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Abstract-We present a neural network based Takagi-Sugeno (TS) fuzzy observer to estimate the lateral speed (or sideslip angle) of nonlinear vehicle dynamics subject to modeling uncertainties and unknown inputs. To this end, we first propose a TS fuzzy reduced-order observer design, which can be implemented with low computation effort, for nonlinear systems. The stability and robustness of the observer scheme against the modeling uncertainty is guaranteed by the H∞ filtering method. A datadriven approach is proposed to construct feedforward neural networks (NNs) for uncertainty approximation. This data-driven approach exploits a specific sliding mode observer (SMO) to identify the model uncertainty data from the collected training data. The NN-based uncertainty approximation is incorporated into the TS fuzzy observer structure to mitigate the effect of uncertainty and improve the estimation quality. Via Lyapunov's stability theory, design conditions of both the TS fuzzy reduced-order observer for dynamics estimation and the SMO for uncertainty identification are derived in terms of linear matrix inequalities. Experimental results obtained with the INSA autonomous vehicle on a real test track demonstrate the effectiveness of the proposed TS fuzzy observer under various driving scenarios. Performance comparisons are also performed to illustrate the interest of using NN-based uncertainty approximation for the new reduced-order observer scheme, especially under extreme driving conditions. Index Terms-Vehicle dynamics, vehicle estimation, sideslip angle, nonlinear reduced-order observers, Takagi-Sugeno fuzzy systems, data-driven, neural networks.

I. INTRODUCTION

Safety is one of the most important issues in vehicle engineering and research [START_REF] Li | Cognitive cars: A new frontier for ADAS research[END_REF]. In many active safety applications deployed in vehicle systems, the lateral speed or sideslip angle plays a crucial role, e.g., electronic stability control, vehicle lateral control, etc. [START_REF] Rajamani | Vehicle Dynamics and Control[END_REF]- [START_REF] Liu | Human-oriented online driving authority optimization for driver-automation shared steering control[END_REF]. However, commercial sensors used to measure the sideslip angle or lateral speed are too expensive to be equipped onboard in series-production vehicles [START_REF] Zhang | Robust energy-topeak sideslip angle estimation with applications to ground vehicles[END_REF]- [START_REF] Pan | Vehicle actuator fault detection with finite-frequency specifications via Takagi-Sugeno fuzzy observers: Theory and experiments[END_REF]. This puzzle has captured the attention from the vehicle research community, which has culminated in a large number of publications on sideslip angle estimation [START_REF] Liu | Sideslip angle estimation of ground vehicles: A comparative study[END_REF]- [START_REF] Wang | Extremum-seeking-based adaptive model-free control and its application to automated vehicle path tracking[END_REF]. Data fusion algorithms have been proposed to estimate the vehicle sideslip angle [START_REF] Li | A reliable fusion methodology for simultaneous estimation of vehicle sideslip and yaw angles[END_REF]- [START_REF] Song | Vehicle state estimation for INS/GPS aided by sensors fusion and SCKF-based algorithm[END_REF]. However, these methods lead to a high implementation complexity and cost issues. Hence, model-based methods have been widely developed for sideslip angle estimation [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF]- [START_REF] Zhang | A novel PWA lateral dynamics modeling method and switched T-S observer design for vehicle sideslip angle estimation[END_REF].

Vehicle dynamics is nonlinear and complex by nature. It is difficult to identify a vehicle model, which is simple enough for control and observer designs while capturing well the vehicle dynamics under various operating conditions [START_REF] Rajamani | Vehicle Dynamics and Control[END_REF]. Accordingly, most model-based estimation methods only rely on some nominal vehicle models, e.g., [START_REF] Chen | Vehicle sideslip angle and road friction estimation using online gradient descent algorithm[END_REF], [START_REF] Selmanaj | Vehicle sideslip estimation: A kinematic based approach[END_REF], [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF], [START_REF] Zhang | A novel observer design for simultaneous estimation of vehicle steering angle and sideslip angle[END_REF]. A Takagi-Sugeno (TS) fuzzy unknown input observer is proposed in [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF] to simultaneously estimate the lateral speed, the steering angle and the engine torque. A gradient descent based method is proposed in [START_REF] Chen | Vehicle sideslip angle and road friction estimation using online gradient descent algorithm[END_REF] to estimate the sideslip angle and the road friction. In [START_REF] Selmanaj | Vehicle sideslip estimation: A kinematic based approach[END_REF], the sideslip angle is estimated by a kinematic based method. The steering angle and the sideslip angle are simultaneously estimated by a TS fuzzy observer in [START_REF] Zhang | A novel observer design for simultaneous estimation of vehicle steering angle and sideslip angle[END_REF]. Since nominal vehicle models are only valid under simple driving scenarios, model-based methods can only perform well in limited situations. Hence, to improve the performance of these methods, it is crucial to improve the modeling quality.

Recent advances in machine learning methods have attracted particular interest from the control community. One of the most important tools in machine learning is artificial neural networks (NNs). Among different types of NNs, feedforward NNs are well-known for their universal capability of function approximation [START_REF] Hornik | Approximation capabilities of multilayer feedforward networks[END_REF]. Many NN-based estimation methods have been reported in the literature where NNs are used to learn unknown dynamics [START_REF] Ji | Adaptive-neural-network-based robust lateral motion control for autonomous vehicle at driving limits[END_REF]- [START_REF] Taghavifar | EKF-neural network observer based type-2 fuzzy control of autonomous vehicles[END_REF]. A NN-based fault estimation method is developed in [START_REF] Rahimilarki | Robust neural network fault estimation approach for nonlinear dynamic systems with applications to wind turbine systems[END_REF] for wind turbine systems. The authors in [START_REF] Jeon | Simultaneous state estimation and tire model learning for autonomous vehicles[END_REF] propose a neuro-adaptive observer to estimate both vehicle states and tire forces. Multivariate deep recurrent NNs are used with long short-term memory units in [START_REF] Xing | Dynamic state estimation for the advanced brake system of electric vehicles by using deep recurrent neural networks[END_REF] to estimate the brake pressure of electrified vehicles. An H ∞ observer is developed in [START_REF] Boada | A robust observer based on H∞ filtering with parameter uncertainties combined with neural networks for estimation of vehicle roll angle[END_REF] to estimate the vehicle roll angle in presence of parameter uncertainties, where measurement of the pseudo-roll angle obtained by NNs.

Concerning the vehicle sideslip angle estimation, NN-based methods have been proposed where the vehicle models are not required [START_REF] Boada | Sideslip angle estimator based on ANFIS for vehicle handling and stability[END_REF]- [START_REF] Wei | Vehicle sideslip angle estimation based on general regression neural network[END_REF]. For these model-free methods, different types of NNs are used to estimate the sideslip angle using onboard sensors as inputs and the sideslip angle as the output of developed NNs. In [START_REF] Kim | Vehicle sideslip angle estimation using deep ensemble-based adaptive Kalman filter[END_REF], the sideslip angle estimation is performed using recurrent NNs together with a nonlinear Kalman filter. Recurrent NNs are combined with kinematic models to estimate the vehicle sideslip angle [START_REF] Graber | A hybrid approach to sideslip angle estimation with recurrent neural networks and kinematic vehicle models[END_REF]. The main disadvantages of these NN-based estimation methods are concerned with the issues on stability, robustness to sensor noises, and the quantity as well as the quality of vehicle data used for NN training [START_REF] Liu | Sideslip angle estimation of ground vehicles: A comparative study[END_REF], [START_REF] Chindamo | On the vehicle sideslip angle estimation: a literature review of methods, models, and innovations[END_REF]. Moreover, these methods may require a high computation effort [START_REF] Graber | A hybrid approach to sideslip angle estimation with recurrent neural networks and kinematic vehicle models[END_REF]. Note that onboard computing units equipped in intelligent vehicles have to handle multiple tasks, e.g., perception, planning and control, with limited capability. Hence, vehicle dynamics estimation should be carried out with low implementation and computation cost. Combining model-based and NN-based approaches, where NNs are exploited to approximate the vehicle uncertainties, can be promising to overcome these major drawbacks.

Motivated by the above analysis, this paper proposes a TS fuzzy reduced-order observer scheme to estimate the nonlinear vehicle dynamics subject to modeling uncertainties and unknown inputs. To this end, the vehicle nonlinear model is first represented by an equivalent TS fuzzy form. Then, an H ∞ TS fuzzy reduced-order observer is designed for lateral speed estimation. The effect of uncertainty on the estimation error is alleviated by a NN-based uncertainty approximation, which is incorporated into the observer structure. A sliding mode observer (SMO) is utilized to identify the model uncertainty data from the training data. The model uncertainty data is used to train a feedforward neural network, whose inputs are the measured output and the control input of the vehicle, and the output is the approximated uncertainty. Backpropagation is used for the learning of the NN weights and biases with the training data collected in various driving situations. The main contributions of the paper are summarized as follows.

• We propose a new TS fuzzy observer design for a class of nonlinear uncertain systems subject to unknown inputs. The observer structure is of reduced order, which requires a low implementation cost in real-time. • A data-driven approach is proposed to construct feedforward NNs for uncertainty approximation, where a specific sliding mode observer is used to identify model uncertainties from the training data. NN-based uncertainty approximation is incorporated into the observer structure to mitigate the uncertainty effect and improve the vehicle estimation quality under extreme driving conditions. • The stability and robustness of the proposed NN-based observer scheme is guaranteed via Lyapunov stability theory. Design conditions of both TS fuzzy reduced-order observer for lateral speed estimation and SMO for NNbased uncertainty identification are obtained in terms of linear matrix inequalities (LMIs), which can be efficiently solved with numerical solvers. • The practical performance of the proposed TS fuzzy reduced-order observer design is validated with an autonomous vehicle at our LAMIH-CNRS laboratory under various driving scenarios on a real test track. A comparative study is also performed to illustrate the superiority of the new result with respect to related works.

Notation. For a positive integer r, we denote I r = {1, 2, . . . , r}. For a vector x, x i denotes its ith entry. For i ∈ I n : n (i) = [0, . . . , 0, 1 ith , 0, . . . , 0] ∈ R n is a vector of the canonical basis of R n . For a matrix A, A denotes the transpose of A, He(A) = A + A . A positive definite matrix A is denoted by A 0. diag(A 1 , A 2 ) is the block-diagonal matrix composed of A 1 , A 2 . An identity matrix of dimension n is denoted by I n , and a zero matrix of dimension m × n is denoted by 0 m×n . The explicit dimensions of both identity and null matrices are omitted if straightforwardly deduced. Symbol represents the terms generated by symmetry in block matrices. Arguments are omitted when there is no confusion.

II. VEHICLE MODELING AND PROBLEM FORMULATION

This section introduces the vehicle modeling and formulates the observer design problem for nonlinear uncertain systems subject to unknown inputs. 

A. Vehicle Nonlinear Model

We consider a two degrees-of-freedom vehicle model depicted in Fig. 1. Under regular driving conditions with small angles assumption and no longitudinal slip, the vehicle nonlinear dynamics can be described as [START_REF] Rajamani | Vehicle Dynamics and Control[END_REF], [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF] 

vy = 2(C r l r -C f l f )y r -2(C f + C r )v y m v v x -y r v x + 2C f δ m v - C dy ρ a A f y v 2 y 2m v (1) ẏr = 2(C r l r -C f l f )v y -2(C f l 2 f + C r l 2 r )y r I z v x + 2C f l f δ I z vx = y r v y - C dx ρ a A f x v 2 x 2m v + T w m v R t
where the vehicle parameters of the INSA autonomous vehicle at our LAMIH-CNRS laboratory are given in Table I.

The yaw rate y r and the longitudinal speed v x can be measured at low cost. However, the measurement of the lateral speed v y is not online available due to expensive sensors. The steering angle δ is the known control input u = δ. Note that it is difficult to measure the wheel torque T w , which is considered as an unknown input ω = T w . Then, the vehicle system (1) can be reformulated into the state-space form

ẋ = A(z)x + f (x) + g(y, u) + W ω y = Cx (2) with x = v y y r v x , z = y r 1 vx
, and

A(z) =    - 2(C f +Cr) mvvx 2(Crlr-C f l f ) mvvx -y r 2(Crlr-C f l f ) Izvx - 2(C f l 2 f +Crl 2 r ) Izvx 0 y r 0 0    f (x) =    - C dy ρaA f y v 2 y 2mv 0 0    , g(y, u) =    2C f δ mv 2C f l f δ Iz - C dx ρaA f x v 2 x 2mv    W =   0 0 1 mvRt   , C = 0 1 0 0 0 1 .
Since y r and v x can be measured at low cost, they are available as output measurements y = Cx in system [START_REF] Rajamani | Vehicle Dynamics and Control[END_REF]. Due to the nonlinear nature of the vehicle model ( 1), the state-space matrix A(z) in ( 2) is time-varying rather than constant. The choice of z = y r 1 vx is due to the fact that y r and v x are measurable, which later allows to equivalently represent system (3) by the TS fuzzy model ( 8) for observer design.

System (2) represents the nominal vehicle dynamics, whose front and rear tire forces are respectively modeled using the following linear model:

F f = 2C f α f , F r = 2C r α r
where α f and α r are front and rear wheels slip angles. Note that the cornering stiffness coefficients C f and C r as well as the yaw moment of inertia I z cannot be accurately identified in practice [START_REF] Zhang | A novel observer design for simultaneous estimation of vehicle steering angle and sideslip angle[END_REF]. Only nominal values of C f , C r and I z can be provided as in Table I. Hence, modeling errors and uncertainties should be taken into account in the observer design for an effective vehicle dynamics estimation.

B. Problem Formulation

A generic formulation of the nonlinear dynamics (2) with unknown input and uncertainty is considered as follows:

ẋ = A(z)x + f (x) + g(y, u) + W ω + d y = Cx, x ∈ D ( 3 
)
where D is a state-space compact set, x ∈ R n is the state vector, u ∈ R nu is the known input, y ∈ R p is the output vector, z ∈ R nz is the vector of measurable premise variables, f (x) and g(y, u) ∈ R n are nonlinearities, ω ∈ R nω is the unknown input, and d ∈ R n represents the lumped modeling uncertainties. The known constant matrices W ∈ R n×nω and C ∈ R p×n are full column rank and full row rank, respectively, which satisfy rank(CW ) = rank(W ).

Remark 1. Under condition (4), a coordinate transformation T can be constructed for system (3) such that C and W are in the following form [START_REF] Edwards | Sliding Mode Control: Theory and Applications[END_REF]:

C = 0 p×(n-p) I p , W = 0 (n-p)×nω W p n -p p . (5) 
Hence, without loss of generality, we consider in the sequel system (3) where C and W are in the form [START_REF] Zhang | Robust energy-topeak sideslip angle estimation with applications to ground vehicles[END_REF].

The nonlinearity f (x) satisfies the following assumption.

Assumption 1. The nonlinear function f (x) is differentiable with respect to x and satisfies

f ij ≤ ∂f i ∂x j (x) ≤ fij , i, j ∈ I n (6) 
with

f ij = min x∈D ∂fi ∂xj (x) , and f ij = max x∈D ∂fi ∂xj (x) .
Remark 2. Assumption 1 is necessary for the implementation of the differential mean value theorem stated in Lemma 1 in Section III. This instrumental allows to reformulate the mismatching nonlinear term involved the estimation error dynamics [START_REF] Zhang | A novel PWA lateral dynamics modeling method and switched T-S observer design for vehicle sideslip angle estimation[END_REF]. Accordingly, robust stability analysis of the estimation error system ( 12)-( 28) can be investigated, and LMI conditions can be derived for observer design.

Neural networks are well-known for the universal approximation capability. Hence, we assume that the uncertainty d can be approximated by a feedforward neural network η(y, u)

as d = η(y, u) + e η (7) 
where e η is the NN approximation error. The neural network η(y, u) is used to alleviate the effect of the uncertainty d on the estimation error. A data-driven approach to learn η(y, u) is presented in Section IV.

Remark 3. The neural network η(y, u) in ( 7) only depends on the measured signals as inputs, i.e., y and u, which simplifies the observer design for the nonlinear uncertain system (3).

Applying the sector nonlinearity approach [42, Chapter 2] with premise variables vector z and x ∈ D, system (3) can be equivalently represented by the following TS fuzzy model:

ẋ = m i=1 ρ i (z)A i x + f (x) + η g (y, u) + W ω + e η y = Cx, m = 2 nz (8)
where A i are local constant matrices, and

η g (y, u) = η(y, u) + g(y, u).
The membership functions ρ i (z), i ∈ I m , satisfy the convex sum property, i.e., ρ i (z) ≥ 0, and

m i=1 ρ i (z) = 1.
The structure of the proposed NN-based TS fuzzy reducedorder observer is depicted in Fig. 2. This paper addresses the following NN-based fuzzy observer design problem.

Problem 1. Determine a TS fuzzy reduced-order observer, where the effect of the uncertainty d on the estimation error is mitigated by a feedforward neural network [START_REF] Nam | Estimation of sideslip and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches[END_REF], to estimate the state vector x of system (3). 

III. REDUCED-ORDER OBSERVER DESIGN

This section presents a reduced-order observer design with guaranteed H ∞ robustness against uncertainty. Let us consider the following reduced-order observer for system [START_REF] Pan | Vehicle actuator fault detection with finite-frequency specifications via Takagi-Sugeno fuzzy observers: Theory and experiments[END_REF]:

ξ = m i=1 ρ i (z)(E i ξ + F i y) + Gf (x) + Gη g (y, u) x = M ξ + N y (9)
where x ∈ R n is the estimate of x, ξ ∈ R n-p is the state vector of the reduced-order observer, the observer matrices E i , F i (i ∈ I m ), G, M and N are to be designed such that

M G + N C = I (10) E i G + F i C = GA i , i ∈ I m . (11) 
Define e = x -x, and ε = Gx -ξ. It follows from ( 8), ( 9), ( 10) and ( 11) that

e = (M G + N C)x -(M ξ + N Cx) = M ε (12) ε = m i=1 ρ i (z)(E i G + F i C)x + Gf (x) + Gη g (y, u) + GW ω + Ge η - m i=1 ρ i (z)((E i ξ + F i y) + Gf (x) + Gη g (y, u)) = m i=1 ρ i (z)E i ε + G∆f + GW ω + Ge η ( 13 
)
with ∆f = f (x) -f (x).
To design G, M , N , E i and F i , i ∈ I m , such that equations ( 10) and ( 11) hold, we choose a matrix H ∈ R (n-p)×n such that H C is nonsingular and define

G = H -LC ( 14 
)
where L is a gain matrix to be determined. Then, it follows from ( 14) that

G C = I -L 0 I H C ( 15 
)
which means that G C is also nonsingular. Accordingly, equation ( 10) can be rewritten as

M N = G C -1 . ( 16 
)
From ( 15) and ( 16), the matrix M can be computed as

M = G C -1 I n-p 0 = H C -1 I L 0 I I n-p 0 = H C -1 I n-p 0 ( 17 
)
which means that M can be determined after choosing H. Meanwhile, N is computed from [START_REF] Xia | Vehicle sideslip angle estimation by fusing inertial measurement unit and global navigation satellite system with heading alignment[END_REF] as

N = G C -1 0 I p . (18) 
Furthermore, equation ( 11) can be rewritten as

E i F i G C = GA i , ∀i ∈ I m . (19) 
From ( 16) and ( 19), we can obtain

E i = GA i M, F i = GA i N, ∀i ∈ I m . (20) 
Note that the algebraic equations ( 10) and ( 11) hold if M , N , E i and F i , for i ∈ I m , are designed by [START_REF] Wang | Extremum-seeking-based adaptive model-free control and its application to automated vehicle path tracking[END_REF], [START_REF] Li | A reliable fusion methodology for simultaneous estimation of vehicle sideslip and yaw angles[END_REF], and [START_REF] Xia | Advancing estimation accuracy of sideslip angle by fusing vehicle kinematics and dynamics information with fuzzy logic[END_REF].

To determine G from ( 14), since the matching condition (4) holds, it follows that rank(CW ) = rank HW CW .

Let us select

L = HW (CW ) + + Z(I p -(CW )(CW ) + ) (21) 
where (CW ) + is the pseudo-inverse of CW and Z is the observer gain matrix to be designed, and denote

R = H -HW (CW ) + C, (22) 
S = [I p -(CW )(CW ) + ]C. (23) 
Then, from ( 14) and ( 21), we have

G = R -ZS (24) 
and

LCW = HW ⇔ GW = 0. (25) 
From ( 13), ( 20), ( 24) and (25), system ( 13) is rewritten as

ε = m i=1 ρ i (z)(R -ZS)A i M ε + (R -ZS)∆f + (R -ZS)e η ( 26 
)
where Z is designed to stabilize the system formed by ( 12) and ( 26). Accordingly, G can be determined from [START_REF] Zhang | A novel observer design for simultaneous estimation of vehicle steering angle and sideslip angle[END_REF].

The following differential mean value theorem is useful to reformulate the nonlinear term ∆f in [START_REF] Zhang | A novel PWA lateral dynamics modeling method and switched T-S observer design for vehicle sideslip angle estimation[END_REF] as a function of the estimation error ε.

Lemma 1 ([43]). Let f (x) : R n → R n and a, b ∈ R n . If f (x) is differentiable with respect to x on co(a, b), there exist vectors c i ∈ co(a, b), c i = a, c i = b, for i ∈ I n , such that f (a) -f (b) =   n i=1 n j=1 n (i) n (j) ∂f i ∂x j (c i )   (a -b).
Applying Lemma 1 under Assumption 1, we rewrite ∆f as

∆f = A f (x -x) = A f M ε (27) 
where

A f = n i=1 n j=1 n (i)ρ n (j) ∂fi ∂xj (x i ), xi ∈ co(x, x
), is a matrix with parameters varying in a bounded convex set H f . Under Assumption 1, the vertices set of H f is given by

V H f = θ = (θ ij ) ∈ R n×n : θ ij ∈ f ij , f ij
where f ij and f ij are as in [START_REF] Doumiati | Onboard real-time estimation of vehicle lateral tire-road forces and sideslip angle[END_REF]. Then, it follows from ( 26) and ( 27) that

ε = m i=1 ρ i (z)(R -ZS)(A i + A f )M ε + (R -ZS)e η . ( 28 
)
To stabilize the estimation error system ( 12)-( 28), H ∞ filtering approach is used to design Z such that Ω = V (ε) + e e -γ 2 e η e η < 0 [START_REF] Rahimilarki | Robust neural network fault estimation approach for nonlinear dynamic systems with applications to wind turbine systems[END_REF] where V (ε) = ε P ε, with P 0, is a Lyapunov function candidate, and γ > 0 is the disturbance attenuation level.

The following theorem provides LMI-based conditions to guarantee condition [START_REF] Rahimilarki | Robust neural network fault estimation approach for nonlinear dynamic systems with applications to wind turbine systems[END_REF] with a minimal value of γ.

Theorem 1. Condition (29) for the estimation error dynamics ( 12)-( 28) is guaranteed while minimizing γ if there exist matrices P 0, X of appropriate dimensions, and a scalar γ > 0 that solve the convex optimization problem: min(γ) subject to

Π i = He(Λ i ) + M M P R -XS -γI ≺ 0 ( 30 
)
with

Λ i = (P R -XS)(A i + A f )M , for i ∈ I m , and ∀A f ∈ V H f .
Moreover, the gain matrix Z is obtained as Z = P -1 X, and the minimal γ is computed as γ = √ γ.

Proof. Computing the time-derivative of V (ε) along the solution of system (28) and using expression [START_REF] Chen | Vehicle sideslip angle and road friction estimation using online gradient descent algorithm[END_REF], then the expression of Ω in (29) can be rewritten as

Ω = V (ε) + e e -γ 2 e η e η = 2ε m i=1 ρ i (z)(P R -P ZS)(A i + A f )M ε + (P R -P ZS)e η + ε M M ε -γ 2 e η e η . ( 31 
)
Denote X = P Z, γ = γ 2 , and ζ = col{ε, e η }, it follows from [START_REF] Peng | Constrained control of autonomous underwater vehicles based on command optimization and disturbance estimation[END_REF] that Ω = m i=1 ρ i (z)ζ Π i ζ. Thus, condition (29) holds if (30) holds. Furthermore, γ is minimized by minimizing γ.

The procedure to design the matrices E i , F i , G, M , N for the reduced-order observer ( 9) is summarized in Algorithm 1.

Algorithm 1: Reduced-order observer design 17), R by [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF] and S by [START_REF] Grip | Vehicle sideslip estimation: Design, implementation, and experimental validation[END_REF].

1 Choose a matrix H such that [H C ] is nonsingular. 2 Compute M by (
3 Determine the observer gain Z with Theorem 1. 4 Compute G by [START_REF] Zhang | A novel observer design for simultaneous estimation of vehicle steering angle and sideslip angle[END_REF]. 5 Compute N by [START_REF] Li | A reliable fusion methodology for simultaneous estimation of vehicle sideslip and yaw angles[END_REF].

6 Compute E i and F i by [START_REF] Xia | Advancing estimation accuracy of sideslip angle by fusing vehicle kinematics and dynamics information with fuzzy logic[END_REF].

Remark 4. Note that there always exists a matrix H such that H C is nonsingular [START_REF] Trinh | Functional Observers for Dynamical Systems[END_REF]. For example, since C = 0 I p , we can choose H = I n-p 0 . Thus, the existence of the reduced-order observer ( 9) is guaranteed by condition (4) and the solvability of (30).

IV. DATA-DRIVEN APPROACH FOR NN-BASED UNCERTAINTY APPROXIMATION

This section presents a data-driven approach for neuralnetwork-based uncertainty approximation, where η(y, u) in ( 7) is trained to alleviate the effect of d on the estimation error e.

A. System Partition

Since C and W are in the form [START_REF] Zhang | Robust energy-topeak sideslip angle estimation with applications to ground vehicles[END_REF], by reordering the last p components of the state vector x, without loss of generality, W p can be further written in the form

W p = 0 W q p -q q (32)
where all the rows of W q are non-zeros. We assume that W q is full row rank, i.e., rank(W q ) = q. By choosing H = I n-p 0 (n-p)×p , since C and W respectively are in the form ( 5) and [START_REF] Taghavifar | EKF-neural network observer based type-2 fuzzy control of autonomous vehicles[END_REF], it follows that HW (CW )

+ C = 0, or R = H -HW (CW ) + C = I n-p 0 (n-p)×p . (33) 
Moreover, since W q is assumed to be full row rank, it follows that (CW )(CW ) + = diag{0 (p-q)×(p-q) , I q }, or

S = [I p -(CW )(CW ) + ]C = 0 p×(n-p) diag{I p-q , 0 q×q } . (34) 
Then, it follows from ( 33) and ( 34) that the last q columns of G = R -ZS are zeros. Accordingly, the last q rows of e η are canceled in (R -ZS)e η and do not affect the estimation error dynamics ( 12)-( 28). In other words, it is not necessary to find a neural network approximation for the last q components of the uncertainty vector d. Let us partition d, x, f (x), g(y, u), A i as follows:

d = d d d q , x = x d x q , f (x) = f d (x) f q (x) n -q q g(y, u) = g d (y, u) g q (y, u) , A i = A idd A idq A iqd A iqq n -q q
with d q , x q , f q (x), g q (y, u) ∈ R q and A iqq ∈ R q×q . Note that

W = 0 W q n -q q .
Then, it follows from (3) and ( 5) that

ẋd = m i=1 ρ i (z)(A idd x d +A idq x q )+f d (x)+g d (y, u)+d d (35)
where d d is to be approximated by a neural network.

Remark 5. To alleviate the effect of the uncertainty d on the estimation error e, instead of approximating d, it is only required to approximate d d . Note that since ω is not involved in the dynamics [START_REF] Boada | Sideslip angle estimator based on ANFIS for vehicle handling and stability[END_REF], the SMO (36) can be designed for [START_REF] Boada | Sideslip angle estimator based on ANFIS for vehicle handling and stability[END_REF] for the identification of d d in the training data.

B. SMO-Based Uncertainty Identification for Training Data

To train a neural network for uncertainty approximation, the data of the state vector, control input, and measured output of system (3) are collected in various operating conditions. The following assumption is considered for collected vehicle data. Assumption 2. In the collected data used to train the neural network for uncertainty approximation, the offline full-state information of the vehicle is available.

This assumption is reasonable in practice since despite the unavailability of onboard information of v y due to sensors cost reasons (therefore, the vehicle state estimation is required for practical uses), such vehicle sensors are usually available in the R&D or vehicle production stage. Note that if Assumption 2 does not hold, the proposed TS fuzzy reduced-order observer design without using neural network is still valid. However, the estimation performance of the NN-based TS fuzzy reducedorder observer is superior over the observer without neural network as demonstrated in Section V.

Consider the following SMO for system [START_REF] Boada | Sideslip angle estimator based on ANFIS for vehicle handling and stability[END_REF] used to identify the uncertainty d d in the training data:

ẋd = m i=1 ρ i (z)(A idd xd + A idq x q + L di e x d ) + f d (x) + g d (y, u) -ν (36) 
where e x d = x d -xd , xd is the estimate of x d , and L di , for i ∈ I m , are to be designed. The signal ν in ( 36) is defined as

ν = -µ P -1 d ex d ||ex d || , if e x d = 0 0, otherwise
where µ > 0 and P d ∈ R (n-q)×(n-q) are to be designed. Note that it is not required to estimate x d offline. The estimation xd of x d with SMO ( 36) is only used to facilitate the identification of d d . From ( 35) and ( 36), the dynamics of the SMO estimation error e x d is given by

ėx d = m i=1 ρ i (z)(A idd -L di )e x d + d d + ν. ( 37 
)
The following theorem provides sufficient conditions which enable the identification of the uncertainty d d .

Theorem 2. If there exist matrices P d 0, X di , for i ∈ I m , of appropriate dimensions such that the following LMIs hold:

He(P d A idd -X di ) ≺ 0 (38)
and the scalar µ is chosen as

µ = μ + ||P d || d ( 39 
)
where μ is a positive scalar, and d is the bound of d d , i.e., ||d d || ≤ d. Then, there exists a scalar t sm > 0 such that

d d (t) = -ν(t), ∀t ≥ t sm . (40) 
Moreover, the observer gains L di , for i ∈ I m , in [START_REF] Melzi | On the vehicle sideslip angle estimation through neural networks: Numerical and experimental results[END_REF] are computed as

L di = P -1 d X di . Proof. Consider the Lyapunov function candidate V d (e x d ) = e x d P d e x d .
The time-derivative of V d (e x d ) along the solution of system ( 37) is given by

Vd (e x d ) = 2e x d P d m i=1 ρ i (z)(A idd -L di )e x d + d d + ν = m i=1 ρ i (z)e x d He(P d A idd -P d L di )e x d -2||e x d ||(µ -||P d ||||d d ||). ( 41 
)
Since X di = P d L di , it follows from [START_REF] Wei | Vehicle sideslip angle estimation based on general regression neural network[END_REF], [START_REF] Kim | Vehicle sideslip angle estimation using deep ensemble-based adaptive Kalman filter[END_REF] and [START_REF] Edwards | Sliding Mode Control: Theory and Applications[END_REF] that

Vd (e x d ) ≤ -2μ||e x d ||
which is the reachability condition [START_REF] Nguyen | Sliding mode observer for estimating states and faults of linear time-delay systems with outputs subject to delays[END_REF]. Hence, the sliding motion occurs where e x d = 0 and ėx d = 0. Assume that sliding motion occurs at t = t sm > 0, under the sliding motion, it follows from (37) that d d (t) = -ν(t), for ∀t ≥ t sm .

C. Neural-Network-Based Uncertainty Approximation

The datasets of x, y and u are collected in various operating conditions of system (3). Using the sliding mode observer [START_REF] Melzi | On the vehicle sideslip angle estimation through neural networks: Numerical and experimental results[END_REF], the data of the uncertainty d d can be identified with expression [START_REF] Graber | A hybrid approach to sideslip angle estimation with recurrent neural networks and kinematic vehicle models[END_REF] for each collected dataset. Then, all the datasets of y, u and d d are combined into a single dataset, which is used to train the neural network η d (y, u) to approximate d d . To train the neural network η d (y, u), where col{y, u} is the input and d d is the output, Matlab Deep Learning Toolbox is used in this paper. Note that to ensure the generalization capability of η d (y, u) on new data, a part of the combined dataset, e.g., 20%, is reserved for the validation of NN performance. To incorporate the trained neural network η d (y, u) into the observer (9), we use η(y, u) = η d (y, u) 0 .

Remark 6. If the data of ω can be also collected, then the data of the uncertainty vector d can be fully identified. In this case, the neural network η(y, u) can be trained to approximate d instead of d d .

Remark 7. Denote ŷ = C x as output of observer [START_REF] Liu | Sideslip angle estimation of ground vehicles: A comparative study[END_REF]. Choosing H = I n-p 0 (n-p)×p , it follows from (17) that

M is computed as M = I n-p 0 p×(n-p)
. Hence, it follows from ( 12) that e y = y -ŷ ≡ 0. In other words, the output of the observer ( 9) is identical to the measured output of system (3).

V. EXPERIMENTAL RESULTS

To validate the practical performance of the proposed TS fuzzy observer scheme, this section provides experimental results carried out with the INSA autonomous vehicle, depicted in Fig. 3 Taking into account the physical limitations during normal driving conditions [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF], the vehicle state-space compact set is defined as Using the sector nonlinearity method [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] with z ∈ R 2 , a fourrule TS fuzzy model of the vehicle system (2) can be easily obtained. Note from the vehicle model (2) that the matrices C and W are respectively full row rank and full column rank, and rank(CW ) = rank(W ). Moreover, C and W are in the form ( 5) and (32), respectively. Furthermore, from the analytical expression of f (x) and the vehicle compact set D, we can verify that Assumption 1 holds for the vehicle model [START_REF] Rajamani | Vehicle Dynamics and Control[END_REF].

D = v y ∈ [v y , v y ], y r ∈ [y r , y r ], v x ∈ [v x , v x ]
Solving the convex optimization problem in Theorem 1, we obtain the following gains for the reduced-order observer (9): The experimental data are separated into a training set and a test set with the ratio 80%-20%. To improve the approximation performance of the trained NNs, we train two separate neural networks η 1 (y, u) and η 2 (y, u) to approximate d 1 and d 2 , respectively. The same structure is used for both NNs η 1 (y, u) and η 2 (y, u), i.e., 1 hidden layer with 5 hidden units and hyperbolic tangent activation functions. This NN structure has been chosen by hyperparameters optimization/exhaustive search. In the following, we consider three test scenarios to illustrate the performance of the proposed NN-based TS fuzzy reduced-order observer as well as the observer without neural network, i.e., η(y, u) ≡ 0. Comparison with the existing TS fuzzy observer in [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF] is also provided. Note that the lateral speed is estimated by the estimation scheme [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF] with a nominal vehicle model. Hence, the estimation performance of the observer in [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF] is similar to that of the proposed TS observer without using neural networks. Note also that a fullorder observer has been developed in [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF], which requires a higher implementation cost compared to the reduced-order observer in this paper.

G = 1 -0.1390 0 , M =   1 0 0   , N =   0.1390 0 1 0 0 1   E 1 = E 2 = -9.8214, E 3 = E 4 = -130.9522 F 1 = [1.7980 1.1000], F 2 = [1.7980 -1.1000]
A. Scenario 1: Random Smooth Driving For this test scenario, the vehicle is driven on a random trajectory with some smooth turns. The vehicle trajectory, longitudinal speed, steering angle and wheel torque are depicted in Figs. 5( The estimation performance of the proposed TS fuzzy observer with and without including NN-based uncertainty approximations, as well as the nonlinear observer proposed in [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF], is demonstrated in Fig. 6. We can see that both TS fuzzy reduced-order observers with and without NNs, as well as the observer [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF], perform well in this scenario. However, the NN-based observer generally outperforms the observer without NNs and the TS observer [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF], especially when the magnitude of the lateral speed becomes large. (e) and (f). The estimation performance of the proposed observer with and without neural networks, as well as the observer [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF], is illustrated in Figs. 8. Despite a good estimation of both TS fuzzy reduced-order observers as well as the observer [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF], the NN-based observer outperforms the observer without NNs and the observer [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF], specifically when the vehicle is driven around the roundabout (or takes a sharp turn) with a large steering angle. The estimation performance of the proposed observer with and without NNs, as well as the observer [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF], is illustrated in Fig. 10. We can see that the observer without NNs and the observer [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF] poorly perform in this test. It is not the case of the NN-based TS fuzzy observer, which still provides Quantitative performance comparison in terms of mean absolute estimation error (MAE) of the proposed TS fuzzy reduced-order observers with and without using NNs, as well as the observer [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF], for three driving scenarios is provided in Table II. The comparison results further validate the superiority of the NN-based observer over the observer without neural networks as well as the existing method in [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF]. It should be also noted that the estimation performance by the observer without NNs and the nonlinear observer in [START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF] are roughly the same in all scenarios. large, e.g., sharp turn, roundabout, etc. In such situations, the small angle assumption and, accordingly, the nominal vehicle model does not hold well due to the presence of large uncertainties. Using neural networks has been shown to be useful in these cases to approximate the modeling uncertainties, and subsequently to mitigate the uncertainty effects on the estimation errors.

VI. CONCLUDING REMARKS

We have developed a NN-based TS fuzzy reduced-order observer to estimate the vehicle nonlinear dynamics subject to modeling uncertainties and unknown inputs. Motivated by recent advances in NN-based methods, a data-driven approach is proposed to construct NNs, which are used to approximate vehicle dynamics uncertainties. A sliding mode observer is proposed to identify the model uncertainty data from the training data. Then, the NNs are incorporated into the TS fuzzy reduced-order observer, whose design is based on the H ∞ filtering method and LMI-based technique. The NN-based uncertainty approximation mitigates the effect of uncertainty on the estimation error. Moreover, the reduced-order observer structure allows reducing the online implementation cost. The estimation performance of the proposed observer scheme has been validated with an autonomous vehicle and a real test track under different driving scenarios. The experimental results have shown a satisfactory performance of the new NN-based observer scheme, especially in situations where the vehicle modeling uncertainties become important due to a large steering angle, e.g., sharp turn, roundabout, etc. Future works focus on using the proposed NN-based TS fuzzy observer for output feedback vehicle control in extreme driving scenarios.

  For two vectors a, b ∈ R n : co(a, b) = {λa + (1 -λ)b : λ ∈ [0, 1]} is the convex hull of a and b, and col{a, b} = [a b ] .

Fig. 1 .

 1 Fig. 1. Schematic of a two degrees-of-freedom vehicle model.

Fig. 2 .

 2 Fig. 2. Takagi-Sugeno fuzzy reduced-order observer structure with NN-based uncertainty identification (solid line: online computation, dashed line: offline computation).

  (a). The experimental tests are performed on the Gyrovia test track shown in Fig. 3(b), situated at the Transalley technology hub, in Valenciennes, France, which is designed to safely simulate traffic scenarios in an urban environment.

Fig. 3 .

 3 Fig. 3. Experimental test facilities. (a) INSA autonomous vehicle at LAMIH-CNRS laboratory, (b) Gyrovia test track at the Transalley technology hub.

  where v y = -1.5 [m/s], v y = 1.5 [m/s], y r = -1.1 [rad/s] and y r = 1.1 [rad/s], and v x = 1.5 [m/s], v x = 20 [m/s].

F 3 =

 3 [23.9739 1.1000], F 4 = [23.9739 -1.1000] with γ min = 0.1029. Since the last column of G is 0, it is not necessary to approximate the last component d 3 of the uncertainty vector d by neural network, i.e., only the first two components d 1 and d 2 of d need to be approximated by η(y, u). To train the neural network η(y, u), the data are collected with the INSA autonomous vehicle on the Gyrovia test track under various driving scenarios. The driving maneuvers include several driving situations: random smooth driving, driving in a roundabout, taking a sharp turn, making a double lane change, and an extreme driving where the vehicle is driven in an aggressive manner with a rapid lane change and a rapid change of the longitudinal speed. A VBOX III sensor from Racelogic is installed on the vehicle, which comprises a double antennas GPS equipped with RTK correction. It is coupled with a six-degrees-of-freedom inertial measurement unit (IMU) composed by three accelerometers and three gyroscopes. The IMU, dual GPS, and other measurements are processed by a fusion system. Experimental data v y , y r , v x and δ are logged through CAN busses using a dSpace MicroAutobox II, then transferred to a Host PC for offline analysis as shown in Fig. 4. All the vehicle signals are sampled at 0.01 [s].

Fig. 4 .

 4 Fig. 4. Vehicle sensors and acquisition system.

  a), (b), (c), (d). The estimations by SMO of d 1 , d 2 , and their NN-based approximations are illustrated in Figs. 5(e) and 5(f).

Fig. 5 .

 5 Fig. 5. Driving scenario 1: (a) vehicle trajectory X-Y , (b) longitudinal speed vx, (c) steering angle δ, (d) wheel torque Tw, (e) uncertainty d 1 estimation and its NN-based approximation, (f) uncertainty d 2 estimation and its NNbased approximation.

Fig. 6 .Fig. 7 .

 67 Fig.6. Driving scenario 1: estimation of the lateral speed vy by the TS fuzzy reduced-order observer with and without neural networks, as well as the observer[START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF].

Fig. 8 .Fig. 9 .

 89 Fig.8. Driving scenario 2: estimation of the lateral speed vy by the TS fuzzy reduced-order observer with and without neural networks, as well as the observer[START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF].

Remark 8 .

 8 Experimental results have shown promising performance of the proposed NN-based observer scheme, especially in driving situations where the steering angle becomes

Fig. 10 .

 10 Fig.10. Driving scenario 3: estimation of the lateral speed vy by the TS fuzzy reduced-order observer with and without neural networks, as well as the nonlinear observer[START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF].

TABLE II QUANTITATIVE

 II ESTIMATION PERFORMANCE COMPARISON. 

	Mean absolute error	Scenario 1 Scenario 2 Scenario 3
	Observer [22]	0.0479	0.0501	0.1040
	Observer without NNs	0.0484	0.0529	0.0988
	NN-based observer	0.0203	0.0198	0.0529
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