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Joint Estimation of Nonlinear Dynamics and
Resistance Torque for Integrated

Motor-Transmission Systems via Switched `∞
Observers with Smoothness Guarantee

Juntao Pan, Anh-Tu Nguyen∗, Senior Member, IEEE, Weilong Lai, Xiaoyuan Zhu, Hailong Huang

Abstract—The information of the shaft torque and the resis-
tance torque is crucial to develop advanced control and fault
diagnosis/detection schemes for electrified powertrain systems.
However, reliable physical sensors for torque measurement are
not affordable for commercial vehicle applications. This pa-
per investigates the simultaneous estimation problem of the
state dynamics and the resistance torque for integrated motor-
transmission (IMT) systems of electric vehicles. To this end,
the IMT system is first reformulated as a nonlinear switched
model, where the resistance torque is considered as an unknown
input (UI). This modeling reformulation allows taking into
account not only the nonlinear nature of IMT dynamics but
especially also the intrinsic discontinuity of the gear-shifting
process. Then, we propose a nonlinear switched observer struc-
ture to simultaneously estimate the nonlinear IMT dynamics,
thus the shaft torque, and the unknown resistance torque. The
observer design does not require any a priori information on
the unknown resistance torque as for the classical proportional-
integral observer design, nor the well-known matching condition
for UI decoupling techniques. Using Lyapunov stability theory, we
derive sufficient conditions, expressed in terms of linear matrix
inequality (LMI) constraints, to design a nonlinear switched
observer with a guaranteed `∞ performance to mitigate the
negative effect of sensor noises and disturbances. In particular, we
propose to incorporate LMI-based bumps limitation conditions
in the optimization-based observer design to reduce the impacts
of expressive discontinuities at switching instants. Comparative
studies are performed between related estimation methods to
show the practical effectiveness of the proposed solution.

Index Terms—Integrated motor-transmission system, torque
estimation, powertrain system, switched nonlinear observer,
smoothness guarantee, unknown input.

I. INTRODUCTION

Over the last decades, electrified vehicle powertrain has
been received increasing research attention to improve the
performance of vehicle dynamics [1]–[5]. However, the driving
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range of electrified vehicles is restricted to the limited power
energy provided by electrochemical batteries. Therefore, im-
proving the efficiency of electrified powertrain systems has
become a hot research topic [6]. Integrated motor-transmission
(IMT) systems have been recently considered as an alternative
solution for electrified powertrain to improve the power and
the economy of electric vehicles [7]. With the benefit of direct-
connection between multi-speed transmission and electric mo-
tor, the efficiency losses on clutches vanish, which can effec-
tively increase the overall efficiency of electrified powertrain
systems [8]. Moreover, with its gear-shift mechanism, an IMT
system can constantly regulate the operating point of the motor
to adapt different driving scenarios, which further increases
the driveline efficiency. Hence, IMT systems have received
increasing attention for electric vehicles.

The shaft torque information is crucial to develop power-
train control systems for electric vehicles [9]. For example,
to improve gearshift quality, a precise information of the
transmitted torque is required in [10] to develop a shift
control scheme. The shaft torque information is also useful
to actively cancel the driveline oscillations for driveability
improvement [11]. However, physical sensors to measure the
shaft torque information are too expensive for commercial
applications. Hence, a great deal of research efforts have
been devoted to estimate the shaft torque from the powertrain
dynamics [12]–[17]. Linear observer and filtering techniques
were proposed to estimate the shaft torque [18], [19], which
may not provide a satisfactory estimation performance over a
large operating range due to the nonlinear nature of powertrain
system dynamics [13]. To deal with powertrain nonlinearities,
sliding-mode shaft torque observers were proposed in [5],
[20], which may require a substantial effort to mitigate the
chattering impacts. A Takagi-Sugeno (TS) fuzzy unknown
input observer (UIO) was proposed in [13] to estimate the
transmission input and the output torque as well as the drive
wheel speed of a hybrid powertrain system. Another TS fuzzy
reduced-order observer was proposed in [8] to estimate the
shaft IMT systems. However, the design of these TS fuzzy
observers is based on the Lipschitzian property of the mem-
bership functions, which can induce a conservative estimation
performance [21]. Moreover, specific matrix rank conditions
must be verified for the UIO design in [13]. Note also that the
time-derivative of the system output is required to construct
the TS fuzzy observer in [8], which can make the estimation
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performance highly sensitive to the effect of sensor noises.
To overcome this drawback, the authors in [22] proposed to
incorporate a recursive least square estimation algorithm in the
design of a reduced-order linear observer. Despite its practical
performance for transmitted driveline torque estimation in both
driving and gear-shifting operations, the stability issue of the
overall estimation scheme should be further investigated.

Vehicle resistance torques, e.g., aerodynamic drag torque,
rolling resistance torque, road gradient torque, are a major
source of nonlinearities and disturbances, which bring chal-
lenges to modeling, estimation and control issues of powertrain
dynamics [13], [23]. Since the measurement of resistance
torques is unavailable in practice, the rolling resistance torque
and the road gradient torque are generally considered as an
external disturbance for shaft torque observer design [24].
Consequently, H∞ filtering technique [25] has been widely
adopted to mitigate the impact of these disturbances on the
shaft torque estimation. However, differently from the road
gradient torque and the rolling resistance torque, the aerody-
namic drag torque directly depends on the wheel speed of
IMT systems. Then, considering the drag torque as an external
disturbance may lead to performance deterioration, especially
when the impact of the wheel speed becomes dominant. To
overcome this drawback, the drag torque information should
be taken into account in the observer design [8]. Note also that
most of estimation methods for IMT powertrain systems do not
allow to recover unknown resistance torques. Moreover, the
switching nature due to the gear-shifting process has not been
explicitly considered in previous observer design methods.

Motivated by the above practical and theoretical issues, this
paper investigates the estimation problem of IMT powertrain
systems. Differently from the previous related works, the IMT
system dynamics is reformulated as a nonlinear switched
model to take into account not only the nonlinear nature but
especially also the intrinsic discontinuity of the gear-shifting
process. Then, a new nonlinear switched observer is proposed
to simultaneously estimate the nonlinear dynamics, thus the
shaft torque, and the unknown resistance torque for IMT
systems. Motivated by the observer structure in [26], the pro-
posed observer design does not require any specific matching
condition as for decoupling-based UIO design [13], [27]–[30],
nor a priori information about the unknown resistance torque
as for proportional-integral observer design [31].

Considering the class of amplitude-bounded sensor noises
and disturbances, practically encountered in IMT applications,
their effects are minimized via an `∞−gain performance,
i.e., peak-to-peak disturbance attenuation. Using Lyapunov
stability theory, sufficient conditions are derived to design a
nonlinear switched observer with a guaranteed `∞−gain for
disturbance attenuation and a decay rate for a specified closed-
loop convergence. The observer design is recast as a convex
optimization problem under linear matrix inequality (LMI)
constraints, which can be effectively solved using semidefi-
nite programming techniques [25]. In particular, the negative
impacts of expressive discontinuities at switching instants can
be mitigated via an additional bumps limitation constraint,
expressed in terms of LMIs, which can be directly incorporated
into the optimization-based observer design problem. Hence,

the gear-shifting impact under the effect of high-frequency
sensor noises and disturbances can be minimized for the
estimation of IMT nonlinear dynamics and unknown resistance
torque. Specifically, the contributions of this paper can be
summarized as follows.
• A simple nonlinear observer is proposed to jointly esti-

mate the shaft torque and the unknown resistance torque
of IMT systems. The switching nature of IMT dynamics
is explicitly considered in the observer design.

• The proposed observer design does not require any spe-
cific matching condition nor a priori information on the
resistance torque. The UIO design methods in [13], [27]–
[30] and their direct extensions cannot be applied to the
considered IMT system due to such a matching condition.

• Conditions for `∞ observer design and for smoothness
guarantee at switching instants are expressed as LMI
constraints to facilitate the design procedure. Comparative
results, obtained under various operating conditions, show
the practical relevance of the proposed estimation method.

The paper is organized as follows. Section II describes the
nonlinear dynamics of IMT powertrain systems. Section III
first formulates the estimation problem before providing LMI
conditions for `∞ nonlinear switched observer design. The
guarantee on the bumps limitation to mitigate the random
switching effect of gear-shifting is also discussed. Illustrative
results and comparative studies are presented in Section IV.
Section V provides concluding remarks and future works.

Notation. We denote N+ the set of positive integers, R the
set of real numbers, R+ the set of positive real numbers, and
Iq = {1, . . . , q} ⊂ N+. For a vector a, its jth element is
denoted by aj , ‖a‖ denotes the 2-norm of a, i.e., ‖a‖ =

√
a>a.

For a matrix Y , its transpose is denoted by Y >, Y � 0
(Y ≺ 0) means that Y is positive (negative) definite, and
HeY = Y + Y >. For any bounded function f(·) : R → Rn,
we define ‖f(·)‖∞ = supt∈R ‖f(t)‖ as its `∞-norm. The
symbol ? represents the transposed terms in a symmetric
matrix. For two vectors x, y ∈ Rn, we denote co(x, y) =
{(1−λ)x+χy : λ ∈ [0, 1]} as the convex hull of x and y. For
b ∈ Il, denote ζl(b) = [0, . . . , 0, 1bth , 0, . . . , 0]> ∈ Rl as the
canonical basis of Rl. Denote I as the unit matrix, λmax(X)
and λmin(X) as the maximum and minimum eigenvalues of a
real symmetric matrix X , respectively. We omit the function
arguments when the meaning is clear.

II. DESCRIPTION OF IMT POWERTRAIN DYNAMICS

We consider an IMT powertrain system, depicted in Fig. 1,
which consists of a differential system, a two-speed clutchless
automated manual transmission system and an electric driving
motor. The system parameters are given in Table I. The IMT
powertrain dynamics can be described by [8]

Jinω̇in = Tm − Tt − cmωm

Josω̇out = igηTt −
Ts
if

Jvω̇w = Ts − TL

(1)

where ωout is the transmission output shaft speed, ωin is the
transmission input shaft speed, ωw is the wheel speed, ωm is
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the motor speed, Tm is the motor torque, Tt is the synchronizer
torque, and η ∈ {1, 2} represents the current gear stage. The
equivalent inertia of the transmission input shaft Jin and the
drive shaft Jv are defined as

Jin = Jm + Jis +
Jcs
i2g

+
Jgh
i2gi

2
gh

+
Jgl
i2gi

2
gl

Jv = Jw +mvr
2
w.

The drive shaft torque Ts can be expressed as

Ts = ksθs + cs

(
ωm
igηif

− ωw
)

(2)

where the shaft torsion angle of the drive shaft is given by

θs =
θm
igηif

− θw, η ∈ {1, 2} (3)

with ig1 = igigl and ig2 = igigh. The torque of the external
resistance loads is expressed as

TL = Td + Ta (4)

where Td represents the lumped torque stemmed from the
rolling resistance and the road gradient effect, which cannot
be measured or accurately modeled. The air drag torque Ta
can be expressed as

Ta = 0.5ρairAfCdv
2rw (5)

where v is the vehicle speed. Without considering the wheel
slip, the vehicle speed can be determined as v = ωwrw. Hence,
we can rewrite the air drag torque Ta in (5) as

Ta = f(ωw)ωw (6)

with f(ωw) = 0.5ρairAfCdr
3
wωw.

Fig. 1: Schematic of a two-speed integrated motor-
transmission powertrain system.

Remark 1. Note from expressions (2) and (3) that the
nonlinear dynamics of system (1) depends on the selected
current gear stage η. Then, the nonlinear IMT model (1) can
be considered as a switched system, where the gear switching
signal η is governed by a gear shifting supervisor according
to the driver intention [32].

TABLE I: IMT system parameters.

Parameter Description Value
Jm Motor inertia 0.11 [kgm2]
Jgh High speed gear inertia 0.0409 [kgm2]
Jgl Low speed gear inertia 0.0194 [kgm2]
Jis Transmission input shaft inertia 0.0172 [kgm2]
Jcs Transmission counter shaft inertia 0.0923 [kgm2]
Jos Transmission output shaft inertia 0.293 [kgm2]
Jw Wheel inertia 1.7747 [kgm2]
mv Vehicle mass 1463 [kg]
rw Wheel radius 0.3 [m]
ks Shaft spring constant 9520 [Nm/rad]
cs Shaft damping constant 59 [Nm,s/rad]
ig Ratio of input shaft and counter shaft 2.21
igl Ratio of counter shaft and 1st gearwheel 0.45
igh Ratio of counter shaft and 2nd gearwheel 0.69
if Final reduction gear ratio 3.667
ρair Air density 1.29 [kgm3]
Cd Aerodynamic drag constant 0.325
Af Effective front area 1.8 [m2]
g Gravitational acceleration 9.8 [m/s2]
µ Tire rolling resistance constant 0.01 [Nms/rad]
cm Motor damping 0.01 [Nms/rad]

The angular rotation speed of the transmission input shaft
ωin is generally very close to the angular rotation speed of
the motor ωm. Moreover, the transmission output shaft speed
ωout is proportional to the transmission input shaft speed ωin.
Hence, the dynamics of the motor and the transmission system
can be simplified as

Jηω̇in = Tm −
Ts
igηif

− cmωm (7)

with Jη = Jin + Jos
i2gηi

2
f

and η ∈ {1, 2}. From (2), (4), (6)
and (7), the nonlinear dynamics of the IMT system (1) can be
represented in the following state-space form:

ẋ = Aηx+Bηu+Dd+Gφ(x), η ∈ {1, 2} (8)

where φ(x) = ω2
w, x =

[
ωm θs ωw

]>
is the state vector,

u = Tm is the known input, and d = Td is the unknown input.
The state-space matrices of the IMT system (8) are given by

Aη =

−
cmi

2
gηi

2
f+cs

Jηi2gηi
2
f

− ks
Jηigηif

cs
Jηigηif

1
igηif

0 −1
cs

Jvigηif
ks
Jv

− cs
Jv


Bη =

 1
Jη

0
0

 , D =

 0
0
− 1
Jv

 , G =

 0
0

− 0.5ρairAfCdr
3
w

Jv

 .
For normal operating conditions, the IMT system states are
bounded within a compact set x ∈ Bx, defined as

Bx =
{
ωm ∈ [ωm, ωm], θs ∈ [θs, θs], ωw ∈ [ωw, ωw]

}
where ωm = 0 [rpm], ωm = 1000 [rpm], θs = −0.5 [rad] and
θs = 1 [rad], and ωw = 0 [rpm], ωw = 250 [rpm]. Note that
the motor rotation speed ωm can be obtained from the motor
control unit. However, the measurements of the shaft torsion
angle θs and the wheel rotation speed ωw are not available in
practice due to sensor costs. Moreover, with low-cost sensors,
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the undesired effects of measurement noises are unavoidable.
Hence, the output equation of system (8) is defined as

y = Cx+ f,

where C =
[
1 0 0

]
, and f is the measurement noise.

By the flexible shaft theory, estimating the shaft torque
Ts can be converted into an estimation problem of the shaft
torsion angle θs. Moreover, the information of the resistance
torque Td is important for estimation and control design of
IMT powertrain systems. Hence, this paper aims at providing
an effective algorithm to simultaneously estimate both the state
x and the unknown input d of the IMT system (7). This
estimation algorithm is based on a nonlinear switched observer
(NSO), whose structure is depicted in Fig. 2. A numerically
tractable NSO design is discussed in the next section.

Fig. 2: Structure of the proposed nonlinear switched observer.

III. NONLINEAR SWITCHED OBSERVER DESIGN WITH
SMOOTHNESS GUARANTEE

This section first describes the general class of nonlinear
switched systems to be considered. Then, the related `∞
nonlinear switched observer design problem is formulated.

A. Problem Formulation

For generality of the proposed estimation method, we con-
sider a more general form of system (8) as

ẋ = Aηx+Bηu+Dηd+Gηφ(x)

y = Cηx+ Fηf
(9)

where u ∈ Rnu is the known input, x ∈ Bx ⊆ Rnx is the
system state, f ∈ Rnf is the measurement noise, y ∈ Rny
is the measured output, d ∈ Rnd is the unknown input (UI),
η : R+ → IN is a switching signal that selects a particular
subsystem, at each instant of time, among N available ones
defined by

Ci =

[
Ai Bi Di Gi 0
Ci 0 0 0 Fi

]
, i ∈ IN .

We say that i ∈ IN is the active subsystem at time t
if η(t) = i. Since the switching rule is governed by a
supervisor, we assume that η(t) is unknown a prior, but its
instantaneous value is available in real time. The nonlinear
function φ(x) : Bx → Rnφ is differentiable with respect to the

state x, whose elements cannot be measured from the output
y. For observer design, we assume that the pairs (Ai, Ci), for
i ∈ IN , are observable. Moreover, the following assumptions
are also considered for the nonlinear switched system (9).

Assumption 1. The matrices Di, for i ∈ IN , are of full
column rank, i.e., rank(Di) = nd.

Remark 2. Assumption 1 does not imply any loss of gener-
ality since it can be achieved by removing redundant compo-
nents of d. In contrast to most of existing UIO design results
[13], [27], [29], [33], the well-known matching condition, i.e.,
rank(CiDi) = rank(Di), for ∀i ∈ IN , is not necessary in this
work. It is important to note that the IMT system (8) does not
verify such a matching condition, thus classical UIO observer
design is unapplicable to this system.

Assumption 2. The unmeasured function φ(x) satisfies the
following boundedness condition:

%
ij
≤ ∂φi
∂xj

(x) ≤ %ij , x ∈ Bx (10)

for ∀(i, j) ∈ Inφ × Inx , with

%
ij

= min
%∈Bx

(
∂φi
∂xj

(%)

)
, %ij = max

%∈Bx

(
∂φi
∂xj

(%)

)
.

Remark 3. Assumption 2 is not restrictive since for normal
operating conditions of any engineering systems, the state x
is always physically bounded, i.e., x ∈ Bx. Hence, from the
mathematical expression of function φ(x), the bounds %

ij
and

%ij in (10) can be directly computed. For instance, with the
IMT system (8), we have φ(x) = ω2

w = x2
3. Then, it follows

that 2ωw ≤
∂φ
∂x3

(x) = 2ωw ≤ 2ωw.

Assumption 3. The measurement noise f(t) and the time
derivative of the unknown input d(t) are assumed to be
bounded, i.e., ‖f(t)‖ ≤ θ1 and ‖ḋ(t)‖ ≤ θ2, for some positive
scalars θ1 and θ2.

Remark 4. The boundedness condition in Assumption 3 is
less restrictive than that in [34], where both d(t) and ‖ḋ(t)‖ are
required to be bounded. Moreover, the exact bound values θ1

and θ2 are not required for the observer design conditions. In
particular, no a priori information on the unknown input d(t)
is required as for proportional-integral observer design, see
[31], [35], [36] and related references. Note that for the IMT
system (8), the unknown input d(t) is related to the resistance
torque and f(t) is the sensor noise, for which this assumption
is practically reasonable.

To avoid the necessity of the observer matching condition
for simultaneous estimation of the state x and the unknown
input d, we consider the following observer structure:

˙̂x = Aηx̂+Bηu+Dηd̂+Gηφ(x̂) + Lη(y − ŷ)

˙̂z = −KηDη ẑ −Kη (Aηx̂+Bηu+Gηφ(x̂) +DηKηx̂)

ŷ = Cηx̂ (11)

d̂ = ẑ +Kηx̂
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where x̂ is the estimate of x, ŷ is the estimate of y, d̂ is the
estimate of d, and ẑ is the estimate of the intermediate variable
z, defined as

z = d−Kηx. (12)

For observer design, the gain matrix Kη is selected as

Kη = τD>η (13)

where τ is a positive scalar. The observer gain Lη ∈ Rnx×ny
is to be determined. Let us define the estimation errors as

ex = x− x̂, ez = z − ẑ, ed = d− d̂. (14)

It follows from (12) and (13) that

d = z +Kηx. (15)

Then, the UI estimation error can be defined from (11), (14)
and (15) as

ed = ez +Kηex. (16)

As a result, the dynamics of the estimation errors can be
obtained from (9), (11) and (16) as

ėx = (Aη − LηCη)ex +Gηδφ +Dη(ez +Kηex)− LηFηf
ėz = ḋ−Kη(Aη +DηKη)ex −KηGηδφ −KηDηez (17)

with δφ = φ(x)−φ(x̂). The following mean value theorem is
useful to reformulate the mismatching nonlinear term δφ as a
function of ex for nonlinear observer design.

Lemma 1 ([21]). For any nonlinear function φ(x) : Rnx →
Rnφ , differentiable on co(α, β), there exist constant vectors
γi ∈ co(α, β), γi 6= α, γi 6= β, for i ∈ Inφ , such that

φ(α)− φ(β) =

 nφ∑
i=1

nx∑
j=1

ζnφ(i)ζ>nx(j)
∂φi
∂xj

(γi)

 (α− β).

Applying Lemma 1 to function φ(x), the mismatching
nonlinear term δφ can be reformulated as

δφ =

 nφ∑
i=1

nx∑
j=1

ζnφ(i)ζ>nx(j)
∂φi
∂xj

(ϑ)

 (x− x̂) (18)

= Φ(ϑ)ex

for ϑ ∈ co(x, x̂). Considering Assumption 2, the parameters
ρij = ∂φi

∂xj
(ϑ), for i ∈ Inφ and j ∈ Inx , are unknown but

bounded. Then, the elements of the unknown matrix Φ(ϑ)
belong to a bounded convex set Sφ, defined as

Sφ =

{
Φ(ϑ) :

∂φi
∂xj

(·) ∈ {%
ij
, %ij}

}
, (i, j) ∈ Inφ × Inx

where %
ij

and %ij are given in (10). From (13), (17) and (18),
the state estimation error dynamics can be rewritten as

˙̄e =

[
A11 A12

A21 A22

]
ē+

[
−LηFη 0

0 I

]
w (19)

with ē =
[
e>x e>z

]>
, w =

[
f> ḋ>

]>
, and

A11 = Aη(ϑ)− LηCη + τDηD
>
η , A12 = Dη

A21 = −τD>η Aη(ϑ)− τ2D>η DηD
>
η , A22 = −τD>η Dη

Aη(ϑ) = Aη +GηΦ(ϑ).

We are now ready to formalize the nonlinear switched observer
design problem for system (9).

Problem 1. Consider the nonlinear switched system (9) and
the observer structure (11) with Kη given in (13). Determine
the observer gain matrices of appropriate dimensions Li, for
i ∈ IN , such that the estimation error dynamics (19) satisfies
the following specifications.
• If w(t) = 0, for ∀t ∈ R+, the estimation error system

(19) is globally exponentially stable.
• If w(t) 6= 0, for ∀t ∈ R+, for any initial condition ē0 and

any bounded w(t), the estimation error ē(t) is uniformly
ultimately bounded and satisfies the condition

lim sup
t→∞

‖ē(t)‖ ≤ ψ‖w(t)‖∞ (20)

where ψ is the `∞−gain performance index.
We remark from (20) that a smaller value of the `∞−gain ψ
yields a better estimation performance.

B. LMI-Based Switched Nonlinear Observer Design

The following theorem presents a numerically tractable
solution to design a switched nonlinear observer (11) such
that the specifications, stated in Problem 1, are verified.

Theorem 1. Consider system (9) and two positive scalars τ
and υ. If there exist a positive definite matrix P ∈ Rnx×nx ,
matrices Hi ∈ Rnx×ny , for i ∈ IN , and positive scalars ε, ν,
ϕ, such that the following optimization problem is feasible:

minimize ϕ+ ν

subject to

He


Ω1i Ω2i −HiFi 0
0 −τεD>i Di + υεI 0 εI
0 0 −υνI 0
0 0 0 −υνI

 ≺ 0 (21)

[
P̄ I
? ϕI

]
� 0 (22)

with

P̄ =

[
P 0
0 εI

]
, Ai(ϑ) = Ai +GiΦ(ϑ)

Ω1i = PAi(ϑ)−HiCi + τPDiD
>
i + υP

Ω2i = PDi − τ2εDiD
>
i Di − τεA >i (ϑ)Di

for i ∈ IN and Φ(ϑ) ∈ Sφ. Then, the estimation error ē(t)
of system (19) is uniformly ultimately bounded and verifies
the `∞−gain performance (20) under any arbitrary switching
signal η(t). Moreover, the observer gains are defined as

Li = P−1Hi, i ∈ IN . (23)
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Proof. For stability analysis of the estimation error dynamics
(19), we consider the Lyapunov function

V (ē) = e>P̄ e. (24)

The time derivative of function V (ē) along the trajectory of
system (19) is given by

V̇ (ē) = e>x (He [P (Aη(ϑ)− LηCη)]) ex

− 2τεe>z D
>
η Aη(ϑ)ex − 2τ2εe>z D

>
η DηD

>
η ex

+ 2e>x PDηez − 2τεe>z D
>
η Dηez + 2εe>z ḋ

+ 2τe>x PDηD
>
η ex − 2e>x PLηFηf. (25)

Moreover, the satisfaction of condition (21) implies that

He


Ω1 Ω2 −HηFη 0
0 −τεD>η Dη + υεI 0 εI
0 0 −υνI 0
0 0 0 −υνI

 ≺ 0 (26)

for Φ(ϑ) ∈ Sφ, with

Ω1 = PAη(ϑ)−HηCη + τPDηD
>
η + υP

Ω2 = PDη − τ2εDηD
>
η Dη − τεA >η (ϑ)Dη.

Pre- and post-multiplying (26) with
[
e>x e>z f> ḋ>

]
and

its transpose, we can obtain the following condition after some
algebraic manipulations:

V̇ (ē) ≤ 2υ
(
ν‖w‖2 − V (ē)

)
(27)

where V (ē) and V̇ (ē) are given in (24) and (25), respectively.
Note that inequality (27) implies that

V̇ (ē) ≤ 2υ
(
ν‖w‖2∞ − V (ē)

)
. (28)

Multiplying the left and right sides of (28) by e2υt, and then
integrating over the time interval [t0, t], we have

e2υtV (ē) ≤ e2υt0V (ē0) + 2υν‖w‖2∞
∫ t

t0

e2υ$d$

= e2υt0V (ē0) + ν‖w‖2∞(e2υt − e2υt0). (29)

It follows from (29) that

V (ē) ≤ ν‖w‖2∞
(

1− e−2υ(t−t0)
)

+ e−2υ(t−t0)V (ē0)

≤ ν‖w‖2∞ + e−2υ(t−t0)V (ē0). (30)

Moreover, from (24), one has

σ1‖ē‖2 ≤ V (ē) ≤ σ2‖ē‖2 (31)

with σ1 = min[λmin(P ), ε] and σ2 = max[λmax(P ), ε].
Hence, it follows from (30) and (31) that

σ1‖ē‖2 ≤ σ2e
−2υ(t−t0)‖ē0‖2 + ν‖w‖2∞

which implies that

‖ē‖ ≤
√
σ2

σ1
e−υ(t−t0)‖ē0‖2 +

√
ν

σ1
‖w‖∞. (32)

For any bounded w(t) and any initial condition ē0, it follows
from (32) that the estimation error ē(t) is globally bounded.
In addition, if w(t) = 0, the estimation error dynamics (19) is
exponentially stable.

Applying the Schur complement lemma [25], condition (22)
can be shown to be equivalent to

P̄ − ϕ−1I � 0. (33)

Pre- and post-multiplying (33) with ē> and ē, it follows that

‖ē‖2 ≤ ϕV (ē). (34)

From (30) and (34), we have

‖ē‖2 ≤
√
ϕV (ē0)e−υ(t−t0) +

√
νϕ‖w‖∞. (35)

For any bounded w(t) and any initial condition ē0, it follows
from (35) that

lim sup
t→∞

‖e‖ ≤ ψ‖w‖∞

with ψ =
√
νϕ. The proof can be now concluded.

Remark 5. To further reduce the observer design conser-
vatism, a free decision variable Kη can be considered for
the optimization problem in Theorem 1. However, this choice
leads to a non-convex observer design formulation with bi-
linear matrix inequality (BMI) constraints, which significantly
induces numerical difficulties in finding suitable observer gains
for practical uses. To avoid this issue, we select the matrix
gain Kη of the specific form (13). Note from (16) that the
gain factor τ offers a degree of freedom for the matrix gain
Kη to improve the correction of the UI estimation error.

C. Smoothness Guarantee Constraints

Expressive discontinuities at switching instants often arise
within the context of switched systems [37]. This can sig-
nificantly deteriorate the practical estimation performance of
switched systems. To deal with this major issue, this section
provides numerically tractable conditions to limit the ampli-
tude of these discontinuities, thus to guarantee the smoothness
at switching instants. The proposed solution is motivated by
the control bumps limitation for switched linear control design
in [38]. To this end, we impose the following bumps limitation
constraint (BLC) on the observer gain matrices:

‖L∗ − Li‖ < κ, i ∈ IN (36)

where the constant matrix L∗ ∈ Rnx×ny and the positive
scalar κ are to be determined.

Remark 6. Condition (36) aims at selecting among the
optimal observers, designed by Theorem 1, the one yielding
limited discontinuities at the switching instants. Indeed, all the
observer gains Li, for i ∈ IN , are constrained to be “close”
enough to the constant matrix L∗ with an amplitude error,
specified by κ. As illustrated in Section IV, this smoothness
constraint is particularly important to guarantee an acceptable
estimation performance in the presence of disturbances/noises.

The additional BLC condition (36) can be expressed in
terms of LMIs as shown in the following theorem.
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Theorem 2. If there exist positive scalars β and γ, a positive
definite matrix P ∈ Rnx×nx , and matrices L∗, Hi ∈ Rnx×ny ,
for i ∈ IN , such thatβI L∗ I

? γI H>i
? ? P

 � 0, i ∈ IN . (37)

Then, the observer gain matrices Li defined in (23), for i ∈
IN , satisfy constraint (36) with κ =

√
βγ.

Proof. Applying Schur complement lemma to (37), this con-
dition is equivalent to[

βI L∗

? γI

]
−
[
I
H>i

]
P−1

[
I Hi

]
� 0. (38)

Condition (38) can be rewritten as[
βI L∗ − P−1Hi

? γI

]
−
[
P−1 0

0 H>i P
−1Hi

]
︸ ︷︷ ︸

Υi

� 0. (39)

Since P � 0, one has Υi � 0. Hence, condition (39) yields[
βI L∗ − P−1Hi

? γI

]
� 0. (40)

Using expression (23), we can directly obtain (36) from (40)
with κ =

√
βγ. This completes the proof.

The bumps limitation constraint (37) can be incorporated
in the observer design conditions in Theorem 1. Algorithm
1 summarizes the procedure to design a nonlinear switched
observer with smoothness guarantee.

Algorithm 1: Observer Design Procedure
Input: Nonlinear switched system (9)
Output: Nonlinear switched observer (11)

1 Select a positive scalar τ
2 Compute Kη from (13)
3 Compute P and Hi, for i ∈ IN , by solving LMI

conditions in Theorems 1 and 2
4 Compute Li, for i ∈ IN , from (23)
5 Compute Lη and construct observer (11)

Remark 7. Larger values of the gain factor τ in (13) and
the decay rate υ in the Lyapunov condition (27) yield a faster
estimation convergence. However, this may induce aggressive
estimation behaviors, e.g., estimations with a large overshoot
and/or sensitive to noise effects. Hence, these design parame-
ters should be chosen so that the nonlinear observer obtained
from Theorems 1 and 2 can avoid these practical issues.

Remark 8. The sufficient design conditions in Theorems 1
and 2 are expressed in terms of LMI constraints, which can be
effectively solved using semidefinite programming techniques.
In this paper, all the LMI-based design conditions are solved
with YALMIP toolbox using SDPT3 solver [39].

IV. ILLUSTRATIVE RESULTS AND EVALUATIONS

This section illustrates the effectiveness of the proposed
method to simultaneously estimate the state and the unknown
input of the IMT system (8). For the observer gain in (13), we
select τ = 90000, which leads to K =

[
0 0 −674.4367

]
,

see Remark 7. A decay rate υ = 5 is chosen by trial and error
method to guarantee a good estimation convergence under the
effect of measurement noises. Solving the design conditions
in Theorems 1 and 2, we obtain a switched nonlinear observer
(11) while guaranteeing the switching smoothness with

L1 =

133.882
−0.312
8.911

 , L2 =

138.375
−0.331
9.172

 , L∗ =

87.027
−0.623
6.868

(41)

We also design a nonlinear observer (11) without considering
the bumps limitation constraint in Theorem 2. To this end,
solving LMI conditions in Theorem 1, we obtain

L1 =

9359.244
−49.932
707.934

 , L2 =

9373.644
−48.674
687.107

 . (42)

For comparison purposes, we consider the three following
estimation methods.
• NSO-BLC observer, designed with LMI conditions in

Theorems 1 and 2.
• NSO-noBLC observer, designed with only LMI condi-

tions in Theorems 1.
• Reduced-order TS fuzzy observer (ROO) proposed in

[8]. Note that this observer cannot estimate the unknown
resistance torque Td as NSO-BLC and NSO-noBLC.

For illustrations, we consider that the unknown external load
Td is composed of the rolling resistance torque Tr and the
road gradient torque Tg , i.e., Td = Tr + Tg , with

Tr = µmvg cos(α)rw, Tg = mvg sin(α)rw

where α is the road slope angle. Moreover, the test scenarios
are performed with the motor torque Tm depicted in Fig. 3,
which includes both typical tip-in and tip-out tests.

0 2 4 6 8 10
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20

40

60

80

100

Fig. 3: Profile of the known motor torque input Tm.

A. Scenario 1: Low-High-Low Speed Gear-Shift

For this test scenario, the IMT system initially operates at
the low-speed gear. Then, the gear-shifting occurs at 3 [s] and
6 [s] as shown in Fig. 4(a). Fig. 4(b) depicts the measurement
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of the motor rotation speed ωm, which is corrupted by the
sensor noise given in Fig. 4(c). Note that we consider here a
white noise f(t) with an amplitude less than 1% of the system
output y(t), which is reasonable in practice. The profile of the
road slope α in this test is shown in Fig. 5, which includes
both downhill and uphill driving situations. The initial torsion
angle is 0.035 [rad], and the initial motor speed is 0 [rpm],
and the initial wheel rotation speed is 43.5 [rpm].

0 2 4 6 8 10

0.5

1

1.5

2

2.5

0 2 4 6 8 10

0

200

400

0 2 4 6 8 10

-4

-2

0

2

4

(a)

(c)

(b)

Fig. 4: Scenario 1. (a) switching signal η, (b) noisy output y,
(c) sensor noise f .
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0

0.5

1

Fig. 5: Road slope angle α for Scenario 1.

The estimation results of the torsion angle θs and the wheel
rotation speed ωw are respectively depicted in Figs. 6 and
7, where a special focus is put on the switching instants.
Remark that using the time-derivative of the output ẏ in the
reduced-order observer structure, the estimation method in [8]
is very sensitive to the noise effect, which can be slightly
attenuated with the NSO-noBLC observer. In particular, taking
into account the smoothness constraint (36) via Theorem 2,
the gains of the NSO-BLC observer in (42) are significantly
reduced compared to those of the NSO-noBLC observer in
(41). As a result, despite the small amplitude of the torsion
angle, the NSO-BLC observer can achieve a very accurate

estimation performance while being almost insensitive to the
sensor noise effect. Fig. 8 presents the estimation result of
the unknown input Td. We can see clearly that the resistance
torque Td is well estimated and the estimation with the NSO-
BLC observer is much less sensitive to the noise than that
with the NSO-noBLC observer. More specifically, taking into
account the smoothness guarantee, the NSO-BLC observer
allows to avoid significant bumps stemmed from the gear-
shifting under sensor noise effects.

0 2 4 6 8 10

-0.4
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0

0.2

0.4

0.6

3 3.2

-0.4

-0.2
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0.2

6 6.1

-0.4

-0.2

0

0.2

0.4

(a)

(c)

(b)

Fig. 6: Scenario 1. (a) estimation of the torsion angle θs, (b)
zoom at the first gear-shifting, (c) zoom at the second gear-
shifting.

For a quantitative performance analysis, we respectively
define the mean absolute error (MAE) and the root mean
square error (RMSE) as

ξMAE =
1

T

∫ T

0

∣∣∣ξ(t)− ξ̂(t)∣∣∣ dt
ξRMSE =

√
1

T

∫ T

0

(
ξ(t)− ξ̂(t)

)2

dt

where ξ(t) is the variable of interest, ξ̂(t) is its estimate, and
T is the test duration time. The error indicators for the torsion
angle θs, the wheel rotation speed ωw and the resistance torque
Td are summarized in Table II. We can see that the proposed
method provides more accurate estimation results than the TS
fuzzy observer based method in [8]. Moreover, the interest
of the bumps limitation constraint is highlighted since all the
error indicators of the NSO-BLC observer are clearly smaller
than those from the NSO-noBLC observer.

B. Scenario 2: High-Low-High Speed Gear-Shift
For this scenario, the IMT system first operates at the high-

speed gear. The gear-shifting profile is depicted in Fig. 9(a).
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Fig. 7: Scenario 1. (a) estimation of the wheel speed ωw, (b)
zoom at the first gear-shifting, (c) zoom at the second gear-
shifting.
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Fig. 8: Scenario 1. (a) estimation of the resistance load torque
Td, (b) zoom at the first gear-shifting, (c) zoom at the second
gear-shifting.

The noisy output y the corresponding sensor noise f are shown
in Figs. 9(b) and (c), respectively. As the previous scenario,
the amplitude of the white noise is also small and less than

TABLE II: Estimation error indicators for Scenario 1.

Error indicator NSO-BLC NSO-noBLC ROO [8]
θsMAE [rad] 0.0005 0.0039 0.0043
ωwMAE [rpm] 0.0196 0.0579 0.1248
TdMAE [Nm] 0.7637 2.3220 –
θsRMSE [rad] 0.0007 0.0059 0.0120
ωwRMSE [rpm] 0.0249 0.0838 0.2410
TdRMSE [Nm] 1.7750 4.1963 –

1% compared to the output amplitude. The road slope profile
of this scenario is shown in Fig. 10. The initial torsion angle is
0.001 [rad], the initial motor speed is 0 [rpm], and the initial
wheel rotation speed is 56.5 [rpm].
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Fig. 9: Scenario 2. (a) switching signal η, (b) noisy output y,
(c) sensor noise f .
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Fig. 10: Road slope angle α for Scenario 2.

The estimation results of the torsion angle θs and the wheel
rotation speed ωw are respectively depicted in Figs. 11 and
12, with suitable zooms at the switching instants. We can
see that both θs and ωw can be accurately estimated by
the proposed NSO-BLC observer under the switching and
sensor noise effects. As in Scenario 1, without considering the
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bumps limitation in Theorem 2, the estimation performance
of the NSO-BLC observer is significantly degraded with
the switching occurrences. In particular, under the switching
effect, the ROO observer in [8] cannot provide a satisfactory
estimation performance, especially for a small-amplitude sig-
nal θs, compared to NSO-BLC and NSO-noBLC observers
due to its high sensitivity to sensor noises. Fig. (13) shows that
the unknown resistance torque Td is well reconstructed by the
NSO-BLC observer. Moreover, its estimation is much less sen-
sitive to sensor noises than that provided by the NSO-noBLC
observer. Table III summarizes the error indicators obtained
with Scenario 2. These indicators quantitatively confirm the
estimation performance of the three nonlinear observers and
emphasize the practical relevance of the NSO-BLC observer
for estimating the IMT powertrain dynamics.

(b)
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Fig. 11: Scenario 2. (a) estimation of the torsion angle θs, (b)
zoom at the first gear-shifting, (c) zoom at the second gear-
shifting.

TABLE III: Estimation error indicators for Scenario 2.

Error indicator NSO-BLC NSO-noBLC ROO [8]
θsMAE [rad] 0.0005 0.0042 0.0051
ωwMAE [rpm] 0.0190 0.0574 0.1516
dMAE [Nm] 0.7856 2.3440 –
θsRMSE [rad] 0.0007 0.0060 0.0120
ωwRMSE [rpm] 0.0241 0.0830 0.2929
dRMSE [Nm] 1.8189 4.1963 –

V. CONCLUSIONS

A new method has been proposed to simultaneously esti-
mate the unmeasured torsion angle and wheel rotation speed
as well as the unknown resistance torque of IMT systems,
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Fig. 12: Scenario 2. (a) estimation of the wheel speed ωw, (b)
zoom at the first gear-shifting, (c) zoom at the second gear-
shifting.

0 2 4 6 8 10

0

50

100

4 4.1

-20

0

20

40

60

80

8 8.1

20

40

60

80

100

(a)

(b)

(c)

Fig. 13: Scenario 2. (a) estimation of the resistance load torque
Td, (b) zoom at the first gear-shifting, (c) zoom at the second
gear-shifting.

which can be reformulated as nonlinear switched models. To
this end, we propose a nonlinear switched observer structure,
being able to reconstruct both state and unknown input. The
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nonlinear mismatching term involved in the estimation error
dynamics is handled by the mean value theorem. Employing
Lyapunov stability theorem, sufficient LMI conditions are
derived to design nonlinear observers while guaranteeing an
`∞ performance. Moreover, we propose a bumps limitation
constraint, expressed in terms of LMIs, that can be directly
incorporated to the observer design conditions. Hence, the
negative impact of switching discontinuities is significantly
reduced compared to related estimation methods, especially
under the effect of sensor noises. Illustrative estimation results
and comparative studies are performed with realistic test
scenarios to show the interests of the new method. Future
works extend the proposed switched observer structure for
nonlinear fault-tolerant control of IMT systems in presence
of motor faults and unknown inputs. Real-time validations are
also necessary to confirm the practical estimation performance
of the proposed estimation method.
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