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Abstract Video deinterlacing is a technique wherein the
interlaced video format is converted into progressive scan
format for nowadays display devices. In this paper, a spatial
saliency-guided motion-compensated deinterlacing method
is proposed which accounts for the properties of the Human
Visual System (HVS): our algorithm classifies the field
according to its texture and viewer’s region of interest and
adapts the motion estimation and compensation, as well as the
saliency-guided interpolation to ensure high-quality frame
reconstruction. Two different saliency models, namely the
graph-based visual saliency (GBVS) model and the spectral
residual visual saliency (SRVS) model, have been stud-
ied and compared in terms of visual quality performances
as well as computational complexity. The experimental
results on a great variety of video test sequences show sig-
nificant improvement of reconstructed video quality with
the GBVS-based proposed method compared to classical
motion-compensated and adaptive deinterlacing techniques,
with up to 4.5 dB gains in terms of PSNR. Simulations also
show that the SRVS-based deinterlacing process can result
to significant reductions of complexity (up to 25 times a
decrease of the computation time compared with the GBVS-
based method) at the expense of a PSNR decrease.
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1 Introduction

The process of deinterlacing involves converting a stream
of interlaced frames within a video sequence to progressive
frames [1], to ensure their playback on nowadays progres-
sive devices.Such video processing has been widely studied
in the recent literature [2—8], as the interlaced video format is
still preferred for the acquisition systems when high-fidelity
motion accuracy is needed. Deinterlacing requires the display
device to buffer one or more fields and recombine them to a
full progressive frame. There are various methods to deinter-
lace a video and each method produces its own artifacts, due
to the temporal lack of information and the dynamics of the
video sequence.

Spatial deinterlacers [2,4,7,9] use the information from
the current field to interpolate the missing field lines. The
most common types of spatial deinterlacing methods are
line averaging and directional spatial interpolation. Edge-
based line averaging is done by interpolation along the edge
direction, by comparing the gradients of various directions.
The interpolation accuracy of edge-based line averaging is
increased by an efficient estimation of the directional spa-
tial correlations of neighboring pixels. Usually, the spatial
deinterlacing methods have low computational power.

However, one disadvantage of spatial deinterlacing is that
this class of methods is not optimal due to the fact that motion
activity is not considered in interpolation; moreover, these
kind of algorithms fail to remove the flickering artifacts.

Motion adaptive methods, such the ones proposed in
[5,6,8], use consecutive fields to analyze the characteristics
of motion in order to choose the appropriate interpolation
scheme. In such deinterlacers, dynamic areas are inter-
polated spatially and the static segments are interpolated
temporally. The best class of deinterlacers is given by the
motion-compensated ones [3,10]. In these schemes, the
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motion trajectory is estimated and the interpolation of the
missing fields is done along the motion flow. However,
motion-compensated deinterlacers need massive computa-
tional resources. To reduce their complexity, block-based
motion estimation is used at the expense of blocking arti-
facts and some unreliable motion information [11], which
severely degrades the visual quality of the reconstructed
video sequences.

A single-field interpolation algorithm based on block-
wise autoregression that considers mutual influence between
the missing high-resolution pixels and the given interlaced,
low-resolution pixels in a slip window is introduced in [4].
A method to use different interpolation techniques based
on classification of each missing pixel into two categories
according to different local region gradient features is dis-
cussed in [5]. Further, a statistical-based approach which
uses Bayes theory to model the residual of the images as
Gaussian and Laplacian distribution can be used to esti-
mate the missing pixels in [6]. To improve the accuracy of
motion vectors for video deinterlacing by selectively using
optical flow results, for assisting the block-based motion esti-
mation is proposed in [12], at a high computational cost.
The computational load of block-based compensation can
be reduced using predictive area search algorithms, which
estimate the motion vectors (MV) of the current block using
the M Vs of previous blocks [13]. Neural networks and fuzzy
logic can also be used as deinterlacing solutions. A way to
exploit fuzzy reasoning to reinforce contours for improving
an edge-adaptive deinterlacing algorithm without an exces-
sive increase in computational complexity is discussed in
[14]. Another approach for fuzzy logic deinterlacing is to
use a fuzzy-bilateral filtering method which considers the
range and domain filters based on a fuzzy metric [2,8].

In this paper, in order to reduce the blocking artifacts hence
improving the Quality of Experience (QoE) of human view-
ers, we propose to use the block-based motion estimation
on smooth areas, while on highly textured areas optical flow
based pixel velocity is used [15] because this method is free
of blocking effect. For improving the frame reconstruction
quality, visual saliency-guided interpolation of the estimated
temporal field is used. The use of visual saliency [16] as trig-
ger for the spatio-temporal interpolator has two advantages:
for non-salient regions, no motion estimation is performed,
the areas being spatially interpolated, hence highly reducing
the proposed deinterlacer complexity.

The second advantage is the corollary of the first one:
the computing resources, translated mainly into the motion
estimation process, can be used entirely on the region-of-
interest area.

In the sequel, the paper is organized as follows: Sect. 2
first introduces the notion of visual saliency and present some
existing saliency models. In particular, a focus is made on the
graph-based visual saliency (GBVS) model that outperforms

@ Springer

the reference model, as well as the spectral residual visual
saliency (SRVS) model. Then, Sect. 3 describes the proposed
saliency spatio-temporal video deinterlacing method. Some
experimental results obtained with the proposed method for
different video sequences are presented in Sect. 4. A compar-
ison between deinterlacing processes using different saliency
models is also proposed. Simulation results are presented and
discussed. Finally, conclusions are drawn in Sect. 5.

2 Visual saliency

Visual saliency is defined in [17] as the distinct subjective
perceptual quality which makes some items in the world stand
out from their neighbors and immediately grab our atten-
tion. The visual saliency process allows a human observer
to specifically focus her/his attention on one or more visual
stimuli into a scene depending on some semantic features
like orientation, motion or color.

It constitutes one of the most important properties of the
human visual system (HVS) with numerous applications in
digital imaging applications including content-aware video
coding, segmentation or image resizing [18,19]. To model
human visual attention, several visual saliency models have
been recently proposed in the literature [20-22]. Generally,
these models allow computing a so-called visual saliency
map as a topographically arranged map that represents visu-
ally salient parts, also called regions of interest (ROI), of a
visual scene. Among the different existing saliency models,
the one proposed by Itti et al. [17,23] is the most popular.

The Itti algorithm exploits three low-level semantic fea-
tures of an image: color, orientation and intensity. These
features are extracted from the image to establish feature
maps. Finally, the saliency map is computed from these fea-
ture maps after normalization and pooling.

In [16], the authors propose a Graph-Based Visual
Saliency (GBVS) model which improves the model devel-
oped by Itti et al. The GBVS model relies on a fully connected
graph between feature maps at multiple spatial scales. It
is shown that the GBVS model outperforms the Itti model
in predicting human visual attention while viewing nat-
ural images. However, the computational complexity of the
GBVS model constitutes a significant drawback for deinter-
lacing implementation purposes. Hence, other low-complex
saliency models have been considered to replace the GBVS
one.

Among these, we retain the so-called spectral resid-
ual visual saliency (SRVS) model described in [10,15].
Figure 1 represents the flowchart of the spectral residual
saliency model’s computation. The model relies on spectral
residual saliency detection. Spectral residual saliency detec-
tion is an approach developed in computer vision to simulate
the behavior of pre-attentive visual search. Different from
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traditional image statistical models, it analyzes the log spec-
trum of each image of the video sequence and estimates the
corresponding spectral residual. Then, the spectral residual
is transformed to the spatial domain to obtain the saliency
map. This method explores the properties of the background
areas, rather than the target objects. The procedure can be
detailed as follows.

Given the luminance component (Y) of a field, the ampli-
tude spectrum noted A(f) and the phase spectrum noted
P(f) are first evaluated as the real and the imaginary part
of the two-dimensional Fourier transform of the luminance
component, respectively:

A(f) = \/RG[F(Y)]2 +Im[F(Y)T? ()
. Im[F(Y)]
P(f) = tan Re[F(V)] (2

where F represents the Fourier transform. The log spectrum
L(f) is then obtained by:

L(f) = log[A(f)] 3

The average spectrum can be approximated by convoluting
the log spectrum with a matrix A, (f):

As(f) = ha(f) * L(f) “

where £, (f) is a nxn unit matrix with all entries equal to
1/n>.

Finally, the spectral residual R( f) consists in the statisti-
cal singularities specific to the input image and is obtained,
for each frame of a video sequence, as the difference between
the log spectrum and the averaged spectrum, respectively:

R(f)=L(f) = As(f) (&)

Transform

Spectral residual is then converted to the saliency map S(x)
using inverse two-dimensional Fourier transform. The result-
ing saliency map contains primarily the non-trivial part of
the visual scene. The value at each point in a saliency map
is squared to indicate the estimation error. For better visual
effects, the saliency map is traditionally smoothed with a
Gaussian filter g(x) with typical variance of 8:

S@) = g(0) = F~' [exp(P(f) + R(F)? (®)

3 Saliency-based deinterlacing

The flowchart of the proposed algorithm is depicted in Fig. 2.
As the field interpolation model depends on the saliency map,
the first step of our algorithm is given by the computation
of the spatial saliency of the current field to the deinter-
laced. To compute the so-called saliency map, the two models
described in the Sect. 2 have been considered: the GBVS
model proposed in [16], and the spectral saliency model.
The obtained saliency map denoted in the followings by S
(i.e., depicted in Fig. 3 in the case of the GBVS model) and
consisting of gray values S(i, j) € {0...255} will trigger,
along with the texture type, the interpolation used for the cur-
rent field. Equally, a Canny edge detector is applied on the
current field and the edges mask C is obtained.

Further, the current field is partitioned into blocks of
fixed size B2, each block being categorized depending on
its belonging to the salient region, as follows: the block b,
of size B2 is said to be salient/important, i.e.:

Sp, = DL, T8 154G, j)/B? )
if the mean S, of the entire collocated block s, within the

saliency map S is higher than a given threshold 7§; otherwise,
the block is classified as smooth.

@ Springer
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Fig. 2 Flowchart diagram of the proposed deinterlacing algorithm

Also, for each block b, belonging to the current field f,,
its number of edges is derived as in Eq. (8), by counting the
amount of pixels on contours in the collocated block ¢, in
the mask field C, obtained with the Canny filter:

CEp, = L, 57 1eali, J) ®)

where, CE},, is the number of identified edges in block b,,.
The block b, is classified as highly textured if CE},, is sig-
nificant with respect to the blocksize Bz, ie.:

CEp, > Tp 9)

(T} is a threshold depending on B?), or smooth, if Eq. (9)
does not hold.

If the block b, belongs to a salient region and its number
of contours is significant (as in Eq. 9), optical flow-based
motion estimation is implemented; otherwise, we use block-
based estimation.

If the block b,, is determined as not belonging to a salient
region, simple spatial 5-tap edge-line averaging techniques
(Fig. 4) are used to obtain the deinterlaced block l;n @y,
ie.

© o bli— 1 x0) T bali 1, j — x0)

bu (i, j) 5 . (10

where the exact value of x¢ is given by the minimization:

|bn (i — 1, j 4 x0) — bp(i + 1, j — X0)|

- ' bu(i =1, — b, (i 1,j— .
xoe{—gllrll,o,l,z}l n(d J+x0) = by +1,j— x0)l
(11)
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For the salient blocks, the motion vectors (MV) are
obtained on the backward and forward directions for the cur-
rent field, and applying either OF-based estimation proposed
by Liu in [5], or simple block-based ME.

We assume that the motion trajectory is linear; so, the
obtained forward motion vectors (MVs) are split into back-
ward (MVB) and forward (MVF) motion vector fields for the
current field f;,,. As a block in f; could have zero or more
than one M Vs passing through, the corresponding MV, for
the block b, € f, is obtained by the minimization of the
Euclidean distance between b,,’s center, (y,.0, X».0), and the
passing vectors MVs. In our minimization, we consider only
the MVs obtained for the blocks in the neighborhood of the
collocated block b,_1 in the left field f,—1 (thus, a total
of nine MVs, obtained for b,,_; and the blocks adjacent to
bp—1 € fa—1,as these MVs are supposed to be the most cor-
related to the one in the current block, e.g., belonging to the
same motion object).

If the motion vector MV corresponding to the collocated
block b,,—1 € f,—1 lies on the line:

Y= Yn—1,0 X —Xn—1,0
MV, MV,

12)

where (y,—1,0, Xxn—1,0) is the center of b,_1; and MV,,
respectively, MV, measures the displacement along the x,
respectively, y axis; the distances from the center (y,0, X1.0)
of the current block b, to the MVs lines are obtained
as:
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Fig. 3 Saliency map obtained for (a) 10th frame of “Foreman”
sequence, (b) 21st frame of “Salesman” sequence

_ MVk,x."n.O - MVk,an.o + MVk,anfl.k - MVk,x)’nfl.k‘

VMV 2 + MV 2

(13)

MV" is the closest motion vector to the current block b,,, if
its corresponding distance to the center of by, (y,.0, Xn.,0), 1S
minimal, i.e., D, = min(Dyeq1,...,9)). Hence, MV" is gener-
ated for each block, containing the motion estimation in the
x and y directions for every pixel.

The forward and backward MVs for each block are
obtained as:

. =MV
MV} = ——.

MV, = . (14)

The backward prediction of b,,, denoted by }—1(1/1\/3 ,is obtained
as:

By ) = by (1 MV, j + MV, ). (15)

and the forward prediction of the current block, Fl(l/IVF’ is
obtained as:

By, o 1) = b (1 + MV, j + MV, ), (16)

The motion-compensated block b" to be further used for the
deinterlacing of b, is obtained as average of the backward,
]-"I(’,IVB, and forward, f&vp, predictions:

. Flov . G j) + Fy G, J)
b, j) = Vet o s a17)

Finally, the deinterlaced block is found in a saliency-based
motion-compensated manner, as:

by — 1, j +x0) + by (i + 1, j — x0) + 54, D", J)

5 i) =
n@. /) 5l ) 42

(18)

s, being the corresponding saliency value within the saliency
map S, acting as a weight for the motion-compensated inter-
polation, and x( is obtained by the edge line minimization in

(11).

4 Experimental results

To objectively and comprehensively present the performance
of the proposed deinterlacing approach, our method has
been tested on several CIF-352 x 288 (“Foreman”, “Hall”,
“Mobile”, “Stefan” and “News”’) and QCIF-176 x 144 (“Car-
phone” and “Salesman”) video sequences. These well-known
test sequences have been chosen for their different texture
content and motion dynamics. Such spatio-temporal charac-
teristics can be explicited by computing the relative spatial
information (SI) and temporal information (TI) found in these
video contents, as described in [24]. Figure 5 shows the rel-
ative amount of spatial and temporal information for the
selected test scenes. We can note that they span a large por-
tion of the SI-TI plane, as desired. Moreover, the two (SI,TT)
pairs located in the top right part of the diagram correspond to
the “Mobile” and “Stefan” CIF sequences which are known
to contain very high spatio-temporal activity.

The selected video sequences were originally in progres-
sive format. To generate interlaced content, the even lines of
the even frames and the odd lines of the odd frames were
removed, as shown in Fig. 6. This way, objective quality
measurements could be done, using the original sequences—
progressive frames—as references.
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Fig. 4 5-Tap Edge Line
Average (ELA): the five
interpolation directions are
represented with different
dashed lines. Gray nodes
correspond to original pixels
from the upper and lower lines
(solid lines); the black node is
the interpolated pixel
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Fig. 5 Spatial-temporal information diagram for the test video scene
set

Fig. 6 Progressive to interlaced format frame conversion, by removing
the dashed lines

In our experimental framework, the GBVS model is first
considered. We have used 8 x 8 (B = 8) pixel blocks for
al6 x 16 (S = 16) search motion estimation window, for
the salient blocks b, having a small CE;, < T}, number of
contours. The parameter T for saliency detector was set up
to 20, and the edge threshold 7}, to 32 (e.g., at least half of
the block pixels are situated on contours).

The tests were run on 50 frames for each sequence.
The deinterlacing performance of our method is presented
in terms of peak signal-to-noise ratio (PSNR) computed
on the luminance component. The efficiency of our pro-
posed method—denoted in the followings by SGAD—is
compared in Table 1 to Vertical Average (VA), Edge Line
Average (ELA), Temporal Field Average (TFA), Adap-
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tive Motion Estimation (AME) and Motion-Compensated
Deinterlacing (MCD), which are the most common imple-
mentations in deinterlacing systems. Moreover, the proposed
algorithm is compared to the work in [27], denoted by
EPMC, [28] denoted by SMCD and the methods pro-
posed in [29] (high-fidelity motion estimation based dein-
terlacer), [30] (adaptive motion-compensated interpolator
with overlapped motion estimation) and [31] (hybrid low-
complexity motion-compensated-based deinterlacer), which
are all motion-compensation-based algorithms with differ-
ent complexity degrees. (these latter results are reported
as in the corresponding references, NC denoting the non-
communicated ones). In the present case, the GBVS model
is considered.

For visually showing the results of the proposed method,
two deinterlaced frames are illustrated in Fig. 7.

As it can be seen in the presented results, our proposed
method using the GBVS model has an average PSNR gain
of &~ 4.5 dBs with respect to a wild range of deinterlacers.
Our framework has been implemented in Matlab (8.0.0.783
(R2012b)) and the tests have been realized on a quad-
core Intel-PC@4 GHz. Due to the independent block-based
processing, the proposed deinterlacing approach is prone to
distributed/parallel implementation, thus highly reducing the
computation time obtained with a sequential implementa-
tion. Moreover, as the proposed algorithm adapts the motion
estimation in function of region’s saliency, due to our used
threshold 7 for motion computation, only ~ 1/3 of field
regions is motion processed (as it can be seen in Fig. 3).
The parameterization allows, thus, to drastically decrease
the complexity attached to motion-compensated schemes, by
preserving its advantages where the user attention is focused.

However, it is known that the GBVS model requires a
lot of computational resources to be computed. Such com-
putational complexity can be a severe issue particularly for
real-time applications. For lower complexity, we propose in
what follows to replace the GBVS model by the SRVS one
to compute the saliency values. Because optical flow is also
complex to implement, only block-based MC is used in the
low-complex approach; the implementation of the algorithm
is left unchanged. The performances of the low-complex
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Table 1 Y-PSNR results (in dB) Foreman Hall Mobile Stefan News Carphone Salesman
VA 32.15 28.26 25.38 27.30 34.64 32.17 31.52
ELA 33.14 30.74 23.47 26.04 32.19 32.33 30.51
TFA 34.08 37.47 27.96 26.83 41.06 37.39 45.22
AME 33.19 27.27 20.95 23.84 27.36 29.63 28.24
MCD 3542 34.23 25.26 27.32 35.49 33.55 33.16
EPMC (S1) 37.09 39.27 31.54 30.02 41.63 37.53 45.61
EPMC (S2) 37.18 39.08 30.56 30.11 39.44 37.55 42.28
[29] 33.77 NC 27.66 28.79 NC NC NC
[30] NC NC NC 24.59 NC NC NC
[31] 33.93 38.79 24.67 26.88 NC NC NC
SMCD (S1) 37.52 39.71 30.41 31.77 41.85 37.59 45.95
SMCD (S2) 37.63 39.86 30.58 31.82 42.00 37.74 45.09
SGAD 39.07 43.86 37.54 34.23 44.35 40.33 50.70

[SIPMENS' y

Fig. 7 Deinterlacing result for the a 10th frame of “Foreman”
sequence, b 21th frame of “Salesman” sequence

SGAD algorithm using the SRVS model are evaluated by
comparing the PSNR and computation time values with the
GBVS-based method for the video data set. Table 2 sum-
marizes the results that include the average PSNR value, the
average number of blocks on which the ELA algorithm is
used (noted N,), the average number of blocks on which
block-based MC is used (noted N,,), and the average total
computation time noted CT (saliency’s estimation then adap-
tive block processing).

First, we can note that the average PSNR values are
reduced compared to the ones obtained with the GBVS-based
method. The quality loss is due to the artifacts introduced
by the block-based MC process, as opposed to optical flow
mostly, but also due to the saliency model performance: the
GBVS model has the best results, but unfortunately at the
expense of processing time (it takes about 1 min to extract the
saliency map). Nevertheless, we verify that the low-complex
algorithm offers performances which are mostly similar to
conventional deinterlacing techniques in terms of video qual-
ity. Concerning the total processing time, it varies between
4.49 and 20.1 s. This time must be set against that required for
the GBVS-based version which varies approximately from
100 s for QCIF video contents to 350-400 s for CIF ones.
Such time penalty for the initial version of our algorithm
is mainly due to the optical flow computation, especially
if highly textured salient regions are represent in the initial
scene. Hence, the modified version of the SGAD algorithm
can be adapted for real-time deinterlacing while maintain-
ing a satisfactory video quality though slightly reduced. On
the contrary, the GBVS version should be better suited for
storage for which deinterlacing time is not an issue; so,
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Table 2 performances of the

modified low-complex SGAD Foreman Hall Mobile Stefan News Carphone Salesman
algorithm PSNR (dB)  37.32 36.99  29.49 30.78 4165 3781 41.48

N, (%) 73 8 1 6 9 9 9

Ny (%) 27 92 99 94 91 91 91

CT (s) 6.57 19.68 20.10 19.90 19.16 4.49 4.76

it is mainly designed for adapting the content from inter-
laced cameras to progressive display devices. To conclude,
it should be noted that further gains should be expected for
the proposed SGAD method because the code is still not
optimized.

5 Conclusion

In this paper, a spatial saliency-guided motion-compensated
method for video deinterlacing is proposed. Our approach
is an efficient deinterlacing tool, being able to adapt the
interpolation method depending both on region of interest
and its texture content. Experiments show that the proposed
algorithm generates high-quality results, having more than
4.5 dBs PSNR gain, in average, compared to other dein-
terlacing approaches. Furthermore, the proposed method
acknowledges the possibility of improving image quality
and simultaneously reducing execution time, based on the
saliency map. Finally, we have presented two models: the
first one for storage applications (in this case, deinterlacing
time is not a critical issue, so it is mainly designed for high-
quality conversion from interlaced cameras to progressive
display devices), and the other one with less but still accept-
able video quality performances, which can be adapted for
real-time deinterlacers.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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