Quantitative Identification of Driver Distraction: A Weakly Supervised Contrastive Learning Approach
Haohan Yang, Haochen Liu, Zhongxu Hu, Tran Anh-Tu Nguyen, Thierry-Marie Guerra, Chen Lv

To cite this version:

HAL Id: hal-04278793
https://uphf.hal.science/hal-04278793
Submitted on 28 May 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Quantitative Driver Distraction Detection: A Supervised Contrastive Learning Approach

Haohan Yang, Haochen Liu, Graduate Student Member, IEEE, Zhongxu Hu, Member, IEEE, Anh-Tu Nguyen, Senior Member, IEEE, Thierry-Marie Guerra, and Chen Lv, Senior Member, IEEE

Abstract—Accurate recognition of driver distraction is significant for the design of human-machine cooperation driving systems. Existing studies mainly focus on classifying varied distracted driving behaviors, which depend heavily on the scale and quality of datasets and only detect the discrete distraction categories. Therefore, most data-driven approaches have limited capability of recognizing unseen driving activities and cannot provide a reasonable solution for downstream applications. To address these challenges, this paper develops a vision Transformer-enabled supervised contrastive learning framework, in which distracted behaviors are quantified by calculating their distances from the normal driving representation set. The gaussian mixed model (GMM) is employed for the representation clustering, which centralizes the distribution of the normal driving representation set to better identify distracted behaviors. A novel evaluation scheme designed for the experimental results demonstrate that our proposed approach has more accurate and robust performance than existing methods in recognition of unknown driver activities. Furthermore, the rationality of distraction levels for different driving behaviors is evaluated through driver skeleton poses.

Index Terms—driver distraction quantification, supervised contrastive learning, representation clustering

I. INTRODUCTION

INTELLIGENT driving has attracted considerable attention in recent years, and its development is of great importance to driving safety [1]–[4]. Both naturalistic driving data and in-lab simulator experiments have demonstrated that driver distraction is a leading inducement of traffic accidents, and therefore, it is significant to parse driver behaviors for avoiding potential unsafe maneuvers [5]–[7]. For instance, warning signals can be generated to alert distracted drivers to allocate their attention toward possible hazards in advance. Additionally, an adaptive takeover scheme can be designed for various driver states to ensure a smooth and safe control transition [8].

Driver distraction is classified into two categories generally, i.e., physical and cognitive. Accordingly, different modal information, such as vehicle states, electroencephalography (EEG), head/eye movements, etc., is employed to recognize driver distraction. In [9], [10], vehicle states and EEG signals were utilized for inferring cognitive distraction, respectively, but these methods are difficult to achieve satisfactory performance in practice due to channel noises and artifacts. Currently, most studies focus on physical distraction recognition with greater practical significance. Vision-based approaches are widely used in physical distraction detection, for example, estimated head poses and eye gaze directions from raw images were adopted for non-driving activity recognition [11]–[13]. Based on the image and video information, extensive studies also have been carried out on end-to-end driver distraction inference to further reduce the computation cost [14], [15].

In previous studies, driver distraction detection is basically regarded as a classification problem, thus varied supervised learning approaches are developed to tackle it. In [16], a radial-basis neural-network-based framework is established to distinguish distracted behaviors. Using colored depth images, a feed-forward neural network (FFNN) and a support vector machine (SVM) were built to identify driver activities, respectively [17], [18]. By comparing normal driving parameters against distracted ones, a fuzzy logic algorithm is proposed to recognize driver distraction [19]. Also, an attention-based long short-term memory (LSTM) network architecture was utilized for detecting driver distraction through multi-modal driving data [20]. Since convolutional neural networks (CNN) can extract image/video feature representations better and faster compared with the above methods, related approaches have been proposed from different perspectives [21]–[29]. In [23], the pre-trained CNN model was employed to identify driver behaviors using segmented images. To further improve the inference efficiency, several methods are proposed to reduce the model size. For instance, a depthwise separable convolution approach was adopted to establish a lightweight CNN model for driver activity recognition [27]. Furthermore, 3D CNN models have also been designed for extracting the motion information hidden in video frames. In [29], a dual-stream 3D residual network was proposed to enhance spatio-temporal feature representations and improve the non-driving activity recognition performance. However, the aforementioned tech-
techniques require massive samples with labels, especially for distracted driving ones, which is laborious and costly. Also, it is prohibitively difficult to contain all types of driver behaviors in manually collected datasets, thus the recognition ability of models is limited for unseen activities previously.

To enable models to better identify unknown distracted behaviors, some semi-supervised and unsupervised learning approaches have been presented. In [30], a Laplacian SVM was employed for driver distraction detection using eye and head movements. Based on the multi-modal information, such as electromyography (EMG), galvanic skin responses, etc., an unsupervised network was designed for recognizing driver distraction [31]. Whereas both above schemes require specific hardware equipment with high costs, a contrastive learning framework was employed to identify driver distraction according to raw images obtained by inexpensive cameras [32]. Driver distraction levels are still discrete in these studies, thus cannot provide a practical solution for downstream applications, such as the shared control/planning scheme design [33], [34], etc. Furthermore, a few contrastive learning methods were designed to quantify driver anomaly, which bring an up-to-date perspective to the research on driving monitoring systems [35], [36]. Nevertheless, reported studies on driver distraction quantification are still quite limited.

Compared with previous studies, the main contributions of this article are summarized into three aspects:

1) A vision Transformer-enabled supervised contrastive learning framework is developed to recognize distracted driving and quantify driver distraction levels, which suggests a viable generic technique for driver monitoring.

2) The Gaussian mixed model (GMM) is employed for representations clustering of normal driving activities, which further enhances the model representation capability of detecting unknown distracted behaviors.

3) A novel driver behavior dataset is constructed to evaluate the proposed method and other state-of-the-art methods. Also, driver skeleton poses are extracted to validate the rationality of obtained distraction levels.

The remainder is organized as follows: Section II describes the structure and the training process of the developed framework. The experimental protocol of our proposed driver behavior dataset and its feature comparison with others are illustrated in Section III. In Section IV, classification results and distraction quantification evaluations are presented and analyzed to demonstrate our model's superior performance. Finally, conclusions and some further works are summarized in Section V.

II. METHODOLOGY

In this section, we describe the proposed contrastive representation learning framework. The problem of driver distraction quantification is illustrated firstly, then the architecture of our model and its training procedure are introduced, respectively.

A. Problem Formulation

Driver behaviors can basically be classified into two categories, i.e., normal and distraction. Normal behaviors are generally quite similar, while distracted ones can be varied during driving [15]. A representation set of normal driving is constructed accordingly, and driver distraction levels can be obtained by calculating distances between the given driving activities and the set of normal ones in the latent space. Also, any activity with a distraction level beyond the threshold is detected as distracted driving behavior. The above conception requires a model to align feature representations of normal driving activities and minimize the similarity in representations between distracted behaviors and normal ones. This goal can be formulated as

$$\|v_i - v_j\|_2 < \|v_i - v_k\|_2$$

$i, j \in \mathcal{X}(i \neq j), k \in \mathcal{D}$

where v is the feature representation of the corresponding samples, \mathcal{X}, \mathcal{D} represent index sets of normal and distraction samples, respectively.

B. Model Construction

The architecture of the developed model is shown in Fig. 2, which consists of five parts, i.e., data augmentation, encoder, decoder, projection and loss design.

- Data augmentation

In practice, cameras’ installation positions/angles, signal noises and the ambient light inevitably change under various driving environments. Therefore, four methods, including rotation, cropping, noise enhancement and color jitter, are employed for the data augmentation. During the model training, a combination of these four random augmentations is applied to each input image for generating a corresponding image pair. Also, all input images (W, H, C) are resized to $(224, 224, C)$ in this part. For convenience, the augmented index sets of normal (distracted) samples in a mini-batch and the training sets are denoted as $\mathcal{X}^n (\mathcal{D}^n)$ and $\mathcal{X}^t (\mathcal{D}^t)$, respectively.

- Encoder

A hierarchical vision Transformer using shifted windows, namely Swin Transformer (Swin-T), is employed as a backbone encoder for extracting feature representations of images [37]. As shown in Fig. 2, a Swin-T block consists of multi-head self-attention modules with regular and shifted windowing configurations, denoted as W-MSA and SW-MSA, respectively, followed by the multilayer perceptron (MLP), and the LayerNorm (LN) layer with a residual connection is applied before each module. The Swin-T model transfers each input image as follows,

$$\begin{align*}
\tilde{z}^l &= \text{W-MSA} \left(\text{LN} \left(z^{l-1} \right) \right) + z^{l-1} \\
\tilde{z}^l &= \text{MLP} \left(\text{LN} \left(\tilde{z}^l \right) \right) + \tilde{z}^l \\
z^{l+1} &= \text{SW-MSA} \left(\text{LN} \left(\tilde{z}^l \right) \right) + z^l \\
z^{l+1} &= \text{MLP} \left(\text{LN} \left(z^{l+1} \right) \right) + z^{l+1}
\end{align*}$$

where \tilde{z}^l and z^l are output features of the MSA-based modules and the MLP module for block l, respectively. The model produces a hierarchical feature map $(7, 7, 768)$ at last, and its corresponding representation $\mathbf{h} \in \mathbb{R}^{768}$ is obtained by applying a global average pooling (AP) layer.

- Decoder
A binary classification decoder is designed to further improve the model’s feature capturing capability. The fully connected (FC) layer and a Sigmoid (S) activation function are performed to transform the feature representation h into a constant $c \in [0, 1]$, i.e., the probability of the normal driving behavior.

- Projection

A deeper network structure can filter unnecessary image information for contrastive learning tasks [38]. In this study, two fully connected layers and the $l2$ normalization are conducted to transform h into an embedding $v \in \mathbb{R}^{128}$. Accordingly, all input images are mapped on a unit hypersphere through the projection.

- Loss design

Three loss functions, i.e., binary cross-entropy (BCE) loss, clustering-based supervised contrastive (C-SC) loss and negative log-likelihood (NLL) loss, are designed in this study. Cross-entropy loss is generally utilized for the classification task, whereas in our study, the BCE loss is only employed for assisting in better capturing feature representation of normal driving activities.

The BCE loss is defined as

$$L_{\text{BCE}} = - \sum_{i \in \mathcal{X} \cup \mathcal{D}} [y_i \cdot \ln c_i + (1 - y_i) \cdot \ln (1 - c_i)]$$

(3)

where y_i and c_i denote the label of the ith sample and its predicted probability of normal driving, respectively. It is noted that the label $y_i \in \{0, 1\}$, in which “0” and “1” represent normal and distracted driving, respectively.

Normal driving behaviors are generally similar in practice, and therefore, the distribution of their feature representations is expected to be concentrated. Based on the conception of GMM clustering, a multivariate Gaussian distribution is constructed using representations of normal driving samples in the training dataset. To enable normal samples to cluster, minimizing both distances from the embedding representations to their center and the covariance of the distribution is desired. Accordingly, the NLL loss is constructed as

$$L_{\text{NLL}} = - \sum_{i \in \mathcal{X}} \ln \mathcal{N}(v_i \mid \mu, \Sigma) = - \sum_{i \in \mathcal{X}} \ln \left[\frac{1}{\sqrt{(2\pi)^n|\Sigma|}} e^{-\frac{1}{2}(v_i - \mu)^T \Sigma^{-1}(v_i - \mu)} \right]$$

(4)

where \mathcal{N} is the multivariate Gaussian distribution of the representation set at each training epoch, μ and Σ are the mean and the covariance of the distribution, respectively, $\kappa = 128$ is the dimension of each representation v.

The supervised contrastive (SC) loss is designed to pull together the representations belonging to the same class in the latent space, which is formulated below [39],

$$L_{\text{SC}} = - \sum_{i \in \mathcal{X} \cup \mathcal{D}} \frac{1}{|\mathcal{P}(i)|} \sum_{j \in \mathcal{P}(i)} \ln \frac{\exp (v_i \cdot v_j / \tau)}{\sum_{k \in \mathcal{A}(i)} \exp (v_i \cdot v_k / \tau)}$$

(5)

where $\mathcal{P}(i)$ is an index set that has the same label as embedding v_i, and $|\mathcal{P}(i)|$ denotes its cardinality, $\mathcal{A}(i) \equiv \mathcal{P}(i)/\{i\}$ is a relative complement of the index, and $\tau \in \mathbb{R}^+$ is a scalar temperature parameter. To further align normal driving activities, this study translates the original hypersphere center to the center of representation distribution \mathcal{N}. Consequently, the embedding representation in the translated latent space and the C-SC loss are, respectively, described as

$$v^* = \frac{v - \mu}{\|v - \mu\|}$$

(6)

$$L_{\text{C-SC}} = - \sum_{i \in \mathcal{X} \cup \mathcal{D}} \frac{1}{|\mathcal{P}(i)|} \sum_{j \in \mathcal{P}(i)} \ln \frac{\exp (v_i^* \cdot v_j^* / \tau)}{\sum_{k \in \mathcal{A}(i)} \exp (v_i^* \cdot v_k^* / \tau)}$$

(7)

Eventually, the training loss is summarized as

$$L_S = \alpha_1 L_{\text{BCE}} + \alpha_2 L_{\text{NLL}} + \alpha_3 L_{\text{C-SC}}$$

(8)
where α_1, α_2, α_3 are weights of the corresponding loss function.

The pseudo-code of our model’s learning strategy is provided in Algorithm 1. A transfer learning technique is applied to fine-tune the pre-trained Swin-T model, which transfers the domain knowledge learned from large-scale datasets to driver distraction detection tasks. The proposed model is trained with an Adam optimizer, and the learning rate is 0.0001. The mini-batch size is selected as 128 with 20 training epochs, and the model with the highest detection accuracy is saved. The temperature parameter τ is set to 0.07, and the loss weights $\alpha_1 = \alpha_3 = 1$, $\alpha_2 = 0.001$. The whole network is developed with PyTorch (https://pytorch.org/).

Algorithm 1: Learning strategy of the driver distraction detection framework

```
Input: training sets $\mathcal{X}^t$, $\mathcal{D}^t$, temperature parameter $\tau$, loss weights $\alpha_1$, $\alpha_2$, $\alpha_3$
for $t \leftarrow 1$ to max epoch do
    # Stage 1: obtain the distribution $\mathcal{N}$
    Initialize the normal driving representation set $\mathcal{V}$;
    for $i \leftarrow 1$ to $|\mathcal{X}^t|$ do
        Calculate normal embeddings $v_i$;
        Append $v_i$ into $\mathcal{V}$;
    end
    Calculate $\mu$ and $\Sigma$ for the distribution $\mathcal{N}_t(\mu, \Sigma)$;
    # Stage 2: train the proposed model
    for Gradient_step $\leftarrow 1$ to max iteration do
        Generate augmented image sets $\mathcal{X}^a$ and $\mathcal{D}^a$;
        Calculate loss according to Eq. (8);
        Update $f_{Dec}$ by $\mathcal{L}_{BCE}$;
        Update $f_{Proj}$ by $\mathcal{L}_{C-SC}$, $\mathcal{L}_{NLL}$;
        Update $f_{Enc}$ by $\mathcal{L}_{S}$;
    end
end
```

To ensure the stability of calculated distraction levels, the k-nearest neighbor (KNN) algorithm with 2 neighbors is utilized for distraction quantification,

$$
\zeta_i = \min \left(\frac{||v_i - v_j||_2 + ||v_i - v_k||_2}{2} \right)
$$

(9)

wherein ζ_i is the distraction level of ith sample.

III. EXPERIMENTS

In this section, we illustrate the experimental scheme in detail and compare the features of four publicly available driver distraction datasets.

A. Experimental Protocol

Few high-quality vision-based driver distraction datasets are publicly available, and most of them are collected inside the vehicle cabin. To guarantee safety and efficiency, most intelligent driving strategies are initially verified through hardware-in-the-loop tests, rather than field experiments. In this study, we have constructed a Singapore AutoMan@NTU distracted driving (SAM-DD) dataset, which can be migrated to studies involving driver states based on driving simulators, e.g., driving authority allocation, etc.

The driver-in-the-loop experimental platform, as shown in Fig. 3, is composed of a physical simulator (Logitech G29), two cameras (Zed 2i) and a computer (NVIDIA GTX 2080 Ti with 32 GB RAM). Experimental data are collected from 42 participants (34 males, 8 females) with varied ages and driving experience. Through selecting and integrating abnormal behaviors in previous studies, nine representative physical distracted behaviors are recorded in our dataset, including eight non-driving activities (i.e., drinking, talking left/right, texting left/right, touching hairs, adjusting glasses, reaching behind) and one fatigue-related behavior (i.e., head dropping).

The datasets are collected in synchronized RGB and depth modalities with a resolution of 1200×900 pixels. In addition to the lateral camera used to detect head and arm movements, a front camera is installed to capture drivers’ facial information. An example of two modalities and two views is presented in Fig. 3.

B. Datasets Features

Table I illustrates the different characteristics of four publicly available driver distraction datasets, including the first version of the American University in Cairo Distracted Driver (AUC-v1) dataset, a multi-view, multimodal and multispectral Driver Action Dataset (3MDAD), the Driver Anomaly Detection (DAD) dataset and our proposed dataset [18], [22], [35]. AUC-v1 is the first public driver distraction dataset, consisting of 17308 samples from 31 participants. In the experiments, ten typical driver behaviors, including safe driving, are recorded by a roof handle-mounted camera. 3MDAD contains two natural driving sets collected during the daytime and the night, respectively, and only the daytime one is employed in this study. 3MDAD (day) provides temporally synchronized RGB and depth frames with front and side views, in which 16
driving actions from 50 subjects are recorded. However, the depth images in the 3MDAD are difficult to be utilized for driver behavior detection directly due to their low quality. It is noted that the 3MDAD is an imbalanced dataset wherein normal driving samples only account for 1/16. DAD dataset has synchronized infrared and depth video frames from both front and top views, and each input clips consist of 16 frames. Especially, 16 unlabeled abnormal driving activities in the test set are unavailable in the training one, which requires the model can recognize previously unseen distracted behaviors.

Features of our dataset are summarized below,

- The SAM-DD dataset is large enough for training learning-based models from scratch. Also, researchers can conveniently migrate the trained model to targeted downstream tasks.
- The SAM-DD dataset contains high-quality multi-modal information, i.e., RGB and depth, which can improve the model’s reliability against various driving environments. The dataset has multiple views, which are recorded synchronously and complement each other. Accordingly, researchers can utilize the dataset for wider driver states-related tasks. (Note: Only the lateral view is employed in this study)
- The SAM-DD dataset is mainly for intelligent driving research in the laboratory, including driving takeover systems, remote driving, and control strategies involving driver states, etc.

The selected four datasets contain many different types of distracted driving activities, which can be conveniently utilized to test models’ capability of recognizing previously unseen distracted behaviors. Also, these datasets are complementary in terms of image modes, sample types, data distributions and collection scenes. Different characteristics of the datasets can enable the developed driver distraction quantification model to be comprehensively evaluated.

IV. RESULTS AND DISCUSSIONS

In this section, we first evaluate the proposed model and the other state-of-the-art methods with varied backbones and loss functions. Then, the clustering characteristics of varied approaches are compared. Finally, we analyze the distributions of driver distraction levels obtained by the designed model and evaluate its rationality using drivers’ skeleton key points.

A. Classification performance

To verify the feature extraction capability of the Swin-T in the proposed framework, varied state-of-the-art models are employed as encoders for comparison, and the recognition results across different datasets are shown in Fig. 4. Although the recognition accuracy of each backbone varies across the datasets with different data distributions and characteristics, the Swin-T obviously outperforms other backbones in all cases, indicating it can capture the feature representation of driving behaviors more effectively. Especially, a 3D Swin-T model is selected to extract representations of sequential frames in the DAD dataset. Since this study aims to establish an efficient contrastive learning framework, but not elaborately design a classification model, more detailed discussions of varied encoders’ recognition results are omitted here.

To better demonstrate the superiority of our framework, two other baseline methods are designed, i.e.,

- E2E-Sup: an end-to-end supervised learning approach. The method is utilized to classify driver behaviors into normal and distraction through their probabilities calculated by a binary classifier.
- SupCon: a supervised contrastive learning approach. The method can recognize driving behaviors by quantifying driver distraction levels. One significant difference from our proposed approach is that it lacks clustering loss L_{NLL} during training.

To achieve a fair comparison, the Swin-T is employed as the encoder in all approaches. All models are trained by a varied number of distracted activities to investigate their capability of recognizing previously unseen activities. Experimental results are analyzed in terms of three evaluation metrics, i.e., accuracy, area under curve (AUC), and F1-score, as described in Table II.

TABLE I

Characteristics comparison across driver behavior datasets.

<table>
<thead>
<tr>
<th>Datasets</th>
<th>Resolution ($W \times H$)</th>
<th>Image modes</th>
<th>Sample types</th>
<th>Labeled behaviors</th>
<th>Sample sizes</th>
<th>Participants</th>
<th>Gender ratio (M/F)</th>
<th>Collection scenes</th>
<th>Views</th>
</tr>
</thead>
<tbody>
<tr>
<td>3MDAD (day)</td>
<td>1920×1080</td>
<td>RGB</td>
<td>Single frame</td>
<td>10</td>
<td>17308</td>
<td>31</td>
<td>22 / 9</td>
<td>Parked vehicle</td>
<td>1</td>
</tr>
<tr>
<td>DAD</td>
<td>640×480</td>
<td>RGB & Depth</td>
<td>Single frame</td>
<td>16</td>
<td>111017</td>
<td>50</td>
<td>38 / 12</td>
<td>Natural driving</td>
<td>2</td>
</tr>
<tr>
<td>SAM-DD (ours)</td>
<td>224×171</td>
<td>Infrared & Depth</td>
<td>Video clip</td>
<td>9</td>
<td>67051</td>
<td>31</td>
<td>20 / 11</td>
<td>Parked vehicle</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1200×900</td>
<td>RGB & Depth</td>
<td>Single frame</td>
<td>10</td>
<td>51175</td>
<td>42</td>
<td>34 / 8</td>
<td>In-lab</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>AUC-v1 [22]</th>
<th>3MDAD (day)</th>
<th>DAD</th>
<th>SAM-DD (ours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShuffleNet-v2</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
<td>1</td>
</tr>
<tr>
<td>MobileNet-v3</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>1</td>
</tr>
<tr>
<td>VGG-16</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td>ResNet-18 Vision Transformer</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td>Swin-T</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 4. Comparison of varied backbones over recognition accuracy across different driver behavior datasets.
TABLE II
RECOGNITION PERFORMANCE OF MODELS TRAINED BY THE VARIED NUMBER OF DISTRACTION ACTIVITIES ACROSS DIFFERENT DRIVER BEHAVIOR DATASETS.

<table>
<thead>
<tr>
<th>Distractions number</th>
<th>E2E-Sup Accuracy</th>
<th>E2E-Sup AUC</th>
<th>E2E-Sup F1-scores</th>
<th>SupCon Accuracy</th>
<th>SupCon AUC</th>
<th>SupCon F1-scores</th>
<th>SupCon+GMM (ours) Accuracy</th>
<th>SupCon+GMM (ours) AUC</th>
<th>SupCon+GMM (ours) F1-scores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>AUC-v1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.7184</td>
<td>0.8638</td>
<td>0.7865</td>
<td>0.9399</td>
<td>0.9577</td>
<td>0.9625</td>
<td>0.9408</td>
<td>0.9622</td>
<td>0.9627</td>
</tr>
<tr>
<td>4</td>
<td>0.8269</td>
<td>0.9081</td>
<td>0.8795</td>
<td>0.9353</td>
<td>0.9525</td>
<td>0.9595</td>
<td>0.9362</td>
<td>0.9680</td>
<td>0.9596</td>
</tr>
<tr>
<td>6</td>
<td>0.8882</td>
<td>0.9497</td>
<td>0.9256</td>
<td>0.9424</td>
<td>0.9687</td>
<td>0.9635</td>
<td>0.9418</td>
<td>0.9618</td>
<td>0.9634</td>
</tr>
<tr>
<td>9</td>
<td>0.9709</td>
<td>0.9908</td>
<td>0.9815</td>
<td>0.9631</td>
<td>0.9771</td>
<td>0.9799</td>
<td>0.9697</td>
<td>0.9778</td>
<td>0.9808</td>
</tr>
<tr>
<td>3MDAD (day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.9024</td>
<td>0.7777</td>
<td>0.9480</td>
<td>0.9397</td>
<td>0.6366</td>
<td>0.9688</td>
<td>0.9399</td>
<td>0.7818</td>
<td>0.9687</td>
</tr>
<tr>
<td>7</td>
<td>0.9090</td>
<td>0.7424</td>
<td>0.9515</td>
<td>0.9392</td>
<td>0.6916</td>
<td>0.9686</td>
<td>0.9390</td>
<td>0.5730</td>
<td>0.9685</td>
</tr>
<tr>
<td>11</td>
<td>0.9319</td>
<td>0.7889</td>
<td>0.9583</td>
<td>0.9403</td>
<td>0.6161</td>
<td>0.9691</td>
<td>0.9417</td>
<td>0.7063</td>
<td>0.9697</td>
</tr>
<tr>
<td>15</td>
<td>0.9403</td>
<td>0.7427</td>
<td>0.9691</td>
<td>0.9415</td>
<td>0.6299</td>
<td>0.9690</td>
<td>0.9447</td>
<td>0.7363</td>
<td>0.9712</td>
</tr>
<tr>
<td>DAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.7908</td>
<td>0.8277</td>
<td>0.5644</td>
<td>0.8552</td>
<td>0.8989</td>
<td>0.7693</td>
<td>0.8584</td>
<td>0.9181</td>
<td>0.7983</td>
</tr>
<tr>
<td>4</td>
<td>0.8036</td>
<td>0.8291</td>
<td>0.6077</td>
<td>0.8637</td>
<td>0.8983</td>
<td>0.7948</td>
<td>0.8665</td>
<td>0.9214</td>
<td>0.7954</td>
</tr>
<tr>
<td>6</td>
<td>0.8317</td>
<td>0.8791</td>
<td>0.6784</td>
<td>0.8717</td>
<td>0.9133</td>
<td>0.8066</td>
<td>0.8730</td>
<td>0.9232</td>
<td>0.8208</td>
</tr>
<tr>
<td>8</td>
<td>0.8517</td>
<td>0.8921</td>
<td>0.7379</td>
<td>0.8971</td>
<td>0.9342</td>
<td>0.8382</td>
<td>0.8989</td>
<td>0.9321</td>
<td>0.8453</td>
</tr>
<tr>
<td>SAM-DD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.8639</td>
<td>0.9536</td>
<td>0.8618</td>
<td>0.9274</td>
<td>0.9668</td>
<td>0.9334</td>
<td>0.9300</td>
<td>0.9647</td>
<td>0.9353</td>
</tr>
<tr>
<td>4</td>
<td>0.8945</td>
<td>0.9588</td>
<td>0.8991</td>
<td>0.9313</td>
<td>0.9705</td>
<td>0.9374</td>
<td>0.9326</td>
<td>0.9682</td>
<td>0.9380</td>
</tr>
<tr>
<td>6</td>
<td>0.9355</td>
<td>0.9795</td>
<td>0.9406</td>
<td>0.9432</td>
<td>0.9778</td>
<td>0.9486</td>
<td>0.9451</td>
<td>0.9774</td>
<td>0.9510</td>
</tr>
<tr>
<td>9</td>
<td>0.9733</td>
<td>0.9914</td>
<td>0.9757</td>
<td>0.9641</td>
<td>0.9828</td>
<td>0.9678</td>
<td>0.9720</td>
<td>0.9781</td>
<td>0.9746</td>
</tr>
</tbody>
</table>

It is seen that the recognition performance of varied approaches is close across AUC-v1, 3MDAD (day), and SAM-DD datasets when the models are trained with all distraction samples, and the E2E-Sup can slightly outperform the SupCon-based methods in some datasets at this point. However, the E2E-Sup model’s performance decreases dramatically with the decline of the varied number of distraction behaviors during training, and its reduction varies with the different sample distributions in the datasets. For instance, the maximum reduction of the E2E-Sup model’s accuracy is nearly 26.0% in the AUC-v1 dataset, while only about 4.0% in the 3MDAD (day) dataset due to the imbalanced sample distribution. In comparison, the reductions in the accuracy of our developed model are only almost 3.0% and 0.6% in AUC-v1 and 3MDAD (day) datasets, respectively. Since the testing set of the DAD dataset has 16 additional distracted activities that do not appear in its training set, the performance of the E2E-Sup trained by all training samples is always worse than the SupCon-based models. Obviously, accuracy reductions of the SupCon-based methods are significantly lower than that of the E2E-Sup method when the training is conducted with partial distracted driving activities, which demonstrates that SupCon-based methods are greatly robust in identifying unknown driving behaviors. Interestingly, SupCon-based models trained with more distracted behaviors show relatively poorer recognition results in some cases, on account of the more complex segmentation boundary generated by more driving behaviors is hard to be fully learned in practice. Furthermore, the GMM-based representation clustering is conducted in our developed approach, which improves the model performance in most cases and requires no additional computations compared with the SupCon. Clustering-based SupCon improves the AUC by 12.8%–18.6% compared with the SupCon in 3MDAD (day) dataset, indicating that the GMM-based representation clustering can significantly enhance the model’s robustness in the decision threshold selection, especially in the case of few training samples of normal driving.

B. Distraction quantification evaluations

In addition to efficiently recognizing previously unknown driving behaviors, our proposed approach aims to properly reflect distraction levels of different driver activities. Distributions of distraction levels calculated by the proposed approach on different test sets are shown in Fig. 5. It is seen that the datasets containing RGB images, i.e., AUC-v1, 3MDAD (day), and SAM-DD, have a greater distribution of the data domain than the DAD dataset. Due to numerous mislabeled samples, normal behaviors and distracted ones have a significant overlap in the 3MDAD (day)
dataset, indicating that precisely labeled data are required by the proposed approach for constructing the distribution of normal driving actions during training. Our approach distinctly split normal and distraction samples on the AUC-v1, DAD, and SAM-DD datasets except for a few outliers. Specifically, the distraction levels of normal samples are low and concentrated, while the distraction levels of distracted behaviors are dispersedly distributed and separated from the normal ones. Furthermore, an obvious distinction between the normal and distraction samples, especially in the AUC-v1 and SAM-DD datasets, demonstrates our method provides a loose range of the decision threshold for recognizing driving behaviors.

Driver skeleton poses are employed to further assess the rationality of the distraction levels for different distracted driving behaviors. A state-of-the-art human body pose detector is utilized to extract skeleton keypoints, and all keypoints are reshaped and normalized into a vector to compute the distances of different distracted driving behaviors from the normal one [40]. The average distraction levels of varied distracted actions calculated by the different methods are presented in Fig. 6, wherein the distraction levels reflected by the skeleton keypoints conform to human intuition and thus are employed as the reference. It is noteworthy that an approach that can reasonably describe the differences in varied distracted behaviors is regarded as an ideal one, and whether the calculated distraction levels equal the reference is meaningless. From the perspective of graphics, the approach that is more similar to the reference model in terms of the polygon shape can better reflect the distraction levels of driving behaviors.

It is observed that the difference in the distraction levels of varied driving behaviors, excluding “head dropping”, calculated by the E2E-Sup method is little in the AUC-v1, 3MDAD (day), and SAM-DD datasets, whereas a relatively obvious distinction is achieved in the DAD dataset. The “head dropping” is an exception since the E2E-Sup wrongly classifies it as a normal behavior, especially in the SAM-DD dataset. The phenomenon indicates that the E2E-Sup method cannot distinguish different distracted behaviors based on a single frame, while the spatio-temporal information can improve its performance in this regard. For the reference model, the distraction level of “texting left” is larger than both “texting right” and “toughing hairs & makeup” in the AUC-v1 dataset, the same phenomenon is presented in our proposed model while an opposite one appears in the SupCon method. Similar examples can also be found in other datasets, which demonstrates that the distraction levels obtained by the clustering-based SupCon are most consistent with the skeleton pose results and our developed model can better reflect the distraction levels compared with other baseline approaches. Interestingly, the distraction levels of symmetrical driving activities, such as “phoning right” and “phoning left”, are different since the side-mounted camera makes some driving actions to be more obvious than their symmetrical ones in the captured images.

![Fig. 6. Comparison of the average distraction levels of different distracted driving behaviors calculated by different approaches in the four test sets. (a) AUC-v1. (b) 3MDAD (day). (c) DAD. (d) SAM-DD.](image)

C. Clustering analysis

To intuitively understand the difference between the baseline methods and ours, a t-distributed stochastic neighbor embedding (t-SNE) approach is employed to visualize the feature representations mapped by different methods [41]. The visualization results across the four datasets are presented in Fig. 7. It is obvious that the representations of normal samples and distracted ones extracted by the E2E-Sup are entangled in all datasets. Conversely, the SupCon-based approaches present distinguishable clustering results in the AUC-v1, DAD, and SAM-DD datasets. Also, representations of normal driving samples generated by SupCon-based approaches in the AUC-v1 appear to be more concentrated than those in the DAD and SAM-DD datasets due to the varied proportions of normal and distraction samples in the test sets. For instance, the normal samples in the test set of AUC-v1 only account for nearly 1/4, while the size of normal samples is almost twice that of distracted driving in the DAD dataset. For the 3MDAD (day) dataset, although the normal samples’ representations extracted by the clustering-based SupCon are more distributed on the right side, all methods cannot yield recognizable clusters since many distracted behaviors are mislabeled as normal driving. Furthermore, the clustering results of our developed model provide clearer distinctions between the normal and distracted driving samples compared with the SupCon method, which is beneficial for quantifying driver distraction levels and enhancing the model’s recognition performance.
to the variation of driver skeleton information. The superior performance of our developed distraction detection framework demonstrates that it is a more practical solution for downstream applications.

In further research, a series of driver states-related intelligent driving schemes, such as takeover systems and shared control strategies, etc., can be optimized and developed through combining our developed distraction detection framework. Also, an important further study is to better align the distraction levels of driving behaviors with their potential risks.

References

