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Reverberation of flexural waves scattered by a local
heterogeneity in a plate
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2016)

A statistical model is proposed to relate the scattering properties of a local heterogeneity in a plate

to the statistical properties of scattered and reverberated flexural waves. The contribution of the het-

erogeneity is isolated through the computation of differential signals consisting of a subtraction of

the signals recorded after and before introduction of the heterogeneity. The theoretical expression

of the average reverberation envelope of these differential signals is obtained as a function of the

scattering cross-section of the heterogeneity. Successful numerical and experimental validations in

various cases of canonical heterogeneities with known scattering cross-sections are shown. These

satisfying results offer a way to estimate the scattering cross-section of an unknown scatterer from

the reverberated differential signals. VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4954747]

[JFL] Pages: 157–164

I. INTRODUCTION

Wave physics problems in situations where a high num-

ber of propagation paths are possible may be judiciously

treated as a random process. Such approaches are well

known, for example, in multiple scattering1–4 or reverbera-

tion.5–9 In a closed medium with low attenuation, in particu-

lar, multiple reflections at the boundaries create long

reverberation tails (also called codas) in the acoustic signals

received after emission of an impulse source. These codas

correspond to the superposition of numerous wavepackets

having travelled the whole medium. Probably the most com-

mon application of ensemble averaging of reverberated

acoustic signals is in room acoustics. The reverberation time

can be easily extracted from envelope averaging or

Schroeder’s backward integration technique.10 Then, using

either Sabine’s or Eyring’s law, or some generalized version

of them, sound absorption coefficients of walls can be esti-

mated.11 This well known example constitutes a basic illus-

tration of the fact that extraction of average features on

apparently random signals may give access to some useful

characteristic properties of the medium.

Recently, the authors have shown how useful informa-

tion can be extracted on a reverberant plate, by both combin-

ing averaged coda properties and direct arrivals of flexural

waves.12–14 Depending on what is known about the plate, it

is possible to estimate in this manner either the surface area,

the average group velocity or the position of the source.

These estimations are based on a statistical time-domain

model of the distribution of the reverberated wavepackets.

The work proposed in this paper consists in developing

and applying a similar kind of model, in order to relate the

scattering properties of a local heterogeneity (or defect) to

average features of reverberated signals. The contribution

from the defect (scattered waves) is isolated by applying a

basic subtraction technique. The signal recorded at each re-

ceiver in the reference case [plate without defect, see Fig.

1(a)] is subtracted from the one recorded in the same plate

after introduction of the defect [Fig. 1(b)]. The subtraction

result will be referred to as the differential signal DsðtÞ. If

several source-receiver configurations are considered, then a

collection of differential signals with some ensemble statisti-

cal properties are obtained. The study of these properties is

the object of the work presented here. Though scattering of

guided waves by holes or inclusions in unbounded (open)

plates has been the subject of several theoretical papers,15–19

the reverberation of scattered waves in a bounded plate and

the relationship with open scattering properties are aspects

both theoretically original and experimentally useful for

defect characterization.

First, in Sec. II of this paper, the principle and main

results of the statistical model of plate reverberation derived

in previous works13,20 will be briefly recalled. Then, follow-

ing the same kind of derivation, the average envelope of the

differential (scattered) signals associated to a localized heter-

ogeneity will be theoretically derived in Sec. III. A funda-

mental term in the obtained expression is the scattering

cross-section of the heterogeneity. Hence in Sec. IV, which

is dedicated to numerical validation, two types of canonical

heterogeneities are considered, for which values of scattering

cross-section are known: a circular, infinitely rigid inclusion

and a circular hole. Finally, for more realistic validation,

experiments with a circular hole are proposed in Sec. V.

II. REVERBERANT PROPAGATION IN A FINITE PLATE

This section will recall the main results obtained in pre-

vious works about reverberation of flexural waves in finitea)Electronic mail: emmanuel.moulin@univ-valenciennes.fr
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plates.13,20 Reverberant propagation is described using a sta-

tistical model of wavepacket superposition in the time do-

main, based on the image-source method.21

The signal received at a given position after reverbera-

tion by the plate boundaries can be expanded as a sum of

wavepackets,

srevðtÞ ¼

X1
i ¼ 1

ri � r0

ji sðri; tÞ for t � t0;

0 for t < t0;

8>><
>>: (1)

where the subscript “rev” stands for reverberated, ji is the

number of wavepackets coming from image-sources located

at distances between ri and ri þ Dri from the receiver, r0 is

the source-receiver distance [see Fig. 1(a)], t0 the corre-

sponding propagation time, and sðri; tÞ is the signal received

after (dispersive) propagation over the distance ri. In the

case of a narrowband excitation s(r, t) can be expressed, for

any distance r, as

sðr; tÞ ¼ aðrÞ e�c0r spðr; tÞ; (2)

where a(r) is the geometrical spreading term (1=
ffiffi
r
p

in the

bidimensional case), c0 is the attenuation coefficient

(assumed constant in the considered frequency range) and

spðr; tÞ represents the propagative component of the wave-

packet, which is more conveniently defined by its Fourier

transform

~spðr;xÞ ¼ BðxÞ ~s0ðxÞ e�jkðxÞ r; (3)

with ~s0ðxÞ the Fourier transform of the excitation signal

s0ðtÞ and kðxÞ the wavenumber. BðxÞ is an excitation ampli-

tude, representing the conversion factor from the source sig-

nal to the modal excitation, depending on the generation

process (for instance load-induced displacements as in Sec.

IV or electromechanical effect as in Sec. V). Besides, it

should be noted that c0 is a global attenuation constant,

accounting for all losses in the propagation and reverberation

process (intrinsic material damping, energy losses in the air

through leaky waves and reflections at the plate edges).

Statistical treatment consists in considering a given set

of source and receiver as one realization of a random pro-

cess. In that case, ji is treated as a random variable, with a

mathematical expectation defined as

E½ji� ¼ kðriÞDri; (4)

where kðrÞ is the average density of wavepackets propagated

over the distance r. In the bidimensional case, kðrÞ ¼ bd r
with bd ¼ 2p=S and S the plate surface area.

Then, it can be shown that the mathematical expectation

of the signal envelope is given by

E½jSrevðtÞj2� ¼ A e�2t=s; (5)

where Srev is the complex analytic representation of srev; s
¼ 1=ðc0vg0

Þ and vg0
¼ vgðx0Þ the group velocity at the cen-

tral angular frequency x0 of the excitation. The amplitude

term A is given by

A ¼ vg0
bd Ds; (6)

with Ds an energy-related term defined as

Ds ¼
ðþ1

0

jBðxÞ ~S0ðxÞj2dx: (7)

In Sec. III, this kind of statistical model will be extended

to the waves scattered by a local heterogeneity (defect) in

the plate.

III. REVERBERATION OF SCATTERED WAVES

Consider a source (or indifferently one of its images) Si

located at a distance ui from the defect (Fig. 2), with an exci-

tation signal s0ðtÞ.
According to Eq. (2), the wavepacket incident on the

defect is

sðui; tÞ ¼ aðuiÞ e�c0ui spðui; tÞ: (8)

This wavepacket will be scattered by the defect, produc-

ing in the far field a diverging wave denoted sscajui
ðr; h; tÞ

FIG. 2. Scattering of an incident wave from one of the image-sources by the

defect.

FIG. 1. Schematic description of the case study. (a) Homogeneous reverber-

ant plate with a source (S) and a receiver (R) separated by an arbitrary dis-

tance r0. (b) Same plate, except a local defect (D) is present.
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with an angle-dependent amplitude f ðh;xÞ, and whose

Fourier transform can be expressed as

~sscajui
ðr;h;xÞ¼ f ðh;xÞaðrÞaðuiÞe�c0ðrþuiÞ ~spðrþ ui;xÞ;

(9)

where the subscript “sca” stands for scattered. This wave

scattered by the defect is then reverberated by the plate

boundaries and the signal received by the receiver R corre-

sponds to the sum of the wavepackets received by each of its

images. Similarly to Eq. (1), this total signal can therefore be

expressed as

ssca;revjui
ðtÞ ¼

X1
j ¼ 1

rj � r2

jj sscajui
ðrj; hij; tÞ for t � r2=vg0

;

0 for t < r2=vg0
;

8>>><
>>>:

(10)

where the subscript “sca,rev” means “scattered and reverber-

ated,” r2 is the distance from the defect to the receiver [see

Fig. 1(b)], rj is the distance from the defect to the jth image

(Rj) of the receiver, hij is the value of angle h (defined in Fig.

2) corresponding to the scattered wavepacket received by Rj,

and jj has the same definition is in Eq. (1).

This signal ssca;revjui
ðtÞ corresponds to the signal received

when the defect scatters the wavepacket coming from a sin-

gle source (or image-source) Si located at a distance ui from

the defect. Each image-source will excite the defect at its

turn and hence create a similar signal. The total signal at the

receiver can then be written as

DsðtÞ ¼

X1
i ¼ 1

ui � r1

ji ssca;revjui
ðtÞ for t � r1=vg0

;

0 for t < r1=vg0
:

8>>><
>>>:

(11)

For convenience, we will consider in the following that

t � ðr1 þ r2Þ=vg0
. Since the case t < ðr1 þ r2Þ=vg0

corre-

sponds to trivially zero result, it will only be reminded at the

end of the derivation.

Then, from Eq. (11), the square of the envelope of

DsðtÞ is

jDSðtÞj2 ¼
Xþ1

iðui�r1Þ
j2

i jSsca;revjui
ðtÞj2

þ
Xþ1

i

Xþ1
k 6¼i

jijkjSsca;revjui
ðtÞ S�sca;revjuk

ðtÞj; (12)

where Ssca;revjui
is the complex analytic representation of

ssca;revjui
.

It can be shown that the cross-terms vanish.20 Therefore,

jDSðtÞj2 ¼
Xþ1

iðui�r1Þ
j2

i jSsca;revjui
ðtÞj2; (13)

and in the same way, using Eq. (10)

jSsca;revjui
ðtÞj2 ¼

X1
jðrj�r2Þ

j2
j jSscajui

ðrj; hij; tÞj2: (14)

Taking the mathematical expectations while assuming

independence of the random variables, one obtains

E½jDSðtÞj2� ¼
Xþ1

iðui�r1Þ
E½ji�E½jSsca;revjui

ðtÞj2� (15)

and

E½jSsca;revjui
ðtÞj2� ¼

X1
jðrj�r2Þ

E½jj�E½jSscajui
ðrj; hij; tÞj2�:

(16)

Assuming that f ðh;xÞ is approximately constant in the

frequency range (around x0), taking the inverse Fourier

transform of Eq. (9) and the mathematical expectation of the

envelope yields

E½jSscajui
ðrj; hij; tÞj2� ¼ E½jf ðhij;x0Þj2� a2ðrjÞ a2ðuiÞ

� e�2c0ðrjþuiÞ jSpðrj þ ui; tÞj2:
(17)

Assuming uniform probability density for hij in the

interval ½0; 2p�, the mathematical expectation E½jf ðhij;x0Þj2�
can be estimated by an average of jf ðh;x0Þj2 over the inter-

val. Therefore,

E jf hij;x0

� �
j2

h i
’ r0

2p
; (18)

where r0 is the scattering cross-section of the defect at fre-

quency x0, defined as

r0 ¼ rðx0Þ ¼
ð2p

0

jf ðh;x0Þj2dh: (19)

Introducing Eqs. (17) and (18) into Eq. (16) and replac-

ing sums by integrals yields

E jSsca;revjui
tð Þj2

h i
¼ r0

2p
a2 uið Þ

ðþ1
r2

a2 rð Þ k rð Þ

� e�2c0 rþuið Þ jSp r þ ui; tð Þj2 dr:

(20)

Performing a simple change of variables ðv ¼ r þ uiÞ
and remarking that a2ðrÞkðrÞ ¼ bd, we obtain

E jSsca;revjui
tð Þj2

h i
¼ bd

r0

2p
a2 uið Þ

�
ðþ1

r2þui

e�2c0v jSp v; tð Þj2 dv: (21)

Since Spðr; tÞ is nonzero only for values of r inside a

narrow interval around rt ¼ vg0
t, where vg0

is the group
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velocity at x0, the exponential term varies slightly within

that interval and then

E jSsca;revjui
tð Þj2

h i
’ bd

r0

2p
a2 uið Þe�2c0rt

ðþ1
r2þui

jSp r; tð Þj2 dr:

(22)

Introducing Eq. (22) into Eq. (15) and replacing the dis-

crete sum by an integral yields

E jDS tð Þj2
� �

¼ b2
d

r0

2p
e�2c0rt

ðþ1
r1

ðþ1
r2þu

jSp r; tð Þj2dr du:

(23)

Considering once more the properties of the wavepacket

corresponding to Spðr; tÞ, the following approximation can

reasonably be made:

ðþ1
r2þu

jSpðr; tÞj2dr ’

ðþ1
0

jSpðr; tÞj2dr for r2 þ u � rt;

0 for r2 þ u > rt:

8><
>:

(24)

Then Eq. (23) yields

E jDS tð Þj2
� �

¼ b2
d

r0

2p
e�2c0rt rt � r2 � r1ð Þ

�
ðþ1

0

jSp r; tð Þj2dr: (25)

As shown in previous works,20

ðþ1
0

jSpðr; tÞj2dr ¼
ðþ1

0

vgðxÞjBðxÞ ~S0ðxÞj2dx

’ vg0
Ds; (26)

with Ds as defined in Eq. (7).

Then, recalling that rt ¼ vg0
t and defining s ¼ 1=ðc0vg0

Þ,
Eq. (25) yields

E jDS tð Þj2
� �

’ r0

S vg0
t� r1 � r2ð ÞA e�2t=s; (27)

with A ¼ 2pvg0
Ds=S as defined in Eq. (6).

The presence of both distances r1 and r2 in Eq. (27)

needs to be briefly commented here. For convenience, they

have been implicitly considered as invariants of the random

process when taking the mathematical expectations. In a re-

alistic situation, though, averaging would be performed over

a set of distributed receivers (and possibly sources), for a

fixed scatterer position. In that case, r1 þ r2 would obviously

vary. The error introduced by the invariant assumption is

minor, especially for large times (when vg0
t� r1 þ r2).

However, a better approximation for short times can be

obtained in replacing r1 þ r2 with an average distance ra. In

cases where the squared-envelope averaging is performed

over a set of receivers and with a unique source position, ra

may be defined as r1 þ r2a, where r2a is the average distance

between the defect and the receivers. More elegantly, an ap-

proximate value independent from the particular source and

receiver positions may be obtained by defining ra as

ra ¼
2

S

ð ð
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xdð Þ2 þ y� ydð Þ2

q
dx dy; (28)

which corresponds to two times the average distance

between the defect position (xd, yd) and any point on the

plate.

Then, the final theoretical expression of the average

squared envelope of reverberated scattered waves is

E jDS tð Þj2
� �

’
r0

S vg0
t� rað ÞA e�2t=s for t � ra=vg0

;

0 for t < ra=vg0
:

8<
:

(29)

Numerical and experimental validations of this expres-

sion will be proposed in Secs. IV and V, respectively. In all

presented cases, the range of frequency-plate thickness prod-

uct is sufficiently low so that a surface excitation will not

significantly generate any guided mode other than the flex-

ural one (or A0 mode). Therefore the model assumption of a

single-mode propagation will apply.

IV. NUMERICAL VALIDATION

In this section, the open-source finite element code

Elmer22 is used to simulate the propagation of flexural waves.

This code includes a Reissner-Mindlin plate model, which

will be perfectly convenient for the range of frequency-plate

thickness product considered in this work. In all simulations,

the excitation is a time-dependent normal point load s0ðtÞ
applied at the plate surface. From the far-field expression of

the Green’s function for flexural waves, the excitation ampli-

tude BðxÞ in Eq. (3) can be expressed in this case by

B xð Þ ¼ j� 1

8 k xð Þ2 D
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pk xð Þ

p ; (30)

with D ¼ Eh3=½12ð1� �2Þ� the bending stiffness, where E,

�, q and h are the Young’s modulus, the Poisson’s ratio, the

density and the plate thickness, respectively.

Introducing this expression of BðxÞ into Eq. (7) and

assuming a narrowband load excitation s0ðtÞ of central fre-

quency x0 yields

Ds ’
1

16 p k5
0 D2

ðþ1
0

s2
0 tð Þ dt; (31)

where k0 ¼ kðx0Þ.
The Kirchhoff-Love plate theory allows to approximate

the wavenumber and group velocity of flexural waves by k0

’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0

ffiffiffiffiffiffiffiffiffiffiffi
qh=D

pq
and vg0

’ 2x0=k0, respectively. Therefore,

from Eqs. (6) and (31), the amplitude of the average of

the squared envelope of the reverberated signal can be

estimated as

160 J. Acoust. Soc. Am. 140 (1), July 2016 Achdjian et al.
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A ’ 1

4Sx2
0

ffiffiffiffi
D
p

qhð Þ3=2

ðþ1
0

s2
0 tð Þ dt: (32)

Since Eq. (29) depends on the plate surface area S, two

plates of different sizes are considered in the simulations:

• Plate 1: 1.5 m� 1 m (S ¼ 1:5 m2), rectangular, 3 mm

thickness, aluminum.

• Plate 2: 0.5 m� 0.3 m (S ¼ 0:15 m2), rectangular,

3 mm thickness, aluminum.

A defect (scatterer) is modelized by a local modification

of the plate properties. For validation purpose, it is necessary

to select a canonical type of scatterer for which theoretical

estimation of the scattering cross-section r0 is available.

Here, the two limit cases of a cylindrical inclusion have been

considered: an infinitely rigid inclusion (clamped condition

on a cylindrical area spanning the whole plate thickness) and

a cylindrical through-hole. In both cases, r0 has been esti-

mated from the work of Vemula and Norris16 on the scatter-

ing of flexural plate waves. The numerical reverberated

scattered waves are obtained from the subtraction of the

results of finite element simulations of, first, the plate with

the scatterer and, second, the same plate without scatterer

(reference state).

The results presented on Fig. 3 concern plate 1. The nor-

mal load signal s0 is a Hanning-windowed sinusoid wave-

form of frequency f0 ¼ x0=2p ¼ 10 kHz and a number of

cycles Nc¼ 10. The first step consists in verifying the consis-

tency of the finite element simulation with Eqs. (5) and (32).

The numerical averaged envelopes are obtained from the

time-dependent normal displacements extracted at 15 ran-

domly distributed positions over the surface of the plate

simulated without defect. First, the squared envelopes of

these 15 signals are computed from the modulus of their

complex analytical representations (numerical Hilbert trans-

form). Then the average of these 15 squared envelopes is

computed. Finally, in order to show a result homogeneous to

displacement signals, the square root of this average is taken

[thin curve in Fig. 3(a)]. The theoretical curve (bold line) is

obtained from the square root of Eq. (5). As already

observed in previous works,13,20 a very satisfying agreement

is obtained between both curves.

Now the reverberated scattered waves will be consid-

ered. Differential signals are extracted from the subtraction

of the signals obtained at the same 15 positions in both the

plate with a defect and the reference state. In the first exam-

ple the defect is an infinitely rigid inclusion of 5 mm radius,

centered at position (xd ¼ 0:8 m, yd ¼ 0:6 m) (origin taken

at the bottom left corner of the plate). The corresponding

scattering cross-section is r0 ¼ 6:2 cm at f0 ¼ 10 kHz. The

average envelope of these reverberated scattered signals

DsðtÞ is computed following the same process as described

above. The result of this numerical estimation is presented as

the thin curve on Fig. 3(b). The increasing evolution for

early times is typical of cumulative effects associated to the

scattering by the defect of multiply reflected waves at the

plate boundaries. Then at later times (corresponding to lon-

ger propagation distances and a higher number of reflec-

tions), the exponential decrease caused by attenuation

eventually becomes the dominating effect. This evolution is

well predicted by the theoretical curve (bold line) corre-

sponding to the square root of Eq. (29). The average distance

ra has been determined from Eq. (28) which, in the case of a

rectangular plate of sides a and b, can be explicitly calcu-

lated as

ra ¼
2

ab
½F xd; ydð Þ þ F a� xd; ydð Þ þ F xd; b� ydð Þ

þ F a� xd; b� ydð Þ�; (33)

with

F x; yð Þ ¼
xy

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
þ y3

6
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
þ x

y

 !

þ x3

6
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
þ y

x

� �
: (34)

Other results, for the same plate and the same scatterer

but at higher frequencies, are presented on Fig. 4. In order to

show a set of curves dependent only on the plate and defect

properties, and independent from the source amplitude, it is

more judicious to normalize with respect to the amplitude

term A. Therefore, we represent in the following figures the

square root of the averaged squared envelopes of the 15 nu-

merical DsðtÞ signals, divided by
ffiffiffi
A
p

(thin curve). In bold

FIG. 3. (Color online) Comparison between theory (bold line) and numeri-

cal results (thin line) for plate 1, with f0 ¼ 10 kHz and Nc¼ 10 cycles. (a)

Average envelope of reverberated signals, plate without defect. (b) Average

envelope of reverberated scattered waves, defect is a rigid inclusion of ra-

dius 5 mm (r0 ¼ 6:2 cm).
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curve, we have also represented for comparison the follow-

ing theoretical expression naturally derived from Eq. (29):

Envnor½DsðtÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 ðvg0 t� raÞ=S

p
e�t=s. For simplicity, we

will refer to these quantities as normalized average enve-

lopes. Figure 4(a) corresponds to an excitation frequency

f0 ¼ 20 kHz, for which r0 ¼ 5:1 cm. Figure 4(b) corresponds

to f0 ¼ 30 kHz and r0 ¼ 4:6 cm. In both cases, the theoreti-

cal curve satisfyingly matches the numerical one.

In the following examples, the scatterer will be a

through hole of radius 5 mm located at the same position as

in the previous case. Since the scattering cross-section is

much lower for a hole than for a rigid inclusion of the same

diameter, these results will extend the validation range of

Eq. (29). Thus, normalized average envelopes are repre-

sented in Figs. 5(a) and 5(b) for excitation frequencies

20 kHz (r0 ¼ 0:74 mm) and 30 kHz (r0 ¼ 2:2 mm), respec-

tively, and for the same simulated plate 1. Here again, a sat-

isfying comparison is observed.

Results are less satisfying when considering a smaller

plate. Indeed, as shown in Fig. 6(a), it appears that for a fre-

quency of 20 kHz in plate 2 (same hole, centered at xd ¼ 0:2
m, yd ¼ 0:1 m), the average envelope is poorly estimated by

the theory. A simple explication of this fact is that the plate

boundaries can no longer be considered as in the far field of

the scatterer. With a wavelength around 4 cm at 20 kHz, the

hole is necessarily within a distance shorter than three to

four wavelengths from at least one of the boundaries.

Therefore, possible interactions of evanescent waves created

around the scatterer and near the boundaries may occur.

Since they are not taken into account in the theory (relying

on far-field scattering properties only), such evanescent

waves would obviously invalidate the predictions. This is a

limitation of the current model.

When the excitation frequency is increased, the far field

assumption eventually becomes valid again. Hence, a satis-

fying agreement is shown on Fig. 6(b) for f0 ¼ 50 kHz, at

which the minimum hole-boundary distance is more than six

wavelengths.

As shown in Sec. V, similar results are obtained

experimentally.

V. EXPERIMENTAL RESULTS

Experiments have been carried out on an aluminum

plate of lateral dimensions 0.5 m� 0.3 m and 3 mm thickness

(same dimensions as plate 2 in the numerical simulations

presented in Sec. IV). The plate has been equipped with a set

of nine piezoelectric (PZT) patches arbitrarily distributed on

its surface. One of them is used as the acoustic source and is

fed with an electrical signal s0ðtÞ provided by a function gen-

erator. The other PZT patches are connected to an eight-

channel data acquisition board and are used as receivers.

In all the presented cases, the excitation signal s0 is a

Hanning-windowed sinusoid waveform of frequency f0 and

with a duration of Nc cycles. First, the eight received signals

have been simultaneously recorded in the defect-less plate.

Then a 5 mm-radius through-hole has been drilled in the

plate, at position (xd ¼ 0:2 m, yd ¼ 0:1 m) and a second set

FIG. 4. (Color online) Comparison between theory (bold line) and numeri-

cal results (thin line) for plate 1: normalized average envelopes of reverber-

ated scattered waves, defect is a rigid inclusion of radius 5 mm. (a)

f0 ¼ 20 kHz (r0 ¼ 5:1 cm), Nc¼ 10 cycles. (b) f0 ¼ 30 kHz (r0 ¼ 4:6 cm),

Nc¼ 10 cycles.

FIG. 5. (Color online) Comparison between theory (bold line) and numeri-

cal results (thin line) for plate 1: normalized average envelopes of reverber-

ated scattered waves, defect is a hole of radius 5 mm. (a) f0 ¼ 20 kHz

(r0 ¼ 0:74 mm), Nc¼ 10 cycles. (b) f0 ¼ 30 kHz (r0 ¼ 2:2 mm), Nc¼ 10

cycles.
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of acquisitions has been recorded. After subtraction of the

records made after and before the hole drilling, respectively,

the same process as with the numerical subtraction signals

has been applied: computation of the squared envelopes, av-

erage, division by the amplitude term A (normalization) and

square root of the result. It should be noted, however, that

since the excitation is provided by a PZT patch bonded on

the plate surface, direct estimation of A [as is the case in the

numerical case from Eq. (32)] would be really difficult.

Indeed, this would require a perfect knowledge of the elec-

tromechanical patch properties and the bonding characteris-

tics, which is hardly realistic. Instead, as explained in

previous works,13 it is possible to estimate A from a mere

curve fitting applied to the averaged squared envelope of the

reverberated signals in the defect-less plate.

The obtained experimental results are shown in thin

curves in Figs. 7 and 8, for different frequencies ranging

from 20 to 80 kHz. The theoretical envelopes obtained from

Eq. (29) have also been represented in each case for compar-

ison (bold curves).

For excitation frequencies of 20 and 50 kHz [Figs. 7(a)

and 7(b), respectively], the obtained results are very similar

to the numerical ones (presented in Fig. 6). The main notice-

able difference is the higher dispersion (or oscillations) of

the experimental envelopes around their average values.

This is merely due to the fact that the numerical envelopes

are obtained from an average over 15 sensor positions,

whereas the experimental ones are obtained from 8 sensors

only. This direct comparison between Figs. 7 and 6 tends to

FIG. 6. (Color online) Comparison between theory (bold line) and numeri-

cal results (thin line) for plate 2: normalized average envelopes of reverber-

ated scattered waves, defect is a hole of radius 5 mm. (a) f0 ¼ 20 kHz

(r0 ¼ 0:74 mm), Nc¼ 10 cycles. (b) f0 ¼ 50 kHz (r0 ¼ 5:8 mm), Nc¼ 20

cycles.

FIG. 7. (Color online) Comparison between theory (bold line) and experi-

mental results (thin line) for plate of dimensions 0.5 m� 0.3 m, 3 mm thick-

ness: normalized average envelopes of reverberated scattered waves, defect

is a hole of radius 5 mm. (a) f0 ¼ 20 kHz (r0 ¼ 0:74 mm), Nc¼ 10 cycles.

(b) f0 ¼ 50 kHz (r0 ¼ 5:8 mm), Nc¼ 20 cycles.

FIG. 8. (Color online) Comparison between theory (bold line) and experi-

mental results (thin line) for plate of dimensions 0.5 m� 0.3 m, 3 mm thick-

ness: normalized average envelopes of reverberated scattered waves, defect

is a hole of radius 5 mm. (a) f0 ¼ 60 kHz (r0 ¼ 7:1 mm), Nc¼ 25 cycles. (b)

f0 ¼ 80 kHz (r0 ¼ 8:8 mm), Nc¼ 30 cycles.
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prove in particular, that the mismatch observed for longer

wavelengths (example here at 20 kHz) is neither caused by

some numerical bias nor some experimental uncertainty.

Finally, experimental results at higher frequencies are

presented on Fig. 8. A very good agreement with the theoret-

ical envelopes is observed. These results confirm the validity

of the theory, provided the wavelength is small compared to

the lateral plate dimensions.

VI. CONCLUSION

The work presented here establishes a direct relationship

between the scattering properties of a local heterogeneity in

a plate and the statistical features of differential signals

obtained from subtraction of waveforms recorded after and

before introduction of the heterogeneity.

A statistical model has been developed, based on aver-

age distribution of scattered and reverberated wavepackets.

This model is valid in the case of single-mode propagation

(here flexural waves) and provided the defect is at a distance

of more than a few wavelengths from all plate boundaries

(far-field assumption). In those conditions, the mathematical

expectation of the squared envelope of the differential sig-

nals has been explicitly related to both the plate and scatterer

characteristics. In particular, the amplitude of the theoretical

envelope is shown to be proportional to the square root of

the scattering cross-section of the heterogeneity.

Both numerical and experimental validations of the

theory have been demonstrated. The average of the enve-

lopes of differential signals, collected on a set of receivers

distributed over the plate surface, compares satisfyingly to

the theoretical expectation.

These results provide a way of directly estimating the

scattering cross-section of an unknown defect, without the

impractical requirement of isolating the first wavepackets

from the reflected ones. Therefore, this could serve as a ref-

erence technique in situations where a quantitative character-

ization of a defect in a bounded medium is needed.
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