
HAL Id: hal-04017564
https://uphf.hal.science/hal-04017564v1

Submitted on 7 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural-Network-Based Fuzzy Observer with
Data-Driven Uncertainty Identification for Vehicle

Dynamics Estimation under Extreme Driving
Conditions: Theory and Experimental Results

Cuong Nguyen, Anh-Tu Nguyen, Sebastien Delprat

To cite this version:
Cuong Nguyen, Anh-Tu Nguyen, Sebastien Delprat. Neural-Network-Based Fuzzy Observer with
Data-Driven Uncertainty Identification for Vehicle Dynamics Estimation under Extreme Driving Con-
ditions: Theory and Experimental Results. IEEE Transactions on Vehicular Technology, In press,
pp.1-11. �10.1109/TVT.2023.3249832�. �hal-04017564�

https://uphf.hal.science/hal-04017564v1
https://hal.archives-ouvertes.fr


Neural-Network-Based Fuzzy Observer with
Data-Driven Uncertainty Identification for Vehicle

Dynamics Estimation under Extreme Driving
Conditions: Theory and Experimental Results

Cuong M. Nguyen, Anh-Tu Nguyen, Senior Member, IEEE, and Sébastien Delprat

Abstract—We present a neural network based Takagi-Sugeno
(TS) fuzzy observer to estimate the lateral speed (or sideslip
angle) of nonlinear vehicle dynamics subject to modeling uncer-
tainties and unknown inputs. To this end, we first propose a TS
fuzzy reduced-order observer design, which can be implemented
with low computation effort, for nonlinear systems. The stability
and robustness of the observer scheme against the modeling
uncertainty is guaranteed by the H∞ filtering method. A data-
driven approach is proposed to construct feedforward neural
networks (NNs) for uncertainty approximation. This data-driven
approach exploits a specific sliding mode observer (SMO) to iden-
tify the model uncertainty data from the collected training data.
The NN-based uncertainty approximation is incorporated into the
TS fuzzy observer structure to mitigate the effect of uncertainty
and improve the estimation quality. Via Lyapunov’s stability
theory, design conditions of both the TS fuzzy reduced-order
observer for dynamics estimation and the SMO for uncertainty
identification are derived in terms of linear matrix inequalities.
Experimental results obtained with the INSA autonomous vehicle
on a real test track demonstrate the effectiveness of the proposed
TS fuzzy observer under various driving scenarios. Performance
comparisons are also performed to illustrate the interest of using
NN-based uncertainty approximation for the new reduced-order
observer scheme, especially under extreme driving conditions.

Index Terms—Vehicle dynamics, vehicle estimation, sideslip
angle, nonlinear reduced-order observers, Takagi-Sugeno fuzzy
systems, data-driven, neural networks.

I. INTRODUCTION

Safety is one of the most important issues in vehicle engi-
neering and research [1]. In many active safety applications
deployed in vehicle systems, the lateral speed or sideslip angle
plays a crucial role, e.g., electronic stability control, vehicle
lateral control, etc. [2]–[4]. However, commercial sensors used
to measure the sideslip angle or lateral speed are too expensive
to be equipped onboard in series-production vehicles [5]–
[8]. This puzzle has captured the attention from the vehicle
research community, which has culminated in a large number
of publications on sideslip angle estimation [9]–[17]. Data
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fusion algorithms have been proposed to estimate the vehicle
sideslip angle [18]–[21]. However, these methods lead to
a high implementation complexity and cost issues. Hence,
model-based methods have been widely developed for sideslip
angle estimation [22]–[26].

Vehicle dynamics is nonlinear and complex by nature.
It is difficult to identify a vehicle model, which is simple
enough for control and observer designs while capturing
well the vehicle dynamics under various operating conditions
[2]. Accordingly, most model-based estimation methods only
rely on some nominal vehicle models, e.g., [12], [14], [22],
[24]. A Takagi-Sugeno (TS) fuzzy unknown input observer is
proposed in [22] to simultaneously estimate the lateral speed,
the steering angle and the engine torque. A gradient descent
based method is proposed in [12] to estimate the sideslip angle
and the road friction. In [14], the sideslip angle is estimated by
a kinematic based method. The steering angle and the sideslip
angle are simultaneously estimated by a TS fuzzy observer in
[24]. Since nominal vehicle models are only valid under simple
driving scenarios, model-based methods can only perform well
in limited situations. Hence, to improve the performance of
these methods, it is crucial to improve the modeling quality.

Recent advances in machine learning methods have attracted
particular interest from the control community. One of the
most important tools in machine learning is artificial neural
networks (NNs). Among different types of NNs, feedforward
NNs are well-known for their universal capability of function
approximation [27]. Many NN-based estimation methods have
been reported in the literature where NNs are used to learn
unknown dynamics [28]–[32]. A NN-based fault estimation
method is developed in [29] for wind turbine systems. The
authors in [30] propose a neuro-adaptive observer to estimate
both vehicle states and tire forces. Multivariate deep recurrent
NNs are used with long short-term memory units in [33] to
estimate the brake pressure of electrified vehicles. An H∞
observer is developed in [34] to estimate the vehicle roll angle
in presence of parameter uncertainties, where measurement of
the pseudo-roll angle obtained by NNs.

Concerning the vehicle sideslip angle estimation, NN-based
methods have been proposed where the vehicle models are not
required [35]–[38]. For these model-free methods, different
types of NNs are used to estimate the sideslip angle using
onboard sensors as inputs and the sideslip angle as the output
of developed NNs. In [39], the sideslip angle estimation is



performed using recurrent NNs together with a nonlinear
Kalman filter. Recurrent NNs are combined with kinematic
models to estimate the vehicle sideslip angle [40]. The main
disadvantages of these NN-based estimation methods are
concerned with the issues on stability, robustness to sensor
noises, and the quantity as well as the quality of vehicle
data used for NN training [9], [10]. Moreover, these methods
may require a high computation effort [40]. Note that onboard
computing units equipped in intelligent vehicles have to handle
multiple tasks, e.g., perception, planning and control, with
limited capability. Hence, vehicle dynamics estimation should
be carried out with low implementation and computation cost.
Combining model-based and NN-based approaches, where
NNs are exploited to approximate the vehicle uncertainties,
can be promising to overcome these major drawbacks.

Motivated by the above analysis, this paper proposes a TS
fuzzy reduced-order observer scheme to estimate the nonlin-
ear vehicle dynamics subject to modeling uncertainties and
unknown inputs. To this end, the vehicle nonlinear model is
first represented by an equivalent TS fuzzy form. Then, an H∞
TS fuzzy reduced-order observer is designed for lateral speed
estimation. The effect of uncertainty on the estimation error
is alleviated by a NN-based uncertainty approximation, which
is incorporated into the observer structure. A sliding mode
observer (SMO) is utilized to identify the model uncertainty
data from the training data. The model uncertainty data is
used to train a feedforward neural network, whose inputs are
the measured output and the control input of the vehicle, and
the output is the approximated uncertainty. Backpropagation
is used for the learning of the NN weights and biases with the
training data collected in various driving situations. The main
contributions of the paper are summarized as follows.

• We propose a new TS fuzzy observer design for a class of
nonlinear uncertain systems subject to unknown inputs.
The observer structure is of reduced order, which requires
a low implementation cost in real-time.

• A data-driven approach is proposed to construct feedfor-
ward NNs for uncertainty approximation, where a specific
sliding mode observer is used to identify model un-
certainties from the training data. NN-based uncertainty
approximation is incorporated into the observer structure
to mitigate the uncertainty effect and improve the vehicle
estimation quality under extreme driving conditions.

• The stability and robustness of the proposed NN-based
observer scheme is guaranteed via Lyapunov stability
theory. Design conditions of both TS fuzzy reduced-order
observer for lateral speed estimation and SMO for NN-
based uncertainty identification are obtained in terms of
linear matrix inequalities (LMIs), which can be efficiently
solved with numerical solvers.

• The practical performance of the proposed TS fuzzy
reduced-order observer design is validated with an au-
tonomous vehicle at our LAMIH-CNRS laboratory under
various driving scenarios on a real test track. A compar-
ative study is also performed to illustrate the superiority
of the new result with respect to related works.

Notation. For a positive integer r, we denote Ir =

{1, 2, . . . , r}. For a vector x, xi denotes its ith entry. For two
vectors a, b ∈ Rn: co(a, b) = {λa + (1 − λ)b : λ ∈ [0, 1]}
is the convex hull of a and b, and col{a, b} = [a> b>]>. For
i ∈ In: %n(i) = [0, . . . , 0, 1ith, 0, . . . , 0]> ∈ Rn is a vector of
the canonical basis of Rn. For a matrix A, A> denotes the
transpose of A, He(A) = A+A>. A positive definite matrix
A is denoted by A � 0. diag(A1, A2) is the block-diagonal
matrix composed of A1, A2. An identity matrix of dimension
n is denoted by In, and a zero matrix of dimension m × n
is denoted by 0m×n. The explicit dimensions of both identity
and null matrices are omitted if straightforwardly deduced.
Symbol ? represents the terms generated by symmetry in block
matrices. Arguments are omitted when there is no confusion.

II. VEHICLE MODELING AND PROBLEM FORMULATION

This section introduces the vehicle modeling and formulates
the observer design problem for nonlinear uncertain systems
subject to unknown inputs.

Fig. 1. Schematic of a two degrees-of-freedom vehicle model.

A. Vehicle Nonlinear Model

We consider a two degrees-of-freedom vehicle model de-
picted in Fig. 1. Under regular driving conditions with small
angles assumption and no longitudinal slip, the vehicle non-
linear dynamics can be described as [2], [22]

v̇y =
2(Crlr − Cf lf )yr − 2(Cf + Cr)vy

mvvx
− yrvx

+
2Cfδ

mv
−
CdyρaAfyv

2
y

2mv
(1)

ẏr =
2(Crlr − Cf lf )vy − 2(Cf l

2
f + Crl

2
r)yr

Izvx
+

2Cf lfδ

Iz

v̇x = yrvy −
CdxρaAfxv

2
x

2mv
+

Tw
mvRt

where the vehicle parameters of the INSA autonomous vehicle
at our LAMIH-CNRS laboratory are given in Table I.

The yaw rate yr and the longitudinal speed vx can be
measured at low cost. However, the measurement of the lateral
speed vy is not online available due to expensive sensors.
The steering angle δ is the known control input u = δ. Note
that it is difficult to measure the wheel torque Tw, which is
considered as an unknown input ω = Tw. Then, the vehicle
system (1) can be reformulated into the state-space form

ẋ = A(z)x+ f(x) + g(y, u) +Wω

y = Cx
(2)



TABLE I
VEHICLE PARAMETERS.

with x =
[
vy yr vx

]>
, z =

[
yr

1
vx

]>
, and

A(z) =

 −
2(Cf+Cr)
mvvx

2(Crlr−Cf lf )
mvvx

−yr
2(Crlr−Cf lf )

Izvx
− 2(Cf l

2
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2
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f(x) =

−CdyρaAfyv
2
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2mv

0
0

 , g(y, u) =


2Cf δ
mv

2Cf lf δ
Iz

−CdxρaAfxv
2
x

2mv


W =

 0
0
1

mvRt

 , C =

[
0 1 0
0 0 1

]
.

Since yr and vx can be measured at low cost, they are available
as output measurements y = Cx in system (2). Due to the
nonlinear nature of the vehicle model (1), the state-space
matrix A(z) in (2) is time-varying rather than constant. The
choice of z =

[
yr

1
vx

]>
is due to the fact that yr and vx

are measurable, which later allows to equivalently represent
system (3) by the TS fuzzy model (8) for observer design.

System (2) represents the nominal vehicle dynamics, whose
front and rear tire forces are respectively modeled using the
following linear model:

Ff = 2Cfαf , Fr = 2Crαr

where αf and αr are front and rear wheels slip angles. Note
that the cornering stiffness coefficients Cf and Cr as well as
the yaw moment of inertia Iz cannot be accurately identified
in practice [24]. Only nominal values of Cf , Cr and Iz
can be provided as in Table I. Hence, modeling errors and
uncertainties should be taken into account in the observer
design for an effective vehicle dynamics estimation.

B. Problem Formulation

A generic formulation of the nonlinear dynamics (2) with
unknown input and uncertainty is considered as follows:

ẋ = A(z)x+ f(x) + g(y, u) +Wω + d

y = Cx, x ∈ D
(3)

where D is a state-space compact set, x ∈ Rn is the state
vector, u ∈ Rnu is the known input, y ∈ Rp is the output
vector, z ∈ Rnz is the vector of measurable premise variables,
f(x) and g(y, u) ∈ Rn are nonlinearities, ω ∈ Rnω is the
unknown input, and d ∈ Rn represents the lumped modeling
uncertainties. The known constant matrices W ∈ Rn×nω and
C ∈ Rp×n are full column rank and full row rank, respectively,
which satisfy

rank(CW ) = rank(W ). (4)

Remark 1. Under condition (4), a coordinate transformation
T can be constructed for system (3) such that C and W are
in the following form [41]:

C =
[
0p×(n−p) Ip

]
, W =

[
0(n−p)×nω

Wp

]
l n− p
l p . (5)

Hence, without loss of generality, we consider in the sequel
system (3) where C and W are in the form (5).

The nonlinearity f(x) satisfies the following assumption.

Assumption 1. The nonlinear function f(x) is differentiable
with respect to x and satisfies

f
ij
≤ ∂fi
∂xj

(x) ≤ f̄ij , i, j ∈ In (6)

with f
ij

= min
x̆∈D

(
∂fi
∂xj

(x̆)
)

, and f ij = max
x̆∈D

(
∂fi
∂xj

(x̆)
)

.

Remark 2. Assumption 1 is necessary for the implementation
of the differential mean value theorem stated in Lemma 1
in Section III. This instrumental allows to reformulate the
mismatching nonlinear term involved the estimation error
dynamics (26). Accordingly, robust stability analysis of the
estimation error system (12)-(28) can be investigated, and LMI
conditions can be derived for observer design.

Neural networks are well-known for the universal approx-
imation capability. Hence, we assume that the uncertainty d
can be approximated by a feedforward neural network η(y, u)
as

d = η(y, u) + eη (7)

where eη is the NN approximation error. The neural network
η(y, u) is used to alleviate the effect of the uncertainty d on
the estimation error. A data-driven approach to learn η(y, u)
is presented in Section IV.

Remark 3. The neural network η(y, u) in (7) only depends on
the measured signals as inputs, i.e., y and u, which simplifies
the observer design for the nonlinear uncertain system (3).

Applying the sector nonlinearity approach [42, Chapter 2]
with premise variables vector z and x ∈ D , system (3) can be
equivalently represented by the following TS fuzzy model:

ẋ =

m∑
i=1

ρi(z)Aix+ f(x) + ηg(y, u) +Wω + eη

y = Cx, m = 2nz

(8)

where Ai are local constant matrices, and

ηg(y, u) = η(y, u) + g(y, u).



The membership functions ρi(z), i ∈ Im, satisfy the convex
sum property, i.e., ρi(z) ≥ 0, and

∑m
i=1 ρi(z) = 1.

The structure of the proposed NN-based TS fuzzy reduced-
order observer is depicted in Fig. 2. This paper addresses the
following NN-based fuzzy observer design problem.

Problem 1. Determine a TS fuzzy reduced-order observer,
where the effect of the uncertainty d on the estimation error
is mitigated by a feedforward neural network (7), to estimate
the state vector x of system (3).

Fig. 2. Takagi-Sugeno fuzzy reduced-order observer structure with NN-based
uncertainty identification (solid line: online computation, dashed line: offline
computation).

III. REDUCED-ORDER OBSERVER DESIGN

This section presents a reduced-order observer design with
guaranteed H∞ robustness against uncertainty. Let us consider
the following reduced-order observer for system (8):

ξ̇ =

m∑
i=1

ρi(z)(Eiξ + Fiy) +Gf(x̂) +Gηg(y, u)

x̂ = Mξ +Ny

(9)

where x̂ ∈ Rn is the estimate of x, ξ ∈ Rn−p is the state
vector of the reduced-order observer, the observer matrices
Ei, Fi (i ∈ Im), G, M and N are to be designed such that

MG+NC = I (10)
EiG+ FiC = GAi, i ∈ Im. (11)

Define e = x − x̂, and ε = Gx − ξ. It follows from (8), (9),
(10) and (11) that

e = (MG+NC)x− (Mξ +NCx) = Mε (12)

ε̇ =

m∑
i=1

ρi(z)(EiG+ FiC)x+Gf(x) +Gηg(y, u) +GWω

+Geη −
m∑
i=1

ρi(z)((Eiξ + Fiy) +Gf(x̂) +Gηg(y, u))

=

m∑
i=1

ρi(z)Eiε+G∆f +GWω +Geη (13)

with ∆f = f(x)− f(x̂).

To design G, M , N , Ei and Fi, i ∈ Im, such that equations
(10) and (11) hold, we choose a matrix H ∈ R(n−p)×n such
that

[
H> C>

]>
is nonsingular and define

G = H − LC (14)

where L is a gain matrix to be determined. Then, it follows
from (14) that [

G
C

]
=

[
I −L
0 I

] [
H
C

]
(15)

which means that
[
G> C>

]>
is also nonsingular. Accord-

ingly, equation (10) can be rewritten as[
M N

]
=

[
G
C

]−1

. (16)

From (15) and (16), the matrix M can be computed as

M =

[
G
C

]−1 [
In−p

0

]
=

[
H
C

]−1 [
I L
0 I

] [
In−p

0

]
=

[
H
C

]−1 [
In−p

0

]
(17)

which means that M can be determined after choosing H .
Meanwhile, N is computed from (16) as

N =

[
G
C

]−1 [
0
Ip

]
. (18)

Furthermore, equation (11) can be rewritten as[
Ei Fi

] [G
C

]
= GAi, ∀i ∈ Im. (19)

From (16) and (19), we can obtain

Ei = GAiM, Fi = GAiN, ∀i ∈ Im. (20)

Note that the algebraic equations (10) and (11) hold if M , N ,
Ei and Fi, for i ∈ Im, are designed by (17), (18), and (20).
To determine G from (14), since the matching condition (4)
holds, it follows that

rank(CW ) = rank

[
HW
CW

]
.

Let us select

L = HW (CW )+ + Z(Ip − (CW )(CW )+) (21)

where (CW )+ is the pseudo-inverse of CW and Z is the
observer gain matrix to be designed, and denote

R = H −HW (CW )+C, (22)
S = [Ip − (CW )(CW )+]C. (23)

Then, from (14) and (21), we have

G = R− ZS (24)

and
LCW = HW ⇔ GW = 0. (25)

From (13), (20), (24) and (25), system (13) is rewritten as

ε̇ =

m∑
i=1

ρi(z)(R−ZS)AiMε+ (R−ZS)∆f + (R−ZS)eη

(26)



where Z is designed to stabilize the system formed by (12)
and (26). Accordingly, G can be determined from (24).

The following differential mean value theorem is useful to
reformulate the nonlinear term ∆f in (26) as a function of the
estimation error ε.

Lemma 1 ([43]). Let f(x) : Rn → Rn and a, b ∈ Rn. If
f(x) is differentiable with respect to x on co(a, b), there exist
vectors ci ∈ co(a, b), ci 6= a, ci 6= b, for i ∈ In, such that

f(a)− f(b) =

 n∑
i=1

n∑
j=1

%n(i)%>n (j)
∂fi
∂xj

(ci)

 (a− b).

Applying Lemma 1 under Assumption 1, we rewrite ∆f as

∆f = Af (x− x̂) = AfMε (27)

where Af =
∑n
i=1

∑n
j=1 %n(i)ρ>n (j) ∂fi∂xj

(x̆i), x̆i ∈ co(x, x̂),
is a matrix with parameters varying in a bounded convex set
Hf . Under Assumption 1, the vertices set of Hf is given by

VHf
=
{
θ = (θij) ∈ Rn×n : θij ∈

{
f
ij
, f ij

}}
where f

ij
and f ij are as in (6). Then, it follows from (26)

and (27) that

ε̇ =

m∑
i=1

ρi(z)(R− ZS)(Ai + Af )Mε+ (R− ZS)eη. (28)

To stabilize the estimation error system (12)-(28), H∞ filter-
ing approach is used to design Z such that

Ω = V̇ (ε) + e>e− γ2e>η eη < 0 (29)

where V (ε) = ε>Pε, with P � 0, is a Lyapunov function
candidate, and γ > 0 is the disturbance attenuation level.
The following theorem provides LMI-based conditions to
guarantee condition (29) with a minimal value of γ.

Theorem 1. Condition (29) for the estimation error dynamics
(12)-(28) is guaranteed while minimizing γ if there exist
matrices P � 0, X of appropriate dimensions, and a scalar
γ̄ > 0 that solve the convex optimization problem:

min(γ̄) subject to

Πi =

[
He(Λi) +M>M PR−XS

? −γ̄I

]
≺ 0 (30)

with Λi = (PR−XS)(Ai + Af )M , for i ∈ Im, and ∀Af ∈
VHf

. Moreover, the gain matrix Z is obtained as Z = P−1X ,
and the minimal γ is computed as γ =

√
γ̄.

Proof. Computing the time-derivative of V (ε) along the so-
lution of system (28) and using expression (12), then the
expression of Ω in (29) can be rewritten as

Ω = V̇ (ε) + e>e− γ2e>η eη

= 2ε>

{
m∑
i=1

ρi(z)(PR− PZS)(Ai + Af )Mε

+ (PR− PZS)eη

}
+ ε>M>Mε− γ2e>η eη. (31)

Denote X = PZ, γ̄ = γ2, and ζ = col{ε, eη}, it follows from
(31) that Ω =

∑m
i=1 ρi(z)ζ

>Πiζ. Thus, condition (29) holds if
(30) holds. Furthermore, γ is minimized by minimizing γ̄.

The procedure to design the matrices Ei, Fi, G, M , N for
the reduced-order observer (9) is summarized in Algorithm 1.

Algorithm 1: Reduced-order observer design

1 Choose a matrix H such that [H> C>]> is
nonsingular.

2 Compute M by (17), R by (22) and S by (23).
3 Determine the observer gain Z with Theorem 1.
4 Compute G by (24).
5 Compute N by (18).
6 Compute Ei and Fi by (20).

Remark 4. Note that there always exists a matrix H such that[
H> C>

]>
is nonsingular [44]. For example, since C =[

0 Ip
]
, we can choose H =

[
In−p 0

]
. Thus, the existence

of the reduced-order observer (9) is guaranteed by condition
(4) and the solvability of (30).

IV. DATA-DRIVEN APPROACH FOR NN-BASED
UNCERTAINTY APPROXIMATION

This section presents a data-driven approach for neural-
network-based uncertainty approximation, where η(y, u) in (7)
is trained to alleviate the effect of d on the estimation error e.

A. System Partition

Since C and W are in the form (5), by reordering the last
p components of the state vector x, without loss of generality,
Wp can be further written in the form

Wp =

[
0
Wq

]
l p− q
l q (32)

where all the rows of Wq are non-zeros. We assume that
Wq is full row rank, i.e., rank(Wq) = q. By choosing
H =

[
In−p 0(n−p)×p

]
, since C and W respectively are in

the form (5) and (32), it follows that HW (CW )+C = 0, or

R = H −HW (CW )+C =
[
In−p 0(n−p)×p

]
. (33)

Moreover, since Wq is assumed to be full row rank, it follows
that (CW )(CW )+ = diag{0(p−q)×(p−q), Iq}, or

S = [Ip − (CW )(CW )+]C

=
[
0p×(n−p) diag{Ip−q, 0q×q}

]
. (34)

Then, it follows from (33) and (34) that the last q columns of
G = R−ZS are zeros. Accordingly, the last q rows of eη are
canceled in (R−ZS)eη and do not affect the estimation error
dynamics (12)–(28). In other words, it is not necessary to find
a neural network approximation for the last q components of



the uncertainty vector d. Let us partition d, x, f(x), g(y, u),
Ai as follows:

d =

[
dd
dq

]
, x =

[
xd
xq

]
, f(x) =

[
fd(x)
fq(x)

]
l n− q
l q

g(y, u) =

[
gd(y, u)
gq(y, u)

]
, Ai =

[
Aidd Aidq
Aiqd Aiqq

]
l n− q
l q

with dq , xq , fq(x), gq(y, u) ∈ Rq and Aiqq ∈ Rq×q . Note that

W =

[
0
Wq

]
l n− q
l q .

Then, it follows from (3) and (5) that

ẋd =

m∑
i=1

ρi(z)(Aiddxd+Aidqxq)+fd(x)+gd(y, u)+dd (35)

where dd is to be approximated by a neural network.

Remark 5. To alleviate the effect of the uncertainty d on
the estimation error e, instead of approximating d, it is only
required to approximate dd. Note that since ω is not involved
in the dynamics (35), the SMO (36) can be designed for (35)
for the identification of dd in the training data.

B. SMO-Based Uncertainty Identification for Training Data

To train a neural network for uncertainty approximation, the
data of the state vector, control input, and measured output of
system (3) are collected in various operating conditions. The
following assumption is considered for collected vehicle data.

Assumption 2. In the collected data used to train the neural
network for uncertainty approximation, the offline full-state
information of the vehicle is available.

This assumption is reasonable in practice since despite the
unavailability of onboard information of vy due to sensors cost
reasons (therefore, the vehicle state estimation is required for
practical uses), such vehicle sensors are usually available in
the R&D or vehicle production stage. Note that if Assumption
2 does not hold, the proposed TS fuzzy reduced-order observer
design without using neural network is still valid. However, the
estimation performance of the NN-based TS fuzzy reduced-
order observer is superior over the observer without neural
network as demonstrated in Section V.

Consider the following SMO for system (35) used to
identify the uncertainty dd in the training data:

˙̂xd =

m∑
i=1

ρi(z)(Aiddx̂d +Aidqxq + Ldiexd
) + fd(x)

+ gd(y, u)− ν (36)

where exd
= xd − x̂d, x̂d is the estimate of xd, and Ldi, for

i ∈ Im, are to be designed. The signal ν in (36) is defined as

ν =

{
−µP

−1
d exd

||exd
|| , if exd

6= 0

0, otherwise

where µ > 0 and Pd ∈ R(n−q)×(n−q) are to be designed. Note
that it is not required to estimate xd offline. The estimation
x̂d of xd with SMO (36) is only used to facilitate the

identification of dd. From (35) and (36), the dynamics of the
SMO estimation error exd

is given by

ėxd
=

m∑
i=1

ρi(z)(Aidd − Ldi)exd
+ dd + ν. (37)

The following theorem provides sufficient conditions which
enable the identification of the uncertainty dd.

Theorem 2. If there exist matrices Pd � 0, Xdi, for i ∈ Im,
of appropriate dimensions such that the following LMIs hold:

He(PdAidd −Xdi) ≺ 0 (38)

and the scalar µ is chosen as

µ = µ̄+ ||Pd||d̄ (39)

where µ̄ is a positive scalar, and d̄ is the bound of dd, i.e.,
||dd|| ≤ d̄. Then, there exists a scalar tsm > 0 such that

dd(t) = −ν(t), ∀t ≥ tsm. (40)

Moreover, the observer gains Ldi, for i ∈ Im, in (36) are
computed as Ldi = P−1

d Xdi.

Proof. Consider the Lyapunov function candidate Vd(exd
) =

e>xd
Pdexd

. The time-derivative of Vd(exd
) along the solution

of system (37) is given by

V̇d(exd
) = 2e>xd

Pd

{
m∑
i=1

ρi(z)(Aidd − Ldi)exd
+ dd + ν

}

=

m∑
i=1

ρi(z)e
>
xd

He(PdAidd − PdLdi)exd

− 2||exd
||(µ− ||Pd||||dd||). (41)

Since Xdi = PdLdi, it follows from (38), (39) and (41) that

V̇d(exd
) ≤ −2µ̄||exd

||

which is the reachability condition [45]. Hence, the sliding
motion occurs where exd

= 0 and ėxd
= 0. Assume that slid-

ing motion occurs at t = tsm > 0, under the sliding motion,
it follows from (37) that dd(t) = −ν(t), for ∀t ≥ tsm.

C. Neural-Network-Based Uncertainty Approximation

The datasets of x, y and u are collected in various operating
conditions of system (3). Using the sliding mode observer (36),
the data of the uncertainty dd can be identified with expression
(40) for each collected dataset. Then, all the datasets of y, u
and dd are combined into a single dataset, which is used to
train the neural network ηd(y, u) to approximate dd. To train
the neural network ηd(y, u), where col{y, u} is the input and
dd is the output, Matlab Deep Learning Toolbox is used in
this paper. Note that to ensure the generalization capability
of ηd(y, u) on new data, a part of the combined dataset,
e.g., 20%, is reserved for the validation of NN performance.
To incorporate the trained neural network ηd(y, u) into the
observer (9), we use η(y, u) =

[
ηd(y, u)> 0

]>
.

Remark 6. If the data of ω can be also collected, then the
data of the uncertainty vector d can be fully identified. In this



case, the neural network η(y, u) can be trained to approximate
d instead of dd.

Remark 7. Denote ŷ = Cx̂ as output of observer (9).
Choosing H =

[
In−p 0(n−p)×p

]
, it follows from (17) that

M is computed as M =

[
In−p

0p×(n−p)

]
. Hence, it follows from

(12) that ey = y − ŷ ≡ 0. In other words, the output of the
observer (9) is identical to the measured output of system (3).

V. EXPERIMENTAL RESULTS

To validate the practical performance of the proposed TS
fuzzy observer scheme, this section provides experimental re-
sults carried out with the INSA autonomous vehicle, depicted
in Fig. 3(a). The experimental tests are performed on the
Gyrovia test track shown in Fig. 3(b), situated at the Transalley
technology hub, in Valenciennes, France, which is designed to
safely simulate traffic scenarios in an urban environment.

(a) (b)

Fig. 3. Experimental test facilities. (a) INSA autonomous vehicle at LAMIH-
CNRS laboratory, (b) Gyrovia test track at the Transalley technology hub.

Taking into account the physical limitations during normal
driving conditions [22], the vehicle state-space compact set is
defined as

D =
{
vy ∈ [vy, vy], yr ∈ [y

r
, yr], vx ∈ [vx, vx]

}
where vy = −1.5 [m/s], vy = 1.5 [m/s], y

r
= −1.1 [rad/s]

and yr = 1.1 [rad/s], and vx = 1.5 [m/s], vx = 20 [m/s].
Using the sector nonlinearity method [42] with z ∈ R2, a four-
rule TS fuzzy model of the vehicle system (2) can be easily
obtained. Note from the vehicle model (2) that the matrices C
and W are respectively full row rank and full column rank, and
rank(CW ) = rank(W ). Moreover, C and W are in the form
(5) and (32), respectively. Furthermore, from the analytical
expression of f(x) and the vehicle compact set D , we can
verify that Assumption 1 holds for the vehicle model (2).

Solving the convex optimization problem in Theorem 1, we
obtain the following gains for the reduced-order observer (9):

G =
[
1 − 0.1390 0

]
, M =

1
0
0

 , N =

0.1390 0
1 0
0 1


E1 = E2 = −9.8214, E3 = E4 = −130.9522

F1 = [1.7980 1.1000], F2 = [1.7980 − 1.1000]

F3 = [23.9739 1.1000], F4 = [23.9739 − 1.1000]

with γmin = 0.1029. Since the last column of G is 0, it is
not necessary to approximate the last component d3 of the
uncertainty vector d by neural network, i.e., only the first

two components d1 and d2 of d need to be approximated
by η(y, u). To train the neural network η(y, u), the data
are collected with the INSA autonomous vehicle on the
Gyrovia test track under various driving scenarios. The driving
maneuvers include several driving situations: random smooth
driving, driving in a roundabout, taking a sharp turn, making a
double lane change, and an extreme driving where the vehicle
is driven in an aggressive manner with a rapid lane change and
a rapid change of the longitudinal speed. A VBOX III sensor
from Racelogic is installed on the vehicle, which comprises
a double antennas GPS equipped with RTK correction. It is
coupled with a six-degrees-of-freedom inertial measurement
unit (IMU) composed by three accelerometers and three
gyroscopes. The IMU, dual GPS, and other measurements
are processed by a fusion system. Experimental data vy , yr,
vx and δ are logged through CAN busses using a dSpace
MicroAutobox II, then transferred to a Host PC for offline
analysis as shown in Fig. 4. All the vehicle signals are sampled
at 0.01 [s].

Fig. 4. Vehicle sensors and acquisition system.

The experimental data are separated into a training set and
a test set with the ratio 80%–20%. To improve the approxi-
mation performance of the trained NNs, we train two separate
neural networks η1(y, u) and η2(y, u) to approximate d1 and
d2, respectively. The same structure is used for both NNs
η1(y, u) and η2(y, u), i.e., 1 hidden layer with 5 hidden units
and hyperbolic tangent activation functions. This NN structure
has been chosen by hyperparameters optimization/exhaustive
search. In the following, we consider three test scenarios to
illustrate the performance of the proposed NN-based TS fuzzy
reduced-order observer as well as the observer without neural
network, i.e., η(y, u) ≡ 0. Comparison with the existing TS
fuzzy observer in [22] is also provided. Note that the lateral
speed is estimated by the estimation scheme [22] with a
nominal vehicle model. Hence, the estimation performance of
the observer in [22] is similar to that of the proposed TS
observer without using neural networks. Note also that a full-
order observer has been developed in [22], which requires
a higher implementation cost compared to the reduced-order
observer in this paper.

https://www.gyrovia.fr/


A. Scenario 1: Random Smooth Driving

For this test scenario, the vehicle is driven on a random
trajectory with some smooth turns. The vehicle trajectory, lon-
gitudinal speed, steering angle and wheel torque are depicted
in Figs. 5(a), (b), (c), (d). The estimations by SMO of d1, d2,
and their NN-based approximations are illustrated in Figs. 5(e)
and 5(f). The estimation performance of the proposed TS fuzzy
observer with and without including NN-based uncertainty
approximations, as well as the nonlinear observer proposed in
[22], is demonstrated in Fig. 6. We can see that both TS fuzzy
reduced-order observers with and without NNs, as well as
the observer [22], perform well in this scenario. However, the
NN-based observer generally outperforms the observer without
NNs and the TS observer [22], especially when the magnitude
of the lateral speed becomes large.

Fig. 5. Driving scenario 1: (a) vehicle trajectory X–Y , (b) longitudinal speed
vx, (c) steering angle δ, (d) wheel torque Tw , (e) uncertainty d1 estimation
and its NN-based approximation, (f) uncertainty d2 estimation and its NN-
based approximation.

B. Scenario 2: Driving with Roundabout and Sharp Turn

The vehicle enters and exits a roundabout then makes a
sharp turn in this driving scenario, where the vehicle trajectory,
longitudinal speed, steering angle and wheel torque are shown
in Figs. 7(a), (b), (c), (d). The estimations by SMO of d1,
d2, and their NN-based approximations are demonstrated in
Figs. 7(e) and (f). The estimation performance of the pro-
posed observer with and without neural networks, as well as
the observer [22], is illustrated in Figs. 8. Despite a good
estimation of both TS fuzzy reduced-order observers as well
as the observer [22], the NN-based observer outperforms the
observer without NNs and the observer [22], specifically when
the vehicle is driven around the roundabout (or takes a sharp
turn) with a large steering angle.
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Fig. 6. Driving scenario 1: estimation of the lateral speed vy by the TS
fuzzy reduced-order observer with and without neural networks, as well as
the observer [22].

Fig. 7. Driving scenario 2: (a) vehicle trajectory X–Y , (b) longitudinal speed
vx, (c) steering angle δ, (d) wheel torque Tw , (e) uncertainty d1 estimation
and its NN-based approximation, (f) uncertainty d2 estimation and its NN-
based approximation.

C. Scenario 3: Extreme Driving Condition

For this test scenario, the vehicle is driven in a zigzag
manner, i.e., extreme driving, where the vehicle trajectory,
speed, steering angle and wheel torque are shown in Figs.
9(a), (b), (c), (d). The extreme manner of the driving in this
scenario is reflected in a high longitudinal speed profile, quick
changes in the steering angle, as well as quick changes in the
lateral speed as shown in Fig. 9(b), Fig. 9(c) and Fig. 10,
respectively. The estimations of d1, d2 by SMO, and their
NN-based approximations are presented in Figs. 9(e) and (f).
The estimation performance of the proposed observer with
and without NNs, as well as the observer [22], is illustrated
in Fig. 10. We can see that the observer without NNs and
the observer [22] poorly perform in this test. It is not the
case of the NN-based TS fuzzy observer, which still provides
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Fig. 8. Driving scenario 2: estimation of the lateral speed vy by the TS
fuzzy reduced-order observer with and without neural networks, as well as
the observer [22].

satisfactory estimation performance.
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Fig. 9. Driving scenario 3: (a) vehicle trajectory X–Y , (b) longitudinal speed
vx, (c) steering angle δ, (d) wheel torque Tw , (e) uncertainty d1 estimation
and its NN-based approximation, (f) uncertainty d2 estimation and its NN-
based approximation.

Quantitative performance comparison in terms of mean
absolute estimation error (MAE) of the proposed TS fuzzy
reduced-order observers with and without using NNs, as well
as the observer [22], for three driving scenarios is provided in
Table II. The comparison results further validate the superior-
ity of the NN-based observer over the observer without neural
networks as well as the existing method in [22]. It should be
also noted that the estimation performance by the observer
without NNs and the nonlinear observer in [22] are roughly
the same in all scenarios.

Remark 8. Experimental results have shown promising per-
formance of the proposed NN-based observer scheme, espe-
cially in driving situations where the steering angle becomes
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Fig. 10. Driving scenario 3: estimation of the lateral speed vy by the TS
fuzzy reduced-order observer with and without neural networks, as well as
the nonlinear observer [22].

TABLE II
QUANTITATIVE ESTIMATION PERFORMANCE COMPARISON.

Mean absolute error Scenario 1 Scenario 2 Scenario 3
Observer [22] 0.0479 0.0501 0.1040

Observer without NNs 0.0484 0.0529 0.0988
NN-based observer 0.0203 0.0198 0.0529

large, e.g., sharp turn, roundabout, etc. In such situations,
the small angle assumption and, accordingly, the nominal
vehicle model does not hold well due to the presence of
large uncertainties. Using neural networks has been shown
to be useful in these cases to approximate the modeling
uncertainties, and subsequently to mitigate the uncertainty
effects on the estimation errors.

VI. CONCLUDING REMARKS

We have developed a NN-based TS fuzzy reduced-order
observer to estimate the vehicle nonlinear dynamics subject
to modeling uncertainties and unknown inputs. Motivated by
recent advances in NN-based methods, a data-driven approach
is proposed to construct NNs, which are used to approximate
vehicle dynamics uncertainties. A sliding mode observer is
proposed to identify the model uncertainty data from the
training data. Then, the NNs are incorporated into the TS fuzzy
reduced-order observer, whose design is based on the H∞
filtering method and LMI-based technique. The NN-based
uncertainty approximation mitigates the effect of uncertainty
on the estimation error. Moreover, the reduced-order observer
structure allows reducing the online implementation cost. The
estimation performance of the proposed observer scheme has
been validated with an autonomous vehicle and a real test track
under different driving scenarios. The experimental results
have shown a satisfactory performance of the new NN-based
observer scheme, especially in situations where the vehicle
modeling uncertainties become important due to a large steer-
ing angle, e.g., sharp turn, roundabout, etc. Future works focus
on using the proposed NN-based TS fuzzy observer for output
feedback vehicle control in extreme driving scenarios.
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