
HAL Id: hal-03723743
https://uphf.hal.science/hal-03723743v1

Submitted on 15 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved convergent heuristics for the 0-1
multidimensional knapsack problem

Saïd Hanafi, Christophe Wilbaut

To cite this version:
Saïd Hanafi, Christophe Wilbaut. Improved convergent heuristics for the 0-1 multidimensional knap-
sack problem. Annals of Operations Research, 2009, 183, pp.125 - 142. �10.1007/s10479-009-0546-z�.
�hal-03723743�

https://uphf.hal.science/hal-03723743v1
https://hal.archives-ouvertes.fr


Ann Oper Res (2011) 183: 125–142
DOI 10.1007/s10479-009-0546-z

Improved convergent heuristics for the 0-1
multidimensional knapsack problem

Saïd Hanafi · Christophe Wilbaut

Published online: 27 May 2009
© Springer Science+Business Media, LLC 2009

Abstract At the end of the seventies, Soyster et al. (Eur. J. Oper. Res. 2:195–201, 1978)
proposed a convergent algorithm that solves a series of small sub-problems generated by
exploiting information obtained through a series of linear programming relaxations. This
process is suitable for the 0-1 mixed integer programming problems when the number of
constraints is relatively smaller when compared to the number of variables. In this paper,
we first revisit this algorithm, once again presenting it and some of its properties, including
new proofs of finite convergence. This algorithm can, in practice, be used as a heuristic if
the number of iterations is limited. We propose some improvements in which dominance
properties are emphasized in order to reduce the number of sub problems to be solved opti-
mally. We also add constraints to these sub-problems to speed up the process and integrate
adaptive memory. Our results show the efficiency of the proposed improvements for the 0-1
multidimensional knapsack problem.

Keywords Relaxation · Heuristic · Multidimensional knapsack problem

1 Introduction

This paper considers the 0-1 Multidimensional Knapsack Problem (MKP), which seeks to
find a subset of items that maximizes a linear objective function while satisfying the capacity
constraints. This problem can be formulated as follows:

(MKP)

⎡
⎢⎢⎣

max
∑n

j=1 cjxj

subject to:
∑n

j=1 aij xj ≤ bi, ∀i ∈ M = {1, . . . ,m}
xj ∈ {0,1}, j ∈ N = {1, . . . , n}
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where N is the set of items, cj is the profit of item j ∈ N , M is the set of knapsack con-
straints, bi is the capacity of knapsack i ∈ M , and aij is the consumption of resource i ∈ M

by item j . All values cj , bi and aij are non-negative integers. Without loss of generality, we
can assume that maxj∈N aij ≤ bi ≤ ∑

j∈N aij , ∀i ∈ M . For reasons of simplicity, we use the
following shortcut notation for the problem:

(MKP) max{cx : Ax ≤ b, x ∈ {0,1}n}. (1)

The MKP is a special case of 0-1 integer programming; it is known to be NP-hard, but
not strongly NP-hard. This problem has been widely discussed in the literature, and ef-
ficient exact and approximate algorithms have been developed for obtaining optimal and
near-optimal solutions (see Fréville 2004 and Fréville and Hanafi 2005 for a comprehen-
sive annotated bibliography). In particular, the MKP has been shown to become signifi-
cantly harder to solve as m increases. Some very efficient algorithms (Kellerer et al. 2004;
Martello and Toth 1990) do exist when m = 1, but as m increases, exact methods, including
the latest versions of CPLEX, usually fail to provide an optimal solution for even moderate-
size instances. Very efficient approaches based on the tabu search technique have been de-
veloped for the MKP (e.g., Glover and Kochenberger 1996 or Hanafi and Fréville 1998),
and most of the best-known solutions for the instances in the OR-Library (Beasley 1990)
were obtained by Vasquez and Hao (2001) and Vasquez and Vimont (2005). Other recent
methods have obtained encouraging results by making a compromise between solution qual-
ity and computational effort. For example, Puchinger et al. (2006) proposed an extension of
the classic core concept Pisinger (1995) for the MKP and also described an extension of
the metaheuristic variable neighborhood search (Hansen and Mladenovic 2001) used with
a branch-and-cut algorithm. In addition, Lichtenberger (2005) applied the local branching
framework (Fischetti and Lodi 2003) to the MKP, producing results that show that integrat-
ing this method into the open source software COIN-OR is a good way forward.

At the end of the seventies, Soyster et al. (1978) proposed a convergent algorithm for pure
0-1 integer programming that solves a series of small sub-problems generated by exploiting
information obtained through a series of linear programming relaxations. Another approach
for generating and exploiting small sub-problems was also suggested by Glover (1977),
whose ideas we will also make use of in parts of our development. In this proposal, a heuris-
tic approach is applied in a series of passes to identify variables that qualify as strongly
determined and consistent, by reference to how frequently they attain particular values in
good solutions and by how much disruption they would cause to these solutions if changed.
Upon identifying a subset of variables of this form, the method fixes (or bounds) the se-
lected variables to receive their associated values, and then repeats the process, thereby iter-
atively identifying additional variables to be fixed. The possibility of using differing criteria
for identifying solutions that qualify as good, and for setting the thresholds that determine
which variables qualify as strongly determined and consistent gives a basis for repeating the
process and adapting it to different problem structures.

More recently, building in part on these ideas, Glover (2005) proposed an adaptive mem-
ory projection (AMP) method for pure and mixed integer programming, which combines
the principle of projection techniques with the adaptive memory processes of tabu search to
set some explicit or implicit variables to some particular values. This approach, whose ideas
we also draw upon subsequently, gives a useful basis for unifying and extending a variety of
other procedures. For example, it gives an opportunity to bring together innovative contri-
butions underlying methods such as the Large Neighborhood Search (LNS) introduced by
Shaw (1998), the large-scale neighbourhood search proposed by Ahuja et al. (2002), the lo-
cal branching proposed by Fischetti and Lodi (2003), the relaxation induced neighbourhood
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search (RINS) proposed by Danna et al. (2005), or the global tabu search intensification
using dynamic programming (TS-PD) proposed by Wilbaut et al. (2006). LNS and RINS
have been applied successfully to solve large-scale mixed integer programming problems.
TS-PD is a hybrid method, combining adaptive memory and sparse dynamic programming
to explore the search space, in which a move evaluation involves solving a reduced problem
through dynamic programming at each iteration.

Thus, exact methods designed to find the optimal value have been successfully applied
to problems of small dimensions, but they have not been able to produce high quality solu-
tions with a reasonable computational effort for problems of a moderate size. Large-scale
problems require good approximations of the optimal value, and both heuristic and relax-
ation methods have proved useful for providing the upper and lower bounds of the optimal
value for large and difficult optimization problems. In this paper, we propose several con-
vergent algorithms, integrating both heuristic and relaxation methods, for solving the MKP.
Section 2 of this paper briefly describes the iterative linear programming-based heuristic on
which we base our approach. We provide a new proof of the algorithm’s finite convergence
in Sect. 3. Then in Sect. 4 we describe several enhancements for this algorithm based on the
definition of the concept of dominance to solve fewer problems optimally. We also describe
other ways to obtain a new algorithm with other improvements. The computational results
are reported in Sect. 5, and our conclusions and suggestions for future research are offered
in Sect. 6.

2 Iterative linear programming-based heuristic

Soyster et al. (1978) proposed an exact algorithm to solve 0-1 integer programs. As we show
in Sect. 3, this algorithm cannot be used as an exact algorithm for large instances in practice.
We therefore use the same procedure but limit the number of iterations it is allowed to per-
form, and we call this heuristic the Iterative Linear Programming-based Heuristic (ILPH).
The ILPH optimally solves a series of small sub-problems obtained from a series of lin-
ear programming relaxations. The approach proceeds as follows. At each iteration, the LP-
relaxation of the current problem P is solved to generate one constraint. Then, a reduced
problem induced from an optimal solution of the LP-relaxation is solved to obtain a feasi-
ble solution for the initial problem. If the stopping criterion is satisfied, then the best lower
bound and the best upper bound are returned. Otherwise, a pseudo cut is added to P and the
process is repeated. Our solution offers improvements on this algorithm.

To describe the ILPH, we introduce the notion of reduced problems, which are obtained
from the original problem by setting several variables at given values. Given a binary solu-
tion x0 ∈ {0,1}n and a subset J ⊆ N , the reduced problem associated with x0 and J can be
formally defined as follows:

P (x0, J ) max{cx : Ax ≤ b, xj = x0
j ,∀j ∈ J, x ∈ {0,1}n}. (2)

Obviously, P (x0,�) = P and v(P (x0, J
′
)) ≤ v(P (x, J )) for any subsets J and J

′
of N

with J ⊆ J
′
, where v(P ) is the optimal value of the optimization problem P . The notion of

reduced problem can be quite useful in a variety of different contexts. For example, at each
iteration of the simplex method of linear programming, the pivot move solves a reduced
problem where only a single variable is free, here |J | = n − 1.

Throughout the rest of the paper, the following notations are used. Let x ∈ [0,1]n,
J 0(x) = {j ∈ N : xj = 0}, J 1(x) = {j ∈ N : xj = 1}, J ∗(x) = {j ∈ N : xj ∈]0,1[} and
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J (x) = {j ∈ N : xj ∈ {0,1}} (i.e. J (x) = J 0(x) ∪ J 1(x)). Let P be an optimization prob-
lem and Q be a set of constraints. The notation (P |Q) denotes the optimization problem
obtained from P by adding the set of constraints Q.

The ILPH restricts the search process to visiting optimal LP-solutions already generated
by adding a pseudo-cut at each iteration according to the following propositions.

Proposition 1 Let x0 be a vector in {0,1}n. The following inequality

∑
j∈J 1(x0)

xj −
∑

j∈J 0(x0)

xj ≤ |J 1(x0)| − 1 (3)

cuts off solution x0 without cutting off any other solution in {0,1}n.

Proof For any solution x 
= x0 we have:

‖x − x0‖1 > 0. (4)

Using the definition of the norm ‖ .‖1, the strict inequality (4) can be expressed as follows:

∑
j∈J 1(x)0

|1 − xj | −
∑

j∈J 0(x0)

|xj | > 0. (5)

Since the solutions x are contained in {0,1}n, the inequality (5) is equivalent to (3). This
completes the proof. �

Proposition 2 Given a 0-1 integer program P , let x̄ be an optimal solution of the LP-
relaxation LP(P ) and x0 be an optimal solution for the reduced problem P (x̄, J (x̄)). Thus,
an optimal solution for P is either the feasible solution x0 or an optimal solution for the
problem

(P | {f x ≤ |J 1(x̄)| − 1}) (6)

where the vector f of dimension n is defined for j = 1, . . . , n as

fj =
{

2x̄j − 1 if x̄j ∈ {0,1}
0 if x̄j ∈ ]0,1[ .

Proof It is easy to note that for each solution x in {0,1}n, f x ≤ |J 1(x̄)|. This inequality
could be divided into two inequalities for every solution x for the problem P :

f x < |J 1(x̄)| (7)

or

f x = |J 1(x̄)|. (8)

Every solution satisfying the constraint (8) is considered in the reduced problem P (x̄, J (x̄))

and could be eliminated in the next iteration using Proposition 1. Since the variables are
binary and the coefficients of the constraint (7) are integers, this constraint could be refor-
mulated as f x ≤ |J 1(x̄)| − 1. This completes the proof. �
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Algorithm 1 Iterative Linear Programming-based Heuristic (ILPH)
Require: Instance P of the MKP.
Ensure: An optimal solution x∗ of P .

1: Let x∗ be a feasible solution of P if one is available;
2: Q = P ; stop = False;
3: while stop = False do
4: Solve the LP-relaxation of Q to obtain an optimal solution x̄;
5: if x̄ ∈ {0,1}n then
6: x∗ = x̄; stop = True;
7: end if
8: Generate an optimal solution x0 of the reduced problem P (x̄, J (x̄));
9: Update the best known-solution: if cx0 > cx∗ then x∗ = x0;

10: Generate the current cut {f x ≤ |J 1(x̄)| − 1} according to (6)
11: Update the current problem Q by adding the above constraint:

Q = (Q | {f x ≤ |J 1(x̄)| − 1})
12: Check stopping criteria: if �cx̄ − cx∗ < 1 then stop = True;
13: end while
14: Return the best solution x∗ of P if one is generated;

Balas and Jeroslow (1972) call the constraints added to the problem (6) canonical cuts on the
unit hypercube K = {x ∈ Rn : 0 ≤ xj ≤ 1, j = 1, . . . , n}. The inequalities in (6) have also
been used, for example, to produce 0-1 “short hot starts” for branch-and-bound methods by
Spielberg and Guignard (2000) and Guignard and Spielberg (2003) and were used by Glover
(2005) in AMP in diversification and intensification phases.

Algorithm 1 shows the basic steps of the ILPH. At each iteration, the algorithm solves
the LP-relaxation of the current problem, Q, generating the optimal solution x̄ (line 4).
From this optimal solution, the associated reduced problem P (x̄, J (x̄)) is solved exactly to
generate a feasible solution x0 for the original problem P (line 8). The current problem Q

is then enriched by a pseudo-cut to avoid generating the optimal basis of the LP-relaxation
more than once (line 11). The process stops if the difference between the upper and the
lower bounds is less than 1 (line 12). Assuming that all data are integers, if the condition
�cx̄ − cx∗ < 1 is satisfied, then the solution x∗ corresponding to the lower bound is an
optimal solution for the problem P (where, for a real number α, �α identifies the greatest
integer ≤ α).

3 Convergence of the iterative linear programming-based heuristic

The following theorem states that, when the ILPH terminates, the best solution found is an
optimal solution for the initial problem.

Theorem 1 Given an instance P of MKP, the final best solution obtained by the ILPH is an
optimal solution for P . Moreover, if the optimal solution for the LP-relaxation LP(P k) is an
integer solution or if the problem LP(P k) is infeasible, then the ILPH terminates (where P k

denotes the current problem at iteration k).

Proof Let Fk be the union of all the feasible sets of the reduced problems solved exactly
up to the current iteration k. More specifically, Fk = ⋃k

i=1 F(P (x̄i, J ∗(x̄i))), where F(P )

is the feasible set of the optimization problem (P ).
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The set Fk and the set of the feasible solutions for the problem P k constitute a partition
of the feasible set of P (i.e., F(P ) = Fk ∪F(P k) and Fk ∩F(P k) = �). Let x∗k be the final
solution returned by the algorithm ILPH when it stops at iteration k. Thus, cx∗k = max{cx :
x ∈ Fk}. Moreover, v(P ) = max{cx : x ∈ F(P )} = max{cx : x ∈ Fk ∪ F(P k)}, yielding

v(P ) = max{cx∗k;max{cx : x ∈ F(P k)}}. (9)

Since v(LP(P k)) ≥ max{cx : x ∈ F(P k)} and since all the data for P are integers, the stop-
ping condition of the ILPH (i.e. v(LP(P k)) − cx∗k < 1) implies that the final solution x∗k

is an optimal solution for P . Moreover, according to (9), if the optimal solution of the LP-
relaxation LP(P k) is an integer or the problem LP(P k) is infeasible, then the solution x∗k is
an optimal solution for P . This completes the proof. �

Theorem 2 states the finite convergence of the ILPH.

Theorem 2 The ILPH converges to an optimal solution for the problem or indicates that
the problem is infeasible in a finite number of iterations.

Proof Let us define a partial solution as a vector in which some of the components have
not yet been assigned. Such partial solutions are assumed to include incomplete or complete
solutions. More specifically, a partial solution x of order k is a vector for which exactly n−k

of the variables are assigned to values 0 or 1. There are 2n partial solutions of order zero (i.e.,
0-1 solution in {0,1}n) and there is one partial solution of order n (i.e., null solution). More
specifically, there are

( n

k

)
2n−k partial solutions of order k. Thus the total number of partial

solutions is 3n = (1 + 2)n = ∑n

k=0

( n

k

)
2n−k . At each iteration, the ILPH generates a partial

solution from the optimal solution x̄ of the current LP-relaxation LP(P ), which is completed
by solving the corresponding reduced problem exactly. The next iteration cuts off this partial
solution by adding the constraint (6). Since there is a finite number of partial solutions,
the number of iterations of the ILPH is bounded by 3n iterations. Moreover, according to
Theorem 1, the ILPH terminates as soon as a partial solution of order zero is found, so the
number of iterations cannot exceed 3n − 2n. This completes the proof. �

The proofs of Theorems 1 and 2 remain valid for the general 0-1 integer programs, which
implies the finite convergence of the ILPH for the 0-1 integer programs. This validity can
be extended to general 0-1 mixed integer programs, assuming that the optimal value of the
LP-relaxation v(LP(P k)) = −∞ if the problem LP(P k) is infeasible.

The ILPH was first tested on moderate size instances of MKP to evaluate its conver-
gence. We report in Table 1 the results obtained for two MKP problems. We give for some
iterations (iter) the value of the linear programming relaxation v(LP(P )); the value of the
feasible solution generated cx0; the number of fractional variables associated in the solution
of the linear programming relaxation which corresponds to the size of the reduced problem,
|J ∗(x̄)|. The first problem has 30 variables and 10 constraints. Its optimal value is equalled
to 376. The process is very fast and an optimal solution is obtained with 13 iterations (see
Table 1). This solution is proved to be optimal at iteration 13 since the optimal condition
expressed at line 12 of Algorithm 1 is satisfied. When the algorithm was launched on the
second problem with 100 variables and 5 constraints (OR-100-5.3 in the OR-Library), an
optimal solution was obtained after 41 iterations; after 100 iterations, the difference between
the lower and the upper bounds was about 0.5%. In the end, 292 iterations were necessary
to prove the solution’s optimality. The process is distinctly slower. The results obtained for
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Table 1 Convergence
illustration GK9 OR-100-5.3

iter v(LP(P )) cx0 |J ∗(x̄)| iter v(LP(P )) cx0 |J ∗(x̄)|

1 380.3 336 6 1 23724.1 22554 5

2 379.7 368 7 2 23722.7 22983 5

3 379.6 360 8 3 23720.3 23056 7

4 379.5 368 9 4 23715.5 22606 6

5 378.7 368 10 40 23687.4 23447 18

8 377.9 368 10 41 23687.3 23534 20

9 377.6 372 10 42 23686.8 23402 16

10 377.2 368 11 98 23652.3 23497 23

11 376.9 372 13 99 23651.6 23486 23

12 376.5 364 7 100 23651.1 23497 24

13 376.4 376 9 292 23534.6 23497 46

this problem clearly show that the convergence is not easily reachable in practice. The total
running time of the algorithm was about 400 seconds on our computer (see Sect. 5 for a
description of the computer’s characteristics), whereas the branch-and-bound algorithm re-
quired only a fraction of this time, a mere handful seconds, to obtain an optimal solution.
This example seems to indicate that the ILPH can not be used easily as an exact method.
Notice also that the size of the reduced problem does not necessarily increase between two
iterations and that the increase is usually observed to be slow. Finally note that the ILPH
could generate the same feasible solution several times but it has the advantage of generat-
ing good lower bounds in a small number of iterations.

In order to increase it’s effectiveness, we decided to use the ILPH as a heuristic, replacing
the stopping criterion with a maximum number of iterations. In the following section, we
propose enhancements for the ILPH designed to accelerate the process and to reduce the
gap between the lower bound and the upper bound of the problem when the ILPH is used as
a heuristic. These enhancements are based on dominance properties and the use of adaptive
memory.

4 Enhancements of the ILPH

In practice, most of the time needed to execute the ILPH is consumed by the exact method
for solving the reduced problems. The linear programming relaxation does not, in fact, re-
quire much effort thanks to advances in the commercial solvers (as long as the size of the
problem remains reasonable). However, neither the commercial solvers nor the existing ex-
act algorithms in the literature are able to solve exactly moderate-sized reduced problems
with reasonable computational effort. This is the case both for the MKP and for other opti-
mization problems. For example, the reduced problems obtained from instances of the MKP
with n = 500 and m = 30 are very difficult to solve with CPLEX v9, even at the first it-
erations of the ILPH. In order to reduce the total number of exact optimization procedures
over reduced problems and hence to accelerate the search, we propose the use of dominance
properties.
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4.1 Reducing the number of reduced problems

Our dominance properties depend on the subsets J (x̄) associated with the solutions for the
linear programming relaxations obtained during the solution process.

Definition 1 Let x1 and x2 be two solutions in [0,1]n, we say that solution x1 dominates
solution x2 if, for all j ∈ J (x1), x1

j = x2
j .

For example, solution x1 = (1100 ∗ ∗) dominates solution x2 = (11001∗), where “*” in-
dicates a fractional variable in a solution. Note that given two solutions x1 and x2, one of
them will not always dominate the other (e.g., x1 = (1110 ∗ ∗) and x2 = (0001 ∗ ∗)). The
following proposition describes the dominance property associated with Definition 1.

Proposition 3 Let x1 and x2 be two solutions in [0,1]n. If solution x1 dominates solution
x2 according to Definition 1, then

v(P (x1, J (x1))) ≥ v(P (x2, J (x2))). (10)

Proof According to Definition 1, if solution x1 dominates x2, then J (x1) ⊆ J (x2). In addi-
tion, the integer values in solution x1 are the same as in solution x2. Thus, the inequality (10)
is obtained due to the fact that the problem P (x1, J (x1)) is a relaxation of P (x2, J (x2)). �

An obvious implication of Proposition 3 is that it is not necessary to solve the reduced
problems corresponding to the dominated optimal solutions of the LP-relaxation.

To integrate the dominance property into the ILPH, we propose a new two-phase al-
gorithm described in Algorithm 2. In the first phase, only one series of LP-relaxations is
solved (lines 3 to 8); and in the second phase, the reduced problems associated with the
undominated LP-solutions are solved exactly (lines 9 to 12). To implement this algorithm, a
list L, containing only the solutions associated with the undominated reduced problems, is
maintained. However, all the optimal solutions of the LP-relaxations are not stored; only the
indices corresponding to the fractional variables and the variables set at 1 are included in the

Algorithm 2 Iterative Linear Programming-based Heuristic with dominance
Require: Instance P of the MKP; The maximum number of iterations, Max_Iter
Ensure: A feasible solution x∗ of P .

1: Let x∗ be a feasible solution of P if one is available;
2: v∗ = cx∗; L = �; Q = P ; iter = 1;
3: while iter ≤ Max_Iter do
4: Let x̄ be an optimal solution of LP(Q);
5: Q = (Q | {f x ≤ |J 1(x̄)| − 1})
6: if D−(x̄) = � then L = L + x̄ − D+(x̄)

7: iter = iter + 1;
8: end while
9: for every solution x̄ ∈ L do

10: Let x be an optimal solution of the reduced problem P (x̄, J (x̄))

11: if cx > cx∗ then x∗ = x; v∗ = cx;
12: end for
13: Return the best solution x∗ of P if one is generated;
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list. This list can be sorted according to the size of the fractional subsets of the LP-solutions
in order to accelerate the detection of the dominated solutions. The dominated solutions are
detected using the set D+(x̄) (resp. D−(x̄)), representing the set of the elements in the list
L dominated by (resp. which dominate) the solution x̄:

D+(x̄) = {y ∈ L : x̄ dominates y},
D−(x̄) = {y ∈ L : y dominates x̄}.

Thus, a solution x̄ is added to L if and only if D−(x̄) = � (line 6).
This version of the ILPH stops after a maximum number of iterations (the algorithm

parameter Max_Iter). As shown in Sect. 5, integrating the dominance property results in a
smaller number of reduced problems to be solved exactly for most of the instances tested.

The following proposition extends this dominance property.

Proposition 4 Let x1 and x2 be two solutions in [0,1]n; the solution y = x1+x2

2 , dominates
solutions x1 and x2, thus

v(P (y, J (y))) ≥ max{(v(P (x1, J (x1))), v(P (x2, J (x2)))}. (11)

Proof It is easy to check that solution y dominates solutions x1 and x2. Inequality (11)
follows directly from Proposition 3. �

From a practical standpoint to use the Proposition 4, we define a parameter t corresponding
to the maximum number of fractional variables in the solution y. This parameter must be
adjusted experimentally; for example, it can depend on the total number of iterations and/or
the number of constraints of the problem. The results presented in Sect. 5 provide an idea of
this parameter’s influence.

Another way to avoid solving exactly reduced problems is based on the following propo-
sition.

Proposition 5 Let v̄(Q) be an upper bound on the optimal value of the reduced problem Q

to be solved and v∗ the value of the best known solution found. Therefore there is no need to
solve exactly the reduced problem Q if v̄(Q) ≤ v∗.

Proof The proof is based on the classical pruning by bound used in branch-and-bound (see
e.g. Nemhauser and Wolsey 1999). �

The upper bound v̄(Q) can be computed by different alternatives using relaxation such
LP-relaxation, Lagrangean or surrogate relaxation strategies (see, e.g. Rardin and Karwan
1984). Note that the LP-relaxation affords the most method used for computing the upper
bound value strategies (see Rardin and Karwan 1984).

In the next subsection, other ways to accelerate the solving of the reduced problems are
described. Constraints are added to these sub-problems only to cut off the search, and a
classic reduction rule is used to reduce the size of the initial problem and to accelerate the
search.
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4.2 Accelerating the solving of the reduced problems

Various techniques can be used to reduce the computational time needed to solve the re-
duced problems exactly. Our implementation adds four constraints to the reduced problems
to reduce the search space to be explored. The following 2 constraints (12) set the lower
and upper bounds on the optimal value of the reduced problem. More specifically, these
constraints are expressed as:

v ≤ cx ≤ v̄ (12)

where v is the best-known lower bound and v̄ is the best-known upper bound. Note that these
bounds are improved during the running of the ILPH.

The second two constraints (13) impose bounds on the sum of problem variables. Glover
(1965) has already proposed ways to exploit these kinds of constraints, and both Fréville and
Plateau (1993) and Vasquez and Hao (2001) have shown that these constraints can improve
the efficacy of algorithms for the MKP. More specifically, we add the two constraints:

σ ≤
∑
j∈N

xj ≤ σ̄ (13)

where σ (resp. σ̄ ) is a lower (resp. an upper) bound on the sum of the problem variables.
These constraints of (13) are valid for the problem P for values of σ and σ̄ equal to the
optimal values of the following linear programs P and P̄ (i.e., σ = v(P ) and σ̄ = v(P̄ )),
respectively:

(P )

⎡
⎢⎢⎢⎣

min
∑n

j=1 xj

s.t.: Ax ≤ b,

v ≤ cx ≤ v̄,

xj ∈ [0,1], ∀j ∈ N,

(P̄ )

⎡
⎢⎢⎢⎣

max
∑n

j=1 xj

s.t.: Ax ≤ b,

v ≤ cx ≤ v̄,

xj ∈ [0,1], ∀j ∈ N.

The constraints (12 and 13) are adapted to the reduced problems. The bounds σ , σ̄ , v, and
v̄ are updated every time a change occurs. For example, improving v provokes an update of
σ and σ̄ . Practically speaking, calculating the values σ and σ̄ does not require much effort
since it involves solving just two linear programs.

Another way to accelerate the ILPH is to reduce the size of the instance. Thus, the fol-
lowing common property is applied to verify whether or not several variables can be set to
their optimal values during the algorithm.

Proposition 6 For any j ∈ N and for any feasible solution x0 ∈ {0,1}n, if v(P (e −
x0, {j})) ≤ cx0 (where e is a vector whose components are all set to 1), then either xj = x0

j

in any optimal solution of the problem, or x0 is an optimal solution of the problem.

Although the problem P (e − x0, {j}) is as difficult to solve as the original one, the property
above remains valid if v(P (e − x0, {j})) is replaced by any of the problem’s upper bounds.
In our experiments, we used LP-relaxation to apply Proposition 6 quickly. We also tried to
set variables every time the lower bound was improved. Applying Proposition 6 requires that
only linear programming relaxations be solved, and in many cases doing so helps to reduce
the size of the initial problem.

In the next subsection, we propose another version of the ILPH, in which all the con-
straints generated during the process are not added. The size of the reduced problems is kept
under control by using surrogate constraints.
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4.3 Controlling the size of the reduced problems

The fact that the ILPH adds one constraint to the current problem at each iteration can in-
crease the number of variables of the reduced problem. In order to prevent the number of
constraints from becoming too large, it is worthwhile to use adaptive memory of tabu search
(memory based on recency and frequency) in such processes to decide when to drop pre-
viously introduced inequalities (see, e.g., Glover and Laguna 1997). Another way consists
to replace older constraints by one or several surrogate constraints. For example a simple
mechanism that uses surrogate constraints to control the size of the reduced problems is as
follows. Let p be a parameter corresponding to the maximum number of variables in the re-
duced problems. Constraints can be added to the current problem as long as the total number
of constraints is less than p. When the number of constraints becomes greater than p, the
oldest constraints are replaced by surrogate constraints (Glover 1975). Typically, at iteration
k > p, the problem P k contains the following additional constraints:

f lx ≤ |J 1(x̄l)| − 1 for l = k − p + 2, . . . , k, (14)

k−p+1∑
l=1

μlf
lx ≤

k−p+1∑
l=1

μl |J 1(x̄l)| − (k − p + 1), (15)

where f l is defined as follows:

f l
j =

{
2x̄l

j − 1 if x̄l
j ∈ {0,1}

0 if x̄l
j ∈ ]0,1[ .

The constraints (14) are generated between iteration k − p + 2 and iteration k, and the
surrogate constraint (15) is created as a non-negative linear combination of the constraints
generated between iteration 1 and iteration k−p+1 (with multiplier μ). When k ≤ p, all the
constraints generated are added to the problem. This version of the ILPH helps to decrease
the total computational time of the algorithm, but it doesn’t guarantee that the same lower
bounds will be obtained. As shown in the following section, this version of the algorithm
provides a good compromise between the computational effort expended and the quality of
the lower bounds.

4.4 Improving upper bound

In order to reduce the gap between the upper bound and the lower bound it is possible to
use the mixed integer programming (MIP) relaxation rather than the linear programming
(LP) relaxation. A MIP relaxation of a problem P relative to a subset J of N is defined as
follows:

MIP(P,J ) max{cx : Ax ≤ b, x ∈ [0,1]n, xj ∈ {0,1},∀j ∈ J }. (16)

In this relaxation, a subset of variables is forced to be binary for the current problem P ,
which is modified after adding pseudo-cuts. In practice, the size of the subset is kept small
compared to n, and the remaining variables are continuous. We describe in Wilbaut and
Hanafi (2009) several ways to integrate this relaxation into the ILPH. For instance the mixed
integer programming relaxation could simply replace the linear programming relaxation.
The MIP-relaxation can also be used as a technique to diversify the search by forcing the
algorithm to explore disjoint reduced problems during the search. It is also possible to use
the two relaxations conjointly in other algorithms. More details on the integration of LP and
MIP relaxations into the ILPH are given in Wilbaut and Hanafi (2009).



136 Ann Oper Res (2011) 183: 125–142

4.5 Intensification and diversification phases

Intensification and diversification methods are the main strategies of tabu search (TS) which
significantly improve the efficiency of TS algorithms when solving difficult problems. In this
section we propose some ways to incorporate intensification and diversification methods in
the ILPH.

The use of adaptive memory in optimization algorithms often increases the quality of the
solutions generated. In this paper we use intensification and diversification methods based
on the frequency memory of the search. We use two kinds of frequency memory. The first
one consists of keeping the number of times a variable was free in the reduced problems.
We denote this memory by RedFreq. The second one consists in keeping the sum of the
solutions generated by the algorithm for all the variables, which is denoted by SumFreq.

An intensification phase is launched when the best solution was improved during the
ILPH. It corresponds to the following scheme in 3 steps:

1. Choose α variables to be free in the reduced problem according to the decreasing order
of the values in RedFreq (with α parameter fixed at 40 in our experimentations).

2. Set the other variables to their values in the best solution (set a variable at value 1 if the
feasibility of the solution is respected).

3. Solve the associated reduced problem.

The diversification phase consists in generating another reduced problem from the two struc-
tures of frequency memories described above and in a similar way as the one used for the
intensification method. In a first step we choose α variables to be free in the reduced prob-
lem according the increasing order of the values in RedFreq. Then the other variables are
fixed according to the decreasing values in SumFreq, and the associated reduced problem is
solved. A diversification phase is applied when two consecutive intensification phases do not
improve the best solution. As we show in the next section, the integration of all the methods
described in the previous pages in the ILPH contributes to the efficiency of this heuristic for
solving the MKP.

5 Computational results

The different versions of the ILPH proposed in this paper were tested on a wide set of MKP
instances available in the OR-Library (Beasley 1990). It is a collection of 270 correlated,
and thus difficult, instances generated using the procedure proposed by Fréville and Plateau
(1994). The 270 instances were generated by varying combinations of constraints (m = 5,
10, 30) and variables (n = 100, 250, 500), with 30 instances being generated for each n−m

combination. We implemented all the algorithms presented in this paper in the ‘C’ language
compiled with “gcc”, option -O2. We used the commercial solver CPLEX of ILOG to solve
the reduced problems. The tests were carried out using a 3.4 GHz Pentium IV computer
with 4 Gb RAM. In the following paragraphs, all times are expressed in CPU seconds. Our
results are compared with those from CPLEX v9 and the best-known values (Vasquez and
Vimont 2005).

We first compared the ILPH alone with CPLEX. We limited CPLEX to 2000 seconds
of CPU time for the sets of instances with m = 5 and 10, and to 5000 seconds for the
instances with m = 30. Table 2 presents the average results obtained for solving the 270
instances, with the maximum number of iterations (Max_Iter) being set to 50 and 100 for
the ILPH (every line is an average over 30 instances). For every instance size, the average
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Table 2 Average results for
ILPH compared to CPLEX n m Max_Iter = 50 Max_Iter = 100

%cx CPU %cx CPU

100 5 0.02 1 0 10

10 0.02 7 0 44

30 <0.01 390 0 1586

250 5 0.03 2 0.01 31

10 0.04 10 0.01 148

30 0.03 1385 0.01 4284

500 5 0.02 2 0.01 65

10 0.05 12 0.02 275

30 0.04 2072 0.02 5108

Table 3 Results for the ILPH with the dominance properties

n Max_Iter = 25 Max_Iter = 50 Max_Iter = 100

%R %CPU %R %CPU %R %CPU

Prop.3 100 22.22 11.21 22.89 2.36 22.22 −9.01

250 19.33 17.70 21.11 10.22 21.16 8.85

500 19.20 12.75 21.20 8.40 20.58 4.91

Average 20.25 13.89 21.73 6.99 21.32 1.58

Prop.4 100 88.08 7.18 71.63 −21.29 61.12 −4.83

250 76.03 −1.04 50.33 14.01 42.77 22.17

500 61.41 27.58 36.08 18.26 31.06 19.76

Average 75.17 11.24 52.68 3.66 44.98 12.37

gap between the value of the best lower bound found by CPLEX and the one obtained by the
ILPH is given in the column “%cx” (i.e., ((value_CPLEX - value_ILPH) / value_CPLEX *
100)). The column “CPU” reports the average CPU times in seconds for the ILPH.

As shown in Table 2, the quality of the solutions is better when the number of iterations
increases. However, the computational effort becomes significantly larger when m = 30.
For instances with a number of variables equal to 100, the ILPH finds almost all the optimal
solutions within 100 iterations; for the other problems, the quality of the final solution found
is comparable with those from CPLEX. These results confirm that the ILPH is efficient,
particularly when m is small. The results obtained with our new algorithms are presented
and discussed below.

Table 3 gives the results obtained when the dominance properties (Propositions 3 and 4)
are introduced. We report in column % R (resp. %CPU) the average percentage of gain in
the number of reduced problems solved exactly (resp. in run time) for three distinct values
of Max_Iter: 25, 50 and 100 and for each value of n. Note that the values of the final lower
bounds are the same as those presented in Table 2 since the dominance property only affects
the number of reduced problems exactly solved. The results reported for Proposition 4 were
obtained with the value of parameter t = 45, 45, 50 for Max_Iter = 25, 50, 100 respectively.
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Table 4 Results with the control of the size of the reduced problems

p n 100 250 500

m 5 10 30 5 10 30 5 10 30

1 % 0.378 0.312 0.1 0.249 0.222 0.094 0.147 0.132 0.09

CPU 0.1 0.7 57.5 0.1 0.8 134 0.1 0.8 257.6

5 % 0.144 0.17 0.047 0.161 0.159 0.077 0.087 0.107 0.069

CPU 0.3 1.4 96.6 0.4 1.6 242.3 0.4 1.8 454.6

10 % 0.044 0.102 0.011 0.078 0.093 0.04 8 0.052 0.078 0.057

CPU 0.7 3.5 218.6 0.8 3.7 709.5 0.9 4.1 1387.6

20 % 0.007 0.02 0.001 0.021 0.039 0.026 0.016 0.044 0.036

CPU 3 11.7 659 3.5 15.5 2089 3.5 16 4352

Table 3 shows that the gain in the number of reduced problems solved exactly is sig-
nificant, and that the gain in run time varies sharply. It appears that adding the dominance
properties can increase the execution time of the ILPH, especially for problems with few
constraints. The inefficiency of the dominance properties with such problems can be ex-
plained by the fact that the dominated reduced problems are generally small and can be
solved very quickly. Therefore, the contribution of the dominance property cannot compen-
sate for the cost of detecting the dominated elements in the first place. Table 3 also shows
that the gain in the number of reduced problems solved exactly can be more important when
we apply Proposition 4. However, this increase depends on the value of the parameter t .
In fact, for the same value of t , the values of %R and %CPU generally decrease for two
consecutive values of Max_Iter. The gain becomes more important for Max_Iter ≥ 50 and
t = 50. When Max_Iter = 100, the total computational time of our algorithm is reduced by
about 12%, which is a significant improvement with respect to the initial CPU times of the
ILPH, in particular when m = 30 (i.e., about 3600 seconds; see Table 2).

To summarize the above results we can say that the added dominance properties improve
the performance of the ILPH considerably. The efficiency of the first property is generally
higher when the number of iterations is small. If the number of iterations is increased, then
the gain in run time decreases, though the gain in problems solved remains on the same
order. The situation is different when the second property is integrated. The influence of
parameter t on the results is clear. It appears to be difficult to identify a value for t that will
insure the best results for the MKP. Here, the value of t increases with the value of Max_Iter.
However, the efficiency of the algorithm may decrease with increasing values of t .

In Table 4 we present the results obtained when the size of the reduced problems is
controlled as described in Sect. 4.3. Like in Table 2, the values of our lower bounds are
compared with those obtained with CPLEX. Each column is the average for 30 instances.
For each class of instances, the results are given for the quality of the lower bound (row “%”)
and the amount of run time (row “CPU”). To measure the impact of aggregating the con-
straints, the algorithm was tested with several possible values for the number of constraints
p added to the problem: 1, 5, 10 and 20. In order to obtain a real idea of the efficiency of
this version of the algorithm, Max_Iter was set to 100.

As Table 4 shows, for a given number of constraints added, the run time increases with
n and m and so does the solution quality. In particular, the increase in run time between
m = 10 and 30 is very high, irrespective of the value of the other parameters. Comparing the
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values for the quality of the lower bounds and the running times in Tables 2 and 4 reveals
a strong decrease in run times and a less abrupt difference between the running times for
each value of n. This approach appears to provide solutions that are close in quality to those
generated by the ILPH while requiring relatively less computational effort.

The last part of this section provides the results obtained by our algorithm with the first
dominance property (Proposition 3) and all the accelerating components (adding constraints,
reduction rule and adaptive memory) for the 90 largest instances with n = 500 (Table 5). The
algorithm was run through 120, 120 and 60 iterations for the instances with m = 5, 10 and
30, respectively. For every instance, the best-known lower bound reported by Vasquez and
Vimont (2005) is given in column v∗. The absolute and the relative differences between
this lower bound and our lower bound is given in columns v∗ − v and %v∗; the difference
between our final upper bound and our final lower bound appears in column v̄ − v, and the
time needed to obtain our best lower bound in seconds appears in column CPU∗. Finally
column v∗ − v+ gives the absolute difference between the best-known lower bound and
our lower bound when we apply the ILPH during 3600 (resp. 7200) seconds for m = 5, 10
(resp. 30).

According to the data reported in Table 5, our algorithm obtained 23, 6 and 2 best-known
values for m = 5, 10 and 30, respectively. The ILPH also visits one best solution than the one
reported in column “v∗” for the instance number 12 with 10 constraints. This improvement
was obtained when integrating the use of adaptive memory in the ILPH. To give an idea of
the contribution of this integration, note that the ILPH obtains 5 better solutions for m = 5
when using it. On the contrary, the use of this integration clearly increases the average CPU
time of the ILPH. However for the instances with m = 5 this increase is not excessive since
it is on average about 57 seconds. The average value of CPU∗ is also increased by about 27
seconds (when the final solution is the same with and without the use of adaptive memory).
The difference between our lower bounds and the best-known ones is, on average, about
0.01%. The difference between our upper and lower bounds is not very large when m = 5,
but this difference increases greatly for m = 10 and especially m = 30. Obviously, using
the ILPH as an exact method is not recommended for these instances. The execution time
of our algorithm is, on average, about 190, 730 and 3600 seconds for m = 5, 10 and 30,
respectively. Such a result confirms that our algorithm generates good lower bounds for the
MKP within a reasonable time frame.

Table 5 also shows that the ILPH obtains better values for several instances when we
fixed the total CPU time (see column v∗ − v+). Our algorithm then obtained 27, 17 and 8
best-known values for m = 5, 10 and 30, respectively. The ILPH also visits one new best
solution when m = 5 and one more solution when m = 10. Finally note that the execution
time observed remains reasonable, even when compared to the execution times reported
by Vasquez and Vimont (2005) who reported an average execution time of several hours for
each of these instances, using a 2 GHz Pentium IV (the RAM was not specified). In addition,
using the constraints (12) and (13) helps decrease the computational effort (between 5% and
10%) for the largest instances (with m = 30).

6 Conclusions

In this paper, we proposed several enhanced versions of an exact algorithm proposed at the
end of the 1970s. This algorithm was designed to generate a non-increasing sequence of
upper bounds and a sequence of lower bounds by solving a series of linear programming
relaxations and a series of reduced problems. First, we proposed a new proof of the finite
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convergence of this algorithm. Then, we proposed a new two-phase heuristic algorithm that
uses dominance properties to decrease the number of reduced problems to be solved exactly.
This heuristic first solves a series of LP-relaxations and then solves the undominated reduced
problems exactly. We also proposed a second heuristic designed to control the size of the
reduced problems. We finally introduced adaptive memory to enhance the process. Both
heuristics were tested on the 0-1 multidimensional knapsack problem. The results obtained
on a set of available and difficult instances show the efficiency of our methods.

This research remains valid for the general 0-1 mixed integer program, and it will be
interesting to apply it to particular MIP problems. We also would like to implement new
hybrid heuristics that integrate the adaptive memory processes of tabu search to explore
the neighbourhoods induced by the relaxations. The idea would be to guide the search by
integrating more flexible memories than the ones used in the heuristics presented in this
paper.
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