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Abstract

A fault estimation method for a class of nonlinear parameter-varying sys-
tems subject to time-varying delay and unmeasured nonlinearities is pre-
sented. The unmeasured time-varying parameters are effectively handled
using a sector-based condition approach. A gain-scheduling intermediate es-
timator is proposed to simultaneously estimate the system state and the un-
known faults. Design conditions are derived based on Lyapunov–Krasovskii
functional and integral inequality techniques. These conditions, expressed
as linear matrix inequalities, ensure that the estimation error dynamics are
input-to-state stable with respect to the time-derivative of the faults. More-
over, it is demonstrated that for the case of piecewise constant faults, the
estimation error dynamics are exponentially stable. As a corollary result,
conditions are also presented to design gain-scheduling intermediate estima-
tors for nonlinear parameter-varying systems without time-varying delays.
Three physically motivated examples are provided to demonstrate the effec-
tiveness and practical interests of the proposed nonlinear estimation method.
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1. Introduction

Modern control systems require more sophisticated design requirements
concerning safety, reliability, and maintainability. Possible occurrences of
sensor and actuator faults can lead to closed-loop performance degradation
or even instability [1, 2]. To this end, fault-tolerant control (FTC) techniques5

have been proposed to ensure desirable closed-loop requirements despite the
presence of faults [3–5]. However, a key point for the correct operation of
several FTC strategies is a well-designed fault detection and isolation (FDI)
scheme, which is able to provide precise and correct information about the
faults. Although FDI schemes are designed to provide residual signals to10

indicate the fault occurrence and the information of its type and location,
the exact information about the magnitude and the shape of the fault can-
not be obtained, which has motivated the development of fault estimation
techniques to provide more precise information about the fault [6].

Within this context, observer-based fault estimation techniques have been15

widely studied, including sliding mode observers [7, 8], adaptive observers
[9, 10], and unknown input observers [11, 12]. However, these techniques gen-
erally require the so-called matching condition to be satisfied, which may be
restrictive, especially for nonlinear systems. To overcome this issue, Zhu et al.
[6] have proposed the use of intermediate estimators to estimate both the20

states and the faults of nonlinear systems with Lipschitz nonlinearities. Other
results concerning intermediate estimators have been derived for nonlinear
systems with Lipschitz nonlinearities subject to stochastic faults [13], linear
systems with multiple faults and disturbances [14], cooperative fault-tolerant
tracking control of multi-agent systems [15], and attack reconstruction for25

cyber-physical systems [16]. However, the issue of intermediate estimator-
based fault estimation has not been addressed for time-delayed (nonlinear)
systems in the open literature.

Fault estimation results have been developed for time-delayed systems.
Sliding mode observers have been proposed for state and parameter esti-30

mation of nonlinear time-delayed systems in [17], and for the estimation of
sensor and actuator faults of time-delay Markov jump systems in [18]. More-
over, the fault diagnosis problem has been addressed for descriptor linear
parameter varying (D-LPV) systems with time delay based on an adaptive
polytopic observer [19]. However, for observer design, these results require35

well-known matching conditions. Without requiring specific matching con-
ditions, a proportional multiple integral observer has been proposed to es-
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timate both sensor and actuator faults of time-delayed Takagi-Sugeno (TS)
fuzzy systems in [20]. Using the concept of intermediate estimators, the fault
accommodation problem has been addressed by [21] for linear systems with40

time-varying delays, and by [22] for switched systems with time-varying de-
lays. More recently, the actuator and sensor fault estimation problem has
been also addressed for linear neutral-type systems in [23]. Most of the ex-
isting fault estimation results are related to linear systems and only a few
results are available for nonlinear time-delay systems, e.g., D-LPV systems45

or TS fuzzy systems. Accordingly, the first motivation of this work is to
address the fault estimation problem for a class of nonlinear time-delayed
systems using observers without requiring matching conditions.

This problem is addressed here regarding a polytopic embedding of non-
linear systems. It is known that nonlinear dynamical systems can be equiva-50

lently represented by polytopic quasi-LPV systems or TS fuzzy models [24].
However, although these representations are useful to derive constructive and
numerically implementable conditions for designing observers [25], there is an
important issue that should be accounted into the observer design, i.e., the
necessity to deal with unmeasured scheduling functions or premise variables55

in TS fuzzy systems. The results available for fault estimation and diagnosis
for LPV systems [19] and TS fuzzy models [20] assume that the scheduling
functions are measured or dependent on the output variables, which makes
the design easier but limited to specific classes of nonlinear dynamical sys-
tems. To avoid this restriction, the second motivation of this work is to60

provide constructive observer design conditions considering a polytopic rep-
resentation of nonlinear time-delay systems with unmeasured nonlinearities.

For properly handling the unmeasured premise variables, the nonlinear
system is rewritten as a TS fuzzy model with nonlinear consequent parts (N-
TS) [26–28]. Overall, the main advantage of the N-TS fuzzy models over the65

standard TS fuzzy models is the possibility to obtain a model with a fewer
number of fuzzy rules, which reduces the representation’s complexity [26]. In
the specific context of observer design, the N-TS fuzzy model provides a suit-
able alternative for handling the unmeasured premise variables by subsuming
the unmeasured terms in a local nonlinearity. Although this representation70

has shown to be effective for designing observers [27, 28] and unknown input
observers [29] for N-TS fuzzy models, there are no results available for time-
delay N-TS fuzzy models and N-LPV systems concerning fault estimation
problems, which is the scope of this work.

This work addresses the fault estimation problem for a class of nonlinear75
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time-delay systems considering intermediate observers. The main contribu-
tions can be summarized as follows.

• A new class of gain-scheduling intermediate observers is proposed to
simultaneously estimate the state and fault, without requiring match-
ing conditions. Notice that results on intermediate observers are only80

available for linear time-delay systems [21, 23].

• Time-delay nonlinear systems are represented by a specific nonlinear
parameter-varying (N-LPV) form, which allows circumventing the as-
sumption of measured scheduling functions or premise variables in [19,
20].85

• Constructive and numerically implementable conditions are derived in
the form of linear matrix inequalities (LMIs) for gain-scheduling inter-
mediate observer design such that the error dynamics is input-to-state
stable (ISS) with respect to the fault time-derivative. A corollary result
for N-LPV systems without time-varying delays is also presented.90

This paper is organized as follows. The class of nonlinear time-delay
parameter varying systems and the problem definition are described in Sec-
tion 2. Section 3 presents the main results on gain-scheduling intermedi-
ate observer design. In Section 4, three numerical examples with physically
motivated systems are presented to illustrate the interests of the proposed95

approach. Finally, Section 5 concludes the paper.

Notation. N is the set of natural numbers and N≤m is the set of natural
numbers less than or equal to m; Rn denotes the n-dimensional Euclidean
space, and Rm×n is the set of allm×n real matrices. Sn

+ is the set of symmetric
and positive-definite matrices of order n. The notationX ≻ 0 (X ≺ 0) means100

that X is a positive (negative) definite matrix, and He{X} = X +X⊤. The
identity matrix of order n is denoted by In and the null matrix of order
n × m by 0n×m. If the dimensions of both identity and null matrices are
straightforwardly deduced, they are omitted. Let x be a vector, its ith entry
is denoted by xi. L∞ is the space of all essentially bounded functions whose105

norm is defined as ∥f∥∞ = ess supx∈[a,b]|f(x)|; the symbol • in a matrix means
that position can assume any value. diag(A,B) denotes a block diagonal
matrix whose elements are A and B. The time dependency of the variables
is dropped when convenient.
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2. Problem Formulation110

This section first describes the class of nonlinear time-delay systems to
be considered. Then, a nonlinear intermediate observer is constructed for its
simultaneous estimation of system states and faults.

2.1. System Description

Consider a nonlinear parameter-varying system with time-varying delays

ẋ(t) = F (α(t), x(t)) + Ad(α(t))x(t− τ(t)) + h(y(t), u(t)) + Ef(t)

y(t) = Cx(t)

x(t) = φ(t), t ∈ [−τ , 0],

(1)

where x ∈ Rnx is the state, u ∈ Rnu is the input, y ∈ Rny is the output,
f ∈ Rnf is the fault signal, α = [α1, α2, . . . , αN ]

⊤ ∈ RN is the vector of
time-varying parameters, which are functions of measured exogenous signals
and/or the output, and τ is a bounded time-varying delay. Moreover, φ
is the initial condition and F (α, x) = A(α)x + G(α)ϕ(x). Notice that the
elements of the function h(y, u) are all measured, and ϕ : Rnx → Rnϕ is a
function of unmeasured state variables. The parameter-dependent matrices
A(α), Ad(α), and G(α) belong to a polytopic domain parameterized by the
time-varying parameters α ∈ Λ, defined as

[
A(α) Ad(α) G(α)

]
=

N∑
i=1

αi

[
Ai Adi Gi

]
,

where N is the number of vertices of the polytopic domain, and the unit
simplex Λ is given by

Λ =

{
α ∈ RN :

N∑
i=1

αi = 1, αi ≥ 0, i ∈ N≤N

}
. (2)

The following assumptions are considered for system (1).115

Assumption 1. The time-varying delay τ(t) is known and satisfies τ ≤
τ(t) ≤ τ , ∀t ∈ R, where the lower bound τ and the upper bound τ are given.

Assumption 2. The fault signal f(t) satisfies ḟ(t) ∈ L∞, for ∀t ∈ R, i.e.,
∥ḟ(t)∥∞ ≤ δ, for some positive scalar δ.

5



Remark 1. The boundedness condition for time-varying delays in Assump-120

tion 1 is commonly considered in the literature on time-delayed systems [30],
as delays in engineering applications always remain within their lower and
upper bounds. Concerning Assumption 2, descriptor sliding mode observers
such as those described in [8, 31] typically require prior knowledge of fault
bounds and their derivatives. The adaptive observer presented in [9] also125

requires that both the faults and their first derivatives remain bounded. How-
ever, the parameter δ in Assumption 2 can be unknown. This flexibility en-
ables us to handle a broad range of fault signals, including unbounded faults
such as ramp-type faults. Consequently, Assumption 2 is less restrictive when
compared to the fault constraints imposed in other related works [8, 9, 31].130

Assumption 3. There exist positive constants kij, for i ∈ N≤nϕ
, j ∈ N≤nx,

such that

0 ≤ ∂ϕi(x)

∂xj

≤ kij, i ∈ N≤nϕ
, j ∈ N≤nx , ∀x ∈ D , (3)

where D ⊆ Rnx is a compact set containing the origin x = 0.

Remark 2. Condition (3) is not restrictive for practical uses. Indeed, if
we consider system (1) with F (α, x) = A(α)x + G(α)ϕ̃(x), where ϕ̃(x) is
any differentiable function with kij ≤ ∂ϕ̃i(x)/∂xj ≤ kij, for ∀x ∈ D , and

some scalars kij and kij. Applying a simple loop transformation ϕ(x) =135

ϕ̃(x)−Kx, where K = [kij] is the element-wise lower bound of the Jacobian

matrix ∂ϕ̃(x)/∂x, we have F (α, x) = (A(α) + G(α)K)x + G(α)ϕ(x). Then,
condition (3) is satisfied with kij = kij − kij, and we can apply the same
proposed observer design procedure in this case. This procedure is illustrated
in the example shown in Section 4.2.140

2.2. Problem Definition

Let us define the following intermediate variable:

ζ(t) = f(t)− ωE⊤x(t), (4)

where ω is a predefined positive scalar. From (1) and (4), the dynamics of
the intermediate variable is defined as

ζ̇(t) =− ωE⊤Eζ(t)− ωE⊤ [(
A(α) + ωEE⊤)x(t) + h(y(t), u(t))

]
− ωE⊤ [Ad(α)x(t− τ(t)) +G(α)ϕ(x(t))] + ḟ(t).

(5)

6



To estimate the state x(t), the intermediate variable ζ(t), and the fault f(t),
we propose the following gain-scheduled intermediate observer:

˙̂x(t) = A(α)x̂(t) + Ad(α)x̂(t− τ(t)) +X(α)−1L(α)(y(t)− ŷ(t))

+ h(y(t), u(t)) + Ef̂(t) +G(α)ϕ
(
x̂(t) +H(α)(y(t)− Cx̂(t))

)
(6)

˙̂
ζ(t) = −ωE⊤Eζ̂(t)− ωE⊤

[ (
A(α) + ωEE⊤) x̂(t) + Ad(α)x̂(t− τ(t))

+ h(y(t), u(t)) +G(α)ϕ
(
x̂(t) +H(α)(y(t)−Cx̂(t))

)]
(7)

ŷ(t) = Cx̂(t) (8)

f̂(t) = ζ̂(t) + ωE⊤x̂(t) (9)

where x̂(t), ζ̂(t), ŷ(t) and f̂(t) are the estimates of x(t), ζ(t), y(t) and f(t),
respectively. The parameter-dependent matrices to be designed X(α), L(α)
and H(α) are of the form

[
X(α) L(α) H(α)

]
=

N∑
i=1

αi

[
Xi Li Hi

]
. (10)

We define the estimation errors as

εx(t) = x(t)− x̂(t), (11)

εζ(t) = ζ(t)− ζ̂(t), (12)

εf (t) = f(t)− f̂(t). (13)

Then, the error dynamics can be represented by

ε̇x(t) =
(
A(α)−X(α)−1L(α)C

)
εx(t) + Ad(α)εx(t− τ(t))

+G(α)g(α, x, εx) + Eεf (t)

ε̇ζ(t) =− ωE⊤Eεζ(t)− ωE⊤ (
A(α) + ωEE⊤) εx(t) + ḟ(t)

− ωE⊤Ad(α)εx(t− τ(t))− ωE⊤G(α)g(α, x, εx),

(14)

where
g(α, x, εx) = ϕ(x)− ϕ

(
x̂+ (I +H(α)C)εx

)
. (15)

Let ε(t) = [ε⊤x (t) ε
⊤
ζ (t)]

⊤ be the augmented error vector. Using the definition
of the intermediate variable in (4), the error system (14) can be reformulated
as follows

ε̇(t) = A (α)ε(t) + Ad(α)ε(t− τ(t)) + G (α)g(α, x, εx) + Bḟ(t), (16)

7



where

A (α) =

[
A(α)−X(α)−1L(α)C+ωEE⊤ E

−ωE⊤ (
A(α) + ωEE⊤) −ωE⊤E

]
Ad(α) =

[
Ad(α) 0

−ωE⊤Ad(α) 0

]
, G (α) =

[
G(α)

−ωE⊤G(α)

]
, B =

[
0
I

]
.

Remark 3. The proposed gain-scheduled intermediate observer introduced
in (6)–(9) allows to deal with the simultaneous state and fault estimation
without resorting to matching conditions, different from the sliding mode ob-
servers [7, 8, 31], adaptive observers [9, 10], and unknown input observers145

[11, 12]. Besides that, the proposed intermediate observer does not require
any strict rank assumption over the system (1), constituting an effective so-
lution to deal with the estimation problem for nonlinear time-delay systems.

The estimation problem for the N-LPV system (1) is stated as follows.

Problem 1. Consider the nonlinear parameter-varying time-delay system (1)150

under Assumptions 1–3. Design the parameter-dependent matrices X(α),
L(α), and H(α) of the nonlinear intermediate observer (6)–(9) such that the
error dynamics (16) is input-to-state stable (ISS) with respect to ḟ(t).

Further details regarding ISS stability can be found in [32, Chapter 4.9].

3. Nonlinear Intermediate Observer Design for Fault Estimation155

This section presents the design of intermediate observers for N-LPV
systems subject to faults. For observer design, the following lemma is useful
to deal with the nonlinear function ϕ(x) by exploiting the sector condition
and the boundedness of its Jacobian matrix as stated in Assumption 3.

Lemma 1 (Adapted from [33]). Let K = [K⊤
1 K⊤

2 · · · K⊤
nϕ
]⊤, with Ki =

[ki1 ki2 · · · kin], i ∈ N≤nϕ
, with kij defined in Assumption 3. If the function

ϕ(x) : Rnx → Rnϕ satisfies Assumption 3, then the following sector condition
holds for εx in (11) and g(α, x, εx) in (15):

g(α, x, εx)
⊤ [g(α, x, εx)−K(I +H(α)C)εx] ≤ 0. (17)

Note that condition (17) can be represented in the following quadratic form[
εx

g(α, x, εx)

]⊤ [
H̃(α)⊤ 0

0 I

] [
0 −1

2
K⊤

−1
2
K I

] [
H̃(α) 0
0 I

] [
εx

g(α, x, εx)

]
≤ 0

where H̃(α) = I−H(α)C.160
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Remark 4. Regarding Assumption 3, since the function ϕ(x) possesses a
bounded gradient with respect to x, the matrix norm of K, defined in Lemma 1,
can be related to the Lipschitz constant. However, employing the Lipschitz
property often results in overestimated bounds, introducing conservatism into
the design procedure. In this paper, we have utilized the sector-bounded prop-165

erty, as stated in Lemma 1, to derive less conservative design conditions.

3.1. Time-Delay Nonlinear Parameter-Varying Systems

The following theorem provides LMI-based conditions to design an inter-
mediate observer for system (1).

Theorem 1. Given positive scalars ϵ, β and ω, if there exist matrices P ∈
S3nx
+ , Q1, Q2, R1, R2 ∈ Snx

+ , Γ ∈ Snf

+ , matrices Y1, Y2 ∈ R2nx×2nx, Xi ∈
Rnx×nx, Hi ∈ Rnx×ny , Li ∈ Rnx×ny , F1i, F2i ∈ Rnf×nf , and a positive scalar
γ, such that following inequalities hold:{

Θii(τ) ≺ 0, i = j

Θij(τ) + Θji(τ) ≺ 0, i < j
(18)

for all i, j ∈ N≤N and τ ∈ {τ , τ}, with

Θij(τ) =

[
Ψ(τ)− Hj +He{Υij +Πij} − e−2βτ̃G ⊤Φ(τ)G ⋆[

e−βτ̃Y ⊤
1 0

]
G −R̃2

]
, (19)

Θij(τ) =

[
Ψ(τ)− Hj +He{Υij +Πij} − e−2βτ̃G ⊤Φ(τ)G ⋆[

0 e−βτ̃Y ⊤
2

]
G −R̃2

]
. (20)

The matrices Ψ(τ) and Φ(τ), with τ ∈ {τ , τ}, are defined as

Ψ(τ) = G⊤
1 (τ)PG0 +G⊤

0 PG1(τ) + 2βG⊤
1 (τ)PG1(τ)− e−2βτG⊤

2 R̃1G2

+G⊤
0 (τ

2R̂1 + τ̃ 2e−2βτ̃ R̂2)G0 +G⊤
5 Γ̃G5 + v̄⊤2 2βΓv̄2 + Q̃+ F ,

Φ(τ) =

[
R̃2 0

0 R̃2

]
+ τ−τ(t)

τ̃

[
R̃2 Y2

Y ⊤
2 0

]
+ τ(t)−τ

τ̃

[
0 Y1

Y ⊤
1 R̃2

]
,

(21)

where

τ̃ = τ − τ ,

R̃1 = diag(R1, 3R1), R̃2 = diag(R2, 3R2),
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R̂1 = diag(R1, 02nx), R̂2 = diag(R2, 02nx),

Q̃ = diag
(
0nx , Q1, e

−2βτ (Q2−Q1), 0nx ,−e−2βτQ2, 03nx+3nf+nϕ

)
,

F = diag(08nx , 02nf
,−γInf

, 0nϕ
),

Υij = (ϵv1 + v2 + v4)
⊤ (Aijv2 +XjAdiv4 +XjEv̄2 +XjGiṽ −Xjv1) ,

Aij = XjAi − LjC + ωXjEE⊤,

Πij = (F1j v̄1 + F2j v̄2)
⊤ (Ei − v̄1 + v̄3) ,

Ei = −ωE⊤ (
Ev̄2+

(
Ai+ωEE⊤) v2+Adiv4+Giṽ

)
,

G1(τ) =

 v2
τv6

(τ(t)− τ)v7 + (τ − τ(t))v8

 , (22)

G0 =

 v1
v2 − v3
v3 − v5

 , G2 =

[
v2 − v3

v2 + v3 − 2v6

]
,

G3 =

[
v3 − v4

v3 + v4 − 2v7

]
, G4 =

[
v4 − v5

v4 + v5 − 2v8

]
,

G5 =

[
v̄1
v̄2

]
, Γ̃ =

[
0 Γ
Γ 0

]
, G =

[
G3

G4

]
,

vκ =
[
0nx×(κ−1)nx Inx 0nx×(8−κ)nx 0nx×3nf

0nx×nϕ

]
,

v̄l =
[
0nf×8nx 0nf×(1−l)nf

Inf
0nf×(3−l)nf

0nf×nϕ

]
,

ṽ =
[
0nϕ×(8nx+3nf ) Inϕ

]
,

Hj =

[
v2
ṽ

]⊤ [
I−HjC 0

0 I

]⊤ [
0 −K⊤

2
−K
2

I

] [
I−HjC 0

0 I

] [
v2
ṽ

]
,

with κ ∈ N≤8 and l ∈ N≤3. Then, the intermediate observer (6)–(9), with
the parameter-dependent gains given as in (10), ensures that the error sys-
tem (16) is ISS with respect to ḟ(t). Moreover, the ellipsoid

R∞ =

{
εx ∈ Rnx , εζ ∈ Rnf : ε⊤x P̄ εx + ε⊤ζ Γεζ ≤

γδ2

2β

}
, (23)

is attractive with respect to system (16), where P̄ = UPU⊤ and U = [I 0 0].170

Proof. For stability analysis, consider the proposed Lyapunov-Krasovskii
functional (LKF) candidate given by

V (εxt , ε̇xt , εζt , t) = V1(εxt , t) + V2(εxt , t) + V3(ε̇xt , t) + V4(εζ , t) (24)
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with

V1(εxt , t) =

 εx(t)∫ t

t−τ
εx(s)ds∫ t−τ

t−τ
εx(s)ds


⊤

P

 εx(t)∫ t

t−τ
εx(s)ds∫ t−τ

t−τ
εx(s)ds


V2(εxt , t) =

∫ t

t−τ

e−2β(t−s)ε⊤x (s)Q1εx(s)ds+

∫ t−τ

t−τ

e−2β(t−s)ε⊤x (s)Q2εx(s)ds

V3(ε̇xt , t) = τ

∫ 0

−τ

∫ t

t+θ

e−2β(t−s)ε̇⊤x (s)R1ε̇x(s)dsdθ

+ τ̃

∫ −τ

−τ

∫ t

t+θ

e−2β(t−s)ε̇⊤x (s)R2ε̇x(s)dsdθ

V4(εζ , t) = ε⊤ζ (t)Γεζ(t)

and τ̃ = τ−τ . Since the matrices P , Q1, Q2, R1 and R2 are positive definite,
the LKF candidate defined in (24) is also positive definite. Consider the
augmented vector

ξ(t)=
[
ξ̃(t) ν⊤

1 (t) ν⊤
2 (t) ν⊤

3 (t) ε̇⊤ζ (t) ε⊤ζ (t) ḟ⊤(t) g⊤(α, x, εx)
]⊤

(25)

with

ξ̃(t) =
[
ε̇⊤x (t) ε⊤x (t) ε⊤x (t− τ) ε⊤x (t− τ(t)) ε⊤x (t− τ)

]
ν1(t) =

1

τ

∫ t

t−τ

εx(s)ds

ν2(t) =
1

τ(t)− τ

∫ t−τ

t−τ(t)

εx(s)ds

ν3(t) =
1

τ − τ(t)

∫ t−τ(t)

t−τ

εx(s)ds.

(26)

The time-derivative of V1(εxt , t) along the solution of system (14) is given by

V̇1(εxt , t) = ξ⊤(t)
(
G⊤

1 (τ)PG0 +G⊤
0 PG1(τ)

)
ξ(t). (27)
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The expression of V̇2(εxt , t) can be computed as

V̇2(εxt , t) = ε⊤x (t)Q1εx(t) + ε⊤x (t− τ) e−2βτ (Q2 −Q1) εx (t− τ)

− ε⊤x (t− τ) e−2βτQ2εx (t− τ)

− 2β

∫ t

t−τ

e−2β(t−s)ε⊤x (s)Q1εx(s)ds− 2β

∫ t−τ

t−τ

e−2β(t−s)ε⊤x (s)Q2εx(s)ds

= ξ⊤(t)Q̃ξ(t)− 2βV2(εxt , t). (28)

The computation of V̇3(ε̇xt , t) results in

V̇3(ε̇xt , t) = ε̇⊤x (t)(τ
2R1 + τ̃ 2e−2βτ̃R2)ε̇x(t)

− τ

∫ t

t−τ

e−2β(t−s)ε̇⊤x (s)R1ε̇x(s)ds− τ̃

∫ t−τ

t−τ

e−2β(t−s)ε̇⊤x (s)R2ε̇x(s)ds

− 2βτ

∫ 0

−τ

∫ t

t+θ

e−2β(t−s)ε̇⊤x (s)R1ε̇x(s)dsdθ

− 2βτ̃

∫ −τ

−τ

∫ t

t+θ

e−2β(t−s)ε̇⊤x (s)R2ε̇x(s)dsdθ. (29)

From the definition of the matrix G0, expression (29) can be rewritten as

V̇3(ε̇xt , t) = ξ⊤(t)G⊤
0 (τ

2R̂1 + τ̃ 2e−2βτ̃ R̂2)G0ξ(t)

− τ

∫ t

t−τ

e−2β(t−s)ε̇⊤x (s)R1ε̇x(s)ds− τ̃

∫ t−τ

t−τ

e−2β(t−s)ε̇⊤x (s)R2ε̇x(s)ds

− 2βτ

∫ 0

−τ

∫ t

t+θ

e−2β(t−s)ε̇⊤x (s)R1ε̇x(s)dsdθ

− 2βτ̃

∫ −τ

−τ

∫ t

t+θ

e−2β(t−s)ε̇⊤x (s)R2ε̇x(s)dsdθ. (30)

According to the Wirtinger-based integral inequality (see Lemma 2 in
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Appendix A), it follows from (30) that

V̇3(ε̇xt , t) ≤ ξ⊤(t)G⊤
0 (τ

2R̂1 + τ̃ 2e−2βτ̃ R̂2)G0ξ(t)− e−2βτξ⊤(t)G⊤
2 R̃1G2ξ(t)

− e−2βτ̃ξ⊤(t)

[
G3

G4

]⊤ [
τ̃

τ(t)−τ
R̃2 0

0 τ̃
τ−τ(t)

R̃2

][
G3

G4

]
ξ(t)

− 2βτ

∫ 0

−τ

∫ t

t+θ

e−2β(t−s)ε̇⊤x (s)R1ε̇x(s)dsdθ

− 2βτ̃

∫ −τ

−τ

∫ t

t+θ

e−2β(t−s)ε̇⊤x (s)R2ε̇x(s)dsdθ. (31)

Moreover, we define ϱ = τ(t)−τ
τ̃

. Then, by employing the delay-dependent

reciprocally convex lemma (see Lemma 3 in Appendix A) with X1 = R̃2 −
Y1R̃

−1
2 Y ⊤

1 and X2 = R̃2 − Y ⊤
2 R̃−1

2 Y2, one has that

V̇3(ε̇xt , t) ≤ ξ⊤(t)G⊤
0 (τ

2R̂1 + τ̃ 2e−2βτ̃ R̂2)G0ξ(t)− e−2βτξ⊤(t)G⊤
2 R̃1G2ξ(t)

− 2βτ

∫ 0

−τ

∫ t

t+θ

e−2β(t−s)ε̇⊤x (s)R1ε̇x(s)dsdθ

− 2βτ̃

∫ −τ

−τ

∫ t

t+θ

e−2β(t−s)ε̇⊤x (s)R2ε̇x(s)dsdθ

− e−2βτ̃ξ⊤(t)G ⊤(Φ(τ)− Φ0(τ))G ξ(t), (32)

where

Φ0(τ) =

[
τ−τ(t)

τ̃
Y1R̃

−1
2 Y ⊤

1 0

0 τ(t)−τ
τ̃

Y ⊤
2 R̃−1

2 Y2

]
.

Finally, the computation of V̇4(εζt , t) results in

V4(εζt , t) = ξ⊤(t)G⊤
5 Γ̃G5ξ(t). (33)

Substituting the expressions of V̇1(εxt , t) in (27), V̇2(εxt , t) in (28), V̇4(εζt , t)
in (33) and the upper bound of V̇3(ε̇xt , t) in (32), into the expression of
V̇ (εxt , ε̇xt , εζt , t), it follows that

V̇ (εxt , ε̇xt , εζt , t) + 2βV (εxt , ε̇xt , εζt , t) ≤ ξ⊤(t)Ξ(τ)ξ(t), (34)
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with

Ξ(τ) = G⊤
1 (τ)PG0 +G⊤

0 PG1(τ) + 2βG⊤
1 (τ)PG1(τ)

+G⊤
0 (τ

2R̂1 + τ̃ 2e−2βτ̃ R̂2)G0 − e−2βτG⊤
2 R̃1G2

+G⊤
5 Γ̃G5 + v̄⊤2 2βΓv̄2 + Q̃− e−2βτ̃G ⊤(Φ(τ)− Φ0(τ))G .

Moreover, it follows from the sector condition (17) that

ξ⊤(t)H (α)ξ(t) ≤ 0, (35)

with

H (α) =

[
v2
ṽ

]⊤ [
H̃(α) 0
0 I

]⊤ [
0 −1

2
K⊤

−1
2
K I

] [
H̃(α) 0
0 I

] [
v2
ṽ

]
.

Therefore, we have from (34) and (35) that

V̇ (εxt , ε̇xt , εζt , t) + 2βV (εxt , ε̇xt , εζt , t) ≤ ξ⊤(t) (Ξ(τ)− H (α)) ξ(t). (36)

Note that the following zero-equalities hold for any matrices X(α) ∈ Rnx×nx ,
F1(α) ∈ Rnf×nf and F2(α) ∈ Rnf×nf :

Υ(α)ξ(t) = 0 and Π(α)ξ(t) = 0 (37)

with

Υ(α) = X ⊤(α)Υ1(α),

Π(α) = [F1(α)v̄1 + F2(α)v̄2]
⊤ [E (α)− v̄1 + v̄3] ,

X (α) = ϵX⊤(α)v1 +X⊤(α)v2 +X⊤(α)v4,

Υ1(α) = Ã(α)v2 + Ad(α)v4 + Ev̄2 +G(α)ṽ − v1,

Ã(α) = A(α)−X(α)−1L(α)C + ωEE⊤,

E (α) = −ωE⊤ (
Ev̄2 +

(
A(α) + ωEE⊤) v2 + Ad(α)v4 +G(h)ṽ

)
.

(38)

Hence, from (36) and (37), it follows that

V̇ (t) + 2βV (t) ≤ ξ⊤(t) (Ξ(τ)− H (α) + He{Υ(α) + Π(α)}) ξ(t). (39)

To ensure that system (16) is ISS with respect to ḟ(t), it suffices that

V̇ (t) ≤ −2βV (t) + γḟ⊤(t)ḟ(t). (40)
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It follows from (39) and (40) that

V̇ (t) + 2βV (t) ≤ ξ⊤(t) (Ξ(τ)− H (α) + He{Υ(α) + Π(α)}+ F ) ξ(t), (41)

with F = diag(08nx , 02nf
,−γInf

, 0nϕ
). Based on the convexity with respect

to τ and the Schur complement lemma, it follows that

Θ(α, τ) =

[
Ψ(τ)− H (α) + He{Υ(α) + Π(α)} − e−2βτ̃G ⊤Φ(τ)G ⋆[

e−βτ̃Y ⊤
1 0

]
G −R̃2

]
≺ 0,

(42)

with τ ∈ {τ , τ} and the matrices Ψ(τ) and Φ(τ) are defined as in (21).
The parameter-dependent matrices X(α), L(α), H(α), F1(α), and F2(α) are
parameterized as

[
X(α) L(α) H(α) F1(α) F2(α)

]
=

N∑
i=1

αi

[
Xi Li Hi F1i F2i

]
.

Hence, the expressions Θ(α, τ) in (42) can be rewritten as

Θ(α, τ) =
N∑
i=1

N∑
j=1

αiαjΘij(τ) =
N∑
i=1

α2
iΘii(τ) +

N∑
i=1

N∑
j>i

αiαjΘij(τ). (43)

It is clear from (42) and (43) that condition (41) holds if conditions
in (18) are verified. Once the condition (40) is satisfied, by the compari-
son lemma [32], it follows that

V (t) ≤ e−2β(t−t0)V (t0)+
γ

2β

[
1−e−2β(t−t0)

]
∥ḟ(t)∥2∞. (44)

As t → ∞, we have

V (t) ≤ γ

2β
∥ḟ(t)∥2∞ ≤ γδ2

2β
.

Since ε⊤x (t)P̄ εx(t) + ε⊤ζ (t)Γεζ(t) ≤ V (t), then the ellipsoid (23) is attractive
with respect to system (16). Please notice that the first block of Eq. (19)

and Eq. (20) can be expressed as τ 2R̂1+ τ̃ 2e−2βτ̃ R̂2− ϵX(α)− ϵX(α)⊤ ≺ 0.
Since R1 and R2 are positive definite matrices, one can conclude that X(α)+
X(α)⊤ ≻ 0, ensuring the existence of the inverse of matrix X(α). This175

concludes the proof.
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Remark 5. The volume of the attractive ellipsoid (23) depends on three
parameters, i.e., the induced gain γ, the decay rate β, and the assumed bound
δ of ḟ(t). For any fault signals, to reduce the ultimate bound of the estimation
error, the volume of the attractive ellipsoid can be minimized by minimizing180

the induced gain γ and maximizing the decay rate β. In particular, notice that
for time-invariant fault signals, i.e., ḟ(t) = 0, the attractive ellipsoid tends to
the origin, thus ensuring the exponential convergence of the estimation errors
to zero. Additionally, the values of β, ϵ, and ω can be determined through
a linear grid line-search process. The line-search procedure systematically185

varies and evaluates different values of β, ϵ, and ω to find the combination
that yields the best performance for the induced gain γ.

3.2. Delay-Free Nonlinear Parameter-Varying Systems

The conditions presented in Theorem 1 can be adapted to deal with delay-
free nonlinear parameter-varying systems. To this end, the following error
dynamics can be derived considering system (1) with Ad(α) ≡ 0:

ε̇(t) = A (α)ε(t) + G (α)g(α, x(t), εx(t)) + Bḟ(t), (45)

where the matrices A (α), G (α) and B are as in (16).

Corollary 1. Given positive scalars ϵ, β and ω, if there exist matrices P ∈
Snx
+ , Γ ∈ Snf

+ , matrices Xi ∈ Rnx×nx, Li ∈ Rnx×ny , F1i, F2i ∈ Rnf×nf , and a
positive scalar γ, such that following inequalities hold{

Θii ≺ 0, i = j

Θij +Θji ≺ 0, i < j
(46)
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for all i, j ∈ N≤N , with

Θij = Q + XjMij + M⊤
ij X ⊤

j −ϖ⊤H jϖ

Q =


0nx×nx P 0nx×nf

0nx×nf
0nx×nf

0nx×nϕ

P βP 0nx×nf
0nx×nf

0nx×nf
0nx×nϕ

0nf×nx 0nf×nx 0nf×nf
Γ 0nf×nf

0nf×nϕ

0nf×nx 0nf×nx Γ βΓ 0nf×nf nf×nϕ

0nf×nx 0nf×nx 0nf×nf
0nf×nf

−γInf
0nf×nϕ

0nϕ×nx 0nϕ×nx 0nϕ×nf
0nϕ×nf

0nϕ×nf
0nϕ×nϕ



Xj =


ϵInx 0nx×nf

Inx 0nx×nf

0nf×nx F1j

0nf×nx F2j

0nf×nx 0nf×nf

0nϕ×nx 0nϕ×nf


Mij =

[
−Xj Ãi,j 0nx×nf

XjE 0nx×nf
XjGi

0nf×nx −ωE⊤(Ai + ωEE⊤) −Inf
−ωE⊤E Inf

−ωE⊤Gi

]
ϖ =

[
0nx×nx Inx 0nx×nf

0nx×nf
0nx×nf

0nx×nϕ

0nϕ×nx 0nϕ×nx 0nϕ×nf
0nϕ×nf

0nϕ×nf
Inϕ

]
Hj =

[
Inx −HjC 0nx×nϕ

0nϕ×nx Inϕ

]⊤ [
0nx×nx −1

2
K⊤

−1
2
K Inϕ

] [
Inx −HjC 0nx×nϕ

0nϕ×nx Inϕ

]
and Ãij = XjAi−LjC+ωXjEE⊤. Then, the intermediate observer (6)–(9),
with Ad(α) ≡ 0, ensures the delay-free system (45) is ISS with respect to
ḟ(t). Moreover, the ellipsoid

R∞ =
{
εx ∈ Rnx , εζ ∈ Rnf : ε⊤x Pεx + ε⊤ζ Γεζ ≤ γδ2/β

}
, (47)

is attractive with respect to system (45).190

Proof. For stability analysis, we consider the Lyapunov function

V (t) = ε⊤x (t)Pεx(t) + ε⊤ζ (t)Γεζ(t). (48)

To ensure that the system is ISS with respect to ḟ(t), it suffices that

V̇ (t) ≤ −βV (t) + γḟ⊤(t)ḟ(t). (49)
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Note that

V̇ (t) + βV (t)− γḟ⊤(t)ḟ(t) = ξ
⊤
(t)Qξ(t), (50)

with
ξ =

[
ε̇⊤x (t) ε⊤x (t) ε̇⊤ζ (t) ε⊤ζ (t) ḟ⊤(t) g⊤(α, x, εx)

]
.

It follows from the sector condition defined in (17) that

ξ⊤(t)ϖ⊤H (α)ϖξ(t) ≤ 0, (51)

with

H (α) =

[
Inx −H(α)C 0nx×nϕ

0nϕ×nx Inϕ

]⊤ [
0nx×nx −1

2
K⊤

−1
2
K Inϕ

] [
Inx −H(α)C 0nx×nϕ

0nϕ×nx Inϕ

]
.

Therefore, we have from (50) and (51) that

V̇ (t) + βV (t)− γḟ⊤(t)ḟ(t) ≤ ξ
⊤
(t)Qξ(t)− ξ⊤(t)ϖ⊤H (α)ϖξ(t). (52)

Note also that the following zero-equality holds for any matrices X(α) ∈
Rnx×nx , F1(α) ∈ Rnf×nf and F2(α) ∈ Rnf×nf :

X (α)M (α)ξ(t) = 0, (53)

with

X (α) =


ϵInx 0nx×nf

Inx 0nx×nf

0nf×nx F1(α)
0nf×nx F2(α)
0nf×nx 0nf×nf

0nϕ×nx 0nϕ×nf

 ,

M (α) =

[
−X(α) Ã(α) 0nx×nf

X(α)E 0nx×nf
X(α)G(α)

0nf×nx Ẽ(α) −Inf
−ωE⊤E Inf

−ωE⊤G(α)

]
,

Ã(α) = X(α)A(α)− L(α)C + ωX(α)EE⊤,

Ẽ(α) = −ωE⊤(A(α) + ωEE⊤).

It follows from (52) and (53) that

V̇ (t) + βV (t)− γḟ⊤(t)ḟ(t) ≤ ξ
⊤
(t)Θ(α)ξ(t) < 0, (54)
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with

Θ(α) = Q + X (α)M (α) + M⊤(α)X ⊤(α)−ϖ⊤H (α)ϖ. (55)

The parameter-dependent matrices X(α), L(α), H(α) , F1(α), and F2(α) are
parameterized as

[
X(α) L(α) H(α) F1(α) F2(α)

]
=

N∑
i=1

αi

[
Xi Li Hi F1i F2i

]
.

Hence, the expressions Θ(α) in (55) can be rewritten as

Θ(α) =
N∑
i=1

N∑
j=1

αiαjΘij =
N∑
i=1

α2
iΘii +

N∑
i=1

N∑
j>i

αiαjΘij. (56)

It is clear from (55) and (56) that conditions in (46) imply (54). By the
comparison lemma, this latter, in turn, yields

V (t) ≤ e−β(t−t0)V (t0) +
γ

β

[
1−e−β(t−t0)

]
∥ḟ(t)∥2∞. (57)

As t → ∞, we have

V (t) ≤ γ

β
∥ḟ(t)∥2∞ ≤ γδ2

β
.

Since ε⊤x (t)Pεx(t) + ε⊤ζ (t)Γεζ(t) ≤ V (t), then the ellipsoid (47) is attractive
with respect to system (45). This concludes the proof.

4. Numerical Examples

This section presents three numerical examples to illustrate the practical
interests of the proposed design conditions. For the first example, Corol-195

lary 1 is employed to estimate the delay-free dynamics of a satellite launch
vehicle affected by an actuator fault. For the second and third examples,
the conditions in Theorem 1 are applied to simultaneously estimate the fault
and the states of an electronic circuit system and an air-fuel ratio control
system of a spark-ignition (SI) engine, respectively. All the design conditions200

are implemented in Matlab using the Yalmip parser with the semidefinite
programming solver MOSEK.
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4.1. Example 1: Pitch Dynamics of Satellite Launch Vehicle

Consider the model of a satellite launch vehicle along the pitch axis [6, 34]

ẋ1(t) = x2(t) + 0.1 sin(x1(t))

ẋ2(t) = 2.94u(t) + 2.94f(t)

y(t) = x1(t)

(58)

where x1 is the pitch angle, x2 is the pitch rate, and u is the input command
along the pitch axis. The fault f(t) can be interpreted as an actuator deflec-
tion, modeling uncertainties or disturbances [6]. The nonlinear system (58)
can be represented in the form (1) with one vertex, and

A =

[
0 1
0 0

]
, Ad =

[
0 0
0 0

]
, G =

[
0
0

]
,

E =

[
0

2.94

]
, C =

[
1 0

]
, h(y, u) =

[
0.1 sin(x1)

2.94u

]
.

(59)

Initially, the aim is to evaluate the influence of the parameter ω and
the decay rate β on the induced gain γ obtained by solving Corollary 1.205

Considering ϵ = 1 given, Corollary 1 is solved using different values of ω and
β and the results are depicted in Figure 1. Clearly, one can notice that there
exists a trade-off between the values of β, ω, and γ. Specifically, in this case,
higher values of the decay rate β and also ω generally lead to a larger induced
gain γ.210

The purpose now is to compare the proposed approach with other tech-
niques present in the literature. As discussed in [6], the observer matching
condition is not satisfied, i.e., rank(CE) ̸= rank(E). Consequently, the adap-
tive observer proposed in [35] cannot be applied for fault estimation purposes.
Hence, Corollary 1 is compared with the intermediate observer design in [6].
Solving the LMI conditions in Corollary 1 with ϵ = 1, ω = 0.7 and β = 1, we
obtain

X =

[
0.1278 −0.0017
−0.0113 0.0005

]
, L =

[
5.0148
−0.1135

]
,

and γ = 1.0674. In the simulation, three types of fault signals are considered,
i.e., constant, ramp, and sinusoidal, which are described in Table 1.

For illustrations, we have considered the initial condition as x(0) = [0 0]⊤,
x̂(0) = [0 0]⊤, and the input control as u(t) = −0.5963y(t). Figure 2 depicts
the simulation result for fault f(t) and its estimate obtained by the proposed215
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Figure 1: Example 1. Induced gain γ obtained by solving Corollary 1 for different values
of ω and β.

Table 1: Description of the fault signal f(t).

t [0s, 5s) [5s, 15s) [15s, 25s) [25s, 40s) [40s, 47s) [47s, 70s]
f(t) 0 0.2t 0 2 0 2 sin(0.2t)

approach and by the method proposed in [6, Theorem 1]. Figure 3 shows the
states and their estimates. The method in [6, Theorem 1] was solved consid-
ering ε = 1, ω = 0.3 and lg = 0.1. We can see that the proposed approach
presents a better estimation accuracy than the method in [6, Theorem 1].

4.2. Example 2: Electronic Circuit System220

Consider the electronic circuit system depicted in Figure 4, which can be
described for the following dynamical equations [36]:

ẋ1(t) = − 1

R1C1

x1(t− τ(t)) +
1

10R2C1

x1(t)x2(t)−
1

R3C1

(u(t) + f(t))

ẋ2(t) = − 1

R5C2

x2(t) +
1

10R4C2

x1(t)

ẋ3(t) = − 1

R7C3

x1(t)−
1

R6C3

x3(t) +
1

10R8C3

x2
2(t)

y(t) = x1(t),

(60)
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Figure 2: Example 1. (a) Fault f(t) (straight gray line) and its estimation f̂(t) obtained

by Corollary 1 (blue dashed line) and f̂Zhu(t) obtained by [6] (dashed-dotted red line);
(b) Fault estimation error ef (t) obtained by Corollary 1 (blue dashed line) and eZhu(t)
obtained by [6] (dashed-dotted red line).

where xj, j ∈ N≤3, are the voltages on the capacitors with x1 ∈ [−2, 2],
x2 ∈ [−2, 2], u is the voltage source, f is the fault signal occurring in the
input voltage source. The model parameters are R1 = 0.6kΩ, R2 = 66.667Ω,
R3 = 0.4kΩ, R4 = 16.667Ω, R5 = 0.2kΩ, R6 = 0.5Ω, R7 = R8 = 0.1kΩ,
C1 = C3 = 10mF and C2 = 1mF.225

Taking ϕ̃(x) = x2
2 as the unmeasured nonlinearity, it is evident that its

Jacobian is bounded as

kj ≤
∂ϕ̃(x)

∂xj

≤ kj, ∀j ∈ N≤3,

with k1 = 0, k2 = −4, k3 = 0, k1 = 0, k2 = 4 and k3 = 0. Thus, Assump-
tion 3 cannot be directly applied to the nonlinearity ϕ̃(x) = x2

2. However,
in accordance with Remark 2, a loop transformation can be employed by
defining ϕ(x) = ϕ̃(x)−Kx, with K = [0 − 4 0], leading to ϕ(x) = x2 + 4x2.

22



0 5 10 15 20 25 30 35 40 45 50

-5

0

5

0 5 10 15 20 25 30 35 40 45 50

-5

0

5

Figure 3: Example 1. System states (straight black line) and their estimates. Comparison
between the proposed method and [6, Theorem 1].

Consequently, the boundedness condition of the Jacobian in (3) is satisfied
with kj = kj − kj, for j ∈ N≤3, and K =

[
0 8 0

]
. Therefore, after employ-

ing this loop transformation, the system (60) is written as

ẋ1(t) = − 1

R1C1

x1(t− τ(t)) +
1

10R2C1

x1(t)x2(t)−
1

R3C1

(u(t) + f(t))

ẋ2(t) = − 1

R5C2

x2(t) +
1

10R4C2

x1(t) (61)

ẋ3(t) = − 1

R7C3

x1(t)−
1

R6C3

x3(t)−
4

10R8C3

x2(t) +
1

10R8C3

(x2
2(t) + 4x2(t))

y(t) = x1(t)
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Figure 4: Diagram of the electronic circuit system.

We define the scheduling parameter as ρx = x1. Then, the electronic circuit
system (61) can be rewritten as in (1) with

A(α) =

 0 1
10R2C1

ρ 0
1

10R4C2

−1
R5C2

0
−1

R7C3

−4
10R8C1

−1
R6C3

 , h(y, u) =

 −1
R3C1

0
0

 ,

Ad =

 −1
R1C1

0 0

0 0 0
0 0 0

 , E =

 −1
R3C1

0
0

 , G =

 0
0
1

10R8C1

 , C =
[
1 0 0

]
.

Applying the sector nonlinearity approach [24, Chapter 2], system (61) can
be represented in the form (1) with 2 vertices, whose state-space matrices
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are given by

A1 =

 0 −0.3 0
6 −5 0

−1 −0.4 −0.2

 , A2 =

 0 0.3 0
6 −5 0

−1 −0.4 −0.2

 ,

Ad =

−0.1667 0 0
0 0 0
0 0 0

 , E =

−0.025
0
0

 , G =

00
1

 .

The corresponding time-varying parameters are given by

α1(ρx) =
2− x1

4
, α2(ρx) = 1− α1(ρx).

The nonlinearity x2
2 cannot be measured, which raises technical difficulties

for the fault estimation design. It should be noted that the approaches
presented in [19, 20] cannot be applied in this case study because they are
not designed to handle unmeasured nonlinearity. For this example, we design
a gain-scheduled intermediate observer for system (60) such that the error
dynamics is ISS with respect to ḟ(t) for a maximum bound of the time-delay.
To this end, applying Theorem 1 with β = 0.01, ω = 140, ϵ = 10, and τ = 0,
the maximum delay reached is τ = 0.52s. For this case, the following observer
matrices are obtained:

X1 =

 0.0156 −0.0005 0.0000
−0.0048 72.3623 −0.2175
0.0000 0.0676 0.1006

 , X2 =

0.0156 0.0005 0.0000
0.0020 72.3660 −0.2174
0.0000 0.0676 0.1006

 ,

L1 =

 1.7489
434.3657
0.3053

 , L2 =

 1.7544
434.4265
0.3052

 , H1 =

 •
−0.0001

•

 , H2 =

 •
0.0001

•

 ,

and γ = 0.004. For comparison purposes, the fault signal given by

f(t) =


0, 0 ≤ t < 5,

0.2t, 5 ≤ t < 10,

0.5 sin(0.75t), 10 ≤ t < 40,

0.5, 40 ≤ t ≤ 50.

(62)

Notice that according to Assumption 2, by taking the time-derivative of
the fault signal, one can compute ∥ḟ∥∞ ≤ δ with δ = 0.007. Figures 5a–5c

25



depict the system states and their estimates for an initial condition x(0) =
[0.5 0.6 0.75]⊤ and x̂(0) = [0 0 0]⊤. Figure 5d shows the fault signal and
its estimation. Figure 5e presents the input control trajectory defined as230

u(t) = 2.5 sin(0.5πt) cos(t). Finally, Figure 5f depicts the time-varying delay
given by τ(t) = 0.26 + 0.26 cos(tπ/4). We can see that the states of the
electronic circuit (60) and the fault signal are accurately estimated despite
the effect of the time-varying delay τ(t).

4.3. Example 3: Air-Fuel Ratio Control System for an SI Engine235

This example is concerned with the estimation problem of an air-fuel ra-
tio (AFR) control system, which is composed of three parts: the cylinder
mass air flow dynamics, the fuel mass flow dynamics, and the AFR sensor
dynamics. Figure 6 shows the schematic diagram of a classical cylinder gaso-
line engine. The cylinder air flow dynamics can be described by the following
speed density equation:

ṁcyl(t) =
(s1pcol(t) + s2)Vd

120RTcol

Ne(t), (63)

where Ne is the engine speed [rpm], pcol is the intake manifold pressure [Pa],
Vd is the volume displacement [m3], Tcol is the manifold temperature [◦K], R is
the constant for perfect gas [kJ/kg◦K]. This relation gives an estimate of the
cylinder air mass flow through cylinders, where the two constant parameters
are given by s1 = 0.0281 and s2 = −1.6208. The AFR in the cylinder λcyl

can be defined as

λcyl(t) =
mcyl(t)

λsmf(t)
, (64)

where λs is the air-fuel stoichiometric ratio. Thus, the time derivative of
λcyl(t) is given by

λ̇cyl(t) =
1

λs

ṁcyl(t)

mf(t)
− ṁf(t)

mf(t)
λcyl(t), (65)

where ṁf(t) is the mass fuel flow into the cylinders [kg/s]. Using the mean
value model for a four-cylinder engine, we have [37]

ṁf(t) =
Ne

30
mf(t). (66)
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Figure 5: Example 2. Estimation performance obtained for the electronic circuit sys-
tem (60) under the effect of the fault f(t) and the time-varying delay τ(t).
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Figure 6: Air-fuel path in a classical gasoline engine.

It follows from (65) and (66) that

λ̇cyl(t) =
Neṁcyl(t)

30λs

1

ṁf(t)
− Ne

30
λcyl(t). (67)

For the AFR control system, a time-varying delay, depending on the
engine speed Ne, due to the transport of the gas flow from the cylinder to
the lambda sensor is unavoidable [38]. Hence, to measure the AFR, the
following lambda sensor dynamics is considered [38, 39]:

λ̇mes (t) = − 1

τλ
λmes(t) +

1

τλ
λcyl (t− τ (Ne)) (68)

with

τ (Ne) =
86.6

Ne(t)
. (69)

The dynamics of the engine speed Ne can be described as [37]

Ṅe(t) =
1

Ie
(Tind(t)− Tbr(t)− Tf (t)) , (70)
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where Tbr is the brake torque, which is assumed to be regulated by the speed
controller

Tbr(t) = 0.1(Ne(t)− r) + 0.01

∫ t

0

(Ne(s)− r)ds, (71)

where r is the reference signal, Tf represents a lumped fault of the braking
system and other torque frictions, Ie is the rotational moment of the engine
inertia. The effective indicated torque Tind is modeled as [37]

Tind(t) =
Huηiṁcyl(t)

λsNe(t)

1

λcyl(t)

, (72)

where Hu is the fuel energy constant, and ηi is the thermal efficiency mul-
tiplier. The AFR dynamics can be then represented from subsystems (67),
(68) and (70) as

ẋ1(t) =− x1(t)x3(t)

30
+

ṁcyl(t)x3(t)

30λs

1

ṁf(t)

ẋ2(t) =− 1

τλ
x2(t) +

1

τλ
x1(t− τ(t))

ẋ3(t) =
Huηi(s1pcol(t) + s2)Vd

120λsRTcolIe

1

x1(t)
− Tbr(t)

Ie
− Tf (t)

Ie

(73)

where x1(t) = λcyl(t), x2(t) = λmes(t) and x3(t) = Ne(t). Table 2 provides
the engine parameters. The nonlinear system described in (73) can be refor-
mulated in a nonlinear parameter-varying time-delay system asẋ1(t)
ẋ2(t)
ẋ3(t)

 =

−x3

30
0 0

0 − 1
τλ

0

0 0 0

x1(t)
x2(t)
x3(t)

+

 0 0 0
1
τλ

0 0

0 0 0

x1(t− τ(t))
x2(t− τ(t))
x3(t− τ(t))


+

 ṁcylx3

30λs
0

0 0
0 − 1

Ie

[
1
ṁf

Tbr

]
+

 0
0

Huηi(s1pcol(t)+s2)Vd

120λsRTcolIe

 1

x1(t)
+

 0
0

− 1
Ie

Tf (t)

y(t) =

[
0 1 0
0 0 1

]x1(t)
x2(t)
x3(t)

 . (74)

For a standard operating condition of a naturally aspirated SI engine, i.e.,
without a turbocharger, we have the physical bounds of the engine state vari-
ables as x1 ∈ [0.5, 1.5], x3 ∈ [1000, 4000] and pcol(t) ∈ [3×104, 2×105].Hence,

29



the lower and upper bounds of the time-varying delay can be derived from
(69) as τ = 0.02 and τ = 0.1. For system (74), ρ1(t) = x3 and ρ2(t) = pcol(t)240

are selected as scheduling functions. Considering the unmeasured nonlin-
earity ϕ̃(x) = 1

x1
, Assumption 3 cannot be directly applied. However, by

employing the loop-transformation as described in Remark 2, such that
ϕ(x) = ϕ̃(x) − Kx, where K =

[
−0.44 0 0

]
, we obtain ϕ(x) = 1

x1
+ 4x1

that satisfies the sector condition (3) with K =
[
3.56 0 0

]
.245

Table 2: Parameter values of the AFR engine model.

Description Parameters Values Units
volume displacement Vd 0.6× 10−3 m3

manifold temperature Tcol 293 ◦K
constant for perfect gas R 0.287 kJ/kg◦K
air-fuel stoichiometric ratio λs 14.67 -
fuel energy constant Hu 18× 105 Nm/Kg
thermal efficiency multiplier ηi 0.7 -
rotational moment of Inertia Ie 0.1307 kgm2

time constant τλ 0.1 s

Applying the sector nonlinearity approach [40], the engine model (74) can
be represented as an N-LPV system in (1) with four vertices

A1 =

 −100
3

0 0
0 −10 0

−131.5034 0 0

 , A2 =

 −100
3

0 0
0 −10 0

−878.1251 0 0

 ,

A3 =

 −400
3

0 0
0 −10 0

−131.5034 0 0

 , A4 =

 −400
3

0 0
0 −10 0

−878.1251 0 0

 ,

G1 = G3 =

 0
0

32.8759

 , G2 = G4 =

 0
0

219.5313

 ,

Ad =

 0 0 0
10 0 0
0 0 0

 , E =

 0
0

−7.6511

 .

(75)

Solving the conditions in Theorem 1 with ϵ = 0.5, β = 0.1 and ω = 0.35,
a gain-scheduled intermediate observer is obtained, whose vertices are de-
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scribed by

L1 =

99.9901 0.0099
1931.4 0.2984
0.3252 0.0040

 , L2 =

98.7995 0.0074
1935.90 0.33704
0.32397 0.0038

 ,

L3 =

266.91 0.02496
1993.3 0.3229
0.2913 0.0040

 , L4 =

 270.7 0.0349
1999.10 0.3190
0.2777 0.0038

 ,

X1 =

 14.30528 2.91231 0.00016
2.95964 7.64046 −0.00007

−0.00003 0.00103 0.00003

 , X2 =

 14.30721 2.89729 0.00093
2.95831 7.48720 0.00060

−0.00022 0.00234 0.00002

 ,

X3 =

5.63206 4.58469 −0.00089
0.68650 7.43109 −0.00029
0.00011 0.00131 0.00003

 , X4 =

 5.67055 4.40367 −0.00134
0.76165 6.73330 −0.00051

−0.00011 0.00197 0.00002

 ,

H1 =

−5.9195 0.0049
• •
• •

 , H2 =

−3.6536 0.0303
• •
• •

 ,

H3 =

−2.0551 0.0012
• •
• •

 , H4 =

0.9156 0.0327
• •
• •

 ,

(76)
and γ = 5.4862× 10−6. For simulations, the fault signal is given by

Tf (t) =


10 sin(0.5πt), 0 ≤ t < 5,

−5, 5 ≤ t < 10,

15 sin(πt), 10 ≤ t ≤ 20.

(77)

The initial conditions are x(0) = [0.55 0.6 2400]⊤ and x̂(0) = [0.5 0.7 2200]⊤.
The time-varying delay is computed as in (69). Figure 7 depicts the intake
manifold pressure pcol(t), the input signal u(t), the reference signal r(t), and
the corresponding break torque Tbr(t) given by (71).

Figures 8a–8c show the system states and their corresponding estimates.250

Figure 8d presents the simulation result for the fault estimation obtained
with the proposed approach. This result illustrates the practical interest of
the proposed fault estimation design for N-LPV systems with time-varying
delays and unmeasured nonlinearities.
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Figure 7: Example 3. Trajectories of the manifold pressure (pcol), the load torque (Tbr),
the input (u) and the input reference (r).

5. Conclusions255

This paper has addressed the problem of simultaneous estimation of states
and faults affecting nonlinear parameter-varying systems with time-varying
delays. Design conditions have been proposed to design a gain-scheduling
intermediate estimator to ensure that the error dynamics are ISS with re-
spect to the time derivative of the fault. As a sub-product, a condition has260

been derived to design a gain-scheduling intermediate estimator for a nonlin-
ear parameter-varying system without time-varying delays. Three numerical
examples with physically motivated systems subject to faults have been con-
sidered to illustrate the application of the proposal. The results indicate the
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Figure 8: Example 3. Estimation performance obtained for the AFR engine model (73)
under the effect of the fault Tf .

effectiveness of the designed gain-scheduling intermediate estimator in pro-265

viding simultaneous state and fault estimations affecting the systems. For
future works, we extend the results for nonlinear parameter-varying systems
with sampled outputs.
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Appendix A. Instrumental Lemmas

The following lemmas are used to develop the proposed results.

33



Lemma 2 (Wirtinger-based integral inequality [41]). For any symmet-
ric positive definite matrix R ∈ Rn×n, the following inequality holds for all
continuously differentiable function ω ∈ [a, b] → Rn :

(b− a)

∫ b

a

ω̇⊤(s)Rω̇(s)ds ≥
[
Θ1

Θ2

]⊤ [
R 0
0 3R

] [
Θ1

Θ2

]
where Θ1=ω(b)−ω(a) and Θ2=ω(b)+ω(a)− 2

b−a

∫ b

a
ω(s)ds.

Lemma 3 (Delay-dependent reciprocally convex inequality [42]). Let
R1, R2 ∈ Rn×n be symmetric positive definite matrices. If there exist sym-
metric matrices X1, X2 ∈ Rn×n and matrices Y1, Y2 ∈ Rn×n such that[

R1 0
0 R2

]
− ϱ

[
X1 Y1

Y ⊤
1 0

]
− (1− ϱ)

[
0 Y2

Y ⊤
2 X2

]
≥ 0

holds for ϱ ∈ B. Then, the following inequality[1
ϱ
R1 0

0 1
1−ϱ

R2

]
≥

[
R1 0
0 R2

]
+ (1− ϱ)

[
X1 Y2

Y ⊤
2 0

]
+ ϱ

[
0 Y1

Y ⊤
1 X2

]
(A.1)

holds for all ϱ ∈ (0, 1) ⊂ R.275
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