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Abstract

Several hybrid methods have recently been proposed for solving 0–1 mixed integer programming problems. Some of these methods
are based on the complete exploration of small neighborhoods. In this paper, we present several convergent algorithms that solve a series
of small sub-problems generated by exploiting information obtained from a series of relaxations. These algorithms generate a sequence of
upper bounds and a sequence of lower bounds around the optimal value. First, the principle of a linear programming-based algorithm is
summarized, and several enhancements of this algorithm are presented. Next, new hybrid heuristics that use linear programming and/or
mixed integer programming relaxations are proposed. The mixed integer programming (MIP) relaxation diversifies the search process
and introduces new constraints in the problem. This MIP relaxation also helps to reduce the gap between the final upper bound and
lower bound. Our algorithms improved 14 best-known solutions from a set of 108 available and correlated instances of the 0–1 multi-
dimensional Knapsack problem. Other encouraging results obtained for 0–1 MIP problems are also presented.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The 0–1 mixed integer programming (0–1 MIP) problem
works to maximize or minimize a function of many vari-
ables subject to inequality/equality constraints and binary
choice restrictions on some of the variables. The 0–1 MIP
problem allows a wide range of practical problems in busi-
ness, engineering and science to be formulated (see Nemha-
user and Wolsey, 1999). Throughout this paper, we deal
with a maximization function, and we assume that the con-
straints are linear. The 0–1 mixed integer programming
problem (P) can be expressed as

ðP Þ

max
Pn0
j¼1

cjxj

s:t:
Pn0
j¼1

aijxj 6 bi 8i 2 M ¼ f1; . . . ;mg
xj 2 f0; 1g j 2 N ¼ f1; . . . ; ng
xj P 0 j ¼ nþ 1; . . . ; n0

2
6666664

;

where N is the set of binary variables and n ¼ jN j. We also
assume that P is feasible and that all the data cj, aij and bi

data are integers. In this paper, we use the following short-
cut notation of the problem P:

ðP Þ maxfcT x : x 2 Xg; ð1Þ

where X ¼ fx 2 IRn0 : Ax 6 b; xj P 0; j ¼ 1; . . . ; n0 and xj 2
f0; 1g; j ¼ 1; . . . ; ng. The linear programming relaxation of
(P) that results from dropping the integer requirement on
x is denoted LP(P) (i.e. LPðP Þ ¼ fmax cT x : x 2 Xg, where
X ¼ fx 2 IRn0 : Ax 6 b; xj P 0; j ¼ 1; . . . ; n0 and xj 2 ½0; 1�;
j ¼ 1; . . . ; ngÞ.

Several special cases of the 0–1 MIP problem including
Knapsack, set packing or travelling salesman for instance,
are known to be NP-hard (Garey and Johnson, 1979), but
even within this class of problems it is considered as one of
the most challenging. Exact methods designed to find the
optimal value have been successfully applied to small prob-
lems, but such methods are not able to find a high quality
solution within a reasonable amount of CPU resources.
Large-scale problems require good approximations of the
optimal value, and both heuristic and relaxation methods

0377-2217/$ - see front matter � 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2008.01.044

* Corresponding author. Tel.: +33 0 327511957.
E-mail addresses: christophe.wilbaut@univ-valenciennes.fr (C. Wil-

baut), said.hanafi@univ-valenciennes.fr (S. Hanafi).

www.elsevier.com/locate/ejor

Available online at www.sciencedirect.com

European Journal of Operational Research 195 (2009) 62–74



Author's personal copy

have proved useful for providing good upper and lower
bounds of the optimal value in large and difficult optimiza-
tion problems.

In this paper, we propose several exact algorithms for
solving 0–1 mixed integer programming problems; these
algorithms incorporate both relaxation and heuristic meth-
ods. We summarize a general version of convergent heuris-
tic that combines an exact method for small problems and
relaxations generated by applying the basic ideas outlined
in the following sections. Our solution approach then pro-
ceeds as follows:

1. At each iteration solve one or more relaxations of the
current problem P to generate one or more constraints.

2. Solve one or more reduced problems induced by the
optimal solution(s) of the previous relaxation(s) to
obtain one or more feasible solution(s) of the initial
problem.

3. If the stopping criterion is satisfied then return the best
lower bound and the best upper bound. Otherwise, add
the constraint(s) generated in step 1 to the problem P

and return to step 1.

Observe that the implementation of the algorithms
depends on the relaxations used, the number of constraints
added in the problem, the number of reduced problems to
solve and the stopping criterion. We stress that the preced-
ing description of the convergent heuristic is simply a tax-
onomic device for grouping methods that share certain
features of several recent hybrid algorithms for solving
optimization problems. Shaw (1998) proposed a Large
Neighborhood Search method, combining the neighbor-
hood exploration used in the classical local search strate-
gies with the constraint programming methodology. He
applied it to vehicle routing problems. Ahuja et al. (2002)
conducted a survey of very large-scale neighborhood
search techniques for solving optimization problems. Since
two important issues in local search methods are how large
the neighborhood should be and how this neighborhood
should be explored, they decomposed the techniques into
three important classes. In the first one, exponentially large
neighborhoods are considered and explored heuristically.
In the second one, large neighborhoods are explored using
network techniques. In the third class, the neighborhoods
are defined using restrictions of the original problem, such
that they are solvable in polynomial time. Fischetti and
Lodi (2003) developed another approach, called local
branching (LB), in which a small-size neighborhood is
explored at each node of a branch-and-bound (or a
branch-and-cut) search tree. The neighborhood is gener-
ated around the incumbent feasible solution and a cut
called the ‘‘local branching cut” is added in the problem.
In the same context, Danna et al. (2005) proposed a relax-
ation induced neighborhood search (RINS) for solving the
MIP. RINS generates a promising neighborhood from the
incumbent solution and from the continuous relaxation at
some current nodes of the branch-and-cut search tree, and

then solves a sub-problem exactly. Hansen et al. (2006)
have combined the LB approach with the variable neigh-
borhood search (VNS) one to solve the MIP. The VNS
metaheuristic systematically changes the neighborhood of
the solution, both by descending toward local optima and
by escaping from the subspace that contains these optima.
In this paper the neighborhoods are defined from the
incumbent and the sub problems are exactly solved as in
LB. Wilbaut et al. (2006) have proposed a global intensifi-
cation scheme that combines Tabu Search (TS) with
Dynamic Programming (DP). The forward phase of DP
is used to construct a list L by solving a family of small
sub problems exactly. TS uses the list L to evaluate the
neighborhood of the current solution in the backtracking
phase of DP. Recently, Glover (2005) proposed an adap-
tive memory projection (AMP) method for pure and mixed
integer programming which combines the principle of pro-
jection techniques and the adaptive memory processes of
tabu search. The idea of AMP is to generate solutions by
iteratively maintaining some subsets of variables fixed at
particular values while varying the values of other vari-
ables. The selection of subsets of variables depends on
which are the most highly determined and consistent vari-
ables. Generally new constraints are added to the model to
set certain explicit or implicit variables to some specific val-
ues. This AMP method encapsulates an important part of
the previous methods. In addition to the methods/
approaches mentioned above, there is also the simplex
algorithm or the branch-and-cut method for which there
are also some links. In this paper, we propose new conver-
gent algorithms based on the linear programming relaxa-
tion and the mixed integer programming relaxation for
solving the 0–1 MIP. Our algorithms are connected to an
approach proposed by Soyster et al. (1978).

The rest of this paper is organized as follows. In Section
2 we summarize the principles of the algorithm proposed
by Soyster et al. (1978) and several properties and enhance-
ments that we have recently proposed (Hanafi and Wilbaut,
2006). In the Section 3 we present the new heuristics based
on the mixed integer and linear programming relaxations
of the problem. The mixed integer programming relaxation
is intended to provide a form of diversification and intensi-
fication. Section 4 describes the application of the new
algorithms to a simple example – a 0–1 multidimensional
Knapsack problem. The computational results are pre-
sented and discussed in Section 5 in an effort to assess
the performance of the proposed algorithms. In the Section
6, we present our conclusions and offer suggestions for
future research.

2. Linear programming-based algorithm

At the end of the 1970s, Soyster et al. (1978) proposed
an exact algorithm to solve 0–1 integer programs. In this
paper, we refer to this algorithm as the linear program-
ming-based algorithm (LPA). It solves a series of small-size
sub problems obtained from a series of linear programming
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relaxations optimally. To describe the LPA algorithm, we
must first define the notion of reduced problem, which is
obtained from the original problem by setting some vari-
ables at given values. Formally, given a vector x0 2 ½0; 1�n,
let J 0ðx0Þ ¼ fj 2 N : x0

j ¼ 0g, J 1ðx0Þ ¼ fj 2 N : x0
j ¼ 1g,

J �ðx0Þ ¼ fj 2 N : x0
j 2�0; 1½g and Jðx0Þ ¼ fj 2 N : x0

j 2
f0; 1gg (i.e. Jðx0Þ ¼ J 0ðx0Þ [ J 1ðx0Þ). Let P be an optimisa-
tion problem and C be a set of constraints; ðP jCÞ denotes
the optimisation problem obtained from P by adding the
constraint set C to P. The reduced problem associated to
x0 can thus be defined as follows:

P ðx0Þ ¼ ðP jxj ¼ x0
j 8j 2 Jðx0ÞÞ: ð2Þ

Obviously, P ðx0Þ ¼ P for any vector x0 2�0; 1½n. The no-
tion of reduced problem is useful in several different con-
texts. For example, at each iteration, the pivot move of
the simplex method solves a reduced problem with one
free variable for solving the LP-relaxation. Another
example is the following preprocessing phase that tries
to set some variables at their optimal values by the com-
mon rule: for any feasible solution x0 of P and any j 2 N ,
if vðP ððeþ ð1� 2xjÞejÞ=2ÞÞ 6 cT x0, where e is the vector
with all its components set to 1, ej is the vector with only
component j set to 1, and vðP Þ is the optimal value of the
optimisation problem P, then either x0 is an optimal solu-
tion or xj ¼ x0

j in any optimal solution of P. Note that
the RINS proposed by Danna et al. (2005) solves reduced
problems at some nodes when exploring a branch-and-cut
tree. More precisely, if x� is the current incumbent feasi-
ble solution and �x is the solution of the continuous relax-
ation at the current node, RINS solves the following
reduced problem

P ðð�xþ x�Þ=2jcT x > cT x�Þ;
where cT x > cT x� is a constraint on the objective of the
solution.

The LPA algorithm restricts the search process to visit-
ing optimal LP solutions already generated by adding a
pseudo-cut at each iteration according to the following
proposition.

Proposition 1. Given a 0–1 MIP problem P, let �x be an optimal

solution of the LP-relaxation LP(P) and x0 be an optimal

solution of the reduced problem Pð�xÞ. Then an optimal solution

of P is either the feasible solution x0 or an optimal solution of

the problem

ðP jff T x 6 jJ 1ð�xÞj � 1gÞ; ð3Þ
where the vector f of dimension n is defined for j ¼ 1; . . . ; n as

fj ¼
2�xj � 1 if �xj 2 f0; 1g
0 if �xj 2 �0; 1½

�
: ð4Þ

Proof. It is evident that vðP Þ ¼ maxfvðP�Þ; vðPþÞg, where
P� ¼ ðP jff T x6 jJ 1ð�xÞj�1gÞ and Pþ ¼ ðP jff T x P jJ 1ð�xÞjgÞ.
In addition, from the definition of the vector f, we have
f T x6 jJ 1ð�xÞj for each binary vector x. Consequently, the
inequality P can be replaced by equality in ðPþÞ which

becomes Pþ ¼ ðP jff T x¼ jJ 1ð�xÞjgÞ. The definition of the
reduced problem P ð�xÞ therefore implies that vðPþÞ¼
vðPð�xÞÞ. The proposition is thus follows from the defini-
tions of x0 and (3), (4). h

Other proofs of this proposition are given in Soyster
et al. (1978) and in Wilbaut (2006). Balas and Jeroslow
(1972) call the constraints added to the problem (3) canon-
ical cuts on the unit hypercube. The inequalities in (3) have
been also used, for example, to produce 0–1 ‘‘short hot
starts” for branch-and-bound methods by Spielberg and
Guignard (2000) and Guignard and Spielberg (2003) and
were used by Glover in AMP in diversification and intensi-
fication phases.

Algorithm 1 provides a description of the LPA algo-
rithm. At each iteration, the LPA algorithm solves the
LP-relaxation of the current problem Q to generate an
optimal solution �x (line 6). From this optimal solution
the associated reduced problem Pð�xÞ is solved exactly to
generate a feasible solution x0 for the original problem
P. The reduced problem P ð�xÞ is obtained from P by set-
ting the 0–1 variables to their value in the solution �x if
these variables are integers. If the current best feasible
solution x� is not optimal, the current problem Q is
enriched by a pseudo-cut to avoid generating the optimal
basis of the LP-relaxation more than once (line 14). The
process stops if the difference between the upper and the
lower bounds is less than 1 (line 15). Assuming that all
the data are integers, if the condition bcT �x� cT x�c < 1
(where for a real number bac identifies the greatest inte-
ger 6 a) is satisfied then the final solution x� correspond-
ing to the lower bound is an optimal solution of the
problem P.

Algorithm 1 Linear programming-based algorithm (LPA)

Input: A 0–1 MIP problem P.
Output: An optimal solution x� of P.
Let x� be a feasible solution of P if one is available;
Q ¼ P ; stop = False;
while stop = False

Solve the LP-relaxation of Q to obtain an optimal solution �x;
if �x 2 f0; 1gn

x� ¼ �x; stop = True;
end if

Generate an optimal solution x0 of the reduced problem Pð�xÞ;
Update the best know-solution: if cT x0 > cT x� then x� ¼ x0;
Generate the current cut ff T x 6 jJ 1ð�xÞj � 1} according to (3),(4)
Update the current problem Q by adding the above constraint:

Q ¼ ðQjff T x 6 jJ 1ð�xÞj � 1gÞ:

Check stopping criteria: if bcT �x� cT x�c < 1 then stop = True;
end while

Return the best solution x� of P if one is generated;

The following theorem states the finite convergence of
LPA.

Theorem 1. The LPA algorithm converges to an optimal

solution of the input problem or indicates that the problem is

infeasible in a finite number of iterations.
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A proof of this theorem can be found in Hanafi and Wil-
baut (2006).

Even if the LPA is convergent this algorithm is hardly
usable in practice as an exact algorithm. Table 1 illustrates
the convergence of the LPA on two instances of the 0–1
multidimensional Knapsack problem (see Section 4). This
table provides the value of the linear programming relaxa-
tion vðLP Þ and the value of the feasible solution generated
cT x0 for some iterations (iter). The first instance has 30 bin-
ary variables and 10 constraints. Its optimal value is equal
to 376. The process is very fast and an optimal solution is
obtained within 13 iterations (see Table 1). The second
instance has n = 100 binary variables and m = 5 con-
straints; however, the process is distinctly slower. The
results obtained for this instance clearly show that the con-
vergence cannot be easily reached in practice since it
required 292 iterations (see Table 1) and about 400 seconds
on our machine whereas the branch-and-bound algorithm
required only about 10 seconds to obtain an optimal solu-
tion. We then decided to use the LPA algorithm as a heu-
ristic with a fixed number of iterations. Note that the
algorithm can also be stopped when the gap between the
upper bound and the lower bound is less than some
threshold.

Most of the CPU time consumed in running the LPA is
due to the exact solving of the reduced problems. Previ-
ously, Hanafi and Wilbaut (2006) proposed dominance
properties to decrease the total number of exact resolu-
tions, thus accelerating the search. Let x1 and x2 be two
solutions in ½0; 1�n, solution x1 dominates solution x2 if
J 1ðx1Þ � J 1ðx2Þ and J 0ðx1Þ � J 0ðx2Þ. If solution x1 domi-
nates solution x2 then vðP ðx1ÞÞP vðPðx2ÞÞ. This implies
that only the reduced problems relative to the undominated
optimal solutions of the LP-relaxation will be solved
exactly. From this definition, we proposed a 2-phase LPA
algorithm. In the first phase, the algorithm solves a series
of LP-relaxations by adding at each iteration the pseudo-
cut generated according to (3),(4). In the second phase, it
solves only the undominated reduced problems. Imple-
menting these properties enabled to reduce the computa-
tional effort when a maximum number of iterations was

set. The results of our numerical experiments on a set of
270 instances on the 0–1 multidimensional Knapsack prob-
lem show that the average reduction in the number of
problems solved exactly was 30% (see Hanafi and Wilbaut,
2006 or Wilbaut, 2006 for more details).

As mentioned above, the convergence of the LPA is gen-
erally very slow in practice, particularly when the gap
between the linear programming relaxation of the initial
problem and its optimal value is large. To reduce the gap
between the lower and the upper bound when the LPA is
used as a heuristic (with a maximum number of iterations),
we propose several new iterative heuristics based on mixed
integer programming relaxations.

3. New heuristics based on mixed integer programming
relaxations

In this section, we describe our new heuristics, designed
to reduce the gap between the lower and upper bounds by
using mixed integer programming relaxations to improve
the quality of the upper bounds. Since the heuristics also
introduce intensification and diversification into the search,
the lower bounds are also expected to improve. Theoreti-
cally, these heuristics converge more quickly than the
LPA algorithm.

3.1. Iterative mixed integer programming relaxation-based

algorithm

We propose the use of the mixed integer programming
(MIP) relaxation of the problem P relative to a subset J
of N expressed as

MIPðP ; JÞ
max cT x

s:t: x 2 �X

xj 2 f0; 1g j 2 J

8><
>: :

In this relaxation, a subset of variables is forced to be bin-
ary for the current problem P, which is modified after add-
ing pseudo-cuts. In practice, the size of the subset is kept
small compared to n, and the remaining variables are con-
tinuous. The following proposition shows that the MIP-
relaxation generally provides stronger bounds than the
LP-relaxation.

Proposition 2. For any subsets J, J 0 of N, such that J 0 �
J � N , yields:

vðPÞ 6 vðMIPðP ; JÞÞ 6 vðMIPðP ; J 0ÞÞ 6 vðLPðP ÞÞ: ð5Þ

Proof. As J 0 � J , the problem MIPðP ; J 0) is a relaxation of
the problem MIPðP ; J 0), therefore vðMIPðP ; JÞÞ 6
vðMIPðP ; J 0ÞÞ. The other inequalities are deduced directly
from the observation that vðMIPðP ;NÞÞ ¼ vðP Þ and
vðMIPðP ; øÞÞ ¼ vðLP ðP ÞÞ.

There are several ways to integrate the MIP relaxation
into the LPA. First of all, as shown in Algorithm 2, the
mixed integer programming relaxation could simply

Table 1
Convergence illustration

GK9 OR-100-5.4

iter vðLPÞ cT x0 iter vðLPÞ cT x0

1 380.3 336 1 23724.1 22554
2 379.7 368 2 23722.7 22983
3 379.6 360 3 23720.3 23056
4 379.5 368 4 23715.5 22606
5 378.7 368 40 23687.4 23447
8 377.9 368 41 23687.3 23534

9 377.6 372 42 23686.8 23402
10 377.2 368 98 23652.3 23497
11 376.9 372 99 23651.6 23486
12 376.5 364 100 23651.1 23497
13 376.4 376 292 23534.6 23497
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replace the linear programming relaxation. We call this
algorithm the mixed integer programming relaxation
based-algorithm (MIPA). In the first iteration of the algo-
rithm, the mixed integer programming relaxation is defined
from an optimal solution of the LP-relaxation by con-
straining the fractional variables of the solution of this
relaxation to be integers in the next iteration. Then the
fractional variables in an optimal solution of the current
MIP-relaxation are constrained to be integers in the next
iteration (line 7; please note that if the optimal solution �x
of the current relaxation is integer then the process stops).
This algorithm also generates a feasible solution by solving
the reduced problem P ð�x) at each iteration.

Algorithm 2 Mixed integer programming-based algorithm (MIPA)

Input: A 0–1 MIP problem P.
Output: An optimal solution x� of P.
Let x� be a feasible solution of P if one is available;
v� ¼ cT x�; Q ¼ P ;
Let �x be an optimal solution of LP(P); �v ¼ vðLPðP ÞÞ ¼ cT �x;
while b�v� v�cP 1

Let �x be an optimal solution of MIPðQ; J �ð�xÞÞ;
if(cT �x < �v) then �v ¼ cT �x;
if(�x 2 f0; 1gp) then x� ¼ �x; v� ¼ cT �x;
Let x be an optimal solution of P ð�xÞ;
if(cT x > v�) then x� ¼ x; v� ¼ cT x;
Q ¼ ðQjff T x 6 jJ 1ð�xÞj � 1gÞ;

end while

Theorem 2. The MIPA algorithm converges to an optimal

solution of the input problem or indicates that the problem is

infeasible in a finite number of iterations bounded by 3n � 2n.

Proof. First, let x� be an optimal solution of the original
problem P. Obviously, vðPÞ ¼ vðPðx�ÞÞ. We consider partial

vectors x that may not have all components xj determined.
The MIPA generates partial solutions from the optimal
solutions of the MIP-relaxations of the current problem
Q. Since at each iteration the MIPA generates a new partial
solution, the number of iterations of the MIPA is bounded
by the maximum number of partial solutions. A partial
solution of order k is a vector for which exactly n� k vari-
ables are assigned to values 0 or 1; others variables remain

free. Since there are
n
k

� �
2n�k partial solutions of order k,

the total number of partial solutions isPn
k¼0

n
k

� �
2n�k ¼ ð1þ 2Þn ¼ 3n. In addition, as soon as a

partial solution of order 0 is reached the MIPA stops. Thus
the number of iterations is bounded by 3n � 2n. This com-
pletes the proof. h

Note that between two consecutive iterations the subsets
of fractional variables are completely separated when
applying the MIPA. Therefore, at iteration k, the following
property is satisfied

J �ð�xkÞ \ J �ð�xkþ1Þ ¼ ø; ð6Þ

where �xk is an optimal solution of the MIP-relaxation of
the current problem at iteration k.

The MIP-relaxation can thus be used as a technique to
diversify the search from (6). This kind of diversification
does not exist in the LPA, which is why we propose to com-
bine the two approaches to improve both the search quality
and the final upper bound.

In practice the MIPA is used as a heuristic with a limited
number of iterations. Moreover, if the size of 0–1 variables
in the current MIP-relaxation MIPðQ; J �ð�xÞÞ (i.e. jJ �ð�xÞj) is
large, then a relaxation of MIPðQ; J �ð�xÞÞ is considered
instead, for example MIPðQ; JÞ with J � J �ð�xÞ.

3.2. Iterative relaxations-based heuristics

The conjoint use of the two relaxations (i.e. LP and MIP
relaxations) ensures the decrease of the upper bounds
sequence. In addition, adding more constraints allows the
upper bounds to be refined. In general, it appears that heu-
ristics based on the two relaxations also generate a better
lower bound in the majority of the cases, as our computa-
tional results (provided in Section 5) confirm.

An instance of this kind of heuristics that we call itera-
tive relaxation-based heuristic (IRH) is described in Fig. 1.
In this and in the following heuristics, �x (resp. �xk) denotes
an optimal solution of the LP-relaxation (resp. at iteration
k), and ~x (resp. ~xk) denotes an optimal solution of the MIP-
relaxation (resp. at iteration k). In the Fig. 1 the algorithm
solves two relaxations and two reduced problems by itera-
tion. The algorithm then obtains two feasible solutions and
generates two pseudo constraints. At iteration k, the MIP-
relaxation is obtained from �xk, which insures that the upper
bound generated is at least as good as the bound generated
by the LP-relaxation (Proposition 2). At the next iteration,
the constraints generated according to (3),(4) with the vec-
tors �f and ~f are added in the problem. Note that in another
version, only one reduced problem is solved at each itera-
tion. This problem is generated from the solution x

expressed as

xj ¼
�xk

j if �xk
j 2�0; 1½;

~xk
j if ~xk

j 2�0; 1½;
�xk

j or ~xk
j otherwise:

8><
>: ð7Þ

The number of free variables in solution x can be con-
trolled using a parameter. We also propose another group
of heuristics, in which the two relaxations can be indepen-
dent and the MIP-relaxation can be defined without the
LP-relaxation. The underlying principles of these heuris-
tics, which are called iterative independent relaxation-
based heuristics (IIRH), are presented in Fig. 2. An initial
phase is used to define the first MIP-relaxation as in the
MIPA. After this initial phase, the LPA and the MIPA
are applied simultaneously (one after the other from an
algorithmic point of view). The best lower and upper
bounds generated during the process are then memorized.
As in the IRH, Eq. (7) can also be applied. One difference
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between the IRH and the IIRH is that the intersection of
the subsets of fractional variables of the solutions �xk and
~xk at iteration k is not necessarily empty for the IIRH. This
means that the size of the reduced problem obtained with
(7) could be smaller.

Note that parallel processing can be applied with this
algorithm, one process designed for the LP-relaxation
and another for the MIP-relaxation.

Heuristics IRH and IIRH have a complexity greater
than the LPA because more or larger reduced problems
are solved exactly during the process. However, despite this
increased complexity, the quality of the bounds generated
is expect to improve. The numerical results presented in
Section 5 show the positive impact of these heuristics.
The next section provides an example of the execution of
our heuristics for a medium-sized instance of the 0–1 mul-
tidimensional Knapsack problem.

4. Illustration

In our experiments, a simplex method was used to solve
the LP-relaxations and a branch-and-bound method was
applied to solve the MIP-relaxations and the reduced prob-
lems exactly with the commercial software CPLEX of ILOG.
This section demonstrates the process of our heuristics on an
instance of the 0–1 multidimensional Knapsack problem
(MKP). The MKP works to find a subset of items that max-
imizes a linear objective function while satisfying the capacity
constraints. The MKP can be formulated as follows:

ðMKPÞ

max
P
j2N

cjxj;

s:t:
P
j2N

aijxj 6 bi 8i 2 M ¼ f1; . . . ;mg;

xj 2 f0; 1g j 2 N ¼ f1; . . . ; ng:

2
6664 ð8Þ

Fig. 2. An instance of the IIRH.

Fig. 1. An instance of the IRH.
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The MKP involves n items defined by binary variables xj,
with profits cj > 0 and m resources having capacities
bi > 0. Each item j consumes an amount aij P 0 from each
resource i. A well-stated MKP assumes that
maxj2N aij 6 bi 6

P
j2N aij, 8i 2 M .

The MKP is known to be NP-hard, but not strongly
NP-hard. A very large number of papers can be found
for solving the MKP (the interested reader can consult Fré-
ville, 2004, Fréville and Hanafi, 2005 or Kellerer et al., 2004
for a comprehensive annotated bibliography). To our
knowledge, the best results for commonly used benchmark
instances (Beasley, 1990) are produced with the method
proposed by Vasquez and Vimont (2005). Puchinger and
Raidl, 2005 have recently applied a new variant of VNS
for the MKP called Relaxation Guided variable neighbor-
hood search. They show that this approach can improve
the behaviour of VNS alone.

Our heuristics were applied to one MKP instance, called
GK9, which has 30 variables and 10 constraints (see Table
1). All the algorithms presented in this paper were coded in
‘C’ language. The following notations are used for design-
ing our algorithms.

� LPA: the iterative linear programming-based algorithm.
� MIPA: the MIP-relaxation-based algorithm.
� IRH: the iterative relaxations-based heuristic, where the

constraints relative to the two relaxations (LP-relaxa-
tion and MIP-relaxation) are added to the problem at
each iteration.
� IIRH: the iterative independent relaxations-based heu-

ristic, where the constraints are added in all the
problems.

To avoid overloading the presentation, the results for
the major versions of the heuristics are provided in Table
2. The values of the upper bound (�v) and the lower bound
(v) obtained at each iteration (iter) are given for all the
algorithms. As shown in Table 2, the MIPA gives an opti-
mal solution for this instance in 6 iterations, but the solu-

tion is only proved optimal at iteration 7, when the upper
bound is rounded down to 376. Here, the number of itera-
tions necessary to reach an optimal solution is about 50%
less than the number of iterations needed with the LPA.
The IIRH heuristic, which combines two relaxations,
needed 9 iterations to obtain an optimal solution to the
problem and to prove the optimality of this solution. The
most efficient version for this instance seems to be the
IRH heuristic, which obtained an optimal solution and
proved its optimality in 6 iterations, mainly due to the
improved upper bound. For this instance, the execution
times of all the algorithms are similar because of the size
of the instance.

5. Computational results

The iterative relaxation-based heuristics proposed in this
paper were tested on two sets of MKP instances. The first set
was a collection of 270 correlated and thus hard instances,
generated using the procedure proposed by Fréville and Pla-
teau (1994). These instances are available on the OR-Library
(Beasley, 1990). The 270 instances were generated with dif-
ferent values of m (5, 10, 30), n (100, 250, 500), and different
tightness ratios ða ¼ 0:25; 0:5; 0:75Þ. Ten instances were gen-
erated for each n� m� a combination. The second set con-
tained 18 instances generated by Glover and Kochenberger
(1996), with n equal to values from 100 to 2500 and m equal
to values from 15 to 100. These problems are known to be
very hard to solve using branch-and-bound methods.

As mentioned previously, all the algorithms presented in
this paper were implemented in the ‘C’ language and com-
piled with ‘‘gcc” and the option -O2. The tests were carried
out using a 3.4 GHz Pentium IV. All times are expressed in
CPU seconds. The results presented in this section summa-
rize the best values obtained by all the heuristics and are
compared to the results obtained with CPLEX 9.0 for a
2-hour execution time as well as to the best-known solu-
tions (Vasquez and Hao, 2001 and Vasquez and Vimont,
2005). The preliminary results showed that the MIPA
was less efficient than the IRH and IIRH algorithms. For
this reason, only the results of these two most efficient algo-
rithms are presented below.

First, the results obtained by the algorithms LPA, IRH
and IIRH on the OR-Library instances with n = 100 and
n = 250 were compared. These algorithms LPA, IRH and
IIRH globally obtained the same values as CPLEX for
all these instances.

Tables 3–5 present the results obtained by the algo-
rithms LPA, IRH and IIRH on the 90 most difficult
instances in the OR-Library. These instances have 500 vari-
ables and 5, 10 or 30 constraints, and are known to be very
difficult to solve exactly, as mentioned by Fréville (2004)
and shown by Osario et al. (2002). Osario et al. (2002)
exploit nested cut inequalities and surrogate constraints
to solve 0–1 multidimensional Knapsack problems effi-
ciently. Hanafi and Glover (2007) have shown how this
method can be improved to give better results. To illustrate

Table 2
Illustration for the instance GK9

iter LPA MIPA IIRH IRH

�v v �v v �v v �v v

1 380.3 336 380.3 336 380 368 379.5 360
2 379.7 368 379.8 336 379.6 368 378.5 368
3 379.6 360 378.2 372 377.9 368 377.6 360
4 379.5 368 378.0 364 378.1 364 376.7 368
5 378.7 368 378.7 368 377 368 376.6 368
6 378.3 352 377.2 376 377.7 364 376.4 376
7 378.2 368 376.2 356 376.4 368
8 377.9 368 376.6 368
9 377.6 372 376.5 376
10 377.2 368
11 376.9 372
12 376.5 364
13 376.4 376
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the difficulty of these instances, note that CPLEX was not
able to solve one of the 30 largest instances (with m = 30)
exactly in 2 hours. Our algorithms were launched with
120, 120 and 60 iterations for the instances when m = 5,
10 and 30, respectively. For each problem, Tables 3–5
report the best-known solution mentioned by Vasquez
and Vimont (2005) (column v�), the difference between this
solution and our final best lower bound (column v� � v),
the difference between our final upper and lower bounds
(column �v� v) and the time needed to obtain the lower
bound in seconds (column T �ðsÞ).

As shown in Table 3, the IRH generates 27 best-known
solutions and improves on one solution, while the LPA and
the IIRH generate, respectively, 15 and 27 best-known
solutions. Despite the identical number of best-known
solutions, IIRH seems to be a little less effective than
IRH. The difference between the upper and the lower
bounds is not very large for these instances, although the
convergence cannot be applied since the limit on the num-
ber of iterations is stronger. The execution times for the
IIRH and the IRH are, on average, about 2600 and 3000
seconds, respectively, with about 190 seconds for the
LPA. These results confirm that the LPA allows good
lower bounds to be generated within a very reasonable
time. The execution times observed for the IRH and the
IIRH are reasonable when compared with the execution

time mentioned by Vasquez and Vimont (2005), who cite
an average execution time for each instance of nearly 50
hours using a Pentium IV 2 GHz (the RAM is not speci-
fied). While it is true that our machine has better character-
istics, the difference in CPU time is too large to be ignored.
CPLEX was able to obtain the best solutions of those
reported in Table 3 for the 30 instances and was also able
to prove the optimality of 29 of these solutions in an aver-
age of about 3100 seconds. However, as shown in the para-
graphs that follow, the efficiency of CPLEX tended to
decrease as m increased.

Table 4 provides the results obtained for the problems in
which m = 10. As shown in this table, the IRH obtained 14
best-known solutions and improved upon 7; The IIRH
obtained 12 best-known solutions and improved 3 solu-
tions, and the LPA obtained only 6 best-known solutions.
The difference between the upper and lower bounds is larger
for these problems. The total execution time was about 730,
4500 and 4800 seconds for the LPA, the IIRH and the IRH,
respectively, whereas Vasquez and Vimont (2005) reported
70 hours. Globally Table 4 confirms that the IRH and the
IIRH are more effective than the LPA, with the IRH having
the most efficient process. CPLEX was not able to prove the
optimality of any instance among the 30 in 2 hours. More-
over, CPLEX obtained a worse (resp. the same) solution for
19 (resp. 8) instances than IRH.

Table 3
Results for the OR-500-5 instances

Problem v� LPA IIRH IRH

v� � v �v� v T �ðsÞ v� � v �v� v T �ðsÞ v� � v �v� v T �ðsÞ
1 120148 19 83 119 0 59 1303 0 55 2906
2 117879 16 69 54 0 47 56 0 43 1145
3 121131 0 59 73 0 54 79 0 51 107
4 120804 10 71 33 5 61 471 0 49 3671
5 122319 0 77 4 0 71 4 0 67 8
6 122024 13 86 147 0 64 1303 0 61 1363
7 119127 0 68 19 0 62 130 0 62 117
8 120568 0 55 17 0 48 19 0 45 39
9 121575 0 67 11 0 64 14 �11 51 3767
10 120717 0 61 146 0 55 651 0 50 113
11 218428 2 53 253 0 47 5382 0 45 5730
12 221202 11 58 1 0 43 29 0 24 44
13 217542 8 63 47 6 52 1141 6 51 2337
14 223560 0 69 10 0 62 121 0 55 26
15 218966 4 74 1 0 62 294 0 50 582
16 220530 3 67 66 3 58 676 3 52 387
17 219989 7 69 7 0 51 308 0 45 315
18 218215 20 68 81 0 39 9 0 32 22
19 216976 0 62 1 0 46 4 0 44 12
20 219719 8 78 27 0 64 206 0 55 257
21 295828 0 45 1 0 34 2 0 28 1
22 308086 0 51 66 0 38 555 0 26 428
23 299796 0 54 9 0 47 2 0 43 2
24 306480 4 62 3 0 38 1103 0 33 318
25 300342 0 48 1 0 39 12 0 34 4
26 302571 9 70 54 0 50 393 0 40 189
27 301339 10 51 3 0 31 525 0 19 343
28 306454 0 41 14 0 34 69 0 16 26
29 302828 0 47 42 0 42 481 0 32 222
30 299910 0 47 78 0 34 1329 0 35 926
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Table 5 provides the results for the largest instances
(m = 30). A column ‘‘Cplex” was added to present the qual-
ity of the solution obtained by CPLEX (v� � vðCplexÞ). The
results in Table 5 are less conclusive in terms of the lower
bound since the IRH obtained 8 best-known solutions
and improved 3 solutions only. The IIRH obtained 5
best-known solutions and improves one, and the LPA
obtained only 2 best-known solutions. For these instances,
the algorithms were run for 60 iterations. The lower bound
value could perhaps be improved by increasing the total
number of iterations, but this would increase the execution
time. However, we chose to maintain a reasonable execu-
tion time: about 3600, 4600 and 5200 seconds, respectively,
for the LPA, the IIRH and the IRH. This time is much less
than the 100 hours mentioned by Vasquez and Vimont
(2005). The difference between the upper and lower bounds
is quite large, and thus convergence does not seem to be
applied to these problems, even if the number of iterations
is increased considerably. For this set of instances, the IRH
and the IIRH clearly dominate the LPA, and the final solu-
tions are very close to the best-known solutions. CPLEX
was not able to prove the optimality of any of its solutions
for these largest instances. In addition, CPLEX tended to
terminate because the tree expansion exceeded the memory
capacity. Thus, the IRH clearly dominates CPLEX since it

obtains a better (resp. the same) solution for 22 (resp. 4)
instances.

The results presented in Table 6 demonstrate that our
new heuristics are more efficient than the LPA alone. This
table gives the results obtained by the three algorithms
(LPA, IRH and IIRH) for the 90 largest instances (with
n = 500) given the same computational time-2000, 3500
and 5000 seconds for m = 5, 10 and 30, respectively. Each
line is an average over 10 instances. The table gives the
average value of the solutions obtained by each of the three
algorithms. When only one obtained the best (resp. the
worst) average value, this value is indicated in a bold (resp.
italic) font. Table 6 clearly shows that the IRH improves
the results obtained by the LPA. This heuristic obtains
the best results for 7 classes of the 9 classes of instances.
The results obtained by the IIRH are close those obtained
by the LPA.

Since the results of the IIRH and the IRH were interest-
ing for the largest OR-Library instances, we tried to
improve the solutions generated by these two algorithms
by increasing the number of iterations (the total number
of iterations was set to 200, 200 and 100 for m = 5, 10
and 30, respectively). Then the IRH and the IIRH gener-
ated the last two best-known values for instances with
m = 5 (instances 5.500–13 and 5.500–16 presented in Table

Table 4
Results for the OR-500–10 instances

Problem v� LPA IIRH IRH

v� � v �v� v T �ðsÞ v� � v �v� v T �ðsÞ v� � v �v� v T �ðsÞ
1 117811 2 186 449 2 176 1133 2 172 3086
2 119232 15 197 119 15 188 1685 15 185 2068
3 119215 4 173 569 4 163 643 0 156 5028
4 118813 0 218 105 0 209 65 �12 191 3400
5 116509 0 170 70 �5 155 829 �5 155 241
6 119504 35 214 64 0 168 1988 14 178 3130
7 119827 39 216 378 14 179 3719 33 199 2810
8 118329 20 207 373 6 183 363 �4 170 6146
9 117815 39 200 65 34 183 1582 34 182 2200
10 119231 65 251 318 0 178 993 �20 156 4282
11 217377 0 154 784 0 138 1708 0 133 9
12 219077 11 167 693 11 149 377 0 137 1727
13 217806 9 168 330 �41 97 33 �41 98 428
14 216868 17 172 196 0 132 1307 0 136 1032
15 213859 13 149 1114 7 125 3151 6 122 1707
16 215086 0 153 238 0 138 958 0 133 1317
17 217940 14 159 529 9 131 2258 0 122 4606
18 219984 0 167 96 0 144 22 �6 141 5729
19 214375 24 185 203 0 145 663 0 142 329
20 220899 47 206 62 27 166 1370 13 149 3174
21 304387 24 164 161 17 135 2508 0 112 5118
22 302379 43 193 60 0 126 1048 0 120 1462
23 302416 0 143 201 0 113 446 0 116 85
24 300757 10 179 160 �27 125 535 �27 120 2004
25 304374 17 194 546 0 151 4081 0 150 1561
26 301836 40 136 315 40 113 316 0 67 5314
27 304952 3 167 7 0 135 45 0 134 326
28 296478 22 157 22 6 112 2409 6 115 785
29 301359 28 187 42 2 151 1872 2 133 1015
30 307089 17 154 72 6 117 545 0 108 839
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3). Two other best-known solutions were obtained with the
IRH for m = 10 for instances 10.500–6 and 10.500–7. For
instances with m = 30, the IRH was able to generate three
best-known solutions for problems 30.500–13, 30.500–15
and 30.500–27, while IIRH was able to do so for problem
30.500–13. As expected, the execution time of our algo-
rithms increased commensurately. However, the highest
value was about 21,500 seconds (about 6 hours) for a prob-
lem with n = 500 and m = 30. The results for the 90 largest
instances of the OR-Libraries are summarized in Table 7,

with the number of improved values (#Improved), equal
values (#Equal) and lower values (#Lower) given for each
set of 30 instances.

Table 8 presents the results for the instances generated
by Glover and Kochenberger (1996). These results for the
problems GK18 to Mk_gk05 were obtained after 60 itera-
tions; the results for the last six problems (Mk_gk06–
Mk_gk11) were produced after 100 iterations. These last
six problems are known to be very difficult to solve using
branch-and-bound approaches, thus our results are very
encouraging since we obtained 12 of the best-known solu-
tions and we improved on two solutions for the problems
Mk_gk06 and Mk_gk09. The execution time for the heuris-
tics IIRH and IRH is reasonable since it was less than 2
hours for the problems GK18 to Mk_gk05. For the largest
problems, it was less than 11 hours for IRH and less than 7
hours for IIRH. Compared to the LPA, our heuristics
improved the quality of the upper bound, in addition to

Table 6
Results obtained with the same computational time

m a LPA IIRH IRH

5 0.25 120628.7 120628.7 120629.8

0.5 219512.1 219510.9 219511
0.75 302363.4 302363.2 302363.4

10 0.25 118618.8 118621.1 118621.7

0.5 217326.5 217317.4 217329.3

0.75 302597 302598.3 302600.6

30 0.25 115576.2 115585.4 115596.3

0.5 216227.8 216244.4 216238.6
0.75 302420.6 302419.8 302426.8

Table 5
Results for the OR-500-30 instances

Problem v� LPA IIRH IRH Cplex

v� � v �v� v T �ðsÞ v� � v �v� v T �ðsÞ v� � v �v� v T �ðsÞ
1 116056 109 651 4366 109 598 3162 108 544 747 47
2 114810 88 624 1026 88 574 515 30 472 4136 78
3 116712 51 662 123 22 581 2845 �29 468 3499 30
4 115329 86 682 3427 �25 508 2660 �16 473 548 50
5 116525 51 593 2183 51 551 1034 9 473 7765 66
6 115741 0 612 2277 0 560 1492 0 505 652 7
7 114181 74 566 1659 72 521 1262 70 485 5176 105
8 114348 132 613 3303 54 503 3469 4 418 3313 32
9 115419 0 467 1119 0 422 392 0 369 320 0
10 117116 93 624 2769 0 475 3445 0 429 2990 12
11 218104 36 514 2795 36 471 378 36 421 250 32
12 214648 98 508 1359 32 401 234 3 334 3880 3
13 215978 75 482 1810 36 415 2085 56 386 3431 75
14 217910 83 506 13 48 427 790 25 372 3771 35
15 215689 76 465 1047 25 384 305 49 369 3617 49
16 215890 53 478 1232 23 423 3133 �29 335 627 61
17 215907 107 549 846 28 415 2378 0 346 3631 24
18 216542 64 514 3772 0 403 1824 32 396 3271 103
19 217340 27 503 392 27 448 1047 27 405 3544 51
20 214739 59 516 3264 38 447 2468 49 427 4346 0
21 301675 48 399 121 32 345 361 0 290 2586 32
22 300055 41 423 1919 0 343 2232 0 313 1544 25
23 305087 7 399 1731 7 355 1819 7 336 1208 32
24 302032 27 433 4302 24 371 916 24 349 587 28
25 304462 49 467 724 37 408 3096 37 373 4449 42
26 297012 53 433 1384 24 364 2055 43 354 1264 24
27 303364 60 444 2162 42 382 2944 35 339 1505 35
28 307007 63 443 280 8 344 2462 8 328 1320 46
29 303199 56 443 2585 21 357 777 0 293 1928 37
30 300572 36 465 3865 36 427 789 0 343 1204 40

Table 7
Summary of the results for the OR-500 instances

m #Improved #Equalled #Lower

5 1 29 0
10 8 16 6
30 3 12 15
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generating 9 solutions better than those generated by the
LPA and the same solution for 9 other problems. Overall,
these results show that the algorithms described in this
paper are more effective for instances with a small number
of constraints.

To conclude this section, we provide some of the results
obtained for a set of instances extracted from the mixed
integer programming library in Tables 9 and 10. We tested
the algorithms on 13 instances of the 0–1 MIP problems
used by Pedroso (2004). For every instance, Tables 9 and
10 present the number of binary variables in row ‘‘n0”,
the number of continuous variable in row ‘‘n� n0”, and
the number of constraints in row ‘‘m”. The optimal value
is given in row ‘‘v�”, and the value of the LP-relaxation

in row ‘‘LP”. In the subsequent rows, the results obtained
with the LPA, the IIRH and the IRH, are provided. Values
marked with an ‘‘*” correspond to an execution with more
iterations (1000 rather than 100) (note that a minimization
function was used in these problems).

Tables 9 and 10 show that the LPA, the IIRH and the
IRH all obtained an optimal solution for the 13 tested
instances. The average CPU times were about 60, 151
and 242 seconds, respectively, for the LPA, the IIRH and
the IRH. The final solution was proved optimal in three
(resp. 2) cases for the IIRH and the IRH (resp. the
LPA). The difference between the behaviour of the three
algorithms on these instances is smaller. In general, IRH
obtains better lower bounds, but requires more CPU time.

Table 8
Results for the instances of Glover and Kochenberger

Problem n m v� LPA IIRH IRH

v� � v �v� v iter� T �ðsÞ v� � v �v� v iter� T �ðsÞ v� � v �v� v iter� T �ðsÞ
GK018 100 25 4528 0 16 58 290 0 12 6 78 0 9 11 680
GK019 100 25 3869 0 15 36 65 0 11 6 71 0 8 2 25
GK020 100 25 5180 0 16 45 239 0 12 25 474 0 9 9 365
GK021 100 25 3200 0 17 19 27 0 13 8 58 0 10 8 245
GK022 100 25 2523 0 18 30 60 0 14 14 90 0 10 7 117
GK023 200 15 9235 2 11 36 5 0 8 40 44 0 7 40 184
GK024 500 25 9070 3 12 3 0 1 10 55 1168 0 8 45 2509
MK_gk01 100 15 3766 0 7 9 0 0 5 9 5 0 4 2 1
MK_gk02 100 25 3958 0 15 40 45 0 11 15 50 0 8 10 100
MK_gk03 150 25 5656 1 14 52 457 0 10 35 1924 0 8 3 32
MK_gk04 150 50 5767 0 25 5 222 0 18 3 282 0 15 3 472
MK_gk05 200 25 7560 0 16 49 458 0 13 25 1261 0 12 8 636
MK_gk06 200 50 7677 2 27 19 1727 �1 18 98 23993 �1 12 36 10042
MK_gk07 500 25 19220 3 15 51 287 1 10 76 8374 1 10 74 15769
MK_gk08 500 50 18806 3 27 44 3998 1 23 4 975 1 21 2 11182
MK_gk09 1500 25 58087 5 18 45 396 �4 7 86 15064 �2 8 60 17732
MK_gk10 1500 50 57295 6 29 22 1999 3 22 27 6598 3 20 5 6355
MK_gk11 2500 100 95237 9 49 25 2260 8 43 37 9463 8 43 5 1921

Table 9
Results for some 0–1 MIP instances from the MIP-Lib

Pb. name egout enigma lseu mod008 modglob p0033 pk1

n0 55 100 89 319 98 33 55
n� n0 86 0 0 0 324 0 31
m 98 21 28 6 291 16 45
v� 568,10 0 1120 307 20740508 3089 11
LP 149.59 0 834.68 290.93 20430947.6 2520.6 0

LPA �v� v 287.79 0 237.81 9.54 293611 495.87 11
�v� v� 0 0* 0* 0 0 0 0
iter� 64 715* 168* 2 14 78 34
T �ðsÞ 1 44* 3* 0 0 0 19

IIRH �v� v 124.02 0 237.81 9.53 154372 495.87 11
�v� v� 0 0* 0* 0 0 0 0
iter� 1 249* 168* 1 1 75 34
T �ðsÞ 0 12* 15 0 18 1 261

IRH �v� v 2.31 0 95.91 7.94 93826 33.4 11
�v� v� 0 0* 0 0 0 0 0
iter� 1 247* 25 1 28 33 5
T �ðsÞ 0 259* 1 0 273 1 49
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6. Conclusions

In this paper, we proposed new hybrid heuristics for
solving 0–1 mixed integer programs. Some of the concepts
applied are connected to an exact algorithm proposed at
the end of the 1970s, for which we recently proposed some
extensions. The process consists of generating two
sequences of upper and lower bounds by solving relax-
ations and sub-problems until the visit of an optimal solu-
tion to the problem can be proved. This process is used as a
heuristic with a maximum number of iterations. We pro-
posed to integrate mixed integer programming (MIP)
relaxations to refine the upper bounds and to diversify
the search. In most cases, the MIP-relaxation also
improves the quality of the lower bounds. The results
obtained on two sets of difficult instances available for
the 0–1 multidimensional Knapsack problem show the effi-
ciency of our heuristics, since we were able to improve 14
best-known solutions. In addition, we obtained encourag-
ing results on a subset of 0–1 MIP problems.

A prospect to this work could be the implementation of
the heuristic IRH using a parallel algorithm, which would
decrease the execution time, thus improving the results of
these heuristic. We also hope to develop other hybrid heu-
ristics, integrating the adaptive memory processes of tabu
search to explore the neighborhoods induced by the relax-
ations. We expect to improve the search by integrating more
memory than in the algorithms presented in this paper.
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