly correlated
instances, respectively. In the same way, the average running time decreases significantly from
275 and 436 seconds to 139 and 365 seconds, respectively. However, as for ILPH-MIP2, results
are similar for CPLEX and ILPH-MIP for strongly correlated instances, with 23 and 22 optimal
solutions found, and 549 and 553 seconds on average, respectively. Finally, we can observe some
differences in columns fix and rerror between ILPH-MIP and ILPH-MIP1 or 2. However, the
differences are never significant, and occur more often for uncorrelated and weakly correlated
instances (sometimes to the advantage of model MIP and sometimes to the advantage of model
MIP1 or MIP2).

� It is interesting to observe the behavior of the ILPH when using model BKP. Indeed, previous
results show that CPLEX MIP solver was able to solve at optimality all the uncorrelated and
all the weakly correlated instances with this model (in 10 minutes). From the optimality point
of view, a first conclusion is that using ILPH as a preprocessing allows also CPLEX to solve
all these instances. However, from the running time point of view, the gain is not in the same
order as for other models. Model BKP used directly in CPLEX needs 62 and 15 seconds on
average for uncorrelated and weakly correlated instances, respectively, to be solved at optimality.
With the ILPH, the average running time measured is 50 and 16 seconds, respectively. So, we can
conclude equivalence for these instances. However, another positive conclusion can be extracted
from results for strongly correlated instances. Indeed, in that case ILPH-BKP shows better results
than CPLEX (whereas it was not the case for models MIP1 and MIP2). With model BKP, the
algorithm is able to solve 13 strongly correlated instances against 7 when using CPLEX alone,
and the average running time decreases from 1,145 seconds to 1,116 seconds.

To conclude this section, we can say that using the ILPH before solving the problem with CPLEX
is an efficient approach for MNK. Indeed, average performances are increased for all the models
considered in our experiments. Considering the number of instances solved at optimality, we have
the following overall progressions:
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� Model BKP: Increase from 637 to 643.
� Model MIP2: Increase from 533 to 616.
� Model MIP1: Increase from 518 to 607.
� Model MIP: Increase from 397 to 469.

Thus, globally the previous hierarchy is still valid, but more than 50% of the instances can be solved
at optimality with the four models.

5.4. Using the ILPH as an exact method

As presented in Section 4, the ILPH can be used as an exact method under some conditions. In this
section, we provide the results obtained when CPLEX MIP solver is used to solve all the reduced
problems and all the LP-relaxations at optimality during the search, inside the ILPH. As MNK is
a pure 0–1 integer programming, when condition v̄ − v� < 1 is satisfied, the solution associated to
lower bound v is optimal for the input problem. To evaluate the use of the ILPH alone, we limit
the total running time to 600 seconds, as in previous experiments. Due to space limitations, we only
present the results obtained by the ILPH with model MIP2. We report the synthesis of the results
in Tables 8–10. First, we consider uncorrelated and weakly correlated instances in Tables 8 and 9,
respectively. In these tables, we provide the average percentage of variables set during the process in
column fix, the average iteration associated with the best (or optimal) solution found by the ILPH
in column iter*, the associated average CPU time needed to reach this solution in column CPU*.
Column #opt and CPU report the number of solutions proved to be optimal during the allowed
CPU time, and the average running time of the algorithm, respectively. Finally, we provide results
obtained by our implementation of the virtual pegging test algorithm in columns VPT: the average
final relative error (column rerror, and computed as previously), the average percentage of variables
set at their optimal value (column fix), the number of optimal solutions found (column #opt), and
the average running time of the algorithm (column CPU).

Results obtained by the ILPH as an exact method are really encouraging, in particular for
uncorrelated and weakly correlated instances. Indeed, the average CPU time needed to solve exactly
the instances decreases as far as when CPLEX is used alone (see Tables 2–3). More precisely,
using CPLEX directly with model MIP2 requires 190 and 172 seconds for uncorrelated and weakly
correlated instances, respectively. The use of ILPH alone requires only 166 and 10 seconds for these
instances. In addition, the number of optimal solutions found increases from 282 and 228 to 307 and
315 for uncorrelated and weakly correlated instances, respectively. The difference with the method
combining the ILPH and CPLEX is less important (see Tables 5–6). However, we can observe
that the ILPH is able to find all the optimal solutions for weakly correlated instances (whereas the
method using ILPH and CPLEX solves 287 instances at optimality in that case). These results can
be explained by two main dependent reasons: the initial gap between the LP-value and the optimal
value is very small, in particular for weakly correlated instances. Then, the use in the ILPH of
pseudo-cuts clearly helps to improve the value of the upper bound during the process, and to apply
the optimality test. In addition, the fixation process during the search is really efficient for these
instances, with more than 98% of variables set at their optimal values at the end of the algorithm
in almost all the cases. Results obtained by the VPT presented in Tables 8 and 9 are clearly less
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Table 8
Average results with ILPH and VPT over uncorrelated instances.

ILPH-alone VPT

n ρ fix iter* CPU* #opt CPU rerror fix #opt CPU

5,000 0.25 99.21 127.53 23.30 15 84.62 0.0760 5.63 8 345.49
7,000 99.39 113.07 25.26 15 134.45 0.0791 1.81 4 476.53

10,000 99.55 106.33 32.47 15 163.37 0.0812 3.15 1 564.07
13,000 99.58 159.07 93.40 13 276.65 0.0630 1.43 1 571.13
15,000 99.72 133.53 43.48 15 130.00 0.0732 0.28 1 574.92
18,000 99.81 100.67 27.22 15 105.25 0.0600 2.92 2 575.69
20,000 99.78 109.87 29.51 14 200.07 0.0834 1.03 1 594.08

5,000 0.5 99.17 115.73 29.89 15 103.82 0.0906 1.19 3 514.71
7,000 99.38 129.40 54.70 15 172.85 0.1060 0.00 0 600.01

10,000 99.53 113.07 46.72 14 256.40 0.0710 1.16 2 545.45
13,000 99.64 116.67 35.76 14 237.52 0.0524 1.08 4 526.71
15,000 99.66 117.33 38.25 14 252.43 0.0788 0.05 0 600.01
18,000 99.71 119.53 55.07 13 281.16 0.0701 0.00 0 600.01
20,000 99.79 116.53 53.31 15 139.61 0.0595 1.52 0 600.01

5,000 0.75 99.08 117.53 15.67 15 84.44 0.0482 1.83 4 480.59
7,000 99.41 114.80 21.23 15 95.75 0.0430 7.24 1 560.75

10,000 99.58 119.40 23.31 15 105.54 0.0479 2.13 1 562.32
13,000 99.68 102.53 23.77 15 179.72 0.0315 2.28 2 540.12
15,000 99.75 111.80 32.98 15 115.43 0.0465 0.00 0 600.01
18,000 99.75 108.47 33.48 15 159.99 0.0403 0.54 1 595.19
20,000 99.79 122.20 39.63 15 205.50 0.0457 0.38 0 600.01

impressive. We can conclude from these values that the size of the instances we used is too important
for this algorithm, since it is not able to solve at optimality almost all the instances, even in the
uncorrelated case of MNK.

In Table 10, we report the results obtained for strongly correlated instances. We provide as
additional information the final relative error for the solution returned by the ILPH in column
rerror, computed as previously: ((ub – lb) / lb) × 100, with the final upper bound value (ub) and
the final lower bound value (lb), obtained at the end of the ILPH. Values in Table 10 show that the
ILPH is clearly less efficient as an exact method when strongly correlated instances are considered.
The method is able to obtain five optimal solutions within the time limit we set. The more important
initial gap with the LP-value and the less important efficiency of the fixation process are two main
reasons to explain these results. However, we can observe that the final relative error is not very
important, and that the best solution found by the ILPH is produced in general in a short time.
These observations are encouraging results for using the ILPH also as a heuristic approach when
considering more difficult and large instances of MNK.

Experiments presented in this section demonstrate that the ILPH is an efficient approach to solve
at optimality large instances of MNK, in particular when the data are not strongly correlated.
Indeed, the efficiency of the pseudo-cuts added during the search to reduce the gap between the
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Table 9
Average results with ILPH and VPT over weakly correlated instances.

ILPH-alone VPT

n ρ fix iter* CPU* #opt CPU rerror fix #opt CPU

5,000 0.25 99.25 88.60 7.11 15 27.09 0.0546 4.26 2 561.43
7,000 99.62 77.47 8.84 15 18.88 0.0491 5.01 1 561.02

10,000 99.16 57.60 2.61 15 10.34 0.0388 0.00 0 600.01
13,000 99.43 59.73 4.56 15 8.26 0.0299 0.00 0 600.01
15,000 99.32 57.60 4.33 15 5.10 0.0264 1.66 1 580.09
18,000 99.03 58.20 5.06 15 5.44 0.0302 0.00 0 600.01
20,000 98.30 54.40 5.21 15 5.23 0.0250 0.00 0 600.01

5,000 0.5 98.65 63.80 2.67 15 9.74 0.0416 0.23 1 570.52
7,000 98.90 69.00 4.08 15 5.65 0.0354 0.00 2 591.32

10,000 97.72 60.87 4.39 15 8.94 0.0244 0.00 1 570.58
13,000 98.83 59.67 3.58 15 4.94 0.0275 0.00 0 600.01
15,000 99.14 71.40 5.59 15 7.23 0.0229 0.00 0 600.01
18,000 98.75 65.47 6.71 15 8.53 0.0244 0.00 0 600.01
20,000 98.73 58.67 7.18 15 9.41 0.0199 0.00 0 600.01

5,000 0.75 98.82 62.20 3.41 15 13.70 0.0230 2.62 3 543.89
7,000 98.61 70.00 4.92 15 19.51 0.0223 0.00 1 562.33

10,000 98.96 54.47 2.78 15 8.04 0.0145 1.13 1 576.65
13,000 98.35 56.13 3.42 15 7.79 0.0166 0.00 0 600.01
15,000 98.75 59.73 4.25 15 7.81 0.0134 0.00 0 600.01
18,000 98.78 56.20 4.41 15 4.89 0.0117 0.00 0 600.01
20,000 99.22 65.73 6.28 15 7.19 0.0128 0.00 0 600.01

Table 10
Average results with ILPH and VPT over strongly correlated instances.

ILPH-alone VPT

n ρ rerror fix iter* CPU* #opt CPU rerror fix #opt CPU

500 0.25 0.0495 41.92 209.33 55.06 0 601.97 0.2454 2.52 1 573.83
1,000 0.0251 52.19 81.53 11.84 0 604.26 0.0909 4.61 0 600.01
4,000 0.0071 49.18 40.40 16.63 0 604.35 0.0295 8.32 0 600.01
5,000 0.0061 64.77 229.13 13.38 0 605.38 0.0187 18.17 0 600.01
7,000 0.0043 47.62 140.27 40.59 0 604.87 0.0181 4.11 0 600.01

10,000 0.0033 51.99 64.27 30.49 0 605.86 0.0094 14.20 0 600.01

500 0.5 0.0272 37.80 147.27 7.68 1 563.64 0.1383 4.91 1 599.63
1,000 0.0135 40.23 223.67 32.69 0 604.44 0.0851 0.36 0 600.01
4,000 0.0036 43.08 163.60 31.25 0 606.24 0.0188 5.25 0 600.01
5,000 0.0037 52.36 224.07 41.22 1 570.32 0.0155 3.41 0 600.01
7,000 0.0029 33.71 121.00 17.45 0 604.00 0.0095 6.04 0 600.01

10,000 0.0027 29.46 41.93 2.75 1 605.39 0.0106 1.88 0 600.01

500 0.75 0.0261 31.79 51.13 13.46 1 566.41 0.1097 4.96 1 560.11
1,000 0.0117 34.40 472.00 81.12 0 603.56 0.0606 3.15 0 600.01
4,000 0.0025 47.86 151.53 41.85 0 606.25 0.0100 13.91 0 600.01
5,000 0.0031 45.94 122.80 19.54 1 566.51 0.0116 8.48 0 600.01
7,000 0.0029 41.65 76.07 36.13 0 602.99 0.0098 4.86 0 600.01

10,000 0.0018 40.95 55.07 4.70 0 605.30 0.0063 7.67 0 600.01
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upper bound and the lower bound, and the efficiency of the fixation process, are clearly correlated
to the initial problem.

6. Conclusion

In this paper, we consider the two scenarios max–min Knapsack Problem (KP), a variant of the
classical zero-one KP, where the values of the items differ under two possible scenarios. This
problem is a particular case of the max–min multiscenarios KP (MNK) in which items’ profit
changes according to a set of objective functions. The aim is to choose a subset of items so that the
minimal objective value associated to the selected items under the different scenarios is maximal,
and so that the total weight of the selected items does not exceed a given capacity. In a first part, we
introduce several formulations of the MNK as a mixed-integer programming problem (MIP). These
formulations can be used to provide an upper bound of the problem, and to solve exactly the MNK.
We also consider a quadratic formulation, and two possible linearization models. Then, we present a
hybrid method combining heuristics and mathematical programming techniques to provide strong
upper and lower bounds of the MNK. Lower bounds are obtained by solving subproblems in which
variables are fixed temporarily. The algorithm converges to an optimal solution of the problem, by
iteratively adding pseudo-cuts into the problem to strengthen the upper bound, and by reducing
the gap between the bounds. An initial solution is derived from a surrogate-based heuristic, and we
integrate a fixation technique to reduce the size of the initial problem by setting definitively variables
at their optimal values. We performed several experiments on a set of 900 large and correlated
instances with up to 20,000 items to evaluate and compare: (a) the different MIP models when using
a black-box solver to solve the MNK; (b) the impact of using our algorithm as a preprocessing
phase, before solving the problem with the solver; (c) the use of our approach as an exact or a
heuristic approach to solve large instances. The results demonstrate that MIP models can be used
efficiently by the solver, more particularly when the number of constraints is small, even if strongly
correlated instances are more difficult to solve at optimality in reasonable running time. In addition,
using directly our approach as an exact method is an efficient technique to solve MNK if the initial
gap of the instance is small. Finally, the preprocessing phase performed by our algorithm provides
a significant improvement in the average performance of the solver when considering large and
correlated instances. This improvement is due in particular to the setting of an important number
of variables in the initial problem, and to the reduction of the initial gap because of the addition of
pseudo-cuts.

Future work may consider the solution of MNK when the number of scenarios increases. Exact
methods available in the literature have trouble in exactly solving instances with more than 30
scenarios, in particular for strongly correlated instances. According to the results presented in this
paper, MIP formulations need to be improved (in particular for strongly correlated instances), even
when considering only two scenarios. We think that the use of our approach could be an interesting
prospect, in particular by integrating additional features such as efficient reduction techniques and
valid inequalities to strengthen the problem. The use of different relaxations to derive strong upper
bounds and the use of temporarily setting and adaptive memory to obtain good lower bounds are
two possible ways to solve efficiently MNK.
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