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Quantitative Driver Distraction Detection: A
Supervised Contrastive Learning Approach

Abstract—Accurate recognition of driver distraction is sig-
nificant for the design of human-machine cooperation driving
systems. Existing studies mainly focus on classifying varied
distracted driving behaviors, which depend heavily on the scale
and quality of datasets and only detect the discrete distraction
categories. Therefore, most data-driven approaches have limited
capability of recognizing unseen driving activities and cannot
provide a reasonable solution for downstream applications. To ad-
dress these challenges, this paper develops a vision Transformer-
enabled supervised contrastive learning framework, in which
distracted behaviors are quantified by calculating their distances
from the normal driving representation set. The gaussian mixed
model (GMM) is employed for the representation clustering,
which centralizes the distribution of the normal driving rep-
resentation set to better identify distracted behaviors. A novel
driver behavior dataset and the other three ones are employed
for the evaluation, experimental results demonstrate that our
proposed approach has more accurate and robust performance
than existing methods in recognition of unknown driver activities.
Furthermore, the rationality of distraction levels for different
driving behaviors is evaluated through driver skeleton poses.

Index Terms—driver distraction quantification, supervised
contrastive learning, representation clustering

I. INTRODUCTION

INTELLIGENT driving has attracted considerable attention
in recent years, and its development is of great importance

to driving safety [1]–[4]. Both naturalistic driving data and 
in-lab simulator experiments have demonstrated that driver 
distraction is a leading inducement of traffic a ccidents, and 
therefore, it is significant to parse driver behaviors for avoiding 
potential unsafe maneuvers [5]–[7]. For instance, warning sig-
nals can be generated to alert distracted drivers to allocate their 
attention toward possible hazards in advance. Additionally, an 
adaptive takeover scheme can be designed for various driver 
states to ensure a smooth and safe control transition [8].

Driver distraction is classified into two categories generally, 
i.e., physical and cognitive. Accordingly, different modal infor-
mation, such as vehicle states, electroencephalography (EEG), 
head/eye movements, etc., is employed to recognize driver 
distraction. In [9], [10], vehicle states and EEG signals were 
utilized for inferring cognitive distraction, respectively, but 
these methods are difficult to achieve satisfactory performance 
in practice due to channel noises and artifacts. Currently, 
most studies focus on physical distraction recognition with 
greater practical significance. Vision-based approaches are
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Fig. 1. Driver distraction quantification using the distance from normal
behaviors in the latent space. The demonstration can be found on the GitHub
website.

widely used in physical distraction detection, for example,
estimated head poses and eye gaze directions from raw images
were adopted for non-driving activity recognition [11]–[13].
Based on the image and video information, extensive studies
also have been carried out on end-to-end driver distraction
inference to further reduce the computation cost [14], [15].

In previous studies, driver distraction detection is basically
regarded as a classification problem, thus varied supervised
learning approaches are developed to tackle it. In [16], a
radial-basis neural-network-based framework is established to
distinguish distracted behaviors. Using colored depth images,
a feed-forward neural network (FFNN) and a support vector
machine (SVM) were built to identify driver activities, re-
spectively [17], [18]. By comparing normal driving parameters
against distracted ones, a fuzzy logic algorithm is proposed to
recognize driver distraction [19]. Also, an attention-based long
short-term memory (LSTM) network architecture was utilized
for detecting driver distraction through multi-modal driving
data [20]. Since convolutional neural networks (CNN) can
extract image/video feature representations better and faster
compared with the above methods, related approaches have
been proposed from different perspectives [21]–[29]. In [23],
the pre-trained CNN model was employed to identify driver
behaviors using segmented images. To further improve the in-
ference efficiency, several methods are proposed to reduce the
model size. For instance, a depthwise separable convolution
approach was adopted to establish a lightweight CNN model
for driver activity recognition [27]. Furthermore, 3D CNN
models have also been designed for extracting the motion
information hidden in video frames. In [29], a dual-stream
3D residual network was proposed to enhance spatio-temporal
feature representations and improve the non-driving activity
recognition performance. However, the aforementioned tech-
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niques require massive samples with labels, especially for
distracted driving ones, which is laborious and costly. Also, it
is prohibitively difficult to contain all types of driver behaviors
in manually collected datasets, thus the recognition ability of
models is limited for unseen activities previously.

To enable models to better identify unknown distracted
behaviors, some semi-supervised and unsupervised learning
approaches have been presented. In [30], a Laplacian SVM
was employed for driver distraction detection using eye and
head movements. Based on the multi-modal information, such
as electromyography (EMG), galvanic skin responses, etc.,
an unsupervised network was designed for recognizing driver
distraction [31]. Whereas both above schemes require specific
hardware equipment with high costs, a contrastive learning
framework was employed to identify driver distraction ac-
cording to raw images obtained by inexpensive cameras [32].
Driver distraction levels are still discrete in these studies, thus
cannot provide a practical solution for downstream applica-
tions, such as the shared control/planning scheme design [33],
[34], etc. Furthermore, a few contrastive learning methods
were designed to quantify driver anomaly, which bring an
up-to-date perspective to the research on driving monitoring
systems [35], [36]. Nevertheless, reported studies on driver
distraction quantification are still quite limited.

Compared with previous studies, the main contributions of
this article are summarized into three aspects:

1) A vision Transformer-enabled supervised contrastive
learning framework is developed to recognize distracted driv-
ing and quantify driver distraction levels, which suggests a
viable generic technique for driver monitoring.

2) The Gaussian mixed model (GMM) is employed for
representations clustering of normal driving activities, which
further enhances the model representation capability of detect-
ing unknown distracted behaviors.

3) A novel driver behavior dataset is constructed to evaluate
the proposed method and other state-of-the-art methods. Also,
driver skeleton poses are extracted to validate the rationality
of obtained distraction levels.

The remainder is organized as follows: Section II de-
scribes the structure and the training process of the developed
framework. The experimental protocol of our proposed driver
behavior dataset and its feature comparison with others are
illustrated in Section III. In Section IV, classification results
and distraction quantification evaluations are presented and
analyzed to demonstrate our model’s superior performance.
Finally, conclusions and some further works are summarized
in Section V.

II. METHODOLOGY

In this section, we describe the proposed contrastive repre-
sentation learning framework. The problem of driver distrac-
tion quantification is illustrated firstly, then the architecture of
our model and its training procedure are introduced, respec-
tively.

A. Problem Formulation
Driver behaviors can basically be classified into two cat-

egories, i.e., normal and distraction. Normal behaviors are

generally quite similar, while distracted ones can be varied
during driving [15]. A representation set of normal driving is
constructed accordingly, and driver distraction levels can be
obtained by calculating distances between the given driving
activities and the set of normal ones in the latent space. Also,
any activity with a distraction level beyond the threshold is
detected as distracted driving behavior. The above conception
requires a model to align feature representations of normal
driving activities and minimize the similarity in representations
between distracted behaviors and normal ones. This goal can
be formulated as

∥vi − vj∥2 << ∥vi − vk∥2
i, j ∈ X (i ̸= j), k ∈ D

(1)

wherein v is the feature representation of the corresponding
samples, X , D represent index sets of normal and distraction
samples, respectively.

B. Model Construction

The architecture of the developed model is shown in Fig. 2,
which consists of five parts, i.e., data augmentation, encoder,
decoder, projection and loss design.
• Data augmentation
In practice, cameras’ installation positions/angles, signal

noises and the ambient light inevitably change under various
driving environments. Therefore, four methods, including ro-
tation, cropping, noise enhancement and color jitter, are em-
ployed for the data augmentation. During the model training, a
combination of these four random augmentations is applied to
each input image for generating a corresponding image pair.
Also, all input images (W , H , C) are resized to (224, 224,
C) in this part. For convenience, the augmented index sets of
normal (distracted) samples in a mini-batch and the training
sets are denoted as X a (Da) and X t (Dt), respectively.
• Encoder
A hierarchical vision Transformer using shifted windows,

namely Swin Transformer (Swin-T), is employed as a back-
bone encoder for extracting feature representations of images
[37]. As shown in Fig. 2, a Swin-T block consists of multi-
head self-attention modules with regular and shifted win-
dowing configurations, denoted as W-MSA and SW-MSA,
respectively, followed by the multilayer perceptron (MLP),
and the LayerNorm (LN) layer with a residual connection is
applied before each module. The Swin-T model transfers each
input image as follows,

ẑl = W-MSA
(
LN

(
zl−1

))
+ zl−1

zl = MLP
(
LN

(
ẑl
))

+ ẑl

ẑl+1 = SW-MSA
(
LN

(
zl
))

+ zl

zl+1 = MLP
(
LN

(
ẑl+1

))
+ ẑl+1

(2)

where ẑl and zl are output features of the MSA-based modules
and the MLP module for block l, respectively. The model
produces a hierarchical feature map (7, 7, 768) at last, and
its corresponding representation h ∈ R768 is obtained by
applying a global average pooling (AP) layer.
• Decoder
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Fig. 2. Overview of the developed contrastive representation learning approach for quantitative driver distraction detection.

A binary classification decoder is designed to further im-
prove the model’s feature capturing capability. The fully
connected (FC) layer and a Sigmoid (S) activation function
are performed to transform the feature representation h into a
constant c ∈ [0, 1], i.e., the probability of the normal driving
behavior.
• Projection
A deeper network structure can filter unnecessary image in-

formation for contrastive learning tasks [38]. In this study, two
fully connected layers and the ℓ2 normalization are conducted
to transform h into an embedding v ∈ R128. Accordingly, all
input images are mapped on a unit hypersphere through the
projection.
• Loss design
Three loss functions, i.e., binary cross-entropy (BCE) loss,

clustering-based supervised contrastive (C-SC) loss and neg-
ative log-likelihood (NLL) loss, are designed in this study.
Cross-entropy loss is generally utilized for the classification
of distracted behaviors in previous studies, whereas in our
model, the BCE loss is only employed for assisting in better
capturing feature representation of normal driving activities.
The BCE loss is defined as

LBCE =
∑

i∈Xa∪Da

[yi · ln ci + (1− yi) · ln (1− ci)] (3)

wherein yi and ci denote the label of the ith sample and
its predicted probability of normal driving, respectively. It is
noted that the label yi ∈ {0, 1}, in which “0” and “1” represent
normal and distracted driving, respectively.

Normal driving behaviors are generally similar in practice,
and therefore, the distribution of their feature representations is
expected to be concentrated. Based on the conception of GMM
clustering, a multivariate Gaussian distribution is constructed
using representations of normal driving samples in the training
dataset. To enable normal samples to cluster, minimizing both
distances from the embedding representations to their center

and the covariance of the distribution is desired. Accordingly,
the NLL loss is constructed as

LNLL = −
∑
i∈Xa

ln [N (vi | µ,Σ)]

= −
∑
i∈Xa

ln

[
1√

(2π)κ|Σ|
e−

1
2 (vi−µ)TΣ−1(vi−µ)

]
(4)

where N is the multivariate Gaussian distribution of the
representation set at each training epoch, µ and Σ are the
mean and the covariance of the distribution, respectively, κ =
128 is the dimension of each representation v.

The supervised contrastive (SC) loss is designed to pull
together the representations belonging to the same class in
the latent space, which is formulated below [39],

LSC = −
∑

i∈Xa∪Da

1

|P(i)|
∑

j∈P(i)

ln
exp (vi · vj/τ)∑

k∈A(i)

exp (vi · vk/τ)

(5)
where P(i) is an index set that has the same label as embed-
ding vi, and |P(i)| denotes its cardinality, A(i) ≡ P(i)/{i}
is a relative complement of the index, and τ ∈ R+ is a
scalar temperature parameter. To further align normal driving
activities, this study translates the original hypersphere center
to the center of representation distribution N . Consequently,
the embedding representation in the translated latent space and
the C-SC loss are, respectively, described as

vc =
v − µ

∥v − µ∥2
(6)

LC−SC = −
∑

i∈Xa∪Da

1

|P(i)|
∑

j∈P(i)

ln
exp

(
vc
i · vc

j/τ
)∑

k∈A(i)

exp (vc
i · vc

k/τ)

(7)
Eventually, the training loss is summarized as

LS = α1LBCE + α2LNLL + α3LC−SC (8)
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where α1, α2, α3 are weights of the corresponding loss
function.

The pseudo-code of our model’s learning strategy is pro-
vided in Algorithm 1. A transfer learning technique is applied
to fine-tune the pre-trained Swin-T model, which transfers the
domain knowledge learned from large-scale datasets to driver
distraction detection tasks. The proposed model is trained with
an Adam optimizer, and the learning rate is 0.0001. The mini-
batch size is selected as 128 with 20 training epochs, and
the model with the highest detection accuracy is saved. The
temperature parameter τ is set to 0.07, and the loss weights
α1 = α3 = 1, α2 = 0.001. The whole network is developed
with PyTorch (https://pytorch.org/).

Algorithm 1: Learning strategy of the driver distrac-
tion detection framework

Input: training sets X t, Dt, temperature parameter τ ,
loss weights α1, α2, α3

for t← 1 to max epoch do
# Stage 1: obtain the distribution N
Initialize the normal driving representation set V;
for i← 1 to |X t| do

Calculate normal embeddings vi;
Append vi into V;

end
Calculate µ and Σ for the distribution Nt(µ,Σ);
# Stage 2: train the proposed model
for Gradient step ← 1 to max iteration do

Generate augmented image sets X a and Da;
Calculate loss according to Eq. (8);
Update fDec by LBCE;
Update fProj by LC−SC, LNLL;
Update fEnc by LS;

end
end

To ensure the stability of calculated distraction levels, the k-
nearest neighbor (KNN) algorithm with 2 neighbors is utilized
for distraction quantification,

ζi = min

(
∥vi − vj∥2 + ∥vi − vk∥2

2

)
i ∈ X ∪ D, j, k ∈ X t (j ̸= k)

(9)

wherein ζi is the distraction level of ith sample.

III. EXPERIMENTS

In this section, we illustrate the experimental scheme in
detail and compare the features of four publicly available
driver distraction datasets.

A. Experimental Protocol

Few high-quality vision-based driver distraction datasets
are publicly available, and most of them are collected in-
side the vehicle cabin. To guarantee safety and efficiency,
most intelligent driving strategies are initially verified through
hardware-in-the-loop tests, rather than field experiments. In

Calculating
Platform

Simulator
Setup

Driving
Scenes

Fig. 3. Driver-in-the-loop experimental platform.

this study, we have constructed a Singapore AutoMan@NTU
distracted driving (SAM-DD) dataset, which can be migrated
to studies involving driver states based on driving simulators,
e.g., driving authority allocation, etc.

The driver-in-the-loop experimental platform, as shown in
Fig. 3, is composed of a physical simulator (Logitech G29),
two cameras (Zed 2i) and a computer (NVIDIA GTX 2080
Ti with 32 GB RAM). Experimental data are collected from
42 participants (34 males, 8 females) with varied ages and
driving experience. Through selecting and integrating abnor-
mal behaviors in previous studies, nine representative physical
distracted behaviors are recorded in our dataset, including
eight non-driving activities (i.e., drinking, talking left/right,
texting left/right, touching hairs, adjusting glasses, reaching
behind) and one fatigue-related behavior (i.e., head dropping).
The datasets are collected in synchronized RGB and depth
modalities with a resolution of 1200×900 pixels. In addition
to the lateral camera used to detect head and arm movements, a
front camera is installed to capture drivers’ facial information.
An example of two modalities and two views is presented in
Fig. 3.

B. Datasets Features

Table I illustrates the different characteristics of four pub-
licly available driver distraction datasets, including the first
version of the American University in Cairo Distracted Driver
(AUC-v1) dataset, a multi-view, multimodal and multispectral
Driver Action Dataset (3MDAD), the Driver Anomaly Detec-
tion (DAD) dataset and our proposed dataset [18], [22], [35].
AUC-v1 is the first public driver distraction dataset, consisting
of 17308 samples from 31 participants. In the experiments, ten
typical driver behaviors, including safe driving, are recorded
by a roof handle-mounted camera. 3MDAD contains two
natural driving sets collected during the daytime and the night,
respectively, and only the daytime one is employed in this
study. 3MDAD (day) provides temporally synchronized RGB
and depth frames with front and side views, in which 16
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TABLE I
CHARACTERISTICS COMPARISON ACROSS DRIVER BEHAVIOR DATASETS.

Datasets AUC-v1 [22] 3MDAD (day) [18] DAD [35] SAM-DD [ours]
Resolution (W ×H) 1920×1080 640×480 224×171 1200×900
Image modes RGB RGB & Depth Infrared & Depth RGB & Depth
Sample types Single frame Single frame Video clip Single frame
Labeled behaviors 10 16 9 10
Sample sizes 17308 111017 67051 51175
Participants 31 50 31 42
Gender ratio (M / F) 22 / 9 38 / 12 20 / 11 34 / 8
Collection scenes Parked vehicle Natural driving Parked vehicle In-lab
Views 1 2 2 2

driving actions from 50 subjects are recorded. However, the
depth images in the 3MDAD are difficult to be utilized for
driver behavior detection directly due to their low quality. It
is noted that the 3MDAD is an imbalanced dataset wherein
normal driving samples only account for 1/16. DAD dataset
has synchronized infrared and depth video frames from both
front and top views, and each input clips consist of 16 frames.
Especially, 16 unlabeled abnormal driving activities in the test
set are unavailable in the training one, which requires the
model can recognize previously unseen distracted behaviors.

Features of our dataset are summarized below,
• The SAM-DD dataset is large enough for training

learning-based models from scratch. Also, researchers can
conveniently migrate the trained model to targeted downstream
tasks.
• The SAM-DD dataset contains high-quality multi-modal

information, i.e., RGB and depth, which can improve the
model’s reliability against various driving environments. The
dataset has multiple views, which are recorded synchronously
and complement each other. Accordingly, researchers can
utilize the dataset for wider driver states-related tasks. (Note:
Only the lateral view is employed in this study)
• The SAM-DD dataset is mainly for intelligent driving

research in the laboratory, including driving takeover systems,
remote driving, and control strategies involving driver states,
etc.

The selected four datasets contain many different types of
distracted driving activities, which can be conveniently utilized
to test models’ capability of recognizing previously unseen
distracted behaviors. Also, these datasets are complementary
in terms of image modes, sample types, data distributions and
collection scenes. Different characteristics of the datasets can
enable the developed driver distraction quantification model to
be comprehensively evaluated.

IV. RESULTS AND DISCUSSIONS

In this section, we first evaluate the proposed model and
the other state-of-the-art methods with varied backbones and
loss functions. Then, the clustering characteristics of varied
approaches are compared. Finally, we analyze the distributions
of driver distraction levels obtained by the designed model and
evaluate its rationality using drivers’ skeleton key points.
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Fig. 4. Comparison of varied backbones over recognition accuracy across
different driver behavior datasets.

A. Classification performance

To verify the feature extraction capability of the Swin-T
in the proposed framework, varied state-of-the-art models are
employed as encoders for comparison, and the recognition
results across different datasets are shown in Fig. 4. Although
the recognition accuracy of each backbone varies across the
datasets with different data distributions and characteristics,
the Swin-T obviously outperforms other backbones in all
cases, indicating it can capture the feature representation of
driving behaviors more effectively. Especially, a 3D Swin-
T model is selected to extract representations of sequential
frames in the DAD dataset. Since this study aims to establish
an efficient contrastive learning framework, but not elaborately
design a classification model, more detailed discussions of
varied encoders’ recognition results are omitted here.

To better demonstrate the superiority of our framework, two
other baseline methods are designed, i.e.,
• E2E-Sup: an end-to-end supervised learning approach.

The method is utilized to classify driver behaviors into normal
and distraction through their probabilities calculated by a
binary classifier.
• SupCon: a supervised contrastive learning approach. The

method can recognize driving behaviors by quantifying driver
distraction levels. One significant difference from our proposed
approach is that it lacks clustering loss LNLL during training.

To achieve a fair comparison, the Swin-T is employed as the
encoder in all approaches. All models are trained by a varied
number of distracted activities to investigate their capability of
recognizing previously unseen activities. Experimental results
are analyzed in terms of three evaluation metrics, i.e., accuracy,
area under curve (AUC), and F1-score, as described in Table
II.
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TABLE II
RECOGNITION PERFORMANCE OF MODELS TRAINED BY THE VARIED NUMBER OF DISTRACTION ACTIVITIES

ACROSS DIFFERENT DRIVER BEHAVIOR DATASETS.

Distractions E2E-Sup SupCon SupCon+GMM (ours)
number Accuracy AUC F1-scores Accuracy AUC F1-scores Accuracy AUC F1-scores

AUC-v1
2 0.7184 0.8638 0.7865 0.9399 0.9577 0.9625 0.9408 0.9622 0.9627
4 0.8269 0.9081 0.8795 0.9353 0.9525 0.9595 0.9362 0.9680 0.9596
6 0.8882 0.9497 0.9256 0.9424 0.9687 0.9635 0.9418 0.9618 0.9634
9 0.9709 0.9908 0.9815 0.9631 0.9771 0.9799 0.9697 0.9778 0.9808

3MDAD (day)
3 0.9024 0.7777 0.9480 0.9397 0.6366 0.9688 0.9399 0.7818 0.9687
7 0.9090 0.7424 0.9515 0.9392 0.6916 0.9686 0.9390 0.5730 0.9685

11 0.9319 0.7889 0.9583 0.9403 0.6161 0.9691 0.9417 0.7063 0.9697
15 0.9403 0.7427 0.9691 0.9415 0.6299 0.9690 0.9447 0.7363 0.9712

DAD
2 0.7908 0.8277 0.5644 0.8552 0.8989 0.7693 0.8584 0.9181 0.7983
4 0.8036 0.8291 0.6077 0.8637 0.8983 0.7948 0.8665 0.9214 0.7954
6 0.8317 0.8791 0.6784 0.8717 0.9133 0.8066 0.8730 0.9232 0.8208
8 0.8517 0.8921 0.7379 0.8971 0.9342 0.8382 0.8989 0.9321 0.8453

SAM-DD
2 0.8639 0.9536 0.8618 0.9274 0.9668 0.9334 0.9300 0.9647 0.9353
4 0.8945 0.9588 0.8991 0.9313 0.9705 0.9374 0.9326 0.9682 0.9380
6 0.9355 0.9795 0.9406 0.9432 0.9778 0.9486 0.9451 0.9774 0.9510
9 0.9733 0.9914 0.9757 0.9641 0.9828 0.9678 0.9720 0.9781 0.9746

It is seen that the recognition performance of varied ap-
proaches is close across AUC-v1, 3MDAD (day), and SAM-
DD datasets when the models are trained with all distrac-
tion samples, and the E2E-Sup can slightly outperform the
SupCon-based methods in some datasets at this point. How-
ever, the E2E-Sup model’s performance decreases dramatically
with the decline of the varied number of distraction behaviors
during training, and its reduction varies with the different
sample distributions in the datasets. For instance, the max-
imum reduction of the E2E-Sup model’s accuracy is nearly
26.0% in the AUC-v1 dataset, while only about 4.0% in the
3MDAD (day) dataset due to the imbalanced sample distri-
bution. In comparison, the reductions in the accuracy of our
developed model are only almost 3.0% and 0.6% in AUC-v1
and 3MDAD (day) datasets, respectively. Since the testing set
of the DAD dataset has 16 additional distracted activities that
do not appear in its training set, the performance of the E2E-
Sup trained by all training samples is always worse than the
SupCon-based models. Obviously, accuracy reductions of the
SupCon-based methods are significantly lower than that of the
E2E-Sup method when the training is conducted with partial
distracted driving activities, which demonstrates that SupCon-
based methods are greatly robust in identifying unknown
driving behaviors. Interestingly, SupCon-based models trained
with more distracted behaviors show relatively poorer recog-
nition results in some cases, on account of the more complex
segmentation boundary generated by more driving behaviors
is hard to be fully learned in practice. Furthermore, the GMM-
based representation clustering is conducted in our developed
approach, which improves the model performance in most
cases and requires no additional computations compared with
the SupCon. Clustering-based SupCon improves the AUC
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Fig. 5. Distributions of driver distraction levels calculated by the proposed
approach on different test sets.

by 12.8%–18.6% compared with the SupCon in 3MDAD
(day) dataset, indicating that the GMM-based representation
clustering can significantly enhance the model’s robustness in
the decision threshold selection, especially in the case of few
training samples of normal driving.

B. Distraction quantification evaluations

In addition to efficiently recognizing previously unknown
driving behaviors, our proposed approach aims to properly
reflect distraction levels of different driver activities. Distribu-
tions of distraction levels calculated by the developed approach
on the test sets of four datasets employed in this study are
shown in Fig. 5. It is seen that the datasets containing RGB
images, i.e., AUC-v1, 3MDAD (day), and SAM-DD, have a
greater distribution of the data domain than the DAD dataset.
Due to numerous mislabeled samples, normal behaviors and
distracted ones have a significant overlap in the 3MDAD (day)
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dataset, indicating that precisely labeled data are required by
the proposed approach for constructing the distribution of
normal driving actions during training. Our approach distinctly
split normal and distraction samples on the AUC-v1, DAD,
and SAM-DD datasets except for a few outliers. Specifically,
the distraction levels of normal samples are low and concen-
trated, while the distraction levels of distracted behaviors are
dispersedly distributed and separated from the normal ones.
Furthermore, an obvious distinction between the normal and
distraction samples, especially in the AUC-v1 and SAM-DD
datasets, demonstrates our method provides a loose range of
the decision threshold for recognizing driving behaviors.

Driver skeleton poses are employed to further assess the
rationality of the distraction levels for different distracted
driving behaviors. A state-of-the-art human body pose detector
is utilized to extract skeleton keypoints, and all keypoints
are reshaped and normalized into a vector to compute the
distances of different distracted driving behaviors from the
normal one [40]. The average distraction levels of varied
distracted actions calculated by the different methods are
presented in Fig. 6, wherein the distraction levels reflected
by the skeleton keypoints conform to human intuition and
thus are employed as the reference. It is noteworthy that
an approach that can reasonably describe the differences in
varied distracted behaviors is regarded as an ideal one, and
whether the calculated distraction levels equal the reference is
meaningless. From the perspective of graphics, the approach
that is more similar to the reference model in terms of the
polygon shape can better reflect the distraction levels of
driving behaviors.

It is observed that the difference in the distraction lev-
els of varied driving behaviors, excluding “head dropping”,
calculated by the E2E-Sup method is little in the AUC-v1,
3MDAD (day), and SAM-DD datasets, whereas a relatively
obvious distinction is achieved in the DAD dataset. The
“head dropping” is an exception since the E2E-Sup wrongly
classifies it as a normal behavior, especially in the SAM-
DD dataset. The phenomenon indicates that the E2E-Sup
method cannot distinguish different distracted behaviors based
on a single frame, while the spatio-temporal information can
improve its performance in this regard. For the reference
model, the distraction level of “texting left” is larger than
both “texting right” and “toughing hairs & makeup” in the
AUC-v1 dataset, the same phenomenon is presented in our
proposed model while an opposite one appears in the SupCon
method. Similar examples can also be found in other datasets,
which demonstrates that the distraction levels obtained by the
clustering-based SupCon are most consistent with the skeleton
pose results and our developed model can better reflect the
distraction levels compared with other baseline approaches.
Interestingly, the distraction levels of symmetrical driving
activities, such as “phoning right” and “phoning left”, are
different since the side-mounted camera makes some driving
actions to be more obvious than their symmetrical ones in the
captured images.
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Fig. 6. Comparison of the average distraction levels of different distracted
driving behaviors calculated by different approaches in the four test sets. (a)
AUC-v1. (b) 3MDAD (day). (c) DAD. (d) SAM-DD.

C. Clustering analysis

To intuitively understand the difference between the base-
line methods and ours, a t-distributed stochastic neighbor
embedding (t-SNE) approach is employed to visualize the
feature representations mapped by different methods [41]. The
visualization results across the four datasets are presented in
Fig. 7. It is obvious that the representations of normal samples
and distracted ones extracted by the E2E-Sup are entangled in
all datasets. Conversely, the SupCon-based approaches present
distinguishable clustering results in the AUC-v1, DAD, and
SAM-DD datasets. Also, representations of normal driving
samples generated by SupCon-based approaches in the AUC-
v1 appear to be more concentrated than those in the DAD and
SAM-DD datasets due to the varied proportions of normal and
distraction samples in the test sets. For instance, the normal
samples in the test set of AUC-v1 only account for nearly
1/4, while the size of normal samples is almost twice that
of distracted driving in the DAD dataset. For the 3MDAD
(day) dataset, although the normal samples’ representations
extracted by the clustering-based SupCon are more distributed
on the right side, all methods cannot yield recognizable clus-
ters since many distracted behaviors are mislabeled as normal
driving. Furthermore, the clustering results of our developed
model provide clearer distinctions between the normal and
distracted driving samples compared with the SupCon method,
which is beneficial for quantifying driver distraction levels and
enhancing the model’s recognition performance.
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Fig. 7. Visualization results of the feature representations extracted by
different approaches across four datasets. (a) AUC-v1. (b) 3MDAD (day).
(c) DAD. (d) SAM-DD.

V. CONCLUSIONS

Our study aims to tackle the two limitations of most
learning-based driving distraction detection models in practical
application, i.e.,
• Existing datasets cannot cover all natural driving behav-

iors, which leads to a drastic deterioration of most models’
performance in recognizing unknown driving behaviors.
• Most previous studies regard driving distraction detection

as a multi-classification task, but only the recognition of
discrete driving behavior categories is not suitable for the
development of downstream applications.

In this paper, we propose a driver distraction quantification
framework for detecting distracted activities and construct
a novel driver behavior dataset for in-lab driving research.
A vision transformer-enabled supervised contrastive learning
model is designed to recognize distracted driving activities,
especially previously unseen ones. Also, a GMM is employed
to build the clustering-based representation set of normal
driving that is utilized to calculate driver distraction levels.
Experimental results across four datasets demonstrate that the
designed contrastive learning approach is strongly robust in
recognizing unknown distracted activities compared with the
E2E-Sup model, and the representation clustering technique
enables the model to better reflect distraction levels related

to the variation of driver skeleton information. The superior
performance of our developed distraction detection framework
demonstrates that it is a more practical solution for down-
stream applications.

In further research, a series of driver states-related in-
telligent driving schemes, such as takeover systems and
shared control strategies, etc., can be optimized and devel-
oped through combining our developed distraction detection
framework. Also, an important further study is to better align
the distraction levels of driving behaviors with their potential
risks.
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