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An iterative scheme which is based on a dynamic fixation of the variables is developed to solve the 0-1
multidimensional knapsack problem. Such a scheme has the advantage of generating memory informa-
tion, which is used on the one hand to choose the variables to fix either permanently or temporarily and
on the other hand to construct feasible solutions of the problem. Adaptations of this mechanism are pro-
posed to explore different parts of the search space and to enhance the behaviour of the algorithm.
Encouraging results are presented when tested on the correlated instances of the 0-1 multidimensional

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The 0-1 multidimensional knapsack problem (MKP) is a gener-
alization of the well-known knapsack problem with the presence
of more than one constraint. The MKP can be formulated as
follows:

max > cixj,
JEN
(MKP){ subjectto: > ajxj<b;, YieM={1,...,m},
jenN
x€{0,1}, jeN={1,....n},

where ¢;, Vj € N, a3, Vi € M and j € N and b;,Vi € M are positive inte-
gers. Without loss of generality, we can assume that the following
constraints, as defined by (1), are satisfied. If this is not the case,
one or more variables could be fixed to O or 1

max{a; :j €N} <bi <> a; VieM. (1)
jenN

For simplicity we also use the following matrix notation for the

MKP:

(MKP) max{c'x:Ax < b,x € {0,1}"}.

Many applications of this NP-hard problem are resource allocation-
based, see for instance the first references of Lorie and Savage
(1955) and Weingartner (1966). Recently, Meier et al. (2001) used
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the MKP as a subproblem in a new capital budgeting model. There
are other applications such as cutting stock (Gilmore and Gomory,
1966), loading problems (Shih, 1979), and the daily management
of a satellite (Vasquez and Hao, 2001a). Efficient algorithms have
been proposed for solving the MKP. Several of those are metaheuris-
tic-based algorithms like tabu search (see for instance Glover and
Kochenberger, 1996 and Hanafi and Fréville, 1998), and genetic
algorithm (Chu and Beasley, 1998). The review article by Fréville
and Hanafi (2005) and the book by Kellerer et al. (2004) are infor-
mative and provide interesting and useful references. Very recently
Wilbaut et al. (2008) produced a survey paper in this area with an
emphasis to effective heuristics and their applications.

Several preprocessing techniques are often used to develop effi-
cient integer programming-based approaches. It is well-known
that if we are able to reduce the size of the problem to a reasonable
level, even NP-hard problems can then be solved optimally with
reasonable computational effort. Such a reduction process can be
achieved by setting variables, identifying infeasibility and con-
straint redundancy, and tightening the linear programming (LP)
relaxation. The latter includes modifying coefficients and generat-
ing strong valid inequalities. Some of these tools are described in
Nemhauser and Wolsey (1999) and also in Savelsberg (1994). For
instance, for the MKP techniques, the idea to reduce the number
of variables was exploited by Babayev and Mardanov (1994) and
also Zhu and Broughan (1997). Though the above techniques help
to reduce the size of the problem in several cases, there is however
no guarantee of their efficiency when tested on a given instance.
For example, Wilbaut et al. (2006) applied a classical technique
to fix variables in a global intensification algorithm, including a dy-
namic programming method for the MKP, and showed empirically


mailto:christophe.wilbaut@univ-valenciennes.fr
mailto:s.salhi@kent.ac.uk
mailto:s.salhi@kent.ac.uk
mailto:said.hanafi@univ-valenciennes.fr
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

340 C. Wilbaut et al./ European Journal of Operational Research 199 (2009) 339-348

that it is difficult to fix any variable for those instances with large
values of m.

In this paper, we propose an algorithm which is based on a heu-
ristic fixation of the variables for solving the MKP. This is achieved
by using an iterative scheme to generate useful information from
LP-relaxation. This knowledge is then used to fix iteratively a sub-
set of the decision variables and hence to generate feasible solu-
tions. This method has the advantage of generating both lower
and upper bounds of the problem. To explore the diversity of the
solutions efficiently, we put forward three variants of the
algorithm.

The remainder of this paper is organised as follows: in Section 2
we present the iterative scheme which we use in our algorithm to
generate memory information. We describe in Section 3 the differ-
ent strategies we implemented to fix the variables and to generate
bounds of the problem. Section 4 is devoted to the computational
results. We summarize our conclusions and point out some re-
search avenues in the last section.

2. An iterative scheme

Several exact methods designed to find the optimal value of the
problem were successfully applied to small sized instances. Such a
success is unfortunately not repeated for problems with moderate
and large size due to memory and computational time require-
ments. It is well-known that heuristics that use relaxation-based
techniques are among the efficient ways to provide both upper
and lower bounds for large and difficult combinatorial optimiza-
tion problems. Glover (2005) proposed a general iterative method
for pure and mixed integer programming. This method, which is
referred to as the Adaptive Memory Projection (AMP), consists of
four steps: (i) from an initial solution apply a heuristic to define
a subset of the free variables; (ii) use an exact method to solve
the sub problem associated with these remaining variables; (iii)
re-launch the heuristic used in (i) from the solution obtained in
(ii) with the introduction of restrictions generated from the mem-
ory; and finally (iv) introduce diversification processes to visit
unexplored regions of the search space.

Some of the ideas of this general method do also exist in other
efficient algorithms that are based on the exploration of small
neighborhoods around the incumbent solution. For instance in
Fischetti and Lodi (2003), a constraint, called local branching
constraint, is added at every iteration to define a k-OPT neighbor-
hood of the incumbent solution. The motivation is to explore better
solutions quickly during the search. In the relaxation induced
neighborhood search of Danna et al. (2005), variables which
happen to have the same values in both the incumbent solution
and in the solution of the current linear programming relaxation
are made fixed, and the corresponding remaining sub problem is
then optimally solved. For the MKP, Volgenant and Zwiers (2007)
recently used partial enumeration. This approach can be viewed
as a particular case of the AMP in which steps (i) and (ii) are only
applied. Even if this method generates lower bounds of the MKP
quickly (i.e. a few seconds/minutes by instance in general), it is
clearly outperformed by other methods.

The method described in this paper is based on the scheme
proposed by Wilbaut and Hanafi (2008) for solving the 0-1 mixed
integer programming problem. For completeness this is shown in
Fig. 1.

This interesting method though it guarantees an optimal solu-
tion, it was observed that its convergence can be really difficult
to achieve in practice especially for larger sized instances. In other
words, the results obtained for the MKP showed that even if this
scheme was the basis in developing efficient algorithms for gener-
ating good bounds, the computational effort associated with these
techniques can be significantly high. This can be due to either the
large number of reduced problems to solve or the high level of dif-
ficulty in solving some of the reduced problems.

In this paper we propose a new algorithm that attempts to over-
come the above drawbacks by using an iterative-phase to generate
useful information in fixing some variables of the problem heuris-
tically. This iterative process is described in Fig. 2.

The addition of a new constraint in the current problem in Step
2 appears to be useful in generating a better solution of the LP-
relaxation. The following two propositions explain the construc-
tion of the constraint and show how it only cuts off the current

optimal solution(s).

Step 1:  Solve one or more relaxation(s) of the current problem (P) and record the corresponding

Step 2:  Generate and solve one or more reduced problem(s) induced from the previous solution(s)

to obtain one or more feasible solution(s) of (P).
Step 3:  Update the best lower bound v* of (P) if necessary and the best upper bound vof (P).

Step 4: If a stopping criterion is satisfied then return y* and v, else add one or more constraint(s
pping

generated from the solution(s) of the relaxation(s) to (P) and return to Step 1.

Fig. 1. A general iterative scheme.

relaxation. Update the upper bound v of (P).

Step 1: Solve the LP-relaxation of the current problem (P) and keep an optimal solution x of this

Step 2: Generate a constraint from x which eliminates this solution without eliminating any other
solution of the initial problem and add this constraint to (P).

Step 3: If a chosen number of iterations is reached then return v, otherwise go to Step 1.

Fig. 2. The iterative-phase.
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solution of the LP-relaxation. For convenience, we only recall these
propositions as their proofs can be found in Wilbaut (2006).

Proposition 1. Let y be a solution of the MKP. Let J'(y) = {j e N :
yi=1} and °(y) = {jeN :¥; = 0}. Inequality (2) cuts off solution y
without cutting off any other solution in {0, 1}".

Yox-> x<lwl-1 (2)
gy i)

Let us introduce the following notion of a reduced problem. A re-
duced problem, noted P(y,J(y)), is obtained from a solution y in
[0,1]" of an instance P of MKP and the set J(y) =J°(y)uJ'(y) =
{j € N,y; € {0,1}}, by fixing all the variables x; with j € J(y) to their
value iny (y;).

Proposition 2. Let P be an instance of MKP, X an optimal solution of
the LP-relaxation LP(P) and y an optimal solution of the reduced prob-
lem P(x,](x)), then an optimal solution of P is either the feasible solu-
tion y or an optimal solution of P in which the following constraint is
added:

fIx<'®)-1, 3)
where the vector f of dimension n is defined for j=1,...,nas

fj:{zxj—l if % € {0,1},

0 if X, €]0,1] @)

In the next section, we present some methods to exploit the
iterative-phase to generate feasible solutions and to reduce the
problem by fixing variables heuristically.

3. Memory-based strategies for fixing variables

One of the major questions in variable-fixing methods is related
to the choice of the variables to fix at a given step as this affects the
behaviour of the algorithm. Based on the previous iterative-phase
we propose three versions of our algorithm. In the first subsection
we only fix variables temporarily to calculate lower bounds of the
MKP, whereas in the other two we examine the permanent fixation
of the variables as well.

3.1. Algorithm 1: temporary variables fixation

Here, we first apply the iterative-phase to generate memory
information. During this phase, we record the number of times
every variable has been fixed to 1, 0 or was found free in the LP-
solutions. At the end of this iterative-phase, we propose a scheme
to fix the variables that have the most important frequency values
associated with value 1 and 0. In other words, we aim to use the
memory information to generate a feasible solution of the problem.
This is achieved by solving exactly the resulting reduced problem.
The algorithm consists in re-launching this process until a stopping

condition is satisfied. For example in this work we use a maximum
number of passes. The algorithm is described in Fig. 3. We use a
long term memory to generate a reduced problem by defining
two variables LT° and LT!, which are two n-dimensional vectors,
to record the number of times a given variable is found at 0 and
1 in the LP-solutions. In the following we also use the shortcut
notation LT to refer to the long term memory.

When the iterative-phase is terminated, we construct the re-
duced problem by applying the following rules to fix the variables:

if LT} > p' x n_iter then x; = 1, (5)
if LT < p° x n_iter then x; =0, (6)

where f' and p° are two parameters in [0,1], and n_iter is the total
number of iterations achieved in the iterative-phase.

At the beginning of the algorithm we use ' =1 and ° = 0.
Then, the values of the parameters ' and ° are updated. This
adjustment is necessary as the probability that a variable has all
the time the same value in the LP-solutions may decrease when
n_iter increases. We implement a simple adaptive mechanism that
automatically updates the value of ' and $° according to the size
of the problem and the number of times the iterative-phase has
been performed. Note that when we cannot fix a sufficient number
of variables according to (5) and (6), a simple mechanism that de-
creases the values of the parameters ' and f° until a preset lower
limit is introduced.

When repeating the algorithm in the iterative-phase, it is possi-
ble that the LP-relaxation may become difficult to solve due to the
number of constraints added to the problem. To overcome this
drawback, we propose a second version in which we fix variables
definitively in the problem to reduce its size and also to simplify
its LP resolution.

3.2. Algorithm 2: permanent and temporary variables fixation

3.2.1. Description of the method

In this version of the algorithm we use two types of fixation. The
first one consists in fixing temporarily variables to construct a re-
duced problem as in the first approach. However we also apply a per-
manent fixation on variables in the original problem to reduce its size
iteratively and hence to overcome the difficulty in solving the LP-
relaxations. The corresponding algorithm is described in Fig. 4.

In Fig. 4, we denote by P the initial problem. Variable v* refers to
our best lower bound, and the set F contains the index of the vari-
ables currently fixed in the problem (initially F = @). Problem Q is
the problem with the free variables (initially Q = P). During the
iterative-phase we add the constraint, generated according to
Proposition 2, to problem QF that refers to the problem at iteration
k. Formally speaking, at iteration k, we define Q%' =
(Q* | {fx <|J'(x*) | —=1}). Parameter n_iter refers to the number of
iterations in the iterative-phase. We define the short term memory
ST by two n-dimensional vectors which records the number of

memory.

lower bound if necessary.

bound, otherwise go to Step 1.

Step 0: Initialize the long term memory (LT) and the best lower bound at 0.

Step 1: Apply the iterative-phase during a given number of iterations, and update the long term

Step 2: Generate and solve a reduced problem according to the long term memory. Update the best

Step 3: If a stopping condition is satisfied then return the final upper bound and the best lower

Fig. 3. Iterative algorithm with temporary fixation.
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F=Q,v*=0; LT =LT ' =0Vje N

v

k=1;0"=P-F; ST =ST,=0Vje N-F

v

x* optimal solution of LP(Q")

k=k+1

!

Yes

Update LT; Vj € N and ST; Vj € N-F
O = (OF I {fx <1 T' (M) - 1))

k

No

v

Reduce the problem from S7 and update F
Generate and solve a reduced problem from P and LT =>y

'

| v¥=max(v¥,cy)

Is the stopping
criterion satisfied?

Stop

Fig. 4. A schematic description of the iterative algorithm with permanent and temporary fixation.

times a given variable is found at 0 or 1 at the LP stage during one
iterative-phase only. Solution y in Fig. 4 is obtained by solving a re-
duced problem which is constructed from the long term memory,
according to the rules described by (5) and (6). If the stopping con-
dition is not satisfied, the algorithm is applied to the problem P — F,
that consists of the initial problem in which all the variables in F
have been fixed. In this version, at the end of every application of
the iterative-phase, we apply the rules described in (5) and (6)
with ST instead of LT and with ' =1 and g° =0, to fix perma-
nently a part of the free variables in the problem. The stopping con-
dition checks whether the remaining problem is sufficiently small
to be solved exactly.

We illustrate the progress of this algorithm in Fig. 5 where
parameter s represents the number of free variables in the reduced
problems. We set the value of s to 30 as we have found, in our ear-
lier preliminary experiments, that this value represents instances
for the MKP with a large enough size to be solved exactly and rea-
sonably quickly for the MKP. When generating the reduced prob-
lems, the n— | F | —s remaining variables are fixed according to LT
as described above. If it is not possible to add a variable due to fea-
sibility, it is simply fixed at value 0. Note in this figure that when
applying the iterative-phase for the second time, variables in F
are considered neither in the LP-relaxations nor in the reduced
problems. We use the size of the final problem to solve exactly

initial problem

variables | 1 | 2| 3| 4|

[ ]

|Apply the iterative-phase: update LT and compute S T|

Reorder the free variables according to LT and
fix these variables according to LT

I »le

I - s

v

Fix definitively free variables according to
ST, B and °

If (n - IFI < 5”) then solve the final problem

" T

Fig. 5. Construction of the reduced problems and fixation rules.
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as s’ > s, a parameter to stop the algorithm. In other words, when
n— | F |[< s/, we solve exactly the problem with the remaining vari-
ables and then we stop.

One of the main differences between this algorithm and the one
presented in Section 3.1 is that we cannot guarantee that the last
upper bound generated in the iterative-phase is a true upper
bound of the initial problem because of the permanent fixation
of the variables in the problem. Nevertheless, we can record the
upper bound associated with the last iteration when applying the
iterative-phase for the first time. In addition, we can also generate
an upper bound from our final lower bound by solving the follow-
ing linear program:

max{c'x : Ax < b,c"x > v*,x € {0,1}"}.

The best upper bound of the two is then chosen.

3.2.2. Preliminary analysis

Parameter n_iter in Fig. 4 can clearly influence the behaviour of
the algorithm. Indeed if it is too small then it is probable that more
variables can be fixed definitively from the information stored in
ST. On the contrary, if it is too large it would be difficult to fix vari-
ables. We evaluated the effect of this parameter on the fixation
process on a set of correlated instances of MKP available in the
OR-Library ( Beasley, 1990). These instances have between 100
and 500 variables and 5 and 30 constraints. Three kinds of correla-
tion have been used according to a parameter denoted by o = 0.25,
0.5 and 0.75. Ten instances have been generated for every combi-
nation of n, m and «. The set is composed of 270 instances. In this
preliminary testing we conducted our experiments on a subset of
27 instances only (i.e. one for every distinct triplet (n,m, o)).

To evaluate the effect of the parameter n_iter, we applied the
algorithm described in Fig. 4 with several values. We used as the
stopping condition the fact that it is impossible to fix any variable
after the application of the iterative-phase, or that the remaining
problem was sufficiently small to be solved exactly (i.e., when
n— | F|<s'). We give in Table 1 the value of the parameter s’ we
use. Obviously from Table 1, a value of 50 will be large enough
to be used in all sizes. Note that when the size of the problem in-
creases the value of s’ is then set at 50. In addition when a reduced
problem is difficult to solve exactly, it is possible to solve it heuris-
tically for instance by imposing a time limit. We report in Table 2
the average results observed for n_iter = 50,75,100,100 — m. We
propose the value 100 — m as this takes into account the size of
the initial problem (the larger the number of constraints is the
more difficult the problem may become). We give in Table 2 the
average percentage of variables definitively fixed in the problem
when the iterative-phase is terminated for the first time (column
“%F1"), and the average percentage of variables definitively fixed
in the problem when Algorithm 2 terminates (column “%F”). We
also mention the average gap with the best solution (“Avg(Gap)”
and the average CPU times (in seconds). We compare our lower
bounds with those obtained by Chu and Beasley (1998) or
mentioned in Vasquez and Vimont (2005) for the largest instances.
Table 2 shows that the value of the parameter n_iter has two main
effects: the first one is on the fixation process, and the second one
is on the execution time. It can be observed that it is more difficult

Table 1
Values of s'.
n m

5 10 30
100 35 40 45
250 35 45 50

500 40 45 50

to fix variables when n_iter increases. However, the average CPU
time is relatively decreased, even though more LP-relaxations are
solved. That can be explained by the fact that the total number
of times the iterative-phase is launched decreases as n_iter in-
creases. It can be noted that the average percentage of variables
definitively fixed after the first execution of the iterative-phase is
really important for every value of the parameter n_iter in Table
2 (see column “%F1"). It was also observed that it is more difficult
to fix variables during the remaining passes. Given that the setting
100 — m is found to provide reasonably good solutions while con-
suming less CPU for these instances, this setting will be used in our
subsequent testing. However note that in a more general case we
can choose the value n_iter = 50 when the number of constraints
m increases.

From the above observations, and from the fact that the number
of variables we fix at every step can clearly change the behaviour of
the algorithm, we propose to introduce a flexible scheme by allow-
ing the fixation of a subset of the potential candidates only.

3.3. Algorithm 3: flexibility in the permanent variables fixation

We propose a way of limiting the number of variables to fix
after the iterative-phase. By integrating this scheme within Algo-
rithm 2, we define a kind of “multi-start” version of the algorithm.
Our motivation is to avoid fixing too many variables at a given step
which has the tendency to restrict the search. Besides, we also
introduce diversity into the search by exploring other parts of
the search space which were not going to be visited otherwise. This
mechanism can also be viewed as a way of limiting the risk asso-
ciated with the fixation of many variables at their wrong values.

An illustrative example

We report the progress of the algorithm for an instance with
n =100 and m =5 when we apply Algorithm 2 with parameter
n_iter =95 (i.e.: 100 —m). At the end of the first application
of the iterative-phase, it is possible to fix 62 variables by applying
the rules described in Section 3.2. After the second application of
the iterative-phase, five more variables were fixed, and finally four
more variables were fixed after the third application of the itera-
tive-phase. The algorithm then terminates by solving exactly the
final reduced problem composed by the 29 remaining variables
(here s' = s = 30). The principle of the third algorithm is to limit
the number of variables fixed after the first execution of the itera-
tive-phase, and hence guide the algorithm to explore other direc-
tions of the search. For example for this particular instance when
we allow only the fixation of 45 (respectively 50) variables among
the 62 potential variables, the algorithm stops with 75 (respec-
tively 63) variables fixed. This example shows that this kind of
strategy can affect the progress and the results of the method. In
the next subsection we explain how we choose to fix at a given
step this subset of variables.

3.3.1. Selection of the subset of variables to fix

The choice of the variables we fix among the set of candidates at
a given step of the algorithm is based on a bias selection using a
pseudo-random algorithm. It introduces the efficiency of the vari-
ables according to the classical definition for knapsack problems as

Table 2

Effect of parameter n_iter on the fixation method.

n_iter %F1 %F Avg(Gap) Avg(CPU)
50 76.23 78.41 0.06 26

75 72.24 75.67 0.07 22

100 65.58 71.19 0.09 19

100 — m 70.99 74.76 0.06 18
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follows. The efficiency of variable x; for j € {1,...,C} is defined by

e = ﬁ where p is a vector of dimension m, and C is the total
iem i

number of candidates. In our method, each component f; corre-
sponds to the shadow price of the i constraint in the LP-relaxation
the following sequences associated with the subset of candidates
to fix at value 1 (their number is denoted by C;) and the subset
of candidates to fix at value O (their number is denoted by Cy)

o {0}y, With 0 < & = =¢— < 1 (resp. {8}};_; ¢, With 0 <} =

..... ij] e ooy

Py = o1 (resp.gy = o),
QDJ = 901;1 + 5]-] = 2*, sy Cl (requ)]l = (10]/',] + 51/'] = 2’ LR CO)

The following process is repeated until the required number of
fixed variables is reached:

e Choose randomly two numbers d and r in [0, 1].

o Ifd< coch then determine the corresponding candidate to fix at
1 by ¢~1(r); otherwise the corresponding candidate to fix at 0 is
given by ¢'(r), with @ '(r) =max{j: ¢; <r} and ¢ '(r) =
max{j : ¢; < r}.

An illustrative example

The following example is used to show how this works. Suppose
that we have 10 candidates to fix at value 1 at a given step with the
following values of d; and ¢;.

From this table, suppose that r = 0.33. In this condition we
choose item 3.

Item 1 2 3 4 5 6 7 8 9 10

9j 0.02 005 02 0.07 016 019 008 013 0.04 0.06
@; 002 007 027 034 05 069 077 09 094 1

When using this method, two executions of the algorithm may
obviously lead to different solutions. Thus we start the algorithm
again by changing the variables fixed (i.e. by choosing other candi-
dates). To do this, we apply a backtrack phase to find a step for
which we fixed less variables than the number of candidates. In
practice, according to the results presented in Table 2, this selec-
tion mechanism happens to be applied generally after the first pass
of the iterative-phase. This could be because other steps of the
algorithm do not generate an important number of candidates to
fix. Note that Algorithm 2 is a particular case of this version in
which all the candidates are fixed.

3.3.2. The size of the selected subset

In this subsection, we define the size of the subset of the vari-
ables to fix, by a parameter Fixed,. This corresponds to the percent-
age of variables we allow to fix among the set of candidates after
the first iterative-phase. We report in Table 3 the results obtained
when we execute this algorithm with four different values of
parameter Fixed; over the 27 instances described in Section 3.2.2.
The algorithm terminates if the size of the initial problem is less
than s’ or if we do not improve the best solution during the current
execution. We record the average gap with the best solution
(“Avg(Gap)”), the number of times a best solution is obtained
(“#Best”) and the average CPU time (in seconds). There is obviously
no optimal value of parameter Fixed; that guarantees the best re-
sults, but in these experiments the value of 90% appears to produce

Table 3

Impact of the value of Fixed;.

Fixed; Avg(Gap) #Best CPU
70 0.16 6 38
80 0.11 8 28
90 0.05 10 35
100 0.06 9 18

the best results on average, though requiring about twice CPU
times than those used for the value of 100%. The latter corresponds
to the execution of Algorithm 2.

As it is not practical to set such a parameter of the algorithm to
a particular value for every instance of the MKP, we have intro-
duced an adaptive and robust method to avoid the issue of fine
tuning. We define this version as a “multi-start” version that
dynamically adjusts the value of the parameter Fixed; according
to the state of the search. The final version of the algorithm, which
is described in the next subsection, attempts to take into account
these ideas.

3.3.3. An adaptive fixation of the subset size

The algorithm described in this section is based on Algorithm 2
as given in Section 3.2. The term “multi-start” is used because the
algorithm manages the value of parameter Fixed; during the
search. From Fig. 4, we incorporate an adaptive scheme to select
the variables to fix (Section 3.3.1), which makes up our final algo-
rithm as described in Fig. 6.

In Step 4 the algorithm determines a promising range to ex-
plore. This range is obtained by decreasing the value of parameter
Fixed, while the best lower bound is improved. Then the algorithm
explores this range in Step 5 with the last two values of Fixed;
using a dichotomous method which is defined below. Note that
in this version the stopping condition for every application of Algo-
rithm 2 when Fixed; is different to 100, corresponds to the fact that
the best “global” solution has not been improved, or the size of the
remaining problem is less than s'. Step 5 in Fig. 6 ensures the ter-
mination of the algorithm. Finally note that a list of several reduced
problems induced from solutions of the LP-relaxations of the prob-
lem is also kept. This list is used to check whether a reduced prob-
lem happens to be already generated during the search.

Dichotomous scheme

The dichotomous method used in Step 5 in Fig. 6 can be summa-
rized as follows. The idea of this commonly used numerical meth-
od is to squeeze the range [lo,[;] until its length is fairly small.
Initially I; = Fixed,, Fixed, = 0.8Fixed; (see Step 4 of Fig. 6).

(i) Set Fixedy = (Ip + 11)/2.
(ii) If the best solution was not improved, set I; = Fixed, else set
Ip = Fixed1.
(iii) Repeat (i) and (ii) until I; — Iy < €. In our experimentations,
we use € = 3.

Effect of the pseudo-randomness of the selection

In this last version of the algorithm, we use a random-based
algorithm (see Section 3.3.1). We give in Table 4 an illustration
of the impact of this algorithm when choosing the variables to
fix on the instance 5.250_10. We have executed the algorithm five
times for several values of Fixed; (between 70 and 90), and also five
times for Algorithm 3 (adaptive setting of Fixed;). We present in
Table 4 the average results observed in terms of the value of the
best solution visited (“Avg(cx)”), the number of times that an opti-
mal solution is obtained (“#Best”) and the average CPU time. The
results presented in Table 4 show the fact that the pseudo-random
algorithm clearly involves changes during the process since the
average value of the best solution visited changes for every value
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Step 0: Initialize the long term memory LT and the best lower bound y*=0, and set Fixed; = 100.

Step 1: Initialize the short term memory ST for every free variable of the current problem.

Step 2: Apply the iterative-phase during iter iterations, and update ST.

Step 3: Determine some variables to fix in the problem according to S7. Generate and solve a reduced
problem constructed from L7. Update v* if necessary. If there is no variable to fix then apply a backtrack
phase to fix other possible candidates in a previous step. If the backtrack phase succeeds then go to Step 2,
otherwise go to Step 4.

Step 4: If v* has been improved in the current pass then set I, = Fixed,, Fixed,= 0.8Fixed, and I, = Fixed,,
and go to Step 1; Otherwise go to Step 5.

Step 5: Use a dichotomous method to explore the range [/y; /;] by applying steps 2 and 3 with different

values of Fixed..

Fig. 6. The adaptive fixation algorithm.
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Table 4

[lustration of the pseudo-random algorithm to fix the variables.

Fixed; Avg(cx) #Best Avg(CPU)
70 109074.2 0 5.4

80 109026.6 0 4.6

90 109087.8 1 7.2
Algorithm 3 109109 5 59.2

of Fixed,. However, we can note that Algorithm 3 obtains an opti-
mal solution for every execution. That means that, based on these
experiments, the behaviour of this algorithm seems to be indepen-
dent of the random factors used in practice and it is rather stable.
As this was the case for all the instances used during the prelimin-
ary experiments, we decided to apply Algorithm 3 only once for
each instance instead.

4. Computational results

The algorithms presented in this paper are coded in C++. The re-
sults have been obtained on a Pentium IV 3.4 GHz. CPLEX9.0 of llog
is used to solve exactly the reduced problems and the linear pro-
gramming relaxations during the iterative-phase.

We present in Table 5 the final results obtained over the 270 in-
stances of the OR-Library presented in Section 3.2.2. We report for
Algorithms 1-3 the average gap between our lower bounds and the
LP-value (rows “Avg(LP)"). We also give the average gap with our
final upper bound (rows “Avg(UB)”), and the average CPU times
in seconds (rows “CPU”). Note that each value in Table 5 is an aver-
age over 10 instances. The last column reports the overall average

Table 5
Average results over the 270 instances of the OR-Library.

results for our three variants. Table 5 shows that with regard to the
CPU time, Algorithm 3 appears to be 3-4 times slower than the
others. This is mainly due to the use of several values of the param-
eter Fixed;. The contribution of Algorithm 3 may, at the first glance,
be considered relatively small in terms of solution quality given its
relatively larger CPU time. However, this improvement is found to
be remarkably interesting when analysing the results more pre-
cisely as will be shown in the next subsection.

4.1. Existence of upper bounds

Note that Algorithm 1 obtains better results from the upper
bound point of view. This is due to the fact that we can recover
the last upper bound generated by this algorithm as a final upper
bound. For all the algorithms we are able to improve the gap be-
tween the upper bound and the lower bound from 0.5 to 0.3
approximately for Algorithm 1 and about 0.4 for both Algorithms
2 and 3. This added information about the duality gap is useful
in practice in general and in heuristic search in particular.

4.2. Comparison vs other methods

We compare our lower bounds with those obtained with other
efficient algorithms in Table 6. To avoid overloading the presenta-
tion, we only report the results obtained with Algorithm 3. In Table
6 we give the average values over 10 instances (for each (n,m, «)
values) mentioned by Chu and Beasley (1998) who used a genetic
algorithm (column “C&B”) and those obtained by Osorio et al.
(2002) who exploit nested cut inequalities and surrogate con-
straints (column “O&G&H”). Note that Hanafi and Glover (2007)
have shown recently how this method can be improved to yield

n 100 250 500 100 250 500 100 250 500 Overall average
m 5 10 30

Algorithm 1 Avg(LP) 0.59 0.14 0.05 0.95 0.28 0.12 1.70 0.65 0.33 0.54
Avg(UB) 0.13 0.07 0.03 0.40 0.22 0.10 1.01 0.58 0.32 0.32
CPU 3 15 46 12 76 115 85 145 162 73

Algorithm 2 Avg(LP) 0.58 0.14 0.05 0.95 0.29 0.11 1.68 0.65 0.33 0.53
Avg(UB) 0.29 0.10 0.04 0.65 0.24 0.10 1.35 0.61 0.32 0.41
CPU 3 18 60 17 104 162 107 185 209 96

Algorithm 3 Avg(LP) 0.58 0.14 0.05 0.95 0.28 0.11 1.68 0.65 0.32 0.53
Avg(UB) 0.29 0.08 0.04 0.65 0.23 0.10 1.31 0.59 0.31 0.4
CPU 11 30 117 37 216 273 363 774 884 301
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Table 6
Comparison with other efficient algorithms.
n m o C&B 0&G&H V&V W&H Algorithm 3
Avg Nopt
100 5 0.25 24197.2 24197 n/k n/k 24197.2 10
100 5 0.5 43252.9 43253 n/k n/k 43252.9 10
100 5 0.75 60471.0 60471 n/k n/k 60471.0 10
100 10 0.25 22601.9 22602 n/k n/k 22601.9 10
100 10 0.5 42659.1 42661 n/k n/k 42655.5 9
100 10 0.75 59555.6 59556 n/k n/k 59555.6 10
100 30 0.25 21654.2 21656 n/k n/k 21660.4 10
100 30 0.5 414313 41437 n/k n/k 41438.3 8
100 30 0.75 59199.1 59202 n/k n/k 59201.8 10
250 5 0.25 60409.7 60413 n/k n/k 60409.9 8
250 5 0.5 109284.6 109293 n/k n/k 109288.9 7
250 5 0.75 151555.9 151560 n/k n/k 151560.3 10
250 10 0.25 58993.9 59019 n/k n/k 59015.2 n/o
250 10 0.5 108706.4 108607 n/k n/k 108724.4 n/o
250 10 0.75 151330.4 151363 n/k n/k 1513344 n/o
250 30 0.25 56875.9 56959 n/k n/k 56894.4 n/o
250 30 0.5 106673.7 106686 n/k n/k 106684.0 n/o
250 30 0.75 150443.5 150467 n/k n/k 150470.7 n/o
500 5 0.25 120615.5 120610 120629.2 120630.3 120623.3 5
500 5 0.5 219503.1 219504 219512.7 219512.7 219508.5 5
500 5 0.75 302354.9 302361 302363.4 302363.4 302360.7 6
500 10 0.25 118565.5 118584 118628.6 118626.2 118610.5 n/o
500 10 0.5 217274.6 217297 2173271 217329.9 217313.0 n/o
500 10 0.75 302556.0 302562 302602.7 302604.6 302586.6 n/o
500 30 0.25 115473.5 115520 115623.7 115607 115540.4 n/o
500 30 0.5 216156.9 216180 216274.7 216258.6 216201.5 n/o
500 30 0.75 302353.4 302373 302446.5 302433 302389.5 n/o
Average time 20 min 3h 16 h 1h 15min 5 min
Processor SGI R4000 100 MHz P3 450 MHz P4 2 GHz P4 3.4 GHz P4 3.4 GHz
n/k: Not known
n/o: Not obtained

better results. We also report the values for the largest instances
(n =500) mentioned in Vasquez and Vimont (2005) (column
“V&V”) and in Wilbaut and Hanafi (2009) (column “W&H"). Lower
bounds reported in these papers surpass many other lower bounds
referenced in the literature. However the CPU times for these ap-
proaches are found to be rather high. For each line we put in bold
font the best average value(s). For each method we also give the
average CPU time and the processor used. Finally column “Nopt”
reports the number of optimal solutions found by Algorithm 3
for the instances optimally solved by Cplex with a CPU time of
1 h. Table 6 confirms that our approach is competitive for solving
this set of 270 instances of the MKP. The compromise between
the solution quality and the required CPU time seems to be inter-
esting. To complete the analysis, we give in Table 7 a synthesis of
the results over the 90 largest instances when n = 500. We report
the average deviations from the LP-relaxation upper bound (i.e. (LP
value — solution value)/LP value). We compare the results of our
three algorithms with those of the previous methods, and also with
the results obtained very recently by Fleszar and Hindi (2008) (row
“F&H"). They proposed fast heuristics for solving the MKP. Some of
these heuristics are based on ideas previously used in Volgenant

Table 7

Comparison with other efficient algorithms for n = 500.

Algorithm Average Deviation (%) Average time Processor
C&B 0.178 34.67 min SGI R4000 100 MHz
F&H 0.173 1 min PM 2 GHz
O&G&H 0.169 3h P3 450 MHz
W&H 0.144 1h 15 min P4 3.4 GHz
V&V 0.141 16h P4 2 GHz
Algorithm 1 0.166 1.8 min P4 3.4 GHz
Algorithm 2 0.163 2.4 min

Algorithm 3 0.159 7 min

and Zwiers (2007) or Vasquez and Vimont (2005). Table 7 also re-
ports the average CPU time and the processor used. Table 7 shows
that our three algorithms surpass those of Chu and Beasley (1998),
Osorio et al. (2002), and Fleszar and Hindi (2008) for the largest in-
stances. As mentioned previously, the results obtained by Vasquez
and Vimont (2005) and Wilbaut and Hanafi (2009) are superior for
these particular instances.

4.3. Some experiments with larger instances

We evaluate the “adaptation” of our algorithm for larger in-
stances. We apply our heuristics on a set of 18 instances proposed
by Glover and Kochenberger (1996) with n € [100,2500] and
m € [15,100]. Table 8 reports the results obtained by our 3 algo-
rithms. We also give the lower bounds reported by Vasquez and
Hao (2001b) (column “V&H”). Table 8 shows that the computa-
tional effort associated with our algorithms does not increase
excessively when the number of variables and/or constraints in-
creases. That is possible with a preliminary adjustment of some
of the parameters of the algorithms namely n_iter = 50 in the iter-
ative-phase, s’ = 50 as a stopping condition, and use of a heuristic
way to solve the reduced problems. The results also show that the
number of constraints in the instance seems to be decisive from
the CPU time point of view. The difference between our lower
bounds and those reported in column “V&H” is not really impor-
tant and this justifies the robustness of our approach. It is not easy
to evaluate the exactness of the fixation during the process. Some
complementary experiments showed that wrong fixation can hap-
pen principally at stages 1 or 2 of the algorithm especially when
the number of fixed variables is large. Despite such a possible
drawback, the results presented in this section show that Algo-
rithm 3 is generally able to obtain high quality solutions. In partic-
ular, Table 6 shows that our algorithm visits 128 optimal solutions
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Table 8
Results for larger instances.

Pb n m V&H Algorithm 1 Algorithm 2 Algorithm 3

Value CPU Value CPU Value CPU
GK018 100 25 4528 4526 95 4528 80 4528 121
GK019 100 25 3869 3867 102 3869 59 3869 87
GK020 100 25 5180 5180 52 5180 87 5180 135
GKO021 100 25 3200 3200 66 3200 115 3200 170
GK022 100 25 2523 2523 96 2523 92 2523 147
GKO023 200 15 9235 9234 27 9234 54 9234 60
GK024 500 25 9070 9068 127 9067 78 9068 106
MK_gk01 100 15 3766 3766 4 3766 4 3766 11
MK_gk02 100 25 3958 3956 32 3957 38 3958 78
MK_gk03 150 25 5656 5651 89 5655 119 5655 235
MK_gk04 150 50 5767 5765 155 5764 257 5765 207
MK_gk05 200 25 7560 7558 140 7559 155 7560 1227
MK_gk06 200 50 7677 7673 199 7670 204 7674 1040
MK_gk07 500 25 19220 19216 244 19216 265 19214 398
MK_gk08 500 50 18806 18799 338 18798 467 18798 1045
MK_gk09 1500 25 58087 58085 350 58086 360 58086 592
MK_gk10 1500 50 57295 57285 556 57284 633 57289 1254
MK_gk11 2500 100 95237 95208 755 95218 3645 95223 5863

among the 150 available. That means that the mechanisms we set
up to try to correct the wrong variables fixation are relatively
efficient.

5. Conclusions

In this paper we proposed new iterative heuristics with variable
fixation to solve the 0-1 multidimensional knapsack problem. The
motivation is to reduce the problem until it becomes sufficiently
small to be solved with an exact method in a reasonable CPU time.
Our algorithms are based on an iterative scheme that uses informa-
tion from a series of LP-relaxations. This information is used to fix
heuristically a subset of variables during the search, some of which
are permanently fixed whereas others are just temporarily fixed.
Flexibility is also introduced through backtracking to avoid early
convergence. We propose a version of the algorithm in which the
fixation process is more adaptive to obtain a more robust method.
The results obtained over the well-known 270 correlated instances
of the 0-1 multidimensional knapsack problems available on the
Internet are found to be competitive with existing approaches.
One interesting feature of our approaches, besides being adaptive,
they provide a reasonable compromise between the solution qual-
ity and the CPU times. In addition, our methods appear to rival
other heuristics in this field by generating top quality solutions.

We believe that the dynamic fixation scheme with the use of
information induced from the search is challenging but a worth-
while research avenue that deserves to be explored for other com-
binatorial optimization problems. The authors are currently
investigating a class of location problem namely the p-median,
see Salhi and Drezner (2007) for references.
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