
HAL Id: hal-03930955
https://uphf.hal.science/hal-03930955

Submitted on 9 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cascade Takagi–Sugeno fuzzy observer design for
nonlinear uncertain systems with unknown inputs: A

sliding mode approach
Cuong Nguyen, Anh-tu Nguyen, Sebastien Delprat

To cite this version:
Cuong Nguyen, Anh-tu Nguyen, Sebastien Delprat. Cascade Takagi–Sugeno fuzzy observer design for
nonlinear uncertain systems with unknown inputs: A sliding mode approach. International Journal
of Robust and Nonlinear Control, 2022, 33 (15), pp.9066-9083. �10.1002/rnc.6371�. �hal-03930955�

https://uphf.hal.science/hal-03930955
https://hal.archives-ouvertes.fr


Cascade Takagi-Sugeno Fuzzy Observer Design for
Nonlinear Uncertain Systems with Unknown Inputs:

A Sliding Mode Approach
Cuong M. Nguyen∗, Anh-Tu Nguyen, and Sébastien Delprat

Abstract

This paper investigates the design of Takagi-Sugeno (TS) fuzzy model-based observers for nonlinear systems with parametric
uncertainties and unknown inputs. To address this challenging problem, two observers are constructed in cascade. Based on the
sliding mode technique, the first observer allows to examine a new system whose both state and output equations are subject
to uncertainties but without unknown inputs. The second Luenberger-type observer is designed for the new system where the
effects of uncertainties on the estimation error can be canceled. The TS fuzzy observer design is recast as optimization problems
under linear matrix inequalities, which can be effectively solved using convex optimization technique. The new cascade observer
structure enables a simultaneous estimation of the system states, the unknown inputs and the uncertainties of the original nonlinear
system. The effectiveness and advantage of the proposed estimation method is demonstrated via two numerical examples including
a nonlinear vehicle application.

Index Terms

Takagi-Sugeno fuzzy models, cascaded observers, sliding mode technique, nonlinear observer, unknown input, uncertainty.

I. INTRODUCTION

Physical systems usually involve complex nonlinear dynamics. Takagi-Sugeno (TS) fuzzy model-based approaches have
become one of the most popular and promising tools to deal with such nonlinear systems [1]. For smooth nonlinear systems,
TS fuzzy modeling provides a systematic framework to obtain exact representations in a compact set or approximations with any
degree of accuracy [2]. In particular, TS fuzzy model-based conditions for stability analysis and controller/observer design of
nonlinear systems can be expressed in terms of linear matrix inequalities (LMIs), which can be effectively solved using convex
optimization techniques [3]. Therefore, TS fuzzy methods have been successfully applied to many engineering applications,
see for instance [4]–[8].

Nonlinear observer design is a fundamental concern in control theory, which has attracted lots of attention [9]. Specifically,
many works on TS fuzzy model-based observer design for nonlinear systems have been reported [10]–[13]. Since physical
systems are inherently subject to uncertainties [9], the class of nonlinear uncertain systems is of crucial importance in control
theory. The system uncertainties can emerge from modeling errors and/or uncertain parameters. Accordingly, a considerable
effort has been devoted to develop robust observers for nonlinear systems where modeling uncertainties are taken into account
[11], [14]–[16]. In addition to uncertainties, unknown inputs (UIs) are another important issue in robust control since UIs can
represent faults, disturbances, or unmeasurable inputs in dynamical systems [17]–[19]. Therefore, many observer designs for
uncertain systems with UIs have been developed in the literature. Using a sliding mode approach, the problem of fault estimation
for nonlinear uncertain systems is studied in [20], where the estimation error depends on the bound of the uncertainty. A robust
sliding mode observer is developed in [21] to estimate both states and disturbances of uncertain systems using a descriptor
system approach. Fault reconstruction for a class of linear parameter varying (LPV) systems is investigated in [22] by designing
sliding mode observers (SMOs). A SMO scheme for a class of affine LPV systems is proposed in [23] where the assumption
on factorization of the fault distribution matrix in [22] is removed. A sensor fault estimation scheme for uncertain TS fuzzy
systems is proposed in [24], which is robust to external disturbances. In [25], an optimal reset law is used to design unknown
input observers for a class of nonlinear uncertain systems where states and faults can be simultaneously estimated. Despite
recent advances in observer design for nonlinear uncertain systems with UIs, this research topic still remains challenging,
especially for TS fuzzy systems with unmeasured nonlinearities [17]. To our knowledge, there is no existing work addressing
the problem of simultaneously estimating system states, uncertainties and UIs of nonlinear systems.

Sliding mode technique has been widely used as an effective approach to deal with systems subject to UIs [26]–[31]. Due to
its robustness with respect to modeling uncertainties and disturbances, this technique has been popularly used for both control

This work was supported by the French Ministry of Higher Education and Research, the National Center for Scientific Research (CNRS), and the Hauts-
de-France region under the ELSAT 2020 project.

C.M. Nguyen, A.-T. Nguyen and S. Delprat are with the laboratory LAMIH UMR CNRS 8201, Université Polytechnique Hauts-de-France, Valenciennes,
France. A.-T. Nguyen and S. Delprat are also with the INSA Hauts-de-France, Valenciennes, France.

Email: minhcuong86qn@gmail.com; nguyen.trananhtu@gmail.com; sebastien.delprat@uphf.fr.
∗Corresponding author.



and estimation of uncertain dynamical systems [32]–[37]. In sliding mode observers, UIs can be estimated by constructing
discontinuous signals, which allows a finite-time convergence of output estimation errors [38]. This has motivated us to exploit
SMO structure to solve the observer design problem for TS fuzzy models with uncertainties and UIs.

This paper presents a new method to design TS fuzzy sliding mode based observers for nonlinear systems with UIs, parametric
uncertainties and unmeasured nonlinearities. Using the sliding mode technique, two cascaded observers are constructed. A
SMO is first designed which allows to consider a new system without UIs but both state and output equations are subject to
uncertainties. Then, a Luenberger-type observer is designed where the effects of the uncertainties on the estimation error can
be canceled. This allows the estimations of the states of the original systems as well as the modeling uncertainties and the
UIs. The main contributions of the paper can be summarized as follows.
• We propose a new sliding mode based observer design for nonlinear systems with uncertainties and UIs, where two TS

fuzzy observers are constructed in cascade interconnection. Based on Lyapunov stability theory, the observer design is
reformulated as optimization problems under LMI constraints, effectively solved with numerical solvers.

• Compared to relevant existing results [20], [22], [23], [38], the main advantage of the proposed cascade observer scheme
is the ability to simultaneously estimate the state vector, the unknown input and the uncertainty. Note that the results in
[20] can only provide the estimation of the state and the unknown input. Meanwhile, the uncertainty is not considered
in [22], [23], [38]. Hence, the results in [22], [23], [38] can only provide the estimation of the state and the sum of
disturbance and uncertainty. Note also that we consider a class of nonlinear uncertain systems with a state-dependent
dynamic matrix as well as unmeasured nonlinearities. However, the system dynamic matrix in [20] is constant, and there
is no unmeasured nonlinearity in [22], [23]. In [38], neither time-varying system matrix nor nonlinearity is investigated.

• The effectiveness and advantage of the new cascade observer scheme is demonstrated via two numerical examples including
a practical application on the estimation of vehicle nonlinear dynamics.

The paper is organized as follows. Section II formulates the observer design problem for a class of nonlinear systems subject
to both UIs and parametric uncertainties. Based on Lyapunov stability arguments, Section III presents the LMI-based design of
two TS fuzzy observers in cascade interconnection. The sliding motion analysis is also provided. In Section IV, we demonstrate
the effectiveness and advantage of the new results through two examples. Section V provides some concluding remarks and
related future works.

Notation. For a positive integer r, we denote Ir = {1, 2, . . . , r}. For i ∈ Ir, we denote σr(i) = [0, . . . , 0,

ith︷︸︸︷
1 , 0, . . . , 0]> ∈ Rr

a vector of the canonical basis of Rr. For two vectors x, y ∈ Rn, xi denotes its ith entry, and column{x, y} =
[
x> y>

]>
.

For a matrix X , X> denotes its transpose, X � 0 means X is positive definite, and He(X) = X + X>. diag(X1, X2)
denotes a block-diagonal matrix composed of X1, X2. I denotes an identity matrix of appropriate dimension, and In denotes
an identity matrix of dimension n. In block matrices, the symbol ? stands for the terms deduced by symmetry. Arguments are
omitted when their meanings are clear.

II. PROBLEM FORMULATION

Consider the following nonlinear system with unknown inputs and parametric uncertainties:

ẋ = (A(ζ) + ∆A(ζ))x+ f(u, y) +Gg(x) +Dd,

y = Cx, x ∈ Dx,
(1)

where Dx is a state-space compact set, x ∈ Rn is the state vector, u ∈ Rm is the control input, y ∈ Rp is the output vector,
and ζ ∈ Rnζ is the vector of measurable premise variables. The unknown input d ∈ Rq is bounded, i.e., ||d|| ≤ Λd, for some
Λd > 0. The constant matrices G ∈ Rn×ng , D ∈ Rn×q , C ∈ Rp×n are known; f(u, y) ∈ Rn and g(x) ∈ Rng are nonlinear
functions; and A(ζ) ∈ Rn×n is the nominal system matrix. The parametric uncertainty matrix ∆A(ζ) is represented as

∆A(ζ) = M(ζ)F (t)N(ζ), (2)

where M(ζ) and N(ζ) are known, and the unknown time-varying matrix F (t) satisfies F>F ≤ I . Without loss of generality,
for observer design we assume that the nonlinear system (1) is stable or can be stabilized by a controller.

Remark 1. Physical systems often operate in bounded regions [2]. Thus, it is reasonable to assume that the state vector x
belongs to the compact set Dx, see for instance the vehicle nonlinear dynamics [39] discussed in Section IV.

Let us denote w = FN(ζ)x ∈ Rnw , then system (1) can be rewritten as

ẋ = A(ζ)x+M(ζ)w + f(u, y) +Gg(x) +Dd,

y = Cx,
(3)

where w represents a bounded uncertainty, i.e., ||w|| ≤ Λw, for some positive scalar Λw > 0.



Remark 2. Our study is motivated by the vehicle nonlinear dynamics, described by the form (1)–(2). This form can be
rewritten as in (3), which is the class of systems we consider in this paper. In other words, we deal with any system which
can be represented in the form (3), and the specific uncertain system structure (1)–(2) is only one source for (3).

Applying the sector nonlinearity approach [2, Chapter 2] with the vector of premise variables ζ and x ∈ Dx, the nonlinear
system (3) can be equivalently represented by the following TS fuzzy model with nonlinear consequents:

ẋ =

N∑
i=1

hi(ζ)(Aix+Miw) + f(u, y) +Gg(x) +Dd,

y = Cx, N = 2nζ ,

(4)

where the local matrices Ai and Mi are constant. For x ∈ Dx, the membership functions hi(ζ) satisfy the convex sum property
N∑
i=1

hi(ζ) = 1, 0 ≤ hi(ζ) ≤ 1, ∀i ∈ IN . (5)

Furthermore, we have [
A(ζ) M(ζ)

]
=

N∑
i=1

hi(ζ)
[
Ai Mi

]
.

Remark 3. For ζ = [ζ1 . . . ζj . . . ζnζ ] ∈ Rnζ , since system (1) operates in a compact set, we have ζj ∈ [ζ
j
, ζj ], ∀j ∈ Inζ . Let

us define the following membership grades µ0
j (ζj) and µ1

j (ζj) of ζj :

µ0
j (ζj) =

ζj − ζj
ζ − ζ

j

, µ1
j (ζj) =

ζj − ζj
ζ − ζ

j

.

Note that
µ0
j (ζj) + µ1

j (ζj) = 1, ζj = ζ
j
µ0
j (ζj) + ζjµ

1
j (ζj).

We name µ0
j (ζj) as “j-negative” (or M0

j ) and µ1
j (ζj) as “j-positive” (or M1

j ). The membership functions hi(ζ) and the local
constant matrices Ai, Mi can be determined via N = 2nζ fuzzy IF-THEN rules as follows (Mi

j can be either M0
j or M1

j ,
∀j ∈ Inζ , i ∈ IN ):

RULE i : IF ζ1 is Mi
1 and . . . ζj is Mi

j and . . . ζnζ is Mi
nζ

THEN

{
ẋ = Aix+Miw + f(u, y) +Gg(x) +Dd,

y = Cx,
(6)

where Ai = A(ζi1, . . . , ζ
i
j , . . . , ζ

i
nζ

), Mi = M(ζi1, . . . , ζ
i
j , . . . , ζ

i
nζ

), and

hi(ζ) =

nζ∏
j=1

µij(ζj). (7)

Note that, if ζj is M0
j : ζij = ζ

j
, µij(ζj) = µ0

j (ζj); if ζj is M1
j : ζij = ζj , µ

i
j(ζj) = µ1

j (ζj). Using the center-of-gravity method
for defuzzification [2], the TS fuzzy system (6) can be represented in the compact form (4). For hi(ζ) given by (7), it can be
verify that

∑N
i=1 hi(ζ) = 1. Furthermore, (4) is an equivalent TS fuzzy model of system (3). See the examples in Section IV

for more details.

For observer design, we consider the following assumptions for system (1), equivalently represented in the TS fuzzy form
(4) within the state-space compact set Dx .

Assumption 1. The following rank conditions hold:

rank(CD) = rank(D), (8)
rank(C) = p > q = rank(D).

Assumption 2. The nonlinear function g(x) is differentiable with respect to x and satisfies

g
ij
≤ ∂gi
∂xj

(x) ≤ ḡij , ∀i ∈ Ing ,∀j ∈ In, (9)

with
g
ij

= min
x∈Dx

(
∂gi
∂xj

(x)

)
, gij = max

x∈Dx

(
∂gi
∂xj

(x)

)
.



Remark 4. Note that under condition (8) in Assumption 1, there exists a coordinate transformation T for system (1) such
that C and D have the following form [38]:

C = [0 Ip], D =

[
0
D2

]
l n− p
l p . (10)

We further assume that D2 can be partitioned as

D2 =

[
0
D22

]
l p− q
l q . (11)

To simplify the presentation, hereafter we consider system (1) where C and D have the form (10)–(11). Note that condition
p > q in Assumption 1 will allow us to have the partition (29) where νeq1 ∈ Rp−q . Then, we can consider system (32)
for the second observer design of the proposed cascade observer scheme. Note that Assumption 2 is useful to deal with the
mismatching nonlinear term caused by the unmeasured nonlinearity g(x) in the estimation error using the differential mean
value theorem [10], [40].

Remark 5. In the following, for brevity we will use A(ζ) and
∑N
i=1 hi(ζ)Ai interchangeably as A(ζ) =

∑N
i=1 hi(ζ)Ai.

Similarly, we will use M(ζ) and
∑N
i=1 hi(ζ)Mi interchangeably as M(ζ) =

∑N
i=1 hi(ζ)Mi.

Study objective: Based on a cascade observer approach, this paper aims at designing an observer scheme to simultaneously
estimate the state vector x, the unknown input d and the uncertainty w of system (1), equivalently represented by the TS fuzzy
model (4).

III. CASCADE TAKAGI-SUGENO FUZZY OBSERVER DESIGN

This section presents the design of two TS fuzzy observers, whose cascade interconnection is depicted in Fig. 1.

Fig. 1. TS fuzzy cascade observer structure.

A. First Design: TS Fuzzy Sliding Mode Observer

Consider the following TS fuzzy SMO for system (1):

˙̂x =

N∑
i=1

hi(ζ)(Aix̂+ Liey) + f(u, y) +Gg(x̄)− Jν, (12)

where x̂ is the estimate of x, the observer gains Li, for i ∈ IN , are to be designed, and

χ̂ =
[
In−p 0

]
x̂, ey = y − Cx̂,

x̄ =

[
χ̂
y

]
, J =

[
0
Ip

]
.

The discontinuous signal ν(t) is defined as

ν =

{
−µP

−1
y ey
||ey|| , ey 6= 0,

0, otherwise
(13)



where µ > 0 and Py ∈ Rp×p are to be determined. From (1) and (12), the dynamics of the state estimation error e = x− x̂
is defined as

ė = (A(ζ)− L(ζ)C)e+M(ζ)w +G(g(x)− g(x̄)) +Dd+ Jν, (14)

where L(ζ) =
∑N
i=1 hi(ζ)Li. The following differential mean value theorem (DMVT) is useful to deal with the mismatching

nonlinear term g(x)− g(x̄).

Lemma 1 ([40]). Let g(x) : Rn → Rng and a, b ∈ Rn. If g(x) is differentiable with respect to x on the convex hull of a and
b, then there exist vectors ci = αia+ (1− αi)b, with αi ∈ (0, 1), ∀i ∈ Ing , such that

g(a)− g(b) =

 ng∑
i=1

n∑
j=1

σng (i)σ>n (j)
∂gi
∂xj

(ci)

 (a− b).

Under Assumption 2 and by Lemma 1, we can rewrite the nonlinear term g(x)− g(x̄) as

g(x)− g(x̄) = Ag(x− x̄) = Ag

[
ex
0

]
,

where ex = [In−p 0]e, and

Ag =

ng∑
i=1

n∑
j=1

σng (i)σ>n (j)
∂gi
∂xj

(ci),

with ci = αix + (1 − αi)x̄ and αi ∈ (0, 1). Note that Ag is a matrix with parameters varying in a bounded convex set Hg ,
whose the set of vertices is given by

VHg =
{
ρ = (ρij) ∈ Rng×n : ρij ∈

{
g
ij
, gij

}}
,

where g
ij

and gij are determined as in (9). Let us denote

A 1
g = Ag[In−p 0]>, A 10

g = [A 1
g 0].

Then, it follows that g(x)−g(x̄) = A 10
g e. Note that the matrix A 1

g (respectively A 10
g ) is with parameters varying in a bounded

convex set H 1
g (respectively H 10

g ), whose the set of vertices is VH 1
g

(respectively VH 10
g

). As a result, the error dynamics
(14) can be rewritten as

ė =
(
A(ζ) +GA 10

g − L(ζ)C
)
e+M(ζ)w +Dd+ Jν. (15)

Based on the H∞ filtering approach, we design the observer gain L(ζ) such that the following condition holds:

V̇ (e) + e>e− λ2w>w < 0, (16)

where V (e) = e>Pe, with P � 0, is a Lyapunov function candidate, and λ > 0 is the level of disturbance attenuation. The
following theorem provides sufficient conditions to guarantee condition (16) with a minimal value of λ.

Theorem 1. Consider the error dynamics (15). Condition (16) is guaranteed with a minimal λ if there exist matrices of
appropriate dimensions P1 � 0, Py � 0, Xi, for i ∈ IN , and a scalar λ̄ > 0 that solve the convex optimization problem

min(λ̄) subject to

Ωi =

[
He
[
P (Ai +GA 10

g )−XiC
]

+ I PMi

? −λ̄I

]
≺ 0, (17)

for ∀i ∈ IN , ∀A 10
g ∈ VH 10

g
, with P = diag(P1, Py), and the positive scalar µ in (13) satisfies

µ ≥ ||PyD2||Λd. (18)

Furthermore, the observer gain matrices in (12) are obtained as Li = P−1Xi, and λ =
√
λ̄.

Proof. The time-derivative of V (e) along the solution of system (15) is given by

V̇ (e) = 2e>P
(
(A(ζ) +GA 10

g − L(ζ)C)e+M(ζ)w
)

+ 2e>y PyD2d− 2µ||ey||
≤ 2e>P

(
(A(ζ) +GA 10

g − L(ζ)C)e+M(ζ)w
)
− 2||ey||(µ− ||PyD2||Λd). (19)



Since Xi = PLi, for i ∈ IN and λ̄ = λ2, it follows from (16), (18) and (19) that

V̇ (e)+e>e− λ2w>w

≤ e>
{

He
[
P (A(ζ) +GA 10

g )−X(ζ)C
]

+ I
}
e+ 2e>PM(ζ)w − λ̄w>w

=

N∑
i=1

hi(ζ)[e> w>]Ωi

[
e
w

]
. (20)

Due to the convex sum property (5) of the membership functions hi(ζ), for i ∈ IN , it follows from inequality (20) that
condition (16) holds if (17) holds. Moreover, λ is minimized by the minimization of λ̄.

Remark 6. Note that if condition (16) holds, then e is bounded, i.e., ||e(t)|| ≤ Λe, for ∀t ≥ 0. This means that x̂ only
estimates x within a bound. The second observer will be designed in Section III-C to improve the estimation precision of x.

Remark 7. The differential mean value theorem has been shown as an effective tool to deal with unmeasured nonlinearities
in various estimation problems, see for instance [7], [17], [40] and related references. Recently, an alternative approach to
DMVT has been proposed in [41], [42]. However, the approach in [41], [42] requires the derivation of the polynomial forms
and their corresponding TS models, which could be possibly confuse the readers if integrated into our TS fuzzy cascaded
observer scheme. As a result, we prefer to use the classical DMVT approach to ensure the readability of this paper.

B. Sliding Motion Analysis

We partition e, G, Li, Ai and Mi, for i ∈ IN , as follows:

e =

[
ex
ey

]
, G =

[
G1

G2

]
, Li =

[
Li1
Li2

]
, Ai =

[
Ai11 Ai12

Ai21 Ai22

]
, Mi =

[
Mi1

Mi2

]
, (21)

where ey ∈ Rp, Li2 ∈ Rp×p, G2 ∈ Rp×ng , Ai22 ∈ Rp×p, and Mi2 ∈ Rp×nw . Then, it follows from (15) and (21) that

ėx =
(
A11(ζ) +G1A

1
g

)
ex + (A12(ζ)− L1(ζ))ey +M1(ζ)w, (22)

ėy =
(
A21(ζ) +G2A

1
g

)
ex + (A22(ζ)− L2(ζ))ey +M2(ζ)w +D2d+ ν, (23)

with [
A11(ζ) A12(ζ) L1(ζ) M1(ζ)
A21(ζ) A22(ζ) L2(ζ) M2(ζ)

]
=

N∑
i=1

hi(ζ)

[
Ai11 Ai12 Li1 Mi1

Ai21 Ai22 Li2 Mi2

]
.

The following theorem provides a sufficient condition for the occurrence of the sliding motion.

Theorem 2. Consider system (22)–(23). If the positive scalar µ in (13) is selected as

µ =

{
max

1≤i≤N
||PyA21i||+ max

A 1
g ∈VH 1

g

||PyG2A
1
g ||+ max

1≤i≤N
||Py(A22i − L2i)||

}
Λe

+ max
1≤i≤N

||PyM2i||Λw + ||PyD2||Λd + µ̄, (24)

with µ̄ > 0. Then, the sliding motion occurs on the surface S = {e : Ce = 0}, where ey = 0 and ėy = 0.

Proof. For sliding motion analysis, we consider the Lyapunov function candidate Vy(ey) = e>y Pyey . Differentiating the function
Vy(ey) along the solution of system (23), it follows that

V̇y(ey) = 2e>y Py{(A21(ζ) +G2A
1
g )ex + (A22(ζ)− L2(ζ))ey +M2(ζ)w +D2d} − 2µ||ey||

≤ − 2||ey||(µ− ||PyA21(ζ)||||ex|| − ||PyG2A
1
g ||||ex|| − ||Py(A22(ζ)− L2(ζ))||||ey||

− ||PyM2(ζ)||||w|| − ||PyD2||||d||). (25)

If condition (24) holds, then it follows from (25) that

V̇y(ey) ≤ −2µ̄||ey|| ≤ −
2µ̄√

λmax(Py)

√
Vy(ey), (26)

where λmax(Py) is the maximal eigenvalue of Py . Note that (26) is the reachability condition, hence the sliding motion occurs
on S = {e : Ce = 0}, where ey = 0 and ėy = 0.



Remark 8. If the unknown input d is bounded by a known time-varying function instead of a known constant, i.e., ||d|| ≤
ϕ(t, u, y), where ϕ(t, u, y) > 0, for ∀(t, u, y), the sliding motion on the surface S = {e : Ce = 0} is guaranteed by choosing
a time-varying parameter µ(t, u, y) instead of a constant scalar µ as follows:

µ(t, u, y) =

{
max

1≤i≤N
||PyA21i||+ max

A 1
g ∈VH 1

g

||PyG2A
1
g ||+ max

1≤i≤N
||Py(A22i − L2i)||

}
Λe

+ max
1≤i≤N

||PyM2i||Λw + ||PyD2||ϕ(t, u, y) + µ̄.

This can be proved in a similar manner to the proof of Theorem 2. It is important to note that a constant bound for the
unknown input d is preferred over a time-varying bound as it simplifies the design of µ, thus the overall observer design.

Under the sliding motion, it follows from (22) and (23) that

ėx =
(
A11(ζ) +G1A

1
g

)
ex +M1(ζ)w, (27)

0 =
(
A21(ζ) +G2A

1
g

)
ex +M2(ζ)w +D2d+ νeq, (28)

where νeq is the equivalent control.

Remark 9. The stability of system (27)-(28) is guaranteed by Theorem 1. Indeed, condition (17) implies that

P1(A11(ζ) +G1A
1
g ) + (A11(ζ) +G1A

1
g )>P1 ≺ 0.

We further partition νeq , G2, Ai21, Mi2, for i ∈ IN , as follows:

νeq =

[
νeq1
νeq2

]
, G2 =

[
G21

G22

]
, Ai21 =

[
Ai211

Ai212

]
, Mi2 =

[
Mi21

Mi22

]
, (29)

where νeq2 ∈ Rq , G22 ∈ Rq×ng , Ai212 ∈ Rq×(n−p) and Mi22 ∈ Rq×nw . Then, it follows from (28) and (29) that

νeq1 = −(A211(ζ) +G21A
1
g )ex −M21(ζ)w, (30)

νeq2 = −(A212(ζ) +G22A
1
g )ex −M22(ζ)w −D22d, (31)

with [
A211(ζ) M21(ζ)
A212(ζ) M22(ζ)

]
=

N∑
i=1

hi(ζ)

[
Ai211 Mi21

Ai212 Mi22

]
.

From (27) and (30), let us consider the following system:

ėx = A11(ζ)ex +G1(g(x)− g(x̄) +M1(ζ)w,

νeq1 = −A211(ζ)ex −G21(g(x)− g(x̄))−M21(ζ)w,
(32)

where ex is the state vector, and νeq1 is the measured output.

Remark 10. With the sliding mode observer (12), the estimation error ex is only guaranteed to be bounded, i.e., x̂ only
estimates x within a bound. However, the SMO design allows to consider system (32) with the following properties:
• the unknown input d is not present in (32),
• both state and output equations of system (32) are subject to the uncertainty w.

System (32) enables the design of the second observer to H∞ asymptotically estimate ex, i.e., the effect of w on the estimation
error e can be minimized. Moreover, the uncertainty w and the unknown input d can also be recovered under an extra rank
condition stated in Assumption 3.

C. Second Design: Luenberger-Type TS Fuzzy Observer

Consider the following TS fuzzy Luenberger-type observer structure for system (32):

˙̂ex = A11(ζ)êx +

N∑
j=1

hj(ζ)Kj(νeq1 +A211(ζ)êx) +

G1 +

N∑
j=1

hj(ζ)KjG21

 (g(x̄+ ēx)− g(x̄)) , (33)

where êx is the estimate of ex, the observer gains Kj , for j ∈ IN , are to be determined, and ēx = column{êx, 0}. The
dynamics of the estimation error ẽx = ex − êx is given by

˙̃ex =
((
A11(ζ) +G1A

1
g

)
+K(ζ)

(
A211(ζ) +G21A

1
g

))
ẽx + (M1(ζ) +K(ζ)M21(ζ))w, (34)



where K(ζ) =
∑N
j=1 hj(ζ)Kj . Hereafter, the observer gain K(ζ) is designed such that the following condition holds:

V̇e(ẽx) + ẽ>x ẽx − γ2w>w < 0, (35)

where Ve(ẽx) = ẽ>xQẽx, with Q � 0, is a Lyapunov function candidate, and γ > 0 is the level of disturbance attenuation to
be minimized.

Remark 11. Note from (35) that if γ is minimized to be arbitrarily small, i.e., γ ≈ 0, then the effect of w on the estimation
error ẽx can be negligible. Using the H∞ filtering based approach, condition (35) guarantees the H∞ asymptotic stability of
system (34) without requiring to solve a set of algebraic equations to cancel the effect of w on ẽx.

The following lemma is useful to design the TS fuzzy observer (33).

Lemma 2 ([43]). Consider the inequality
N∑
i=1

N∑
j=1

hi(ζ)hj(ζ)Ψij ≺ 0, (36)

where Ψij , for i, j ∈ IN , are symmetric matrices of appropriate dimensions, and the functions hi(ζ) satisfy the convex sum
property (5). Condition (36) holds if

Ψii ≺ 0, ∀i ∈ IN ,
2

N − 1
Ψii + Ψij + Ψji ≺ 0, ∀i, j ∈ IN , i 6= j.

The following theorem provides sufficient conditions to design the observer (33) while minimizing the value of γ in (35).

Theorem 3. Consider the error estimation dynamics (34). Condition (35) is guaranteed with a minimal γ if there exist matrices
of appropriate dimensions Q � 0, Yi (1 ≤ i ≤ N ), and a scalar γ̄ > 0 that solve the convex optimization problem

min(γ̄) subject to
Φii ≺ 0, ∀i ∈ IN , (37)

2

N − 1
Φii + Φij + Φji ≺ 0, ∀i, j ∈ IN , i 6= j, (38)

with
Φij =

[
He
[
Q
(
A11i +G1A 1

g

)
+ Yj

(
A211i +G21A 1

g

)]
+ I QM1i + YjM21i

? −γ̄I

]
, for ∀A 1

g ∈ VH 1
g
.

Moreover, the observer gains in (33) are obtained as Kj = Q−1Yj , for j ∈ IN , and γ =
√
γ̄.

Proof. Since Y (ζ) = QK(ζ) and γ̄ = γ2, we have

V̇e(ẽx) + ẽ>x ẽx − γ2w>w

= ẽ>x
{

He
[
Q(A11(ζ) +G1A

1
g ) + Y (ζ)

(
A211(ζ) +G21A

1
g

)]
+ I
}
ẽx

+ 2ẽ>x (QM1(ζ) + Y (ζ)M21(ζ))w − γ̄w>w

=

N∑
i=1

N∑
j=1

hi(ζ)hj(ζ)[ẽ>x w>]Φij

[
ẽx
w

]
. (39)

Applying Lemma 2, it follows that condition (35), or equivalently (39), is verified if conditions (37) and (38) hold. Moreover,
the value of γ =

√
γ̄ is minimized by the minimization of γ̄.

Remark 12. Since y = [0 Ip]x is already available from the output, we only need to estimate χ = [In−p 0]x. We have
χ = χ̂ + ex, where ex is bounded. If êx can be designed to H∞ asymptotically estimate ex, then χ is H∞ asymptotically
estimated by

χ̃ = χ̂+ êx. (40)

Note that, if γ can be minimized to be sufficiently small γ ≈ 0, the estimation of χ by χ̃ is similar to asymptotic estimation.

The following assumption is necessary for the estimation of the uncertainty w and the unknown input d.

Assumption 3. The matrix M21(ζ), obtained from the partitions (21) and (29) of the uncertainty structure matrix M(ζ) in
(2), is full column rank.

Remark 13. Note from (2), (21) and (29) that M21(ζ) depends on the uncertainty structure of a given system. Hence,
Assumption 3 should be checked on a case-by-case basis to be able to estimate both w and d.



Let us denote M†21(ζ) = (M21(ζ)>M21(ζ))−1M21(ζ)>. It follows from (30) that

w = −M†21(ζ) (νeq1 +A211(ζ)ex +G21(g(x)− g(x̄))) . (41)

From (41), we can estimate the uncertainty w as

ŵ = −M†21(ζ) (νeq1 +A211(ζ)êx +G21∆g̃) , (42)

with ∆g̃ = g(x̃)− g(x̄) and x̃ = column{χ̃, y}. Similarly, it follows from (31) that

d = −D−1
22 (νeq2 +A212(ζ)ex +G22(g(x)− g(x̄)) +M22(ζ)w) . (43)

From (43), the unknown input d can be estimated by

d̂ = −D−1
22 (νeq2 +A212(ζ)êx +G22∆g̃ +M22(ζ)ŵ) . (44)

Since χ̃ is an H∞ asymptotic estimation of χ, from (41) and (42), ŵ provides an H∞ asymptotic estimation for w. A similar
remark can be done for the estimation of d with (44). Note that, if the minimal γ is sufficiently small γ ≈ 0, the estimations
of w and d are similar to asymptotic estimation.

Remark 14. When g(x) ≡ 0, by denoting fi = [w d]>, and D(ζ) = [M(ζ) D], system (3) can be rewritten into a similar
form with system (1)-(2) in [22], [23]. Note that, it is assumed in [22] that D(ζ) can be factorized into a constant and a varying
component. This assumption is necessary for the existence of the coordinate transformation in the next step to transform (1)-(2)
in [22] to the required form. If D(ζ) cannot be factorized into a constant and a varying component, the result in [22] as well
as its direct extension cannot be applied. Similarly, the result in [20] as well as its direct extension cannot be applied in this
case. However, the proposed observer scheme in this paper is still applicable. On the other hand, the SMO scheme in [23]
would strictly require p > q + nw while our observer scheme only requires p > q. Thus, the scheme in this paper still works
in many cases where the scheme in [23] as well as its direct extension is not applicable. The advantage of our result over the
results in [20], [22], [23] is illustrated in Example 2 in Section IV.

The proposed cascade TS fuzzy observer design is summarized in Algorithm 1.

Algorithm 1: Cascade Observer Design Procedure
Input: Nonlinear uncertain system (1).
Output: Cascade TS fuzzy observer (12), (33) and (40), UI estimator (44), and uncertainty estimator (42).

1 Verify the conditions in Assumptions 1 and 2.
• If YES, then go to Step 2.
• If NO, then the proposed method is unapplicable to the considered system.

2 Transform system (1) into the desired form (10)–(11) (if necessary), and obtain the equivalent TS fuzzy model (4).
3 Solve the optimization problem in Theorem 1 to compute the gain L(ζ) for the sliding mode observer (12), and

determine Py for the discontinuous signal ν.
4 Use condition (24) to determine µ for ν.
5 Solve the optimization problem in Theorem 3 to compute the gain K(ζ) for the Luenberger observer (33).
6 Estimate the unmeasurable state x with the expression of χ̃ in (40).
7 Verify the rank condition in Assumption 3.
• If YES, then go to Step 8.
• If NO, then we cannot estimate the UI and the uncertainty.

8 Estimate the uncertainty w with (42), and the unknown input d with (44).

IV. ILLUSTRATIVE EXAMPLES

To illustrate the effectiveness and advantage of the proposed results over existing results in the literature, we will consider
two numerical examples including a practical example of vehicle nonlinear dynamics and an academic example. Simulations
of both examples are carried out via MATLAB with a sampling time of 0.001 [s]. All the convex optimization problems are
solved using MATLAB Robust Control Toolbox.



Example 1. We consider the estimation problem of the vehicle nonlinear dynamics. Under normal driving conditions without
longitudinal slip and with small angles assumption, the vehicle dynamics can be described as follows [7], [39]:

v̇y = −2(Cf + Cr)vy
mvvx

+
2(Crlr − Cf lf )yr

mvvx
− yrvx +

2Cfδ

mv
−
CdyρaAfyv

2
y

2mv
,

ẏr =
2(Crlr − Cf lf )vy

Izvx
−

2(Cf l
2
f + Crl

2
r)yr

Izvx
+

2Cf lfδ

Iz
,

v̇x = yrvy −
CdxρaAfxv

2
x

2mv
+

Tw
mvRt

,

(45)

where the vehicle nomenclature is given in Table I. Here, the numerical parameters are taken from the INSA autonomous
vehicle in our LAMIH-CNRS laboratory.

TABLE I
VEHICLE PARAMETERS.

Description Value
vy Lateral speed –
vx Longitudinal speed –
yr Yaw rate –
δ Front wheel steering angle –
Tw Longitudinal wheel torque force –
mv Vehicle mass 1077 [kg]
Cf Front cornering stiffness 47135 [N/rad]
Cr Rear cornering stiffness 56636 [N/rad]
lf Distance between front axle and gravity center 1.08 [m]
lr Distance between rear axle and gravity center 1.24 [m]
Iz Yaw moment of inertia 1442 [kgm2]
Rt Tire radius 0.26 [m]
ρa Air density 1.23 [kg/m3]
Cdy Lateral drag coefficient 0.35 [–]
Cdx Longitudinal drag coefficient 0.32 [–]
Afy Lateral frontal area 2.01 [m2]
Afx Longitudinal frontal area 1.97 [m2]

Note that the yaw rate yr and the longitudinal speed vx can be measured online. However, the measurement of the lateral
speed vy is not available due to cost reasons. The steering angle u = δ is considered as a known control input, while the wheel
torque d = Tw is an unknown input. Furthermore, it is not possible to perfectly identify the tire cornering stiffness in practice
[6]. For illustrations, we assume that the rear cornering stiffness Cr is an uncertain parameter, i.e., Cr = Cr0 + ∆Cr, where
Cr0 = 56636 is the nominal value and ∆Cr represents the parametric uncertainty: ∆Cr = Cr∆Cr0F (t), with Cr∆ ∈ (0, 1)
and |F (t)| ≤ 1. In this paper, we consider the case with 10% of parametric uncertainty, i.e., Cr∆ = 0.1, and we assume that
F (t) = cos(t) for simulation purposes. The vehicle system (45) can be reformulated in the form (3) where x =

[
vy yr vx

]>
,

ζ =
[
yr

1
vx

]>
, and

A(ζ) =

 −
2(Cf+Cr0)
mvvx

2(Cr0lr−Cf lf )
mvvx

−yr
2(Cr0lr−Cf lf )

Izvx
− 2(Cf l

2
f+Cr0l

2
r)

Izvx
0

yr 0 0

 , f(u, y) =


2Cfδ
mv

2Cf lf δ
Iz

−CdxρaAfxv
2
x

2mv

 ,
G =

−CdyρaAfy2mv
0
0

 , D =

 0
0
1

mvRt

 , M(ζ) =

 2Cr0Cr∆
mvvx

−2Cr0Cr∆lr
Izvx

0

 ,
g(x) = v2

y, C = [0 I2], N = [−1 lr 0].

(46)

Considering the physical limitations during normal driving conditions [7], the vehicle state-space compact set is defined as

Dx =
{

(vy, yr, vx) ∈ R3 : vy ∈ [vy, vy], yr ∈ [y
r
, yr], vx ∈ [vx, vx]

}
,

where vy = −1.5 [m/s], vy = 1.5 [m/s], y
r

= −0.6 [rad/s] and yr = 0.6 [rad/s], and vx = 5 [m/s], vx = 30 [m/s]. Using the
sector nonlinearity method [2] with the vector of measured premise variables ζ = [yr

1
vx

]>, an equivalent four-rule TS fuzzy



model of the vehicle nonlinear system (45) can be obtained for x ∈ Dx. To this end, we define the membership functions
hi(ζ), for i ∈ I4, as

h1(ζ) =
(yr − yr)(1/vx − 1/vx)

(yr − yr)(1/vx − 1/vx)
, h2(ζ) =

(yr − yr)(1/vx − 1/vx)

(yr − yr)(1/vx − 1/vx)
,

h3(ζ) =
(yr − yr)(1/vx − 1/vx)

(yr − yr)(1/vx − 1/vx)
, h4(ζ) =

(yr − yr)(1/vx − 1/vx)

(yr − yr)(1/vx − 1/vx)
.

It is clear that
∑4
i=1 hi(ζ) = 1, hi(ζ) ≥ 0, for i ∈ I4, and

yr = y
r
(h1(ζ) + h3(ζ)) + yr(h2(ζ) + h4(ζ)), (47)

1

vx
=
h1(ζ) + h2(ζ)

vx
+
h3(ζ) + h4(ζ)

vx
, (48)

Substituting (47) and (48) into A(ζ) and M(ζ), it follows that A(ζ) =
∑4
i=1 hi(ζ)Ai and M(ζ) =

∑4
i=1 hi(ζ)Mi, with

A1 = A(y
r
, 1/vx), A2 = A(yr, 1/vx), A3 = A(y

r
, 1/vx), A4 = A(yr, 1/vx),

M1 = M(y
r
, 1/vx), M2 = M(yr, 1/vx), M3 = M(y

r
, 1/vx), M4 = M(yr, 1/vx).

Since rank(CD) = rank(D) and rank(D) = 1 < 2 = rank(C), Assumption 1 holds. As shown in (46), the vehicle model
(45) already has C and D in the form (10)–(11), thus a coordinate transformation is not required. Note that Assumption 2 also
holds where g(x) = v2

y is differentiable with respect to vy and 2vy ≤
∂g
∂vy

= 2vy ≤ 2vy . Accordingly, the sets of vertices are
obtained as VH 1

g
=
{

2vy, 2vy
}

, VH 10
g

=
{

[2vy 0 0], [2vy 0 0]
}

. Since M21(ζ) = −2Cr0Cr∆lr/(Izvx), where vx ∈ [5, 30],
M21(ζ) is full column rank, which verifies Assumption 3.

Note that, since p = 2 = q+ nw, the SMO scheme in [23] as well as its direct extension are not applicable to system (45).
Solving the convex optimization problem in Theorem 1, we obtain the observer gain for the sliding mode observer (12) as

L1 =

 0.7978 −8.7115
70.6866 −0.0003
−0.0000 2.3496

 , L2 =

 0.7978 8.7115
70.6866 0.0003
0.0000 2.3496

 ,
L3 =

−20.1846 −8.6860
61.3977 0.0064
0.0002 2.3496

 , L4 =

−20.1846 8.6860
61.3977 −0.0064
−0.0002 2.3496

 ,
with the attenuation level λ = 0.0781. With regard to the discontinuous signal ν in (13), the matrix Py is computed as

Py =

[
0.0449 0.0000
0.0000 1.4127

]
,

and µ is computed by (24) as µ = 23. For the observer implementation, to avoid the chattering, the discontinuous signal ν is
approximated by

νδ = −µ
P−1
y ey

||ey||+ δ
, δ = 0.3.

Solving the convex optimization problem in Theorem 3, we can compute the observer gain for observer (33) as Ki = 1.08,
for i ∈ I4, with the attenuation level γ = 8.1370 × 10−8. ex is estimated by êx, and χ = vy is estimated by χ̃ = χ̂ + êx
accordingly. Furthermore, the unknown input d is estimated with (44), and the uncertainty w is estimated with (42).

Hereafter, a realistic driving scenario is considered to demonstrate the estimation performance of the proposed cascade
observer scheme. Note that due to the lack of vehicle sensors, the validation tests have been performed with the nonlinear
vehicle model (45). However, for each driving scenario, the real data of the steering angle δ and the wheel torque Tw, collected
from the INSA autonomous vehicle, are used as vehicle inputs. In this driving scenario, the vehicle follows a random driving
trajectory, then enters and exits a roundabout. The corresponding vehicle trajectory, longitudinal speed, and steering angle are
depicted in Figs. 2(a), (b) and (c), respectively. The convergence to the sliding surface of the SMO error ey is illustrated in
Fig. 2(d). The estimation performance of the proposed cascade TS fuzzy observer is demonstrated in Fig. 3. The estimation
of the SMO error ex is illustrated in Fig. 3(a). Meanwhile, Fig. 3(b) shows the estimation of the unmeasured lateral speed vy ,
Fig. 3(c) shows the estimation of the wheel torque Tw considered as unknown input d, and Fig. 3(d) shows the estimation of
the parametric uncertainty w. We can see that the proposed observer scheme provides a satisfactory estimation performance
despite the presence of the parametric uncertainty.



Fig. 2. Example 1: (a) vehicle trajectory X–Y , (b) longitudinal speed, (c) steering angle δ, (d) sliding motion of ey = [e2 e3]>.

Fig. 3. Example 1: (a) estimation of the SMO error ex, (b) estimation of the lateral speed vy , (c) estimation of the wheel torque d = Tw , (d) estimation of
the uncertainty w.

Example 2. Let us consider a nonlinear systems subject to uncertainty and unknown input which can be represented in the



form (3) where x =
[
x1 x2 x3 x4

]>
, ζ =

[
x2 x3

]>
, and

A(ζ) =


−3 1 1 0
1 −2 0 0
−x3 −1 −3 1
x2 0 0 −1

 , f(u, y) =


u
0
0
0

 ,

G =


0

0.1
0
0

 , D =


0
0
0
1

 , M(ζ) =


−0.3 0.1
0.2 0
−0.1x3 −0.1
0.1x2 0

 ,
g(x) = x3

1, C = [0 I3], N = [I2 0].

(49)

For illustrations, let u ≡ 1, d = 0.1 sin(0.2t), and F = diag(cos(t), sin(t)). The state-space compact set is defined as
Dx = [−1, 1] × [−1, 1] × [−1, 1] × [−1, 1]. Using the sector nonlinearity method [2] with the vector of measured premise
variables ζ = [x2 x3]>, an equivalent four-rule TS fuzzy model of system (49) can be obtained for x ∈ Dx. The membership
functions hi(ζ) are given by

h1(ζ) =
(1− x3)(1− x2)

4
, h2(ζ) =

(x3 + 1)(1− x2)

4
,

h3(ζ) =
(1− x3)(x2 + 1)

4
, h4(ζ) =

(x3 + 1)(x2 + 1)

4
.

It is easy to verify that
∑4
i=1 hi(ζ) = 1, hi(ζ) ≥ 0, ∀i ∈ I4, and

x2 = −h1(ζ)− h2(ζ) + h3(ζ) + h4(ζ), (50)
x3 = −h1(ζ)− h3(ζ)) + h2(ζ) + h4(ζ). (51)

Substituting (50) and (51) into A(ζ) and M(ζ), it follows that A(ζ) =
∑4
i=1 hi(ζ)Ai and M(ζ) =

∑4
i=1 hi(ζ)Mi, with

A1 = A(−1,−1), A2 = A(−1, 1), A3 = A(1,−1), A4 = A(1, 1),

M1 = M(−1,−1), M2 = M(−1, 1), M3 = M(1,−1), M4 = M(1, 1).

As rank(CD) = rank(D) and rank(D) = 1 < 3 = rank(C), Assumption 1 holds. System (49) already has C and D in
the form (10)–(11), thus a coordinate transformation is not required. Assumption 2 holds as g(x) = x3

1 is differentiable with
respect to x1 and 0 ≤ ∂g

∂x1
= 3x2

1 ≤ 3. The sets of vertices are obtained as VH 1
g

= {0, 3}, VH 10
g

= {[0 0 0 0], [3 0 0 0]}.

Since M21(ζ) =

[
0.2 0
−0.1x3 −0.1

]
has non-zero determinant, M21(ζ) is full column rank and Assumption 3 is verified. It is

important to note that, in this example, M(ζ) and accordingly [M(ζ) D] cannot be factorized into a constant and a varying
component. Then, the results in [20], [22] as well as their direct extensions cannot be applied. On the other hand, since
p = 3 = q + nw, the SMO scheme in [23] and its direct extension are not applicable to system (49).

Solving the convex optimization problem in Theorem 1, we obtain the observer gain for the sliding mode observer (12) as

L1 =


0.2287 0.2557 −0.1939
8.0747 −0.6136 −0.5473
−0.6415 2.0668 0.4986
−0.2441 0.3592 2.9191

 , L2 =


0.1850 −0.4010 −0.0951
8.0624 −1.6174 −0.4579
−0.9885 2.0164 0.9675
−0.2340 0.8682 2.8680

 ,

L3 =


0.2254 0.1570 0.4116
8.0754 −0.7237 0.4758
−0.6208 2.0496 0.9564
0.1711 0.9317 2.8724

 , L4 =


0.1814 −0.4994 0.5098
8.0914 −1.7615 0.6510
−0.9789 2.0431 0.4828
0.1441 0.4175 2.9164

 ,
with the attenuation level λ = 0.1055. With regard to the discontinuous signal ν in (13), the matrix Py is computed as

Py =

 0.3734 0.0714 −0.0054
0.0714 1.0912 −0.1638
−0.0054 −0.1638 1.0076

 ,
and µ is computed by (24) as µ = 10. To avoid the chattering, the discontinuous signal ν is approximated by

νδ = −µ
P−1
y ey

||ey||+ δ
, δ = 0.03.

Solving the convex optimization problem in Theorem 3, we can compute the observer gain for the Luenberger-type observer
(33) as K1 = K3 = [1 1], K2 = K4 = [2 1], with the attenuation level γ = 3.6297× 10−7. Since γ ≈ 0, the estimations of
ex, x1, d, w are similar to asymptotic estimation.



Fig. 4. Example 2: (a) sliding motion of ey = [e2 e3 e4]> (b) estimation of the SMO error ex, (c) estimation of the unmeasurable state x1, (d) estimation
of the unknown input d, (e) estimation of the uncertainty w1, (f) estimation of the uncertainty w2.

The convergence to the sliding surface of the SMO error ey is illustrated in Fig. 4(a). The estimation of the SMO error ex
is illustrated in Fig. 4(b). Meanwhile, Fig. 4(c) illustrates the estimation of the unmeasured state x1, Fig. 4(d) illustrates the
estimation of the unknown input d, Figs. 4(e) and (f) illustrate the estimation of the parametric uncertainties w1 and w2. The
proposed cascade observer scheme provides a satisfactory estimation performance as shown in Fig. 4.

V. CONCLUDING REMARKS

We have studied the observer design for a class of nonlinear systems with parametric uncertainties and unknown inputs
based on TS fuzzy models and sliding mode technique. To this end, two cascaded observers have been constructed. A sliding
mode observer is first designed which allows to examine a new system whose both state and output equations are subject
to only uncertainties, without unknown inputs. Then, a Luenberger-type observer is designed for the new system where the
effect of uncertainties on the estimation error can be eliminated. Accordingly, the overall cascade observer scheme can provide
the estimations of the system state as well as the unknown input and the uncertainty. Two numerical examples including an
application on the estimation of vehicle nonlinear dynamics have been provided to demonstrate the effectiveness and advantage
of the new results. For future works, we focus on the experimental validation of the proposed method with the INSA autonomous
vehicle and real vehicle sensors. Investigating systems with output measurements subject to sensor faults is also a promising
extension of this paper.
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