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Introduction

REDUCING energy consumption and emissions of the marine industry nowadays has become a priority. Powertrain hybridization is one of the approaches to achieve these goals [START_REF] Miyazaki | Hybrid Modeling of Strategic Loading of a Marine Hybrid Power Plant With Experimental Validation[END_REF]. A hybrid powertrain uses at least two energy sources, with at least one reversible one, su ch as a battery. During vessels operations, the propulsion power request needs to be split between the different energy converters (genset, engine, electric machine, fuel cell, etc.) and storage (battery, super-capacitor). An energy management algorithm (EMA) is adopted to compute this power split and to minimize a criterion such as CO2 emissions while managing the energy storage level (e.g., the battery state of charge (SOC)) and to consider several constraints induced by the powertrain architecture and component sizing [START_REF] Sciberras | Managing Shipboard Energy: A Stochastic Approach Special Issue on Marine Systems Electrification[END_REF]. If operational and environmental details of a mission are known a priori, the energy management problem can be formulated as an optimal control problem. Dynamic Programming (DP) [START_REF] Bai | Optimal Design of a Hybrid Energy Storage System in a Plug-In Hybrid Electric Vehicle for Battery Lifetime Improvement[END_REF][START_REF] Wang | Simulation of Energy Control Strategy for Hybrid Electric Vehicle Based on Modified Dynamic Programming[END_REF]) and Pontryagin's Minimum Principle (PMP) are widespread approaches to derive an optimal solution to hybrid powertrain energy management problems, even though alternative approaches based on the calculus of variations have been considered (East and Cannon, 2019). Dynamic Programming requires discretizing both the state and the time. Extensive search in the resulting grid allows approximating the optimal solution. This approach allows easily integrating state constraints, but it is only suitable for a limited number of states due to the so-called curse of dimensionality. Pontryagin's Minimum Principle (PMP) allows formulating optimality conditions in continuous-time, which boils down to consideration of a Boundary Value Problem (BVP) that can be solved using an appropriate solver. The resulting algorithm is, in general, faster than Dynamic Programming. In this work, PMP is considered since it allows deriving a real-time suboptimal, but efficient control algorithm referred to as the Equivalent Consumption Minimization Strategy (ECMS) [START_REF] Sampathnarayanan | An optimal regulation strategy with disturbance rejection for energy management of hybrid electric vehicles[END_REF][START_REF] Xie | MPC-informed ECMS based real-time power management strategy for hybrid electric ship[END_REF].

Both the offline PMP and the real-time ECMS compute the control as a solution to the instantaneous minimization of the Hamiltonian associated with the optimal control problem. This Hamiltonian is defined as the sum of the fuel consumption and the state dynamics multiplied by a co-state. Within the ECMS framework, this Hamiltonian is denoted as total equivalent consumption. PMP optimality conditions provide the optimal dynamics of the co-state, and the initial value of the co-state can only be computed in simulation over known missions. In real-time, adaptive-ECMS replaces this optimal dynamic by a real-time closed-loop control approach of the energy storage level (typically the SOC) [START_REF] Onori | Adaptive Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles[END_REF]. Two main problems arise: how to design the controller and how to prove the closed-loop stability. Various controllers have been investigated, such as PI, fuzzy, or predictive controllers, but only a few of them are provided with a closed-loop stability proof [START_REF] Sampathnarayanan | An optimal regulation strategy with disturbance rejection for energy management of hybrid electric vehicles[END_REF].

The contribution of this paper is to present a new controller that benefits from the ECMS framework and the underlying PMP optimal control theory. It is designed using the quasi-Linear Parameters Varying (LPV) approach, and it comprises a nonlinear state feedback control law coupled with a state observer. The Input-to-State Stability (ISS) of the closed loop is demonstrated [START_REF] Sontag | New characterizations of input-to-state stability[END_REF]. This paper is organized as follows. In Section II, the considered hybrid vessel is introduced, and the formulation of its optimal control using PMP is given. In Section III, the real-time powertrain control is introduced. The system dynamics are modeled using the quasi-LPV control framework [START_REF] Wang | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF]) and a Parallel Distributed Control law along with a state observer is designed. Simulation results are provided in Section IV. Section V concludes this paper and provides directions for future research.

Hybrid vessel optimal control

Powertrain energy management can be studied using quasi-static models for energy converters. The only dynamics considered are then those of the energy storage [START_REF] Guzzella | Vehicle Propulsion Systems: Introduction to Modeling and Optimization[END_REF]. In this paper, we consider the simplified series hybrid vessel depicted in Fig. 1; which is made up of a traction motor, connected to the propeller; a battery pack, with a DC/DC converter; and a fuel cell, with auxiliaries. In order to formalize the dynamics, let w denote the power to be provided for the propulsion, y the power provided to/from the battery, u the fuel cell output power, and p the power consumed by the fuel cell auxiliaries. The mission profile ( ) wt is the DC power to be provided to the traction motor as a function of time t . It may be computed from a speed profile and a vessel model as described in [START_REF] Haseltalab | Multi-Level Predictive Control for Energy Management of Hybrid Ships in the Presence of Uncertainty and Environmental Disturbances[END_REF]. Alternatively, in this paper, we use data recorded on an existing sightseeing barge. The considered 6-days long mission profile is given in Fig. 2. For the considered optimal control problem, the mission is assumed to be of fixed length T and known of the optimization horizon   0,T . This study investigates a possible fuel cell retrofit of the barge such that it could be operated on hydrogen and electricity from the batteries.

Fig. 2: Considered mission profile

Notation: When there is no ambiguity, the time dependence is omitted. The partial derivative with respect to a variable is denoted using a subscript. For instance, x H denotes the partial derivative of H with respect to .

x

The power split is given by: w y u p = + -

Both the battery power y and the fuel cell output power u are limited:

( )   min max , y t y y  (2) ( )   min max , u t u u  (3)
Over an optimization horizon   0,T , the hydrogen consumption to be minimized is assumed to be a quadratic function of the fuel cell produced power u [START_REF] Tazelaar | Sizing Stack and Battery of a Fuel Cell Hybrid Distribution Truck[END_REF]:

( ) 0 T f m l u dt =  (4) ( ) 2 l u a bu cu = + + (5)
The fuel cell auxiliaries electric consumption is estimated using the following loss model [START_REF] Tazelaar | Sizing Stack and Battery of a Fuel Cell Hybrid Distribution Truck[END_REF]:

01 pu  =+ (6)
Combining ( 1)-( 3) and ( 6), the feasible set ( ) ( ) , u w u w   of the fuel cell output power can be determined:

( ) ( )

0 min max min 1 min , max , 1 wy u w u u     +- =     -   (7) ( ) ( ) 0 max min 1 max , max , 1 max wy u w u u     +- =     -   (8) 
The battery coupled to the DC/DC converter is modeled using a simple voltage generator with a resistance in series [START_REF] Gao | Adaptive real-time optimal energy management strategy based on equivalent factors optimization for hybrid fuel cell system[END_REF][START_REF] Oncken | Real-Time Model Predictive Powertrain Control for a Connected Plug-In Hybrid Electric Vehicle[END_REF]:

2 4 2 batt E E Ry I R -- = (9) 
The open circuit voltage E and the internal resistance R are assumed to be constant. The battery SOC dynamics is :

( ) ( ) , x t f u w = (10) With ( ) ( ) 2 4 , 2 batt It E E Ry f u w Q QR - -+ - == .
Two additional constraints on the SOC are considered:

( ) 0 0 xx = (11) ( ) T x T x = (12) 
with 0

x and T x as the initial and final SOC, respectively. Equations ( 1)-( 12) represent the optimal control problem to be solved. Several approaches can be considered to solve it. With ( )

t 
the co-state, the Hamiltonian associated with the optimal control problem is formulated as:

( ) ( ) , , , H u w l f u w  =+ . ( 13 
)
The optimal control policy can now be denoted by  :

( )

, uw  = (14) ( ) ( ) ( ) ( ) , , arg min , , u w u w w H w        = (15)
The optimal co-state dynamics is then:

0 x H  = -= . (16) Let us denote   , T Yx  =
, the BVP to be solved is:

( ) , , 0 T Y g w  =   (17) ( ) ( ) ( ) 0 , 0 d x x T = , (18) 
where

( ) ( ) ( ) ( ) ( ) ( ) 0 0 , 0 , T d x x T x x x T x = - -
and the optimal state dynamics is:

( ) ( ) ( ) , , , g w f w w  = . ( 19 
)
The BVP ( 17)-( 18) can be solved using a dedicated solver [START_REF] Kitzhofer | The New MATLAB Code bvpsuite for the Solution of Singular Implicit BVPs[END_REF] or using a simple bi-section search [START_REF] Armenta | Computational Reduction of Optimal Hybrid Vehicle Energy Management[END_REF]. 

01 x = , 0.2 T x =
. The initial co-state is ( )

0 -18.94  =
. Fig. 3 depicts the optimal control result. The obtained hydrogen consumption is 27.8 kg and the final SOC is 19.99 % . It should be noticed that the studied optimal control problem does not include any SOC limits. As a result, the SOC is allowed to reach negative values, and its corresponding fuel consumption will be interpreted as a lower bound as it does not have physical meaning (Interested readers may refer to state constrained PMP studied in [START_REF] Hermant | On the shooting algorithm for optimal control problems with state constraints[END_REF] or to PMP with state penalties [START_REF] Sanchez | Hybrid Vehicle Energy Management: Avoiding the Explicit Hamiltonian Minimization[END_REF]). This result emphasizes that real-time powertrain operations should not be performed using a constant co-state, but a SOC feedback controller. 

Real-time control

During real-time operation, the future values of the mission profile and the mission length are unknown. The considered energy management consists of minimizing the hydrogen consumption while regulating the SOC nearby a reference setpoint. This reference setpoint can be either a constant or may follow a discharge profile when the battery is large enough to ensure the vessel operation in pure electric mode for a period of time long enough (plugin operations). If additional information on the mission is available, then more elaborated strategies can be adopted. It should be noticed that the considered problem involves not only the state-of-charge (SOC) tracking but also the energy management (i.e. ensuring energy-efficient powertrain operations). In this work, these two aspects are tackled (i) using the quasi-LPV literature for the controller synthesis and for demonstrating the closed-loop stability and performances (ii) using the Hamiltonian minimization (based on optimal policy (14)) within the control scheme to ensure an efficient energy management.

Control structure

Due to the control saturation ( 2  have been computed for the parameters given in Table 1. They are depicted with a green and red line in Fig. 4. be the tracking error. The dynamic to be controlled is:

( ) ( ) ( ) ( ) , ref e t g t w t x  =- (20) 
To design a controller for (20), first, we consider the time derivative of (20) as follows:

( ) ( ) ( ) 

( ) ( ) ( ) min max 0 ,, t sat v d w w       =    , (23) 
where

( ) ( ) ( ) , , min , max , sat a b c b a c = .
In practice, (23) should be implemented using an anti-windup scheme.

The following state space representation is considered:

( ) ( ) 00 
,, 10 00

w ee g w g w vw ee            = +  +                    . ( 24 
)
The derivative of the mission profile w is in general not available. It will be treated as a norm bounded disturbance.

Controller design

Let us introduce a more compact notation for the system (24) : 

0 1 , C = dw = .
The quasi-LPV provides a methodology to stabilize a wide range of nonlinear systems in a systematic way. According to Lemma 1 of [START_REF] Van Keulen | Solution for state constrained optimal control problems applied to power split control for hybrid vehicles[END_REF] [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF]:

( ) ( ) ( ) 2 1 i h i i X AX h z B v t Dd AX B v t Dd x CX =  = + + = + +    =   (26) with , 0 i i z B  =   ( ) 2 1 21 zz hz zz - = - , ( ) ( ) 21 1 h z h z =- .
There exists an extensive literature on quasi-LPV control to deal with systems with the form of ( 26). A very simple control law is used but of course, many other alternatives are available (robust control, non-quadratic stability (Abdelkrim et al., 2019), etc.).

In order to stabilize the system (26) let us consider a PDC control law [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF]. It has the following form:

( ) 2 1 î i i v h z F X = =  , ( 27 
)
with i F as the gains to be determined and X an estimate of the state X computed using a linear observer of the form:

( ) ( ) ˆˆ,  B v L x X X w x x CX   = + + -    =  (28)
with L as the observer gain. Let ô eX X

=be the observer error whose dynamics is

( ) ( ) , oo d A LC e e D w  =- + . ( 29 
)
Considering ( 26) and ( 29) , we ( ) ( )

22 11 ij ij ij h h z h z G d G d X X D X D == = + = +  (30)
Where In the particular case ( ) 0 dt = , computing the gain j F and L for the closed loop (30) stabilization using Linear Matrix Inequalities (LMI) is straightforward using classical matrix manipulations [START_REF] Boyd | Fast Optimal Energy Management With Engine On/Off Decisions for Plug-in Hybrid Electric Vehicles[END_REF][START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF]. Then, our goal is to prove the ISS stability of the system (30) in the presence of a disturbance d . Proposition. Let us consider the system dynamics (26) with the nonlinear control law (27) and observer (28), then, the origin 0 X = of the closed-loop dynamics (30) is ISS with a decay rate  and input constraint v   , for a scalar 0   and initial condition 0 X , if there exist matrices 1 0 

P  , 2 0 P  , L , i M ,   1, 2,..., , ir 
M I  - - -  -              (31) 
where ( ) Proof. Considering ( ) 0 dt = , let us prove that the origin 0 X = of the system is asymptotically stable with a decay rate  . Taking a quadratic Lyapunov function as:

11 11 1 1 ij S A B P M P  -- + + = + , 1 12 1 ij SB M P - - = , ( ) ( ) 
( )

1 2 0 0 TT P X X PX X X V P    =  =   .
Let min P  and max P  be the smallest and largest eigenvalue of P . The proof of the stability condition ( 31) is trivial and is given in [START_REF] Yoneyama | Output stabilization of Takagi-Sugeno fuzzy systems[END_REF]. Since the system is asymptotically stable with a decay rate  , we have:

( ) 2 min hh T T T P GP X PG P X X X    -  + - . (32) 
Now, let us consider

( ) 0 dt  . If there exist -functions i  ,   1, 2,3, 4 i  such that ( ) ( ) ( ) 12 n X X X V X      and ( ) ( ) ( ) 34 , d VXd X
  -+ then the system is ISS [START_REF] Sontag | New characterizations of input-to-state stability[END_REF]. The first condition is fulfilled, since Remark. From the first inequality in (31), matrices i M ,   1, 2 , i  can be obtained. In the second inequality, by fixing negative poles for the linear observer,  can be chosen large enough such that (31) holds. The proposition above implies that the LMI conditions allow designing the observer and the controller separately and moreover the origin 0 X = of the closed-loop system (30) is ISS. Finally, the control design procedure is : Step 1 compute the function g and its limits 

Simulation results

In this section, a simulation of the hybrid powertrain, shown in Fig. 1, is carried out using the quasi-LPV ECMS to obtain the control signal. From the PMP optimality conditions ( 16),  should be kept as close to 0 as possible. In practice, a compromise has to be found between the SOC error and the hydrogen consumption. Several simulations have been conducted over the mission profile depicted in Fig. 2 In order to assess the effectiveness of our approach it is compared against the adaptive-ECMS strategy from [START_REF] Onori | Adaptive Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles[END_REF], where the costate is computed as: ( ) ( )

( 1) 0.5 ( ) ( 1)

p ref c x kk x k    + -+ - += (36) 
We chose 100 p c = and a costate update period of 50 s. Fig. 6 depicts the comparison of the control input () ut and the battery power profile () yt ; it is shown how in the adaptive-ECMS strategy the control signal presents a bang-bang behaviour, whereas in the quasi-LPV ECMS the control signal is smoother; the corresponding evolution of the SOC is presented in Fig. 7. The obtained hydrogen consumption is 33.6 kg for our approach and 41.68 kg for the adaptive one. 

Conclusions

A controller that benefits from the ECMS and quasi-LPV framework has been proposed. The controller synthesis is reduced to a set of LMI conditions to be solved. The closed loop ISS has been demonstrated.

Preliminary results have been presented to illustrate the effectiveness of our approach. Two design parameters  (related to a constraint on the costate derivative) and  (decay rate) allows tuning the closed loop dynamics.  control the tradeoff between fuel consumption and state of charge regulation. Future work will be devoted to more in dept analysis of the control performances both in terms of fuel consumption and SOC reference tracking.
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 3 Fig. 3: Optimal control results for ( ) 01 x = and ( ) 0.2 xT =

  )-(3) , not all the co-state values are of interest for SOC control. Let us restrict the co-state to  , with  small negative constant. As an example,

Fig. 4 :

 4 Fig. 4: State dynamics ( ) , gw 

  LMI (31).Step 3 : design a linear observer (28) by pole placement. The whole control scheme to be implemented comprises the observer (28) , the control law (27), the change of variable (23), and finally the Hamiltonian minimization (15).
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 5 Fig. 5: Hydrogen consumption and () RMS  as a function of  .
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 6 Fig. 6: Real time control law (simulation result).
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 7 Fig. 7: SOC profiles comparison (simulation result).

Table 1 :

 1 Parameters values

		Parameter		Value
	(	min yy max ,	)	(	30 -	kW	,30	kW	)
	(	min uu ,	max	)	(	0	kW	,15	kW	)
	(	E	,, R	Q	)	( 105.3 , 0.985 V	, 2813  m	Ah	)
			(	,, abc	)	(	6 7.48 10 ,6.97 10 ,7.40 10 6 --  	7 -	)
			(	01 , 	)			(	5 6.3 10 ,0.125	)

-

As an illustration, let us consider a powertrain whose parameters are shown in Table

1

. The BVP has been solved for ( )

  ,

	z g =	( ) , w  	is upper bounded. In order to formulate the
	system dynamic as a quasi-LPV model, let us consider a non-linear sector as the measured and controlled output	 z z z 12 , 		with 12 zz    and x 0

  F and larger (resp. smaller) amplitude of the control signal  in response to the exogenous signal w . The reference SOC signal

					Considering the bounds	z	[ 4.696 10  -	78 ] , 3.2021 10 ---	, the two controller
	gains are computed choosing a decay rate		1 10 =	7 -	and the initial condition 0 [0 0.425] T X =	; whereas the
	observer gain is obtained by poles placement with poles 10 -and 11 -. When solving the LMI conditions of
	proposition 1, the value of  allows reaching different closed loop dynamics. Larger (resp. lower)  values lead
	to larger (resp. lower) control gains 1,2	
							ref xt varies from 100% down to a specified value with ( )
	a rate limitation of	0.75% -	/	h	.	
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