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Abstract

We propose a generic nonlinear reduced-order tracking control method for elastic soft robots. To this end, a new linear parameter
varying (LPV) control framework is developed using the data collected from the soft robots. Specifically, for LPV modeling we
first derive a nonlinear robot model, which is large-scale by nature, using finite element methods (FEM). Then, a proper orthogonal
decomposition (POD) algorithm is used to generate a set of linearized reduced-order models, representing the local behaviors of
the soft robot at different operating points within the workspace. Via a unified POD projector, not only the order of these linearized
models can be significantly reduced but also their mechanical structure and stability properties can be preserved for LPV modeling
and control design. Next, using radial basis function (RBF) networks, we propose an iterative training method to build the LPV
robot model by interpolating a subset of selected linearized models with a specified interpolation error. For LPV control design,
the equivalent-input-disturbance (EID) concept is exploited to develop a dynamic tracking control scheme, which is composed
of three core components: feedforward control, disturbance-estimator control and feedback control. The feedforward control is
designed to account for the effects of the trajectory reference and the time-varying affine term, issued from the FEM-based model
linearization. The disturbance-estimator control is obtained from a generalized proportional integral LPV observer, which also
provides the estimated reduced-order states for feedback control. The observer-based feedback control design is reformulated
as a convex optimization problem under linear matrix inequality (LMI) constraints. The globally uniformly `∞ stability of the
closed-loop LPV robot model is guaranteed by means of Lyapunov stability theory. Experimental tests are conducted with a soft
Trunk robot, inspired by the elephant trunk, under several scenarios with small and large deformations to show the effectiveness of
the proposed LPV tracking control framework. A comparative study is also performed with a recent linear EID-based controller
and an iterative learning controller to emphasize the interests this nonlinear control method for soft elastic robots. This paper is
complemented with a series of demonstration videos: https://bit.ly/3D8C4Vd.

Keywords: Soft robots, LPV control, motion control, data-driven modeling, model order reduction, RBF networks.

1. Introduction

Inspired by natural organisms, soft robots have capabili-
ties in terms of large-scale flexibility, dexterity, compliance and
adaptability [1]. These robots have been designed to perform
complex tasks in interaction with humans, which involve a high
degree of uncertainty, e.g., surgery, assistive medical devices,
search and rescue. Up to now, a considerable effort has been
devoted to technological developments [2, 3]. As a result, vari-
ous hardware solutions have been developed to push the bound-
aries of robot abilities [4]. Based on caterpillar locomotion, soft
inchworm robotic platforms have been designed such that they
can crawl, inch or roll [5–7]. Using silicone rubbers, soft fish-
like robots being able to swim underwater have been fabricated
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[8–11]. Soft manipulators have also been received a particu-
lar attention in soft robotics with the aim to achieve smooth
and flexible deformations such as elephant trunks [12–15], oc-
topus tentacles [16, 17], or skeletal spines of vertebrate animals
[18, 19]. Soft manipulators can be designed and fabricated with
various structures, materials, and actuation technologies, which
range from rigid robots with multiple joints [20] to continuum
robots actuated by steel cables [21], by shape-memory alloys
[22], by pneumatic artificial muscles [13, 23], or silicone soft
robots [15, 24].

Despite the technological advance, how to best model and
control soft robots is still an open-ended question [25–27]. This
is due to the following main factors. First, due to their infinite
degrees-of-freedom (DoF) motions, soft robots are formulated
as infinite-dimensional systems. Second, such robots exhibit
highly nonlinear uncertain dynamics caused by the nonlinear
characteristics from material properties and geometrical struc-
tures, which are further complicated by imperfect fabrication
and actuation-sensing techniques [28]. Hence, in contrast to the
rigid case, developing reliable models in soft robotics remains
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challenging for both simulation and control design purposes
[25]. With appropriate assumptions and approximations, simu-
lation models can be derived to reproduce accurately the non-
linear robot behaviors, for instance using finite element meth-
ods (FEM). However, they are generally not suitable for control
design because of the involved computational burden and es-
pecially their large-scale nature [29, 30]. Therefore, a generic
methodology to model and control soft robots, which can ac-
count for a large variability of technological solutions, is one of
the most exciting research challenges in soft robotics.

Static input-output relationship has been exploited to build
piecewise constant curvature (PCC) models at early stage of
soft robots control [21]. For PCC modeling, the soft robot
is represented as a set of circular arcs, then only bending be-
haviors can be taken into account. Since the relationship be-
tween constant curvature sections can be described by a homo-
geneous transformation matrix [31], PCC-based control meth-
ods are mostly suitable for multi-section soft manipulators. Sim-
ilar to the case of rigid manipulators, inverse kinematics can
be obtained from PCC models to perform a closed-loop con-
trol using the curvature measurements given by internal sensors
or cameras [32]. To enlarge the application scope of PCC-
based formulation, a dynamical model obtained by connect-
ing the soft robot to an equivalent augmented rigid robot has
been proposed in [31] for dynamic tracking control of planar
soft robots. Some other PCC-based extensions, e.g., polyno-
mial curvature modeling, have been discussed in [33]. Note
that PCC-based modeling method is inherently limited to beam-
like robots, which seems difficult to be adapted to a wide range
of soft robot structures [34]. To overcome the difficulties in
obtaining high-quality models for soft robots, data-driven and
machine learning approaches have been also developed [25].
Using experimental data, these approaches directly identify the
robot input-output relationship to derive accurate kinematic mod-
els for open-loop control of soft robots [26, 32]. However,
open-loop control suffers a lack of performance and robustness
in presence of modeling uncertainty or disturbances. With the
recent success of deep learning, reinforcement learning (RL)
has also been applied to soft robots for task-oriented control,
e.g., [35] with a deep-Q learning algorithm, [36] with a trust re-
gion policy optimization (TRPO) algorithm, [37] with an episode-
based RL algorithm. For RL algorithms, the policy function is
learnt during the training process, which is used for both chal-
lenging objectives in soft robotics, i.e., motion planning and
control. Although the structures of these RL controllers are rel-
atively simple, the parameter convergence is still slow as for
rigid robots [36]. It is emphasized that these RL-based meth-
ods do not account the mechanical properties, e.g., stiffness and
deformation, and the load influence of soft robots, which may
limit the high-control performance in terms of rapidity, robust-
ness, and precision, especially for dexterous control tasks.

Model-based control has been long considered unfeasible
for soft robots due to the large variability of hardware solu-
tions and the related overcomplex modeling [27]. However, the
relevance of model-based strategies has been recently proved
thanks to various finite-dimensional modeling techniques such
as finite-element methods (FEM), which can provide accurate

and tractable models [38]. Moreover, although the design of
feedback schemes is essentially based on simplified soft robot
dynamics, closed-loop feedback control can already outperform
model-free counterparts, especially in terms of robustness. Two
notable modeling approaches to obtain dynamical models of
soft robots under actuation and deformation can be mentioned:
i) discretized Cosserat modeling, ii) finite element modeling.
Cosserat rod theories take into account possible rod-deformation
modes, e.g., bending, twisting, shearing, stretching, under a
wide range of boundary conditions [39]. The continuous Cosserat
method represents the dynamics of soft robots by continuously
stacking an infinite number of microsolids, leading to infinite-
dimensional robot models formulated as partial differential equa-
tions (PDEs). Although this method can accurately describe
continuum structures in the presence of external loads and dif-
ferent actuation methods [40–42], it is hard to directly lever-
age PDEs formulations for control. Discretization of Cosserat
models has been proposed in [43] for multisection soft manip-
ulator dynamics under the assumption of piecewise constant
strain (PCS) along the soft arm. Inheriting the advantages of the
continuous Cosserat modeling, the discretized Cosserat method
can preserve the geometrical and mechanical properties such
as intrinsic parameterization and greater generality. However,
Cosserat-rod modeling is mainly relevant to describe soft robots
with rod-like structures. Moreover, a fine discretization of Cosserat-
rod models results in a drastic increase of computational bur-
den. Alternatively, the finite element method is a remarkable
solution for soft robot modeling, which is based on the dis-
cretization of a complex geometric robot shape into a finite
number of smaller and simpler elements. Since the first FEM-
based modeling and control result in [44], various extensions
have been successfully developed for soft robots, e.g., colli-
sion handling [30], inflatable deformations [45], force sens-
ing [46], etc. FEM-based methods can provide not only high-
quality models but also a great flexibility to deal with a large
variability of soft robot structures. Moreover, while simulating
robot deformations, FEM modeling allows introducing some
physical effects so that actuation methods, including magnetic
field force and thermal strain, piezoelectric effect, and frictional
force, can be integrated [47]. Note that FEM-based modeling
has laid a solid foundation for recent theoretical and technical
developments related to the SOFA open-source simulation plat-
form [45], which has proved the feasibility and the relevance of
model-based strategies for soft robots.

Based on FEM models, both quasi-static and dynamic con-
trol methods can be designed for soft robots. Quasi-static con-
trol exploits the Jacobian matrix, established under static equi-
librium, between the control input and the displacement of the
robot end-effector. An extra synchronization step is required
during each sampling step to update the soft robot model, mak-
ing it quasi-static. Based on quadratic programming (QP) op-
timizations, a control input corresponding to desired displace-
ments is computed under possible constraints and contact con-
ditions [45]. Since the soft robot dynamics are ignored, quasi-
static control performance can be limited, especially for highly
dynamic tasks. FEM-based dynamic feedback control is sub-
stantially more challenging. Indeed, the quality of FEM models
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highly depends on the density of the mesh to be performed for
the geometric robot shape. Hence, a reliable soft robot model
requires a huge number of finite elements, i.e., states, which
makes classical control results unapplicable. Therefore, model-
order reduction is essential for dynamic feedback control de-
sign of such large-scale robot models [29]. Note that the design
of FEM-based dynamic controllers is still mainly relied on lin-
earized models, obtained from a linearization around either a
local equilibrium [15, 48] or a desired trajectory [49]. Then,
the effectiveness of these dynamic feedback controllers is gen-
erally limited to a small range of the workspace due to the large
nonlinearity of soft robots. The primary goal of this paper is to
propose a generic solution for this critical issue in soft robotics
via a model-based nonlinear dynamic control scheme.

The proposed nonlinear control framework for soft robots is
sequentially performed in two steps: i) linear parameter vary-
ing (LPV) modeling, and ii) tracking LPV control design. For
LPV modeling, we first derive the nonlinear FEM model of
the soft robot, which is not relevant for control design due to
its large-scale and nonlinear nature. Then, linearization is per-
formed at several equilibrium points, densely selected to cover
the whole workspace of the soft robot. From the resulting large-
scale models, a proper orthogonal decomposition (POD) algo-
rithm is used to generate a set of linearized reduced-order mod-
els, which represent the local behaviors of the soft robot cor-
responding to the selected equilibrium points. Using a unified
POD projector, not only the order of these linearized models
can be significantly reduced but also their mechanical structure
and stability properties can be preserved. With such a prop-
erty preservation, the coherence between the linearized models
is naturally ensured, which is essential for interpolation-based
LPV modeling [50, 51]. For LPV interpolation, due to the
large number of linearized models and their correlation with
each other, we propose a decorrelation algorithm to limit the
numerical complexity of the LPV model, i.e., number of lo-
cal linear submodels, while guaranteeing a high-quality LPV
modeling. To this end, we inspire the covariance projection
regression (CPR) algorithm [52] to develop an iterative train-
ing method, which builds the LPV model of the soft robot by
interpolating a subset of selected linearized models with help
of radial basis function (RBF) networks. Concerning the LPV
tracking control scheme, its design is based on the equivalent-
input-disturbance (EID) control concept [53], whose core com-
ponents are feedforward control, disturbance-estimator control
and feedback control. The feedforward control is used to deal
with the effects of the trajectory reference and the time-varying
affine term, stemmed from the FEM-based model linearization.
A generalized proportional integral LPV observer is designed to
provide not only the estimate of reduced-order states for feed-
back control but also the disturbance-estimator control action
to compensate matched disturbances, e.g., modeling errors, ex-
ternal loads. The closed-loop stability of the soft robot system
is guaranteed by the feedback control, whose design is refor-
mulated as a convex optimization problem under linear matrix
inequality (LMI) constraints. Using Lyapunov stability theory,
an `∞−gain performance is incorporated in the feedback con-
trol design to improve the tracking performance under the pres-

ence of unknown and unmatched disturbances. The feasibility
of LMI-based design conditions can be easily checked using
a suitable semidefinite programming software [54]. The main
contributions of this paper can be summarized as follows.

• A constructive LPV modeling method, including FEM-
based modeling and discretization, reduced-order reduc-
tion and iterative RBF-based interpolation, which is rel-
evant to represent and to control the nonlinear dynamics
of soft robots within the whole workspace.

• An `∞ LPV control framework with formal proofs of
closed-loop stability, which requires only the output in-
formation to achieve an effective tracking performance
under unknown disturbances.

• Due to its generic feature, the proposed LPV control method-
ology can be applied to a large variability of elastic soft
robots as well as other uncertain LPV engineering sys-
tems.

• Experimental results and suitable comparative studies are
conducted with a soft Trunk robot to fully validate the
proposed LPV control framework in terms of nonlinear
modeling and tracking performance.

Notation. N is the set of non-negative integers, and we de-
note Ip = {1, 2, ..., p} ⊂ N. For a matrix X , X> denotes
its transpose, X � 0 means that X is positive definite, HeX =
X + X>, and X(i) denotes its ith column. diag{X1, X2} de-
notes a block-diagonal matrix composed of X1, X2. I is the
identity matrix of appropriate dimension. For a vector x ∈ Rn,
we denote its 2-norm as ‖x‖ =

√
x>x. For a sequence of

vectors {xk}k∈N, we denote ‖x‖`∞ = supk≥0 ‖xk‖. Then,
{xk}k∈N ∈ `∞ if ‖x‖`∞ < ∞. The symbol “?” stands for the
terms deduced by symmetry.

2. LPV Modeling of Soft Robots

This section presents a new LPV modeling method for large-
scale soft robots based on their FEM models and the well-known
RBF interpolation.

2.1. FEM-Based Reduced-Order Models
FEM technique has been used for soft robots modeling by

discretizing the infinite-dimensional model into a finite number
of tiny elements. Depending on the choice of FEM methods,
each element can have several degrees of freedom [45], yielding
large-scale models. A higher element density leads to a higher
modeling accuracy with a larger computation burden.

2.1.1. Linearized State-Space Representation
After the FEM discretization, the dynamics of a deformable

soft robot can be described as follows [45]:

M(q(t))v̇(t) = P(q(t))−F(q(t),v(t)) +H(q(t))u(t) (1)

where q(t) ∈ Rm is the displacement vector, v(t) = q̇(t) is
the velocity vector, u(t) ∈ Rp is the actuation input,M(q) ∈
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Rm×m is the inertia matrix, F(q,v) represents the internal
forces of the robot described by the constitutive law, P(q) ∈
Rm represents the gravity force, andH(q) ∈ Rm×p is the con-
trol input matrix. Assuming that the gravity and the mass distri-
bution does not change over time, then around the equilibrium
the matrices P(q) = P andM(q) = M are constant.

To simplify the presentation and without loss of generality,
we consider the equilibrium point (q0,v0,u0) ≡ (0, 0, 0) to
linearize system (1), i.e.,

P −F(0, 0) = 0. (2)

Moreover, using the Taylor-Young formula, the internal force
F(q,v) can be approximated around the equilibrium as

F(q(t),v(t)) ≈ F(0, 0) +K(0, 0)q(t) +D(0, 0)v(t). (3)

The compliance matrixK(q,v) and the damping matrixD(q,v)
are respectively defined as

K(q,v) =
∂F(q,v)

∂q
, D(q,v) =

∂F(q,v)

∂v
. (4)

For brevity, we denote K = K(0, 0), D = D(0, 0), F =
F(0, 0) and H = H(0). From (2), (3) and (4), the linearized
version of the FEM robot model (1) around the equilibrium
point (q0,v0,u0) can be given by [15]

M v̇(t) = −Kq(t)−Dv(t) +Hu(t). (5)

For real-time control implementation, we perform the control
design in the discrete-time domain. For the large-scale model
(5), to improve the numerical efficiency at least in terms of nu-
merical methods, the implicit Euler-discretization method can
be used [55]. Considering a sampling time step h and a con-
stant control input u during the sampling interval, the implicit
Euler-discretization of model (5) is given by

qk+1 = qk + hvk+1 (6)
Mvk+1 = Mvk + h(−Kqk+1 −Dvk+1 +Huk). (7)

It follows from (6) and (7) that

Svk+1 = −hKqk +Mvk + hHuk (8)

with S = M + hD+ h2K. From (6) and (8), the discrete-time
robot model can be reformulated as

E

[
qk+1

vk+1

]
=

[
I 0

−hS−1K S−1M

] [
qk
vk

]
+

[
0

hS−1H

]
uk(9)

with E =

[
I −hI
0 I

]
. Left-multiplying (9) with E−1, the fol-

lowing state-space robot model can be obtained:[
qk+1

vk+1

]
=

[
I − h2S−1K hI − h2S−1(D + hK)
−hS−1K I − hS−1(D + hK)

] [
qk
vk

]
+

[
h2S−1H
hS−1H

]
uk. (10)

With a small sampling time step h, the impact of the terms re-
lated to h2, i.e., h2S−1K, h2S−1H and h2S−1(D + hK), on
the modeling quality can be considered as small. Therefore,
these terms are removed from (10), which leads to the simpli-
fied model

xL,k+1 = ALxL,k +BLuk (11)

where xL,k =
[
q>k v>k

]> ∈ R2m is the state vector, and the
matrices AL ∈ R2m×2m and BL ∈ R2m×p are defined as

AL =

[
I hI

−hS−1K I − hS−1D

]
, BL =

[
0

hS−1H

]
. (12)

The system output yk ∈ Rq represents the coordinates of the
robot end-effectors, defined as

yk = CLxL,k (13)

where the non-zero elements of the output matrix CL corre-
sponds to the states of the end-effectors.

Remark 1. Performing the simplification of model (10) allows
preserving the mechanical model structure of soft robots, i.e.,
the matrices AL and BL in (12) have specific structures with
constant upper-half block-elements. This feature plays a key
role not only for the use of EID-based control concept to effec-
tively compensate the unknown uncertainty/disturbance [15],
but also for RBF-based LPV modeling, see also Remarks 6 and
7. Moreover, despite this simplification, the dominant nonlinear
dynamics of soft robots can be well captured by the proposed
modeling method as illustrated in Section 5.2.

Remark 2. Model-based control design using the linearized
robot model (11) is challenging due to its large-scale nature.
For instance, a high-fidelity FEM modeling of the Trunk robot,
studied in Section 5, results in a state-space representation with
4452 states, which makes any optimization-based analysis and
control design unrealistic without performing preliminary model
reductions [15, 48]. Note also that due to the scattered connec-
tion between local neighbor elements in FEM modeling, the
state-space matrices AL, BL and CL are also very sparse.

2.1.2. POD-Based Model Order Reduction
Model order reduction (MOR) allows to drastically reduce

the dimensions of large-scale systems while keeping their dom-
inant dynamics. Note that for the considered class of elas-
tic soft robots, the analytical description (4) is only used to
compute local matrices for each element in the FEM method.
The FEM soft robot model is an iterative computational model,
which requires to be assembled at each step of the computa-
tion. This non-analytical model cannot be used directly to de-
rive a reduced-order model for a soft robot. POD is one of the
most popular MOR methods for nonlinear systems due to sev-
eral advantages [56]. First, this data-driven method does not
require any assumption on the size of the original system. Sec-
ond, this easy-to-implement method enables an effective MOR
with a priori error bound. Third and more importantly, the POD
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method is well suited for complex applications, where exten-
sive high-fidelity simulations are available for data collection,
as the case of soft robots simulated under SOFA platform [45].
Indeed, in contrast to other MOR methods, the projectors of
POD algorithms are obtained from data collected in the form
of snapshots, i.e., responses of the system states with respect
to the input excitation signals. Hence, POD-based methods can
be directly applied to large-scale systems without an iterative
reduction computation. In soft robotics, POD has been shown
as an effective MOR method, e.g., linear control design [15, 29]
or contact computation [57] for soft robots.

For POD-based model reduction, we first collect the re-
sponse data of soft robots in the snapshot matrix Ms ∈ Rm×l,
where m and l are respectively the number of the robot states
and of the time steps. This offline process is the most com-
putational step since we must intensively generate the robot
snapshots with various test scenarios. Then, a singular value
decomposition is performed to compute the singular values and
the corresponding singular vectors of Ms as

Ms = UΣV (14)

where the matrices U ∈ Rm×m and V ∈ Rl×l are orthonor-
mal. The diagonal entries of Σ are the singular values of Ms

in a decreasing order. The projector T of the POD method is
constructed via the truncation of the matrix U in (14) according
to a desired number r of singular values. Let us denote T = Ur,
where T ∈ Rr×m contains the first r columns, with r � m, of
the matrix U . Then, the reduced state vector is obtained as [15]

x =

[
qr
vr

]
=

[
T 0
0 T

] [
q
v

]
= TrxL. (15)

Applying the projector (15) to the large-scale linearized system
(11)–(13), we obtain the reduced-order model of the form

xk+1 = Arxk +Bruk +wk

yk = Cxk

(16)

where the disturbance wk represents the MOR error, and

Ar = TrALT
>
r =

[
I hI

−hTS−1KT> I − hTS−1DT>

]
Br = TrBL =

[
0

hTS−1H

]
, C = CLT

>
r . (17)

Remark 3. The accuracy of the POD reduced-order models
(16) highly depends on how to perform the truncation of the
singular values of the snapshots according to the number of re-
duced states [29]. For illustrations, Figure 1 shows the evo-
lution of the singular values of displacement snapshots of the
Trunk robot studied in Section 5. We can observe a fast decay
of singular values for the first states, and no significant change
of singular values, i.e., accuracy improvement, is achieved with
more than 4 states. Hence, with the POD method (14)–(15), we
can significantly reduce the number of states from 4452 to 4,
which is suitable for the control design of this Trunk robot.
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Figure 1: Singular values of snapshots of the Trunk robot studied in Section 5.
(a) Evolution of all displacement singular values. (b) Evolution of the first six
singular values.

2.2. RBF-Based LPV Modeling

Due to the large nonlinearity of soft robots, a control design
based on a linearized robot model (16) may not be effective
for different robot configurations. For instance, Figure 2 illus-
trates the nonlinear behavior of the Trunk robot during a bend-
ing process. We can see that increasing the actuation force can
lead to different directions of displacement along the x−axis.
Indeed, the x−axis displacement first increases till a certain
“singular” position, then it starts to decrease if the force con-
tinues to increase. Moreover, the variation of the curve slope
shows that the stiffness of the Trunk robot increases with re-
spect to the increment of actuation forces. To deal with such
position-dependent nonlinear dynamics of a deformable robot,
we propose an LPV modeling method based on a family of local
reduced-order models as in (16).

Force

x−axis displacement Local equilibrium

Active region

Small deformation Singular position Large deformation

Figure 2: Illustration of nonlinear behaviors of the Trunk robot during bending.

2.2.1. Generating LPV Local Linear Models
To capture the complex dynamics of a soft robot, we select

an appropriate number of equilibrium points as illustrated in
Figure 3 to cover as large as possible its whole workspace. For
each equilibrium point (x∗i ,u

∗
i ), with x∗i =

[
q∗>ri v∗>ri

]>
, we

first perform the linearization of the FEM model (1) and the im-
plicit Euler-discretization as in (6)–(7). Then, the POD-based
order reduction (14)–(15) is applied to obtain the reduced-order
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model as in (16):

δxi,k+1 = Ariδxi,k +Briδui,k +wk

yk = C(δxi,k + x∗i )
(18)

where δxi,k = xk − x∗i ∈ Rn, with n = 2r, and δui,k =
uk − u∗i ∈ Rp. Note that the state δxi,k of the ith linearized
model (18) is defined as a relative distance between the global
coordinate xk and its local equilibrium x∗i . For simplicity of
notation, we use the same disturbance vector wk to represent
the MOR errors in different reduced-order models. Similar to
(17), the state-space matrices Ari ∈ Rn×n and Bri ∈ Rn×m

are given by

Ari =

[
I hI
Kri Dri

]
, Bri =

[
0
Hri

]
(19)

with

Kri = −hTS−1
i KiT

>

Dri = I − hTS−1
i DiT

>

Hri = hTS−1
i Hi.

(20)

The matrices Si, Ki, Di and Hi in (20) corresponding to the
equilibrium point (x∗i ,u

∗
i ) are obtained in a similar way as S,

K, D and H in (12), respectively. It is important to note that
since the same projector Tr in (15) is applied to all linearized
submodels, the corresponding reduced models have the same
order. Note also that the state δxi,k of each linearized model
(18) only has a local meaning, i.e., relative distance between xk

and x∗i . Then, we cannot directly interpolate these linearized
local models. To deal with this misfit, we reformulate the local
model (18) in function of the global state xk of the robot as

xk+1 = Arixk +Briuk + ζri +wk

yk = Cxk.
(21)

The constant affine term ζri of the ith local model can be de-
fined from the equilibrium point (x∗i ,u

∗
i ) as

ζri = (I −Ari)x
∗
i −Briu

∗
i . (22)

At the equilibrium, we have v∗ri = 0. Then, substituting (19)
into (22), the term ζri can be reexpressed as

ζri =

[
0

−Kriq
∗
ri −Hriu

∗
i

]
=

[
0
ζ∗ri

]
(23)

with ζ∗ri ∈ Rr.

2.2.2. RBF-Based Interpolation
To represent the position-dependent nonlinear dynamics of

soft robots, we select the end-effector position as the scheduling
vector θ for LPV modeling, i.e., θ = y. RBF networks allow
to construct accurate interpolants of unstructured data, possibly
in high-dimensional spaces, with a small number of radial basis
functions, which is particularly suitable for nonlinear modeling

Figure 3: Workspace of the soft Trunk robot studied in Section 5 and selected
linearized models for its RBF-based LPV modeling.

of soft robots. The output ψ(θ) of a normalized RBF network
is defined as [58]

ψ(θ) =

N∑
i=1

aiηi(θ) (24)

where the scheduling variable θ is the input vector of the RBF
network, N is the number of RBFs, and ai is the output param-
eter of the ith RBF. The normalized radial basis function ηi(θ)
is defined as

ηi(θ) =
ϕi (‖θ − ci‖)∑N

j=1 ϕj (‖θ − cj‖)
, i ∈ IN (25)

where ci is the center vector for the ith RBF, which repre-
sents the equilibrium point (x∗i ,u

∗
i ) corresponding to the ith

linearized model (21). As usual in practice, we select the Gaus-
sian function as the radial basis function ϕi (‖θ − ci‖) in (25)

ϕi (‖θ − ci‖) = e−(ε‖θ−ci‖)2 (26)

where the parameter ε is the width of the receptive field.

Remark 4. The Gaussian radial basis function (26) is used as
a similarity measure, i.e., the similarity reaches the maximum
at the center ci and decreases when the scheduling variable θ
is far away from ci. Then, the key idea of the proposed LPV
modeling is to represent the dynamics of a soft robot at any
given point in the workspace by interpolating similar ones of
neighbor linearized models.

Remark 5. RBF networks are universal approximators, which
can approximate any continuous function on a compact set with
an arbitrary precision [59]. However, the radial basis func-
tions of conventional RBF networks are constructed according
to each data sample, i.e., each data sample requires its own
RBF [60]. Then, to represent accurately a high nonlinear dy-
namics, a large number of RBFs N , i.e., a large number of lin-
earized models, may be required, which induces difficulties for
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the control design and real-time implementation of soft robots.
To avoid this major issue, based on the idea of the CPR algo-
rithm [52], we propose an interpolator being able to effectively
represent a large number of local linearized models with as less
as possible number of RBFs N , as described below.

RBF networks are typically trained from pairs of input and
target values. To proceed the training process of the proposed
RBF network, we first collect a dataset of linearized models
(21) of M equilibrium points (x∗i ,u

∗
i ), corresponding to the

input vectors θ∗i = y∗i , for i ∈ IM . Then, for each collected
data sample, we reshape the data into a column vector Y(i), for
i ∈ IM , containing the parameters of Kri, Dri and Hri in-
volved in the matrices Ari and Bri in (19), and in the affine
term ζ∗ri defined in (22). Note that since the linearized robot
models are highly correlated, a sparse representation of these
submodels can be performed. To this end, similar to the CPR
algorithm [52], we iteratively define the centers of the proposed
RBF network. For each step, a new RBF is added in the cen-
ter position corresponding to the largest squared error, until a
given number of functions or a desired fitting performance is
reached. The iterative training procedure is summarized in Al-
gorithm 1 and illustrated in Figure 4. The network weights are
obtained from the Orthogonal Least Square Learning algorithm
with respect to all training data as described in [61].

Add 1-st RBF

Add 2-nd RBF

Add 3-rd RBF

Data

RBF Center

Fitted

1

1 12 23

Figure 4: Illustration of the iterative RBF training procedure in Algorithm 1.
Here, the sample data are fitted using three radial basis functions.

After the training, the dataset of M linearized models can
be interpolated by anN− element RBF network, withN ≤M .
Hence, the resulting interpolated LPV model has N local linear
submodels, defined as

xk+1 = A(η)xk +B(η)uk + ζ(η) +wk

yk = Cxk

(27)

with

[
A(η) B(η) ζ(η)

]
=

N∑
i=1

ηi(θk)
[
Ai Bi ζi

]
. (28)

The radial basis functions ηi(θk), for i ∈ IN , are used as the
membership functions of the LPV model (27), i.e., to weight

local linear submodels, which satisfy the convex sum property

0 ≤ ηi(θk) ≤ 1,

N∑
i=1

ηi(θk) = 1, i ∈ IN . (29)

Let Ω be the set of membership functions satisfying (29), i.e.,
η =

[
η1(θk) . . . ηN (θk)

]> ∈ Ω, for ∀k ∈ N. We also denote

η+ =
[
η1(θk+1), η2(θk+1), . . . , ηN (θk+1)

]> ∈ Ω. With the
proposed LPV modeling method, the parameter structures of
Ai, Bi and ζi in (28) are preserved as the same as those of Ari,
Bri and ζri in (19) and (23), which are given by

Ai =

[
I hI
Ki Di

]
, Bi =

[
0
Hi

]
ζi =

[
0

−Kiq
∗
ri −Hiu

∗
i

]
=

[
0
ζ∗i

]
.

(30)

The parameter matrices Ki, Di, Hi, and the affine term ζ∗i in
(30) are constructed from the reshaped data in the output col-
umn vector ai, for i ∈ IN , defined in (24). The validation of
the proposed LPV modeling with a soft Trunk robot is reported
in Section 5.

Remark 6. The proposed LPV modeling method has several
advantages compared to classical identification-based LPV mod-
eling methods. From system data, these latter directly iden-
tify local linear submodels, which are generally independent
from each other, also called non-coherent [51]. Interpolating
non-coherent submodels requires some specific canonical state-
space representations, which may not only lead to a loss of the
mechanical model structure of soft robots but also alter the sys-
tem behaviors [62]. For the proposed LPV modeling, the co-
herence between local linearized submodels can be naturally
guaranteed by the unified POD projector T in (15). More-
over, since the mechanical structure is preserved, the upper-half
block-elements of Ai, Bi and ζi given in (30) are constant.
Hence, the number of parameters to be interpolated with the
proposed LPV modeling is reduced by 50%.

2.3. Modeling Error Analysis
Modeling errors are unavoidable when representing the non-

linear dynamics of soft robots. To this end, we assume that the
parameter matrices in (30) are subject to some unknown-but-
bounded uncertainties as

K̂i = Ki + ∆Ki, D̂i = Di + ∆Di

Ĥi = Hi + ∆Hi, ζ̂∗i = ζ∗i + ∆ζ∗i
(31)

where K̂i, D̂i, Ĥi, ζ̂∗i are the estimations, Ki, Di, Hi, ζ∗i are
the nominal values, and ∆Ki, ∆Di, ∆Hi, ∆ζ∗i correspond to
the uncertainties, for i ∈ IN . From (27), (30) and (31), the
uncertain LPV robot model can be described as

xk+1 = Â(η)xk + B̂(η)uk + ζ̂(η) +wk (32)

with [
Â(η) B̂(η) ζ̂(η)

]
=

N∑
i=1

ηi(θk)
[
Âi B̂i ζ̂i

]
7



Algorithm 1 Iterative Training of RBF Network

Inputs:
Data set D =

{(
θ∗1 , Y(1)

)
, . . . ,

(
θ∗M , Y(M)

)}
Outputs:

Weights ai and centers ci of RBFs, for i ∈ IM
Required parameters:

Maximum number N of the RBF network
Width of the receptive field ε of the RBF network
Desired interpolation error σ

Initialization:
· Set the estimates of all Y(i) = 0 as Ŷ(i) = 0, for i ∈ IM
· Initialize an empty set S of weights ai and centers ci
for the RBF network

Begin
for i = 1 to N do

for j = 1 to i do
· Compute the activation vector of RBFs

Φj = [ηj(θ
∗
1), ηj(θ

∗
2), . . . , ηj(θ

∗
M )]>

· Build the activation matrix Ψ = [Φ1, . . . ,Φi]
>

· Build the coefficient matrix A = [a1, . . . ,ai]
end for
· Compute the estimation output Ŷ = AΨ
· Find the index k, for k ∈ IM , corresponding to the

largest prediction error ‖Ŷ(k) − Y(k)‖2
· Add a new RBF with the center ck = θ∗k into the set S
· Update the activation matrix Ψ with the new RBF
· Recompute the coefficients ak from the least square
solution of Y = AΨ with respect to A

if
∑N

k=1 ‖Ŷ(k) − Y(k)‖2 < σ then
break

end if
end for
End

where the local uncertain matrices are defined as

Âi = Ai + ∆Ai, B̂i = Bi + ∆Bi, ζ̂i = ζi + ∆ζi

∆Ai =

[
0 0

∆Ki ∆Di

]
, ∆Bi =

[
0

∆Hi

]
, ∆ζi =

[
0

∆ζ∗i

]
.

Exploiting the specific structures of the state-space matrices in
(30), it follows from (32) that

vr,k+1 = K̂(η)qr,k+D̂(η)vr,k+Ĥ(η)uk+ζ̂∗(η)+wv,k (33)

with [
K̂(η) D̂(η)

Ĥ(η) ζ̂∗(η)

]
=

N∑
i=1

ηi(θk)

[
K̂i D̂i

Ĥi ζ̂∗i

]
.

Note that for (33) the disturbance vector wk is partitioned as
wk =

[
w>q,k w>v,k

]>
, where the disturbance wq,k ∈ Rr (re-

spectively wv,k ∈ Rr) affects the dynamics of the generalized
displacements qr,k (respectively generalized velocities vr,k).
To represent the parametric uncertainties involved in soft robots
modeling, let us define a lumped disturbance

de,k = H(η)†∆Σk (34)

where ∆Σk = K(η)qk+∆D(η)vk+∆H(η)uk+∆ζ∗(η), and
H(η)† is the pseudo-inverse of H(η). Using the disturbance
expression (34) and considering (33), the uncertain LPV model
(32) can be reformulated as

xk+1 = A(η)xk +B(η)(uk + de,k) + ζ(η) +wk

yk = Cxk. (35)

Hence, model (35) can be used for LPV control design of soft
robots under both disturbances and parametric uncertainties.

Remark 7. Using the projector Tr in (15) allows to reduce
significantly the model order while preserving the mechanical
structure of the original robot model (1), i.e., the reduced-order
states qr,k and vr,k still respectively play the role of the gener-
alized displacements and velocities with

qr,k+1 = qr,k + hvr,k+1.

With such a structure preservation, the robot parameters are
only involved in the lower halves of the state-space matricesAi,
Bi and the affine term ζi. This leads to two major advantages
for LPV modeling of soft robots. First, for RBF network train-
ing, the number of parameters to be interpolated is reduced by
50% since the upper halves of the matrices Ari, Bri in (19) and
the affine term ζri in (23) are fixed constants. Second, the mod-
eling uncertainties are only present in the lower halves of ∆Ai,
∆Bi and ∆ζi, for i ∈ IN . This allows to represent the para-
metric uncertainty and a part of MOR errors in the LPV robot
model (35) via the lumped disturbance de,k, defined in (34).
Note that de,k shares the same distribution matrix B(η) with
the control input uk, i.e., de,k is a matching disturbance. This
key feature enables an effective EID-based framework for LPV
tracking control of soft robots under modeling uncertainty as
recently shown in [15]. It is important to note that these advan-
tages of the proposed LPV modeling cannot be achieved with
existing POD-based modeling results [14, 29, 48] and related
references therein, which cannot directly guarantee the struc-
ture preservation.

3. Tracking Control Problem Formulation

This section formulates the tracking control problem of soft
robots. To this end, we define the tracking error as

ek = xk − xr,k (36)

with xr,k =
[
x>rq,k x>rv,k

]>
, where xrq,k ∈ Rr (respectively

xrv,k ∈ Rr) is the reference trajectory corresponding to the
generalized displacements (respectively velocities). Then, the
tracking error dynamics can be defined from (35) and (36) as

ek+1 = A(η)ek +B(η)(uk + de,k) +wk

+A(η)xr,k − xr,k+1 + ζ(η). (37)

To improve the tracking performance of soft robots under mod-
eling uncertainties, we extend the EID-based linear control scheme
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in [15] to the LPV model (37). This feedback-feedforward con-
trol scheme is composed of three components as

uk = uff
k + udc

k + ufb
k (38)

where uff
k is the feedforward control, udc

k is the disturbance-
estimator based control, and ufb

k is the feedback control. The
proposed control scheme is illustrated in Figure 5.

Figure 5: EID-based LPV tracking control scheme for elastic soft robots.

3.1. Feedforward Control
The approximation capabilities of LPV modeling are sub-

stantially improved with the offset terms [63, 64]. However, the
presence of these affine terms leads to more involved stability
analysis and control synthesis procedures [65]. In addition, for
tracking control, the information of the reference signal can be
obtained online. Hence, dealing with the reference trajectory
as an unknown input or disturbance may lead to conservative
control results. To avoid these issues, we can design a feedfor-
ward control uff

k to account for the affects of xr,k and ζ(η) on
the closed-loop system by exploiting the mechanical structure
of the proposed LPV model (35) for soft robots, see Remark 7.

The feedforward control is determined under a perfect track-
ing condition, i.e., ek → 0 for k →∞, that is

xr
k = xr,k, θrk = yr

k = Cxr,k, k →∞ (39)

where xr
k, yr

k and θrk respectively represent the reduced robot
state, the robot output and the scheduling variable correspond-
ing to the perfect tracking. To guarantee a smooth control action
for soft robots, especially in large deformation scenarios, the
feedforward control is designed following the RBF-based in-
terpolation similar to the construction of the LPV robot model
(27). From the local viewpoint, the error dynamics (37) around
the ith equilibrium point is given by

ek+1 = Aiek +Bi(uk + de,k) +wk

+Aixr,k − xr,k+1 + ζi. (40)

Then, the local feedforward control action can be selected from
(40) as

Biu
ff
i,k +Aixr,k − xr,k+1 + ζi = 0. (41)

Substituting (30) into (41), it follows that

Hiu
ff
i,k +Kixrq,k +Dixrv,k −xrv,k+1 −Kiq

∗
ri −Hiu

∗
i = 0.

(42)

Under condition (39), it follows that

Kixrq,k ' Kiq
∗
ri. (43)

Moreover, with a small sampling time value h and a smooth
reference trajectory xr,k, it follows that

xr,k+1 ' xr,k, Di = I − hTS−1
i DiT

> ' I. (44)

From (42), (43) and (44), it is reasonable to select a local feed-
forward control as uff

i,k = u∗i . Then, the feedforward control
uff
k is computed using the RBF-based interpolation as

uff
k =

N∑
i=1

ηi(θ
r
k)uff

i,k =

N∑
i=1

ηi(θ
r
k)u∗i . (45)

Remark 8. A “natural” solution to obtain the feedforward con-
trol uff

k is directly based on the tracking error model (37) as

B(η)uff
k +A(η)xr,k − xr,k+1 + ζ(η) = 0. (46)

Substituting the explicit expressions of A(η), B(η) and ζ(η)
into (46), it follows that

H(η)uff
k +K(η)xrq,k +D(η)xrv,k − xrv,k+1 + ζ∗(η) = 0.

(47)
Then, the feedforward control can be deduced from (47) as

uff
k = −H(η)† (K(η)xrq,k +D(η)xrv,k − xrv,k+1 + ζ∗(η)) .

(48)
However, the expression ofuff

k in (48) requires an online pseudo-
inverse of the parameter-dependent matrix H(η), i.e., control
direction matrix, which could yield large control oscillations or
even unstable control behaviors in case of large deformations.
On the contrary, the feedforward control uff

k in (45) is a con-
vex combination of the control input values corresponding to
different selected equilibriums, which allows a smooth shifting
between operating points of soft robots. Note also that the ap-
proximation errors caused by (43) and (44) when computing uff

k

in (45) can be viewed as a matching disturbance, which can be
effectively dealt with using the EID-based control concept as
shown in the design of disturbance-estimator based control.

3.2. Disturbance-Estimator Based Control
The lumped disturbance de,k, defined in (34), enters in the

tracking error dynamics (37) via the same channel as the control
input uk. Then, the disturbance-estimator based control can be
designed as follows:

udc
k = −d̂ef

k (49)

where d̂ef
k is a filtered estimate of the lumped disturbance de,k.

Due to the low-frequency behaviors of soft robots, it has been
shown that de,k can be considered of low-frequency [15]. After
several trials, the dynamics of de,k can be sufficiently described
with a piecewise second-order polynomial signal. Moreover,
based on the concept of EID control approach [53], the follow-
ing low-pass filter is integrated to limit the angular-frequency
band of the disturbance estimation:

F(s) =
1

1 + Tfs
I (50)
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where s is the Laplace variable. The filter time constant Tf in
(50) can be chosen such that

Tf ∈
[

1

10ωr
,

1

5ωr

]
,

where ωr is the highest angular frequency selected for distur-
bance rejection [53]. Then, the continuous-time model of the
lumped disturbance is given by [15]

ḋ(t) = Jcd(t) (51)

with

d(t) =

def(t)
de(t)

ḋe(t)

 , Jc =

− 1
Tf
I 1

Tf
I 0

0 0 I
0 0 0

 .
Using the explicit Euler-discretization, the discrete-time coun-
terpart of model (51) can be obtained as

dk+1 = Jdk (52)

with J = I + hJc. From the LPV robot model (35) and the
disturbance model (52), we propose the following Luenberger-
like observer to estimate simultaneously the state xk and the
unknown disturbance de,k:

x̂k+1 = A(η)x̂k +B(η)(uk + d̂e,k) + Lx(η)(yk − ŷk)

d̂k+1 = J d̂k + Ld(η)(yk − ŷk) (53)
ŷk = Cx̂k

where x̂k is the estimate of xk, and d̂k is the estimate of dk.
The parameter-dependent observer gains Lx(η) ∈ Rn×q and
Ld(η) ∈ R3p×q are to be designed. The estimation error dy-
namics can be defined from (35), (52) and (53) as

εk+1 = (Ao(η)− L(η)Co)εk +Bowwk (54)

where εk =
[
ε>x,k ε>d,k

]>
, with εx,k = xk − x̂k and εd,k =

dk − d̂k. The system matrices in (54) are defined as

[
Ao(η) L(η)

]
=

N∑
i=1

ηi(θk)
[
Aoi Li

]
with

Aoi =

[
Ai Boi

0 J

]
, Bow =

[
I
0

]
, Li =

[
Lxi

Ldi

]
Co =

[
C 0

]
, Boi =

[
Bi 0

]
.

Remark 9. Disturbance observers have been successfully ap-
plied to compensate unknown disturbances/uncertainties for track-
ing control of various engineering systems [66], including robotics
applications [67–70]. However, related works generally imply
complex analysis and design methods or require restrictive as-
sumptions and/or additional measurements, e.g., both system
state and its derivatives must be available [66]. Using the gener-
alized Luenberger observer (53), we only require the output in-
formation to compute directly the disturbance-estimator based
control (49) with a simple assumption of low-frequency match-
ing disturbance, which is reasonable for soft robots control [15].

3.3. Feedback Control
The feedback control is used to guarantee the closed-loop

stability under the effects of modeling uncertainties and distur-
bances. For tracking control purposes, we consider the follow-
ing LPV proportional-integral control structure:

ufb
k = KP (η)(x̂k − xr,k) +KI(η)eI,k (55)

where the parameter-dependent feedback gainsKP (η) ∈ Rp×n

and KI(η) ∈ Rp×q are to be determined, and

eI,k+1 = eI,k + hC(xk − xr,k).

Withuff
k, udc

k andufb
k respectively defined in (45), (49) and (55),

substituting the control expression (38) into (37), the tracking
error dynamics can be represented by

ξk+1 = (Ac(η) +Bc(η)K(η))ξk +Be(η)εk +Bcwwk (56)

with ξk =
[
e>k e>I,k

]>
, and

Φ(η) =

N∑
i=1

ηi(θk)Φi, Φ ∈ {Ac, Bc,K}

Be(η) =

N∑
i=1

N∑
j=1

ηi(θk)ηj(θk)Beij .

The system matrices in (56) are given by

Aci =

[
Ai 0
C I

]
, Bci =

[
Bi

0

]
, Bcw =

[
I
0

]
Beij =

[
−BiKPj 0

0 0

]
, Ki =

[
KPi KIi

]
.

Then, the extended closed-loop dynamics can be defined from
(54) and (56) as

x̄k+1 =

[
Āc(η) Be(η)

0 Āo(η)

]
x̄k +

[
Bcw

Bow

]
wk (57)

with x̄k =
[
ξ>k ε>k

]>
, and

Āoi = Aoi − LiCo, Āo(η) =

N∑
i=1

ηi(θk)Āoi

Ācij = Aci +BciKj , Āc(η) =

N∑
i=1

N∑
j=1

ηi(θk)ηj(θk)Ācij .

To study the stability of system (57), we consider the following
parameter-dependent Lyapunov candidate function:

V(x̄) = x̄>diag{λQ−>Pc(η)Q−1, Po(η)}x̄ (58)

where λ > 0, the matrixQ ∈ R(n+q)×(n+q) is nonsingular, and
the parameter-dependent matrices Pc(η) ∈ R(n+q)×(n+q) and
Po(η) ∈ R(n+3p)×(n+3p) are defined as

Pc(η) =

N∑
i=1

ηi(θk)Pci, Po(η) =

N∑
i=1

ηi(θk)Poi

10



with Pci � 0 and Poi � 0, for ∀i ∈ IN . For tracking control
purposes, we also introduce the performance output zk associ-
ated to system (57) as the position tracking error zk = ek =
Czξk, with Cz =

[
C 0

]
, or

zk = F x̄k, F =
[
Cz 0

]
. (59)

We are ready to formulate the following observer-based output
tracking control problem for soft robots.

Problem 1. Consider the LPV robot model (35) with the con-
trol law (38). Determine the parameter-dependent observer gain
L(θ) and controller gain K(θ) such that the extended error dy-
namics (57) verifies the following properties.

(P1) If wk = 0, for ∀k ∈ N, the closed-loop dynamics (57) is
exponentially stable with a decay rate α ∈ (0, 1).

(P2) The closed-loop state x̄k is uniformly bounded for any
initial condition x̄0 and any sequence {wk}k∈N ∈ `∞.
That is, there exists a bound ϕ(x̄0, ‖w‖`∞) such that
‖x̄k‖ ≤ ϕ(x̄0, ‖w‖`∞), for ∀k ≥ 0. Moreover, the per-
formance output verifies

lim
k→∞

sup ‖zk‖ < γ‖w‖`∞ (60)

where the `∞−gain γ is specified in Theorem 1. We also
deduce from (60) that if x̄0 = 0, then ‖zk‖ < γ‖w‖`∞ ,
for ∀k ∈ N.

System (57) verifying properties (P1)–(P2) is said to be glob-
ally uniformly `∞−stable with a performance level γ, see [71,
Chapter 4]. It follows from (59) and (60) that a smaller value of
the `∞−gain γ leads to a better tracking control performance.
Note also that a larger value of the decay rate α leads to a faster
closed-loop response of the soft robot, which may induce ag-
gressive control behaviors.

4. LPV Output Feedback Tracking Control with `∞−Gain
Performance Guarantee

This section presents LMI-based conditions to simultane-
ously design an LPV observer (53) and an LPV feedback con-
troller (55) such that system (57) verifies the closed-loop prop-
erties specified in Problem 1.

Theorem 1. Consider the LPV robot model (35) with the con-
trol law (38) and a decay rateα ∈ (0, 1). If there exist parameter-
dependent positive definite matrices Po(η) ∈ R(n+3p)×(n+3p),
Pc(η) ∈ R(n+q)×(n+q), parameter-dependent matricesM(η) ∈
Rp×(n+q), N(η) ∈ R(n+3p)×q , matrices G ∈ R(n+3p)×(n+3p),
Q ∈ R(n+q)×(n+q), and positive scalars µ, ν such that(1− α)Po(η) 0 A>o (η)G> − C>o N>(η)

? ανI B>owG
>

? ? G+G> − Po(η+)

 � 0 (61)

[
(1− α)Pc(η) Ac(η)Q+Bc(η)M(η)

? Q+Q> − Pc(η+)

]
� 0 (62)Pc(η) 0 Q>C>z

? Po(η) 0
? ? µI

 � 0 (63)

for all η(θk), η(θk+1) ∈ Ω, with

Po(η+) =

N∑
i=1

ηi(θk+1)Poi, Pc(η+) =

N∑
i=1

ηi(θk+1)Pci.

Then, the closed-loop system (57) verifies the properties de-
fined in Problem 1 with a guaranteed `∞−gain γ =

√
νµ.

Moreover, the feedback control gain and the observer gain are
respectively given by

K(η) = M(η)Q−1, L(η) = G−1N(η). (64)

Proof. To begin with, it follows from (61) and (62) that

G+G> � Po(η+), Q+Q> � Pc(η+). (65)

Since Po(η+) � 0 and Pc(η+) � 0, for ∀η(θk+1) ∈ Ω, it
follows from (65) that the matrices G and Q are nonsingular,
i.e., invertible, thus the feedback control gain K(η) and the ob-
server gain matrix L(η) in (64) are well-defined. For brevity,
we denote

Āo(η) =
[
Āo(η) Bow

]
Po(η) = diag{(1− α)Po(η), ανI}
Ac(η) = Ac(η)Q+Bc(η)M(η)

Qc(η) = Q−>Pc(η)Q−1, Qc(η+) = Q−>Pc(η+)Q−1.

Inspired by the congruence transformation proposed in [72], we
multiply inequality (61) with[

I 0 −Ā>o (η)
0 I −B>ow

]
on the left and its transpose on the right while consideringN(η) =
GL(η), it follows that

Γ(η) = Ā>o (η)Po(η+)Āo(η)−Po(η) ≺ 0. (66)

Then, multiplying inequality (62) with[
I −A>c (η)Q−>

]
on the left and its transpose on the right, we have

A>c (η)Qc(η+)Ac(η)− (1− α)Pc(η) ≺ 0. (67)

Pre- and post-multiplying (67) withQ−> and its transpose while
considering M(η) = K(η)Q, it follows that

Π(η) = Ā>c (η)Qc(η+)Āc(η)− (1− α)Qc(η) ≺ 0. (68)

Since Γ(η) ≺ 0 and Π(η) ≺ 0, then for Ψ(η) � 0, there always
exists a positive scalar λ such that [73]

Γ(η) + λΨ(η) ≺ λΥ>(η)Π−1(η)Υ(η) (69)

with

Ψ(η) =

[
B>e (η)
B>c (η)

]
Qc(η+)

[
Be(η) Bc(η)

]
Υ(η) =

[
Ā>c (η)Qc(η+)Be(η) Ā>c (η)Qc(η+)Bcw

]
.

(70)
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Applying the Schur complement lemma [54], we can prove that
condition (69) is equivalent to[

λΠ(η) λΥ(η)
? Γ(η) + λΨ(η)

]
≺ 0. (71)

Substituting the expressions of Γ(η) in (66), Π(η) in (68), Ψ(η)
and Υ(η) in (70) into condition (71), we obtainΣ11(η) Σ12(η) Σ13(η)

? Σ22(η) Σ23(η)
? ? Σ33(η)

 ≺ 0 (72)

with

Σ11(η) = λĀ>c (η)Qc(η+)Āc(η) + λ(α− 1)Qc(η)

Σ12(η) = λĀ>c (η)Qc(η+)Be(η)

Σ13(η) = λĀ>c (η)Qc(η+)Bcw

Σ22(η) = λB>e (η)Qc(η+)Be(η) + Ξ(η)

Ξ(η) = Ā>o (η)Po(η+)Āo(η)− (1− α)Po(η)

Σ23(η) = λBe(η)>Qc(η+)Bcw + Ā>o (η)Po(η+)Bow

Σ33(η) = −ανI + λB>cwQc(η+)Bcw +B>owPo(η+)Bow.

Since λB>e (η)Qc(η+)Be(η) � 0, it follows from (72) thatΣ11(η) Σ12(η) Σ13(η)
? Ξ(η) Σ23(η)
? ? Σ33(η)

 ≺ 0. (73)

Multiplying inequality (73) with
[
x̄>k w>k

]>
on the left and

its transpose on the right, the following condition can be ob-
tained after some algebraic manipulations:

∆V(x̄k) + α
(
V(x̄k)− νw>k wk

)
< 0, ∀k ∈ N (74)

where the parameter-dependent Lyapunov function V(x̄k) is
defined in (58), and ∆V(x̄k) = V(x̄k+1) − V(x̄k) is its dif-
ference along the trajectories of the extended closed-loop error
dynamics (57). We distinguish the two following cases.

First, if wk = 0, for ∀k ∈ N, it follows from (74) that

∆V(x̄k) + αV(x̄k) < 0, ∀k ∈ N

which proves Property (P1) on the exponential stability with a
decay rate α of system (57).

Second, if wk 6= 0 and {wk}k∈N ∈ `∞, it follows from
(74) that

V(x̄k) < (1− α)V(x̄k−1) + αν ‖wk−1‖2 , ∀k ≥ 1. (75)

By recursivity and since α ∈ (0, 1), it follows from (75) that

V(x̄k) < (1− α)kV(x̄0) + αν

k−1∑
i=0

(1− α)i ‖wk−1−i‖2

< (1− α)kV(x̄0) + αν‖w‖2`∞
k−1∑
i=0

(1− α)i

< (1− α)kV(x̄0) + ν‖w‖2`∞ , ∀k ≥ 1 (76)

which guarantees that x̄k is uniformly bounded for any initial
condition x̄0 and any sequence {wk}k∈N ∈ `∞.

Applying the congruence transformation to inequality (63)
with diag{Q−>, I, I}, it follows thatQc(η) 0 C>z

? Po(η) 0
? ? µI

 � 0. (77)

Using the Schur complement lemma, we can prove that condi-
tion (77) is equivalent to

µdiag{Qc(η), Po(η)} − F>F � 0. (78)

Pre- and post-multiplying condition (78) with x̄>k and its trans-
pose yields

‖zk‖2 ≤ µV(x̄k). (79)

It follows from (76) and (79) that

‖zk‖ ≤
√
µV(x̄0)(1− α)k/2 + γ‖w‖`∞ , ∀k ≥ 1 (80)

with γ =
√
νµ. For any initial condition x̄0, it follows from

(80) that
lim
k→∞

sup ‖zk‖ ≤ γ‖w‖`∞ . (81)

Conditions (76), (80) and (81) guarantee Property (P2), which
concludes the proof.

Remark 10. Using some congruence matrix transformations,
the LPV observer-based control design in Theorem 1 offers
an extra degree of freedom to enable less conservative results.
Specifically, slack variables Q and G are introduced such that
the parameter-dependent matrices Pc(η) and Po(η) of the Lya-
punov function V(x̄) defined in (58) can be decoupled from any
products with the state-space matrices. Moreover, the feedback
control gain K(η) and the observer gain L(η), given in (64),
do not explicitly depend on Pc(η) and Po(η), respectively. It
is important to note that the design conservatism of the control
results in Theorem 1 can be further reduced using parameter-
dependent slack variables as Q(η) and G(η). However, in this
case the expressions of the control and observer gains require
online matrix inversions, i.e.,K(η) = M(η)Q−1(η) andL(η) =
G−1(η)N(η), which could induce some difficulties in control
tuning for practical uses [74, 75].

Theorem 1 cannot be directly used for control design due to
the presence of η(θk), η(θk+1) ∈ Ω in the LMI-based matrix
inequalities (61)–(63). It is important to note that the Gaussian
membership functions ηi(θk), for i ∈ IN , are locally defined.
Hence, there is no overlap between two membership functions
ηi(θk) and ηj(θk), which are not adjacent to each other as il-
lustrated in Figure 2. As a result, the product of these two mem-
bership functions are identically zero, i.e., ηi(θk)ηj(θk) = 0,
for ∀k ∈ N. Exploiting this fact and the LMI relaxation result
proposed in [76], the following theorem provides a tractable
solution for Problem 1 while reducing the design conservatism
and numerical complexity.
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Theorem 2. Consider the LPV robot model (35) with the con-
trol law (38) and a decay rate α ∈ (0, 1). Assume that the
maximum number of membership functions that are activated
for all k ∈ N is less than or equal to s where 1 < s ≤ N . Then,
the closed-loop system (57) verifies the properties defined in
Problem 1 with a guaranteed minimum `∞−gain if there ex-
ist positive definite matrices Poi ∈ R(n+3p)×(n+3p), Pci ∈
R(n+q)×(n+q), matrices Mi ∈ Rp×(n+q), Ni ∈ R(n+3p)×q , for
i ∈ IN , matrices G ∈ R(n+3p)×(n+3p), Q ∈ R(n+q)×(n+q), a
positive semidefinite matrix W ∈ R(n+q)×(n+q), and positive
scalars µ, ν, solution to the following optimization problem:

minimize µ+ ν (82)
such that(1− α)Poi 0 A>oiG

> − C>o N>i
? ανI B>owG

>

? ? G+G> − Pol

 � 0, i, l ∈ IN(83)

Pci 0 Q>C>z
? Poi 0
? ? µI

 � 0, i ∈ IN (84)

Θiil � (s− 1)W, i ∈ IN (85)
Θijl + Θjil � −2W, i, j, l ∈ IN , i < j (86)

for all i and j excepting the pairs (i, j) such that ηi(θk)ηj(θk) =
0, ∀k ∈ N and s > 1. The quantity Θijl and the matrix W in
(85)–(86) are defined as

Θijl =

[
(1− α)Pci AciQ+BciMj

? Q+Q> − Pcl

]
, W =

[
W 0
? 0

]
.

Proof. Since η(θk), η(θk+1) ∈ Ω, for ∀k ∈ N, multiplying
condition (83) with ηi(θk)ηl(θk+1) ≥ 0 and summing up for
i, l ∈ IN , we obtain (61). Similarly, we can prove that condi-
tion (84) implies (63). Moreover, using the relaxation result in
[76], it follows that conditions (85)–(86) guarantee (62). Note
also that the `∞−gain γ =

√
µν can be minimized via the op-

timization problem (82). Then, by the result of Theorem 1, we
can conclude the proof.

Remark 11. The LPV tracking control design of soft robots is
reformulated as a convex optimization problem (82) under LMI
constraints (83)–(86), which can be effectively solved offline
with YALMIP toolbox and SDPT3 solver [77].

5. Experimental Results of LPV Tracking Control for a Soft
Trunk Robot

This section presents the experimental results obtained with
a Trunk robot to illustrate the effectiveness of the proposed
RBF-based LPV modeling and the EID-based LPV output feed-
back control method for elastic soft robots.

5.1. Experimental Soft Robot Platform

The Trunk robot platform is depicted in Figure 6. This soft
robot is made of silicone rubber with 14 segments to make it
highly deformable. The weight of the Trunk robot is 40 [g] and

its length is 195 [mm] in the initial position. The Young’s mod-
ulus of this soft robot is 450 [kPa], whereas its Poisson’s ratio is
0.45. The Trunk robot is driven by four stepper motors via four
cables mounted on the robot body to guarantee the accessibility
of each direction in the workspace. The two control inputs of
the robot are realized by pulling these four cables as a pulley
system. The position of the end-effector, e.g., system output,
is measured by an OptiTrack tracking system and a reflective
marker is mounted on the endpoint as an end-effector. The data
rate of the OptiTrack tracking system is 100 [Hz] with an ac-
curacy of 0.1 [mm] after preliminary calibrations. The actua-
tor driver code and the communication with the computer are
implemented on the MegaPI embedded platform. The control
and estimation algorithms are implemented in Matlab/Simulink
software on an Intel i9 mobile workstation with 32 GB RAM.
Since the robot modeling and the control design are performed
offline before real-time experiments, the computational burden
of the proposed method is not heavy for soft robots control.

(a) (b)

(c) (d)

Figure 6: Soft Trunk robot. (a) Robot platform. (b) Stepper motors. (c) Opti-
Track tracking system. (d) FEM modeling of the trunk with different meshes.

5.2. LPV Model Validation

The FEM simulation and modeling of the soft Trunk robot
is implemented using the open-source SOFA framework1. Two
main steps are carried out to achieve a high-fidelity FEM model
that can accurately represent the soft Trunk robot dynamics.
First, some preliminary investigations on the design, the struc-
ture, and the material are done for both the soft robot and its
actuation method so that they can be built and modeled as ac-
curately as possible with respect to the robot specifications.
Second, after the soft robot is fabricated, several calibrations
on the robot parameters and the mesh generation method are
performed via FEM modeling and simulation under the SOFA
platform to guarantee the best tradeoff between computational

1More details on the plugin SoftRobots of the SOFA framework with
related publications and/or documentations can be found at the address:
https://project.inria.fr/softrobot.
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complexity, numerical stability and modeling accuracy. The
Trunk robot FEM model has 1484 nodes with 8904 state vari-
ables. A four-order reduced model can be obtained via the
POD-based order reduction method, see Remark 3. To con-
struct the RBF-based LPV model of the soft Trunk robot, we
collect the data of 45 different robot configurations, i.e., equi-
librium points, that can cover the whole workspace, see Figure
3. Then, POD-based model reduction method is applied to ob-
tain the 45 corresponding reduced-order linear submodels of
the form (16). After some preliminary validations, 9 of these
submodels are selected to build the interpolated LPV model of
the Trunk robot using Algorithm 1 as illustrated in Figure 3.

To illustrate the nonlinear phenomenon caused by the ac-
tuation forces, Figure 7 shows the evolution of the non-zero
elements of the reduced-order input matrix

B(η) =


0 0
0 0

b31(η) b32(η)
b41(η) b41(η)


corresponding to a trajectory with a large deformation as illus-
trated in Figure 2. First, we can see that the parameter values
of the 9 local linearized models, used to establish the reduced-
order LPV robot model, are well interpolated with the proposed
RBF-based method. Second, the value of b31(η), corresponding
to the action from the horizontal cable actuator to the x-axis of
robot, varies from negative to positive. This illustrates the non-
linear behavior of elastic soft robots concerning the change of
the actuation direction as previously discussed.

1 2 4 6 8 9
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Number of linear models
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-0.4

-0.2

1 2 4 6 8 9
Number of linear models

-0.8

-0.6

-0.4

Figure 7: Evolution of the non-zero elements of the input matrix B(η): RBF-
based interpolation results ( ), model parameters from collected data (◦).

To further validate the proposed LPV modeling method, we
compare the following robot models:

• the linear model in [15], corresponding to the equilibrium
point (q0,v0,u0) ≡ (0, 0, 0);

• the 1484-node nonlinear FEM model used to derive the
proposed LPV robot model;

• the proposed LPV model.

For comparison purposes, we apply a ramp input signal to the
Trunk robot to gradually increase the robot deformation, which
can reproduce the nonlinear behavior illustrated in Figure 2.
The displacement of the robot end-effector is measured. Be-
sides, simulations are performed with the same input signal for
the linear model, the FEM model and the LPV model. The
comparison result is shown in Figure 8. Observe that the non-
linear FEM model and the LPV model provide similar behav-
iors, which capture well the nonlinear dynamics of the soft
Trunk robot even if the input signal becomes large. However,
the linear reduced-order model can only approximate the robot
dynamics under small deformations with a small input signal.
Note that the linear model is obtained from the configuration,
for which the actuation does not have any impact on the z−axis
displacement. The above validation results in Figures 7 and
8 confirm the validity of the proposed LPV modeling method.
Hereafter, the relevance of this LPV modeling for dynamic track-
ing control design of soft robots under large deformations is
demonstrated.

0 1 2 3 4
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Measurement
LPV model
FEM model
Linear model

Figure 8: Comparison between different modeling methods for the Trunk robot.

5.3. Tracking Control Validation

To show the effectiveness of the proposed LPV tracking
control framework for elastic soft robots, we perform several
experimental tests with both large and small deformations. Note
that this soft robot is horizontally positioned as an elephant
trunk, which leads to a distorted sphere workspace due to the
gravity effect as depicted in Figure 9. Since the center of mass
of the soft Trunk robot changes with respect to its motions and
deformations, the gravity effect plays a role of time-varying
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disturbance to the robot control system. For comparison pur-
poses, we have recently shown in [15] that the linear EID-based
controller therein can outperform, in terms of tracking perfor-
mance, some standard controllers for soft elastic robots, e.g., in-
verse kinematics based QP control [18, 44] and Jacobian-based
PID control [78, 79]. Hence, in the sequel we mainly focus on
the comparisons between the proposed LPV control method,
the linear EID-based control method in [15] and a linear iter-
ative learning control (ILC) method. This latter is known as a
powerful scheme for dynamic tracking control in the presence
of repetitive disturbances [80].

5.3.1. Test 1: Dynamic Tracking with a Predefined Trajectory
For this test, we select a reference trajectory that can cover

the entire workspace of the Trunk robot. Note that the workspace
of the Trunk robot can be parameterized by a spherical coordi-
nate system with two angular coordinates (ϑ(t), ϕ(t)), which
enable to easily define the trajectories in the workspace. For
illustrations, we consider a reference trajectory with the follow-
ing altitude and azimuth angles:

ϑ(t) = 2.1 sin(0.3t) [rad], ϕ(t) = 0.5 cos(0.3t) [rad] (87)

which corresponds to a large circular trajectory in the workspace.
Figure 9 depicts the evolution of the end-effector positions of
the Trunk robot within the shell-like workspace, which are ob-
tained with the proposed LPV control method and the linear
control method in [15]. We can see that the linear control is only
valid a small operating region of the workspace. In contrast,
LPV control can provide an effective tracking for the whole pre-
defined trajectory. To examine the tracking control performance
in more detail, Figures 10 and 11 present the tracking control
results, projected on the ϑϕ−plane. Remark that both LPV
and linear control methods share a similar tracking performance
around the initial robot configuration. However, after reaching
the singular configuration of the Trunk robot, i.e., with a change
of the actuation direction, the linear control method is unable to
perform the tracking task while the LPV control method still
offers a satisfactory reference tracking result. The correspond-
ing control inputs are shown in Figure 12. Note that the ϑ−axis
force control input has a sinus shape, which is synchronized
with the ϑ−axis trajectory. However, the ϕ−axis control input
is similar to a square wave, which does not correspond to the
form of the ϕ−axis trajectory. This is not the case of the dy-
namic tracking control with small deformations in [15], which
also illustrates the effects of large nonlinearities, i.e., large de-
formations, in soft robots control. The validation video for this
test can be found at: https://bit.ly/3RIXlsF.

5.3.2. Test 2: Robustness with respect to External Disturbances
The EID-based control concept has been shown in [15] as

an effective tool to deal with the parametric uncertainties of
elastic soft robots, analyzed in Section 2.3, for linear dynamic
tracking control. This test is used to demonstrate that this con-
trol concept is also useful for interpolated LPV control frame-
work to deal with not only parametric uncertainties but also ex-
ternal disturbances. To this end, we add an extra load near the

Figure 9: Experimental results of 3D dynamic tracking control with a circular
reference trajectory (Test 1).
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Figure 10: Experiment tracking control results with a circular reference trajec-
tory projected on the spherical coordinate ϑϕ−plane (Test 1).

end-effector of the Trunk robot as an external disturbance dur-
ing the trajectory tracking as shown in Figure 13. The load con-
tains 3 coins with a total mass of 24.8 [g], which is about 15%
of the robot weight. The tracking task of this test is composed
of two phases with the same reference trajectory as defined in
(87), and the load is added in the second phase for comparison
purposes. The corresponding tracking control result in 3D and
its projection on each axis are presented in Figures 14 and 15,
respectively. We can see that the disturbance effect, caused by
the extra load added at around 27 [s], is quickly compensated.
Indeed, there is no significant difference after about 1 [s] on
the tracking control performance between Phase 1 and Phase 2.
We can observe in Figure 15(c) that due to the presence of the
additional load, the ϕ−axis force control input is also reduced
accordingly. Since the extra load only affects to the ϕ−axis,
there is no change for the ϑ−axis force input between Phase 1
and Phase 2. The validation video for this test can be found at:
https://bit.ly/3RMDgBO.
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Figure 11: Tracking control task in the parametric space (Test 1). (a) Tracking
performance along ϑ−axis. (b) Tracking performance along ϕ−axis.
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Figure 12: Force control inputs along the ϑ−axis and the ϕ−axis (Test 1).

5.3.3. Test 3: Comparisons with Iterative Learning Control
ILC aims at generating a feedforward control to track a ref-

erence trajectory of repetitive processes on a finite time interval
while rejecting real-time disturbances [81–83]. For compar-
isons, we perform a circular trajectory tracking with the norm-
optimal ILC control [84], which shares the common model-
based principle as iterative learning model predictive control
[85]. The designed ILC control scheme is composed of two
decentralized single-input single-output (SISO) ILC controllers
corresponding to the ϑ−axis and the ϕ−axis, respectively. The
design of each norm-optimal ILC controller is formulated as an
optimization problem, as described in Appendix A. We distin-
guish two test scenarios for trajectory tracking: i) with a small
robot deformation, and ii) with a large robot deformation.

a. Scenario 1: Tracking with a Small Deformation. This test
scenario is performed with the following small-range reference

Figure 13: Soft Trunk robot with an additional load (Test 2).

Figure 14: Experimental results of 3D dynamic tracking control in the presence
of an external disturbance (Test 2).

such that linear control can be still effective:

ϑ(t) = 0.4 sin(0.9t) [rad], ϕ(t) = 0.4 cos(0.9t) [rad]. (88)

The tracking control results obtained with both LPV control
and ILC control are shown in Figure 16. We can see in Fig-
ures 16(a) and (c) that the tracking errors become smaller af-
ter each control iteration. After 15 iterations, the robot end-
effector can track the desired reference (88) with the ILC con-
trol method. Moreover, the tracking control performance of
both control methods is similar in this case.

b. Scenario 2: Tracking with a Large Deformation. For
this test, the tracking control task is performed with the large-
range reference defined in (87) to show that linear control is not
effective anymore for large-deformation situations. The corre-
sponding tracking control results are depicted in Figure 17. Ob-
serve that ILC control can improve loop-after-loop the tracking
performance for some first iterations, i.e., when the deforma-
tion is still small. However, when the deformation becomes
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Figure 15: Tracking control task with an external disturbance in the parametric
space (Test 2). (a) Tracking performance along ϑ−axis. (b) Tracking perfor-
mance along ϕ−axis. (c) Force control inputs.
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Figure 16: Tracking performance comparison between LPV control and differ-
ent loops of ILC control for the small-deformation reference (88). (a) Tracking
performance along ϑ−axis. (b) Force control input along ϑ−axis. (c) Tracking
performance along ϕ−axis. (d) Force control input along ϕ−axis.

large, the ILC controller is not effective anymore to track the
desired reference. In particular, the end-effector is not able to
reach the robot configuration with 90◦ bending deformation,
which is not the case of the proposed LPV controller. The val-
idation video for both scenarios of this test can be found at:
https://bit.ly/3xLb3CH.

For a quantitative performance analysis, we define the fol-
lowing normalized square tracking error (nSTE) index to avoid
the impact of different reference amplitudes:

nSTE =
1

‖xr‖2`∞

∆t∑
k=1

‖ek‖2

where ∆t is the tracking time. Figure 18 summarizes the track-
ing performance in terms of nSTE index obtained with the pro-
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Figure 17: Tracking performance comparison between LPV control and differ-
ent loops of ILC control for the large-deformation reference (87). (a) Tracking
performance along ϑ−axis. (b) Force control input along ϑ−axis. (c) Tracking
performance along ϕ−axis. (d) Force control input along ϕ−axis.

posed LPV control and the compared ILC controller for both
small- and large-range trajectory references. Remark that for
the small-range tracking, a clear performance improvement can
be observed loop after loop for ILC control until a high track-
ing accuracy can be achieved. However, for the large-range
tracking, despite a loop-after-loop improvement, the nSTE val-
ues obtained with ILC controller are large compared to that ob-
tained with the proposed LPV controller, which gives similar
nSTE values for both test scenarios. These confirm the tracking
control results in Figures 16 and 17.
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Figure 18: Comparisons between LPV controller and ILC controller in terms
of nSTE performance for both small and large deformation test scenarios.

5.3.4. Test 4: Real-Time Marker Tracking
To further explore the potential of the proposed LPV con-

trol method, a more realistic experiment is conducted. The task
is to imitate the elephant trunk to reach a given target, i.e., to
minimize the distance between the end-effector and the target,
which is materialized by a marker as illustrated in Figure 19.
Note that the marker can be manually and arbitrarily moved
within the workspace of the soft Trunk robot.

The 3D trajectories of the end-effector and the target are
shown in Figure 20. For this test, we pay a special attention
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Figure 19: Illustration of a real-time target tracking task with the Trunk robot.

on the highly deformed configuration of the Trunk robot and
the random and fast time-varying features of the target trajec-
tory, which makes the tracking task much more challenging
compared to the previous tests. Figure 21 shows that the real-
time marker tracking is successfully achieved with the proposed
LPV control method. The validation video for this test can be
found at: https://bit.ly/3KMDIOr.

Figure 20: A 3D view of the real-time marker tracking task (Test 4).

6. Concluding Remarks

A dynamic FEM model-based framework has been proposed
for LPV tracking control of elastic soft robots. Based on a POD
model reduction method, we first generate a set of reduced-
order linear models with the same mechanical structure for dif-
ferent operating points, covering the whole robot workspace.
Using RBF networks, these local linearized models are inter-
polated to build a reduced-order LPV model, which can cap-
ture the nonlinear dynamics of soft robots with large deforma-
tions. Then, an EID-based control scheme is developed for
LPV dynamic tracking control, which is composed of three
key components, i.e., feedforward control, feedback control,
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Figure 21: Real-time marker tracking task in the parametric space (Test 4). (a)
Tracking performance along ϑ−axis. (b) Tracking performance along ϕ−axis.
(c) Force control inputs.

error-compensation control. The LPV feedforward control is
constructed from an interpolation of local control input values,
obtained at the operating points considered for LPV model-
ing. The feedback control and the error-compensation control
are designed with a generalized proportional integral observer
structure, incorporating the low-frequency information of ex-
ternal disturbances and/or modeling uncertainties. Using Lya-
punov stability theory, sufficient LMI conditions are derived
to design both the LPV feedback controller and the LPV ex-
tended observer such that the closed-loop soft robot system is
globally uniformly `∞−stable. Various experimental tests have
been carried out with a soft Trunk robot under configurations
with both small and large deformations to validate the proposed
LPV modeling and to show the effectiveness of the proposed
LPV control method over existing linear tracking control re-
sults. Thanks to its generic feature, the proposed LPV control
framework can be extended to deal with soft robots with more
complex structures and/or with more constraints on the robot
segments. However, these complex situations require a special
attention on the selection of robot sensors and of the scheduling
variables to characterize adequately the variation of the robots
characteristics. In particular, we have to obtain appropriate fea-
sible references of the robot states for the LPV feedback con-
troller, considered as a “low level” robot controller as in rigid
robotics, to achieve desired tracking tasks in these cases. This
will require further research investigations on kinematics and
inverse kinematics of soft robots. Extensions of the proposed
LPV control results for contact handling of soft robots in inter-
action with an unstructured environment is another promising
future direction.
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Appendix A. Norm-Optimal ILC Controller Design

To design two decentralized ILC controllers, the reduced-
order robot model (16) is decoupled into two SISO models cor-
responding to the control along the ϑ−axis and the ϕ−axis,
respectively. The norm-optimal ILC design for these both con-
trollers follows the same procedure, which is summarized here-
after with the same formulation. More related technical details
can be found in [86].

Under zero initial condition, the following impulse response
matrix is derived from the linear robot model (16):

P =


CpBrp 0 · · · 0
CpArBrp CpBrp · · · 0

...
...

. . .
...

CpA
T−1
r Brp CpA

T−2
r Brp · · · CpBrp


where T is the iteration length, i.e., k ∈ [0, T ]. The pth input-
output matrix pair (Brp, Cp) corresponds to the SISO control
loop along the ϑ−axis or the ϕ−axis. The system output of the
ith iteration can be represented by

yk(i) = Puk(i) (A.1)

where uk(i) is the control input of the ith iteration. The norm-
optimal ILC control design can be reformulated as the follow-
ing optimization problem [86]:

min
uk(i+1)

e>k(i+1)Week(i+1) + u>k(i+1)Wuuk(i+1) (A.2)

subject to
[
uk(i+1) − uk(i)

]> [
uk(i+1) − uk(i)

]
≤ δ (A.3)

where ek(i) = rk − yk(i), and rk is the output reference. The
weighting matrices We and Wu determine the tradeoff between
performance and input energy. The constraint (A.3) can be
taken into account in the optimization problem (A.2) via a La-
grange multiplier λ as

min
uk(i+1)

Jk(i+1) (A.4)

with

Jk(i+1) = e>k(i+1)Week(i+1) + u>k(i+1)Wuuk(i+1)

+ λ
[(
uk(i+1) − uk(i)

)> (
uk(i+1) − uk(i)

)
− δ
]
.

Then, the optimal solution of the optimization problem (A.4)
can be determined from the equation ∂Jk(i+1)

∂uk(i+1)
= 0, leading to

uk(i+1) = W−1
opt

(
λuk(i) + P>We(I−P)rk

)
(A.5)

with Wopt = λI + P>WeP + Wu. Substituting (A.1) into
(A.5), the update law of the control input at the ith iteration can
be obtained as

uk(i+1) = Q
[
uk(i) + Lek(i)

]
(A.6)

where the filter matrices Q and L are defined as

Q = W−1
opt

(
λI + P>WeP

)
L =

(
λI + P>WeP

)−1
P>We.

(A.7)

Remark 12. For ILC tuning, we select We = I and Wu =
ρI , with ρ ∈ [0, 1], to limit the computational burden of the
control update law (A.6)–(A.7). The tuning of the two design
parameters λ and ρ can be done as follows. Since the soft robot
dynamics cannot be accurately described with a linear model,
the value of λ should be large enough to maintain the system
stability by avoiding an aggressive update in (A.6). The value
of ρ should be small to minimize the tracking error ek(i). For
the experimental results in Section 5, we select λ = 1.2 and
ρ = 0.1 for both SISO norm-optimal ILC controllers.
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