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Abstract

This paper investigates the control synthesis for Takagi-Sugeno (TS) fuzzy systems via a model reconstruction approach. Firstly,
based on a nonparallel distributed compensation (NPDC) control scheme and a fuzzy Lyapunov function candidate (FLF), LMI-
based synthesis conditions are derived to guarantee the asymptotic stability of the closed-loop TS fuzzy system. Then the operation
domain of the premise variables is divided into several subregions to provide more flexibility in control design. And a new local
model reconstruction method is proposed to transform the time-derivative of the FLF into new fuzzy forms with transformed
membership functions in each subregion. This enables better exploitation of information on membership functions, resulting in
relaxed conditions for both stabilization and robust .#% control. Two simulation examples are provided to verify the advantages
of the proposed TS fuzzy control approach.
© 2023 Elsevier B.V. All rights reserved.

Keywords: Takagi-Sugeno fuzzy systems; Model reconstruction; Conservatism; Fuzzy Lyapunov functions

1. Introduction

Over the last decades, TS fuzzy model-based approaches have become one of the most promising frameworks
to deal with stability analysis, controller and observer synthesis for nonlinear systems [1]. This is because TS fuzzy
modeling can be used to approximate any smooth nonlinear system with any degree of accuracy. In particular, TS fuzzy
models are constructed by blending local linear submodels together with nonlinear membership functions (MFs) [2].
The resulting polytopic structure of TS fuzzy models permits some possible extensions of results from linear control
theory to nonlinear systems [3—7].

* Corresponding author at: School of Mechatronic Engineering and Automation, Shanghai University, PR China.
E-mail address: danielhrbust@ 163.com (W.-B. Xie).



For TS fuzzy modeling, two main approaches have been used to derive TS fuzzy models from nonlinear systems:
sector nonlinearity approach [8] and local linearization approach [9]. Using Lyapunov stability theory and TS fuzzy
modeling, sufficient conditions can be derived for stability analysis and controller/observer synthesis of nonlinear
systems in the form of linear matrix inequalities (LMIs) which can be effectively solved with standard numerical
solvers [1]. However, one of the major challenges of TS fuzzy model-based approaches consists in reducing the
design conservatism, which is unavoidable within TS fuzzy framework [10]. For fuzzy model-based control, it has
been demonstrated that the choice of various controller forms and Lyapunov function candidates plays a central role
to solve this challenge [11]. The parallel distributed compensation (PDC) scheme, in which the fuzzy controller shares
same MFs with the fuzzy system, has been widely adopted [12—15]. To reduce the conservatism of the control results,
non-parallel distributed compensation (NPDC) approaches have been investigated [16—18]. For these approaches,
controller MFs that differ from the plant MFs can be utilized. This technique has been exploited in various situations,
NPDC controller has been developed for fuzzy descriptor systems in [19]; a generalized non-quadratic parameter-
dependent controller has been proposed in [20]. However, there is still no systematic way to derive MFs for NPDC
controller design. To deal with this control issue, a class of switching controllers, depending on the division of the
premise variable operation domain, can be found in [21-23], which yielded more relaxed control results.

Quadratic Lyapunov functions (QLF) have been widely exploited in early works to derive sufficient LMI conditions
for stability analysis and control synthesis of TS fuzzy systems [24,25]. It is important to note that it is hard to find
a common Lyapunov matrix that satisfies the stability conditions of all local subsystems of the TS fuzzy system. To
reduce the conservatism implied by QLF-based approaches, a piecewise Lyapunov function (PLF) approach has been
proposed in [26-29]. Switching Lyapunov function (SLF) based approaches have been discussed in [30,31], which
allows the local Lyapunov function switches from one subregion to another. Several other approaches have been also
proposed to reduce the design conservatism, e.g., fuzzy Lyapunov function based method [32—-34], line-integral Lya-
punov function based method [35], polynomial fuzzy Lyapunov function based method [36] for polynomial fuzzy
systems, see [10] for a recent survey. However, how to involve the information on the membership functions into
stability conditions to reduce the conservatism has not been well addressed in the literature. For this aspect, consid-
ering the shape of MF, the overlap bounds are used to derive relaxed stability conditions as in [37]. Then one can
find polynomial approach as in [38], which also reduces the conservatism by using membership functions. Recently,
piecewise membership functions approximation methods have been proposed to incorporate MFs information into
stability analysis [39,40]. If the number of the premise variable division is small, the MFs approximation errors may
be large which could still introduce the conservatism. A large division number can significantly reduce the conser-
vatism at the expense of increased numerical burdens. Therefore, deriving LMI-based control synthesis conditions
with a reduced level of conservatism and a reasonable numerical complexity is still an open problem within TS fuzzy
control framework.

Motivated by the above challenge, this paper presents a new control method based on a reconstruction of TS fuzzy
systems. The contributions of this article are as follows.

1. A subregion based non-parallel distribution compensation (NPDC) control scheme is proposed based on the
premise variable equilibrium enveloping technique, which introduces more flexibility in the control design.

2. A local model reconstruction approach is proposed to transform the double fuzzy summation items of the Lya-
punov stability condition into a new fuzzy summation form, aiming to reduce conservatism in stabilization and
robust control design conditions by incorporating additional membership functions information.

This paper is organized as follows. Section 2 describes the control synthesis problem and provides a preliminary
result, which is useful for the development of the new control method. Section 3 presents the main results on model
reconstruction based control synthesis. Two numerical examples are given in Section 4 to point out the interests of the
proposed method. Section 5 concludes the paper.

Notation. N1+ is referred to a positive number set {1, 2, --- , [}, R" denotes a n-dimensional Euclidean space. For a
matrix X, XT denotes its transpose matrix, and X > 0 means that X is positive definite. / denotes the identity matrix
of appropriate dimension. g—: is the partial derivative operator. | * | is absolute value of *. card(x) denotes the number
of elements in *, and || * ||o = {x: fooo ||  (1)||>dt < oo} is defined as an L, norm. In block matrices, the symbol
stands for the terms deduced by symmetry. Arguments are omitted when their meaning is clear.



2. Problem statement and preliminaries

Consider a class of TS fuzzy systems of the form
Rulei : IF zy(t) is M;y ... and z,(¢) is M,

1
THEN () = A;x(t) + Bju(t), M)

where M;; represents fuzzy sets, i € N ,+ and j € N;’ with [ and p denoting the number of fuzzy rules and the number

of premise variables, respectively. z(t) = [z1(?) ... z p(t)]T € R? indicates the premise variable vector, x(¢) € R”
means the system state, u(t) € R™ is the control input vector, A; € R"*" and B; € R"*™ are the state-space matrices
corresponding to the ith fuzzy rule. Using the center-of-gravity method for defuzzification [1], the TS fuzzy system
(1) can be represented in the compact form

!
£(6) =Y hiz(O)(Aix(t) + Biu(t)). @

i=1
The membership functions are defined as
[17_) Wij(z; ()
Y T Wi (2 0)

where W;;(z;(t)) represents the membership grade of z;(¢) in the respective fuzzy set M;;. Note that the MFs satisfy
the following convex sum property:

hi(z(t)) = Vi e N;", 3

!
Yhi@=1. 0<h@) <1, YieN;. @
i=1

For brevity, we denote h; = h;(z()) in the subsequent sections. For the control synthesis of system (2), we consider
a NPDC fuzzy controller of the form

1
u =Zh,~K,-(Ph)’1x, (5)

i=1
where the matrices K; € R”*" and P, = le: 1hjP; e R™", with P; > 0, are to be determined. The closed-loop TS
fuzzy system can be defined from (2) and (5) as
[

X:ZZhihj(A,'—FBinPh_l)x. (6)

i=1 j=1

For a practical system, system state and control input are usually constrained due to physical limitations, thus one
can give the following descriptions:

xeQ={xeR"|c]x|<1.¢c,eR", 0eN;}, (7
lull2 < . ®)

where €2 is a bounded system state set, ¢, is a parameter vector, n denotes the number of possible constraints cases on
system state, and pu > O represents the upper bound on control input.

Problem 1. This paper investigates a model reconstruction approach to design a fuzzy controller (5) for the TS fuzzy
system (2) such that the closed-loop system (6) is asymptotically stable while further reducing the design conser-
vatism.

Assumption 1. Vr € N7, it is assumed that the premise variable z, is a linear function of the system state x as
7, = Z(x), where .Z,(x) = a,x + by, a, € RV and b, € R are known constant coefficients.
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Remark 1. It is reasonable to assume the premise variable is a function of the system state, which can be found
in many practical systems, as an autonomously parallel parking control system in [41] or a cart inverted pendulum
system in [42].

Using fuzzy Lyapunov function based methods [33,39], the following Lemma provides a technical basis for our
theoretical developments.

Lemma 1.Vi, j e N;t, r € N]‘f, 0oeN ,‘," , system (2) with fuzzy controller (5) will be asymptotically stable, if there

exist positive definite matrices P; € R"*", a symmetric matrix Q € R"*" and matrices K; € R™*", such that

Pi+0>0, ©)
p 1
\I/ij—{-zchrj <0, (10)
r=1j=1
—P; Pjc,
[ . —1}<0’ (1)
—Pj KT
J
AR )

where W;; = P;Al + KJ.TB,.T + AiPj + BiKj, @, = |z:| [xrj1(Pj + Q), |Zr| > |zr|, 1Xrjl = |%rj| are predefined
scalars, and the initial system state xo should be subject to:

-1 xF
[* —OPj]<0' (13)

Proof. Let us consider the following fuzzy Lyapunov function candidate:
V(x):xTthlx. (14)

The time derivative of V (x) along the solution of system (6) is defined as

i T 1 TdPh_1 T 1
V) =i" Py x4 xt — —x hxt B

! l D _ 15 p—
=D 2. hihix AR+ KT B Py —xT P By Py et
xT(P7A; + PTIBiK P X
l l 3
=2 iy Dy i€ (PiAT + K] B + AiPj + BiKj)§ £ Pk, (15)

where & = Ph_lx. We denote f;; =h;hj and x,; = %. It follows from conditions (9) and (10) that

I I p 1 l I p 1
DD Hi% =Y Y aa (P Q<Y fiyWii+ Y Y @y <0, (16)

i=1j=1 r=1 j=1 i=1j=1 r=1 j=1

Fiom (16), we show that V(x) < 0, for Vx # 0. Based on z, = a,x and (6)-(8), we can derive a specified upper bound
|zr| of z,. Using the invariant set technique, the constraints on state and control input will be derived into the form of
LMIs in the following parts. For the system state constraints, define an initial invariant ellipsoid as

e={xoe R"Ix] P, 'xo < 1}. (17)

where xq is the initial states. With conditions (9)-(10), V(x) < xOT Ph_lxo can be obtained. Considering the state

constraint (7) which equals to x”coclx < 1 and the limits (17), it is required that c,c] < P; ', Then with Schur’s

complement, (11) can be deduced. For the control input limits, one has:

4
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2 _ —-1_42
maXIIullz—ryggllKhPh x5
=xT P KT K, P x
_1 _1 _1 _1
=x"P, 2(P, K[ KyP, >)P, x. (18)
It can be obtained from (17) and (18) that

_ 1 _1
max [[u]l3 < Amax(P, 2K} Kn P, ?). (19)

The control input constraints (8) will be satisfied if the following formula holds:
1 1
hmax (P, > Ky K Py *) < . (20)

1
Pre- and post-multiplying by diag{!, thz} with (12), and using Schure’s complement, (20) can be guaranteed. Thus,
control input is effectively constrained.
One should also notice that the initial state should be restricted by xOT Ph_lxo < 1, which can be guaranteed by (13).
This completes the proof. O

dap;!

Remark 2. The detailed derivation of d’; is listed as follows:

PP =1 (21)

The derivatives for both sides of the above equation are:

—1

- dp,

PyPy -+ Py =0, (22)
dt

P ap, pp! (23)

h dt = hty -
For the item P, is positive definite in fuzzy Lyapunov function, we have:

ap! .

d’; =-P'B,P . (24)

Remark 3. Due to limitations on the control input and state, one must assure the system initial state xo € 2. To obtain
the largest initial feasible state region, the following optimization problem could be utilized:

min A

. (25)
s.t.(11), (13)and P; <Al hold, j € N}t

3. Main results

This section presents a model reconstruction control method to further reduce the design conservatism in Lemma 1,
and the case that disturbance exists is also considered.

3.1. Model reconstruction method for fuzzy control

At first, to provide more control design flexibility, the operation region ® of the premise variables is divided into
q adjacent subregions ® = UZ: { O, where © denotes the k-th subregion and the integer g > 0 is the number of
subregions. Without loss of generality, we assume that there is a mapping between premise variable and system state
as z = y(x). For the region division, note that one of the subregions must contain the premise variable equilibrium
20 = ¥ (x)|x=0 to avoid an infinite switching action when the system state approaches to its equilibrium. Based on this
division principle, we consider the following local fuzzy controller for the k-th subregion:

© O N o o A O N =
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1
u=Yy hi(©OK;(©)P, 'x, (26)

i=1

where the matrices of the kth subregion K;(®) € R™"*", fori € N1+ , must be determined. From the expressions of
system (2) and controller (26), the closed-loop TS fuzzy system is defined as

) 1
=" hi(O0h;(©1)(A; + BiK (O P, Hx. @7
i=1j=1

Remark 4. Subregion-based methods offer additional design flexibility and can improve robustness by involving
more controller gain matrices, as shown in Eq. (26). However, determining the optimal number of subregions requires
numerous tests, resulting in increased computational complexity.

To clearly describe the proposed control method, a sequence representation is used to convert multi-dimensional
subscripts into single-dimensional subscripts. To this end, we denote

w—1 w

FELY )=y | Gi=D [] 1|+ 0. (28)
i=1 j=i+1

V3 € NZ_r and Vi € N;f,. For example, if @ =2 and [} =1 = 2, then we have # (31 =1,3=1)=1, Z(3; =

1,3,=2)=2, 71 =2,3=1)=3,and F (3|, =2,3, =2) =4.

Remark 5. Using the notation (28), we can rewrite

I ) o [TZ, 4

Z Z Z fo1.8, = Z fo=7 1,5, .50) (29)
=1

S1=132=1 Jp=I1

where f3|...3m = h31 .../’l:gw -

Let us define the number flkz of the minimal values of f¢(O) = h; (Or)h;j(O), with i, j € N1+ and £ = %(, j),
as

flkz = card(zkmi"), ZKmin — arg min[ f]. (30)
z2€0
Similarly, we define 7o¢ as the number of the maximal values of f;

ffe = card(zk""“), gRmax — arg max|[ f]. [€2))
7€0Q

The following theorem provides a model reconstruction method for fuzzy control synthesis to reduce the conser-
vatism with respect to the result in Lemma 1.

Theorem 1. Vi, j € N," 0 € N, r e NY, k € Nf where q is the number of subregions divided on z, j = F (1, j),

2
L=F(,])), ‘L'{(Z € N;} , rfe € N; , sk e N;;, sk = le=1 (f{‘z + f&). System (2) is asymptotically stable with local
1¢ 20

state feedback law (20), if there exist matrices K j(®f) € R"*", P; = PIT >0eR"™ and Q(®) = QT (©1) € R**"
such that

Pj + Q(04) >0, (32)
pl

Ew(O0) + ) ®,(6y) <0, (33)
J=1

[_*Pf P_J‘I] <0, (34)

© O N o o A O N =
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_p. T
[ Fi Kj (®")}<o, 35)

el WO + Ty gy, W), LE (E1fy =)
K V(OO + Xl e 0 W (@), Le (el =ich)
We(Or) = P;A] + K[ (©r)B] + AiPj + BiK ;(©y)

@, (Or) = |2] 1xkI(P; + Q(©)

Bk (Op) =

with |zK| > |z"r‘| and | Xf| > | Xf| are predefined scalars, K{(Z and "ge are the minimal and maximal values of f, for

kmax
T

z € Oy, and their respective numbers flkz and fé‘z, p’r‘we, = fu (zlé‘“‘“ ), p/l;u@’ = fu(z ), zfl&i“ and zlzzﬂﬂ denote the
e

1ot/ 200/
t]ke-th and tfe-th vector of zmin and zKmax | respectively. And the initial system state xo should be subject to:
-1 x! ]
0 |<o. (36)
[ *  —Pj

Proof. Based on Lemma 1, V (x) defined in (15) and (29), a sufficient condition to make V (x) < 0, Vx # 0 can be
given as:

12 pl
> f@)W(@0) + Y @, (Oy) <0. (37)

=1 j=1

In each subregion, the model reconstruction process is carried out to involve information from f;(®y) into condi-
tion in (37). To this end, we define a vector f(Or) = [£1(Ok), ..., fe(O), ..., f2(Op)], where f¢(O) € [KcX,, &ch,]
satisfying 0 < K{(e < Ké‘e < 1. And, given a class of fuzzy sets as Yy = [g{‘, g,f, gl];], where s¢ € N;,

sk — 2152:1 (flkl —i—ffe). Since 222:1 fe(®p) =1,if gé‘ = K{‘e or ng, other elements in Y« can be given as gé‘,# = p]fclsz’
or gé‘,# = 'O//;M” where «f, + ZIZ/ZLW# p’r‘]kee/ =1 and k5, + Zf/zl’e/# p’%ﬂ, = 1. Then, a reconstruction matrix
for S0, fo(©)Wy(©y) in (37) is derived as

Ep (O =T [(W1 (@) ... (W]
KTy Pe(O) + 222':1,15’# me,‘l’w(@k), el fo=rxue)
i3, Ve (O) + ZZ:LZ’;&Z P'Zk{y Wy (Op), L€l fe=ru)

(38)

The corresponding membership functions for E (®y) are defined as ¢« (f (Ok)), thus condition (37) is equivalent to

sk pl
3 b (FONEX(©) + Y ®,(Op) <. (39)
sk=1 J=1

This completes the proof. O

Remark 6. In kth subregion, based on the classical sector nonlinearity approach for fuzzy modeling [9], the s*-th
k
rule for the newly derived fuzzy summation ka: | Pk (f(Ok)) Egk (Of) can be described as “ f(Ok) is Yo« ’. When

fe(®r) = K{(l, the other elements fy/(Qf) = and the weighting function Sy(®y) can be characterized as

k
pzm’,w;ﬁe’

k
k P, —fe(Ok)
V4 Ky, —fe(Ok) Bt Tl
(O === B O =7—3— (40)
0 KBe—Kig 0.7 Pot ok
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Table 1
Computational complexity for different methods.

Methods Number of LMIs Number of decision variables
Theorem 1 in [39] 22 44142 mnl + 3n(n + DI +20 +4)
Theorem 3 in [43] 2Pq +2ql n(n+1)q +mng + %n(n + gl
Lemma | 2+ m+3) mnl + Sn@m+ DI +1)

2
Theorem | ZZII Zlg:[ rf + Qg +n+ i gmnl + %n(n + D +¢q)

For fo(®f) = /cé‘l and fp(®f) = , the weighting function 81 can be defined as

k
prge’,e’;éz

(@) —p'F
plon = oot gor XV

T % LU#0 = F 03

K5, —K ) ok —p

20 e kg k g
VA TA

(41)
Then, the new membership functions can be directly deduced as

ACH.

B (f (©1) = . ,
Yoo X Y 94O

(42)

704

where o (©) = BL(O0) [Ty—y oo B (O%).
Remark 7. For the derivation of the new membership functions in Remark 6, it is required that f; satisfies
. k k
min{of . ' o} = fr < max{of o 0 ) (43)

with €, ¢/ = 1,2, ...,1> and £ # ¢'. If condition (43) does not hold for fy, then the corresponding weighting functions
Bo(Oy) and B1(®y) will be set as zero. Note that it follows directly from (40) and (41) that ,8(‘; Op) + ﬁf(@k) =1land

ke

kl/
Boye(O0) + By (O1) = 1.

Remark 8. The computational complexity comparison among several control methods is summarized in Table 1. We
can see the number of LMI conditions in Theorem | is dependent on fé‘ and g. Compared with traditional control
results, the division number ¢ in Theorem 1 may introduce many extra decision variables when g becomes large. If
q =1, a global control result will be generated by Theorem 1. Therefore, one can choose the number of subregions
based on specific task requirements to balance the control performance and the computational burdens.

3.2. Hy robust control based on model reconstruction

Based on the above control results, a robust synthesis method can be directly derived in the following. To this end,
we consider a disturbed TS fuzzy system of the following form:

l
)&:Zhi(Aix—i—Biu—i—Eiw), (44)
i=1
1
y=>Y hiCix, (45)
i=1

where E; € R™4 and C; € R%*" are parameter matrices, € R is the unknown external disturbance satisfying
w € L»(0,00), and y € R? is the controlled output.

Corollary 1. Vi, j e N;" 0 € N, r e Nif, k € NJf where q is the number of subregions divided on z, j = F (r, J),

2
=20, J), Tﬁ; € N;@ , té‘[ € N;', , sk e N;,;, sk = Zlezl(f{‘e + fé‘e), the fuzzy controller (26) robustly stabilizes
1¢ 20

-

© 0o N o o A~ W N
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system (44) with the % performance index || y||§ < y2||a)||% under zero initial condition, if there exist matrices
K;j(®y) eR™", P; = P].T >0 e R and Q(Or) = 0T (Or) € R™" and a positive scalar y such that

Pi + 0(©;) >0, (46)
(O <0, @7)
[_*Pf Iz?] <0, (48)
[:Pf Kf;?f] <0, (49)
where

2
KA (OR) + Lot oz Pyt Ae (O), L€ (21 fe=Kfy)

Fae@) =1 | 2 p '
Kyp Ae(O) + Zg/zl,z/;ez 1Y réc@g/Al{’(®k), e {l|foe=1xy,}
V(@) + Y 0,00  E PiCT

Ay(B) = * —y2I 0

* * —1
W (Or) = PjA] + K] (©1)B + Ai P + BiK ;(©y)
@, (O) = 12K] IxFI(P; + Q(©))

with |zK| > IZ'lr‘I and Ixfl > |Xf| are predefined scalars, x;‘ = hj.’ (Op); K{{Z and Ké{e are the minimal and maximal

. " -k -k k kmi 1k k, ki
values of fy for z € Oy and their respective numbers T}, and T,,, Prye = fer (z,‘l';':%,), P = fe (z,‘z“;;[,), Z7y," and
sz}f" denote the ‘L’lké-th and té‘e -th vector of z*min and z*max | respectively. And the initial system state xq should be
subject to:

-1 xF
[* _%j:l<0. (50)

Proof. Consider the fuzzy Lyapunov function V (x) defined in (14). The time derivative of V (x) along the solution

of system (44) is defined as

1 I
V) =YY hi(@phj(@ET (P AT + KT (©)B] + Ai Py + B K (©1))§
i=1 j=1

1 1
+o” Y hi(OWEE+ET Y hi(O)Eiw—&T Py, (51)

i=1 i=1
with § = Ph_lx. Based on Lemma | and the notation (29), it follows that
12 l
V) <ET Y f@0) Wi (O0E + o' Y hi(ONE]E

=1 i=1

1 rp
+&'Y hi(OVEiw+E" Y @, (0. (52)

i=1 j=1

Under zero-initial condition x(0) = 0, we define

T
= / o'y —y*o’ o+ V(x)dt — Vr, (53)
0

© O N o o A O N =

10
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MF product
fe

Calculate upper and

lower bound in ©, ||

fe€lrie, k3]

N R NS SN

Define fuzy set

Reconstructed

system matrices| |

) A, B,
Define fuzy rule . -
Division on Calculate o i kZ jl x HEhdg ME
: 3 P —_— if ¢/ =kKirorKg, information
| |premise variable] ! pre=1f l'(z,“ B ) P
: & : k kmax S
e Pt = f[l(z,_” ‘ ) or ¢fue=p'%e
Fig. 1. Diagram of model reconstruction method.
with Vp = xT(T)Ph_lx(T) > 0. It follows from (53) that
i
z T Ur(Op) + Y0, @,(0p)
g ey Ex(®p) |[&
F = w +PpCp (Or)Cr(O) Py w dt —Vr, (54)
0 * —y21

2 .
where W7 (0r) = Y i_; fe(O)Wi;(O1), Ch(O1) = Yt_ hi(©x)Ci, and E(©) = Yi_ hi(©) E;. Using Schur
complement lemma, condition ¢ < 0 is guaranteed if

[
Wi(O) + 2P @,(0r) En(®r) PyCY ()
* —y2I 0
* * —1

<0. (55)

The rest of the proof follows the same arguments as those of Theorem 1. O

Remark 9. To better describe the model reconstruction method with Theorem 1 and Corollary 1, a flowchart illus-
trating the reconstruction process is shown in Fig. 1. It should be noted that the numerical calculated parameters Kfe,
Ké‘e pfk o and ,ofk v will introduce MF information into system matrices A; and B;, thus the stabilization and robust
controzlzconditiorizs can be relaxed. Moreover, as the number of premise variable subregions increases, more MF in-
formation will be introduced and more control gain matrices could be utilized, which could further provide flexibility
and reduce the conservatism in LMI conditions.

4. Numerical examples

This section presents two numerical examples to demonstrate the effectiveness of the proposed control method. All
LMI constraints are solved using LMI Toolbox in Matlab R2020b.

Example 1. To study the design conservatism between different control methods, we consider the benchmark TS
fuzzy system in [39], whose local state-space matrices are given as

159 —729 0 10.02 —-40.64 0 1
A1 =10.01 0 0], Ap=1| 0.35 021 Of, Bi=|0{,
| 0 -0.17 0 0 —-0.08 0 0
[ —a —4.33 0 8 —b+6
Az=| 0 0.05 0 , Bb=]|0]|, B3= -1 ,
| 0 0 -0.21 0 0

where a and b are parameters, and —10 < x3 < 10. The corresponding membership functions are defined as

10
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—th ——h

09 h 02 r
[ by

08 1 0.15

0.7 1 0.1

06 1 0.05

o

h;

-10 0 -1 0

05t 1 &
04+ -0.05
03 011 1
0.2F \ -0.15 1
0.1 J \ -0.2
0 ! -0.25
5 0 5 1 0 5 0 5 1
T3 T3

Fig. 2. Membership functions (left) and their partial derivatives (right).

hi(x3) =1—1/(1+e 53HD),
ha(x3) =1 —hi(x3) — h3(x3),
h3(x3) =1/(14 e~ &=,
The membership functions and their partial derivative with respect to z; = x3 are depicted in Fig. 2. When g =1,

one can get [x1| = [x3] = 0.2500, and [x2| = 0.2497. It is assumed that |A;| < 0.1 for i € NJ. Then considering
|hi] <Txil %3], we see the assumption |/;| < 0.1 can be satisfied by

1211 = [x3]
=] —0.17x2h1(x3) — 0.08x2h2(x3) — 0.21x3h3(x3)|
<04. (56)
To calculate the range of x», the following optimization question should be solved:
min f
s.t. (56)and — 10 <x3 <10.

Thus the upper and lower bounds of x, can be obtained by solving such optimization problems by setting f = x and
f = —xo via the solver fmincon in Matlab R2022b as x; € [—10, 5.0798]. Based on x3 € [—10, 10], the following 4
cases could make constraints (7) hold:

ci=[0 =01 0],e2=[0 0.1 0],e3=[0 0 —0.1],ca=[0 0 0.1].

Setting the parameters ranges as a € [2, 12] and b € [6, 20], the feasible regions obtained from the conditions in
Lemma | and Theorem 1 (¢ = 1) are shown in Fig. 3. We see that the proposed model reconstruction control method
can effectively enlarge the feasibility region compared with the classical control result in Lemma 1.

When g > 2, consider the following subdomain division method: Ay = {x3: 20k —gq/2 — 1)/q < x3 <20(k —
q/2)/q} where g is an odd number. For g =2, Aj ={x3: —10<x3 <8} and A, ={x3: 6§ <x3<10}.If g is
an even number and g >4, Ay ={x3| — 104+26 + 10)(k — 1)/qg <x3 < —10+2(06 + 10)k/q, k=1,2,--- ,q/2}
and Ay = {x316 +2(10 = 8)(k — 1)/qg <x3 <6 +2(10 - 8)(k—1)/q,k=1,2,---,q/2} where 0 < § < 10.

The predefined variables are set as Iz'll‘l = 0.4 where k =1,2,---,q. With ¢ = 2, the values of | X}‘l are given in
Table 2. One can find that no feasible solutions for Theorem 1 in [40] and Theorem 1 in [39] are derived for ¢ = 2.
Since larger subregions division number can help reduce the conservatism and in order to give a more illustrative
comparison, g = 2 is set for Theorem 1 in this paper, g = 10 for Theorem 1 in [40] and Theorem 1 in [39]. Then, the
feasibility regions of the above three methods are shown in Fig. 4. From Figs. 3 and 4, we can see that the feasibility
regions are enlarged when the number of the subregions increases.

11
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47
48
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51
52

O

20 T

© © < © < ©
(e] o (e] (e] o (e] (0]
18 [ (e] o o o (e] (e] o
o o (o] o (e] (e] o
16 [ (o] o (o] o (¢] (e] ¢
(o] o [e] o (¢] o q
14 - o [¢] o o o o (9]
= (e] o o (e] o o o o o o
120 (¢] o o (e] o (e] o o o o
(0] o o o o o o o (¢] (e] (0]
100 o [e] o o O o o o (e] ()
(0] o [e] o o (¢] o o (¢] o o
80 o o o o o (¢] o o ® @
(0] o o (e] o o o o ® ® ®
60 © O © O © & & & &
2 4 6 8 10 12

a

Fig. 3. Feasibility region obtained from Lemma | (x) and Theorem 1 (0).

Table 2 -
Different values of |x¥| with ¢ = 2.
k= k=2
X1 =0.2500 1x31=0.0177
Ix11=0.2497 1x31=0.2497
1x41=0.0177 1x31=0.2500
20 T © © © © © O
(o) o] (] o o] (o] [0)
18 - (o) 0] (o] o o] o ()
(o] o] (o] o ] 0] 0]
16 - (o) (o] (o] (0] 0] 0] ()
(o] (o) 0] 0] 0] 0] 0] o
14 + (o] 0] 0] 0] (0] 0] [0} ()
= [0} o o) [0} o] 0] [0} (0] 0] (0] ®
120 0] 0] 0] (0] 0] 0] (0] ] ® ®
[0} [0} (o] [0} [0} [0} [0} ® ® ® ®
100 0] (o] [0} 0] (0] ® ® ® ® ®
[0} 0] (0] 0] ® ® ® ® ® ® ®
8® 0] (o) ® ® ® ® ® ® ® ®
O 0] ® ® ® ® ® ® ® ® ®
6 @ L2 & @ & @ 12 @ @
2 4 6 8 10 12

IS}

Fig. 4. Feasibility regions obtained from Theorem 1 (0) with ¢ = 2, Theorem 1 in [39] (x), and Theorem 1 in [40] (.) with ¢ = 10.

For illustrations, we consider the case with a =2, b = 13. Considering ¢ = 30 and solving the LMI conditions in
Theorem 1, the following control results can be obtained:

Ki(©)) =[-3.8972 x 10* 1.1237 x 10> —137.7643],
K2(©1) =[9.7642 x 10°  —307.9120 130.1952],
K3(©1) =[—5.6504 x 10° 4.3057 x 10* —4.8076 x 10°],
Ki(©2) =[54374 x 105 —3.2691 x 10° 427.7246],

12
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K»(©7) =[—1.1334 x 10* 6.6084 x 10> 28.6537],
K3(®;) =[431.2564 532637 —0.8426],

—664.8963
29.0006
9.3591

—36.3666
89.1589

P =

P, =

P =

[ 45.5104
—36.3666

[ 187.5800
—5.4081
| 11.8938

[1.8079 x 10*

—664.8963
—66.5934

10.3530

200

—5.4081
1.3677
—4.9685 79.4226

—66.5934
9.3591
85.4380

10.3530
9.9405
79.4944

11.8938
—4.9685

200

Fig. 5. State trajectories of the closed-loop system obtained from Theorem 1.

Fig. 5 shows the system state trajectories, Fig. 6 depicts the control input and Lyapunov function with initial
conditions xo =[5 0 0]7 satisfying x( € £. We can see that the designed stabilization method can give satisfied control
effects. The constraints x3 € [—10, 10], x, € [—10, 5.0798], and V < 1 are all satisfied, which validate Theorem 1.

© O N o o A O N =
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Example 2. We consider the cart inverted pendulum system presented in [42], whose dynamics can be described by a
two-rule TS fuzzy model (44) with

0 1 0 0 0
MAm)mgl —_ fM+m) Joml _ml
- aj ap ai — ap
AINg 0 0 o 1 - Bi=1 o |
_ m%gl? fiml 0 Jo(J+mi?) J+mi?
| aj aj ai al
B 0 1 0 0 0
33 (M+m)mgl _ fiM+m) 0 foml cos( /3) __milcos(/3)
_ 2 ap a ap _ ap
A2 = 0 0 0 i > Ba= 0 ’
33 m2gl? fiml cos(r/3) 0 fo(J+mi?) J+mi?
L 21 a ap ) a2
1 0 0 O T
Cl—Cz—[O 0 1 O], El—Ez—[l 0 0.5 0] ,

13
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10} 4 0.03f i
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Fig. 6. Control input and Lyapunov function of the closed-loop system obtained from Theorem 1.

hy
0.9F he +

0.6 1

< 05F 1

0.3 1
0.2F 1

0.1r 1

Fig. 7. Membership functions (left) and their partial derivatives (right).

where a; = (M +m)(J +ml?) —m?21? and ap = (M +m)(J +mi?) — m?12 cos(n/3)2. The parameters of the systems
are given by ¢ = 9.8 m/s?, M = 1.3282 kg, m = 0.22 kg, fo =22.915 N/m/s, f; = 0.007056 N/rad/s, [ = 0.304 m
and J = 0.004963 kg - m?. The corresponding membership functions are defined as

hi(x1) = (1 — 1/(1 4 e T0=7/0)y)y (1 /(1 4 =701 47/0)y)
ha(x1) =1—hi(x1).

The graph of membership functions and their partial derivatives are shown in Fig. 7. And the operation region is
partitioned as

Ap={x1lrtk—q/2—-1)/qg <x1 <m(k—q/2)/q},

14
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Table 3
Comparison of computational complexity and y;,;, for different methods.
Method Number Number of Ymin
of LMIs decision variables
Theorem 6 in [45] 7 54 1.7122
Theorem 3 in [46] 19 46 1.7098
Theorem 2 in [44] 28 54 1.7089
16(g =1 284(g =1 7.4974(g =1
Theorem 1 in [40] (@=1 =1 =1
24(qg =3) 284(g =3) 5.9684(q =3)
20(g =1) 38(g=1) 1.7009(¢ = 1)
Corollary |
42(qg =3) T4(q =3) 1.6985(q = 3)
where k =1,2,---,q. To study the design conservatism between different control methods, the minimal value of

the %, performance index y, denoted by y,,in, is determined from LMI-based conditions in Corollary 1 (us-
ing Matlab function mincx). The comparative result of y,,;, is summarized in Table 3. To solve the stabilization
conditions in [44, Theorem 2], the numbers of checking points are set as d = 12 and d =2 and its pre-set pa-
rameter i = 5 x 1077, The LMI-based conditions in [45, Theorem 6] and Corollary | are solved with the same
predefined scalars ¢j~o = (hlwg)max =[1.7466 2.7466] and u = 1 x 10~°. Note that for a fair comparison, the con-
trol results in [45, Theorem 6] and [40, Theorem 1] have been adapted for an J#%, state-feedback control design.
We can see in Table | that the proposed design conditions in Corollary 1 provide the best disturbance attenua-

tion performance ypmin. The corresponding design parameters are selected as ¢ = 3 and |Z"1| =4,i=1,..,5. Since

71 = X1 = x2h1 (x1) +x2h2(x1) + w, one can get x, € [—|2| — |w], |2}] + |@|]. Assuming |w| < 0.5, the coefficient ¢,
can be calculated as follows:

ca=[2/7r 0 0 0]",ea=[-2/x 0 0 0],

e3=[0 02222 0 0]",c4=[0 -02222 0 0] .
To facilitate the readers, complexity comparison is illustrated in Table 3. Based on the Table, one could choose a
suitable robust synthesis method for specific problem by balancing the complexity and conservatism. Also, the com-

putational burden is reduced when compared with Theorem 1 in [40] for the same sub-regions division number ¢ = 15.
Setting xg = [% —1 0 0] € &, u =40 and solving Corollary 1, we can obtain ypip = 1.6985 and

K1(©1)=[30.3842 —82.2830 1.1248 —22.4327],
K2(©1) =[22.5284 —16.1523 —0.3455 —40.7876],
K1(©2) =[24.9202 357302 —1.1369 —26.4470],
K2(92) =[21.2624 —11.5503 —0.1934 —40.8517],
K1(©3)=[30.3842 —82.2830 1.1248 —22.4327],
K2(93) =[22.5284 —16.1523 —0.3455 —40.7876],
[ 2.1051 —4.7754 0.1721 —0.71237]
p_ | 47754 274518 01578  —0.6256
= 01721 0.1578  0.1147 —0.0613 |’
| —0.7123  —0.6256 —0.0613  0.7579 |
[ 1.9772 —3.6448 0.1751 —0.8339]
p,_ | —36448 202327 0.1465 —0.9927
271 01751 0.1465  0.1147  —0.0667
| —0.8339 —0.9927 —0.0667 1.3828 |

To provide more illustrative results, we consider 3 kinds of disturbance as follows:

15

© O N o o A O N =

10



© 00 N o O » W N =

g OO A A B A A A N OBR B BN B OQOW KM WM W ®WWNNNNDNNNNRNND 2 o= oo s s
N 2 O © »d® U O &R ® M OO © ® N6 R ORI S 0 O N0 R ®N 2 O © 0 N O b~ ®NO a0

1 1
ll w=0 w=0
] - ey =B —~. 0 ™ —— 4 =
< ! ‘*(H)"UO'} = W -fl{—o"u 0.5}
X3 0.5 \ W= -9,U,0.0 % ¥ w= .5,0,0.5
g S -1
= L S
S ’\:- Al
s Ofe= Z < i
) 3
8 g
]
-0.5 -4
0 5 10 15 0 5 10 15
t(s) t(s)
0.5
0.2
—w=0 w=0
g N i) =@ ) .
~ 01 w = {-0.5,0,0.5} 3 0 l¥pr—s w={-05.0,05} |
E/ e W
= of——=4 = I
i L,/’ -~ 1]
8] ) <050
-0.1* 8 i
-0.2 4
0 5 10 15 0 5 10 15
t(s) t(s)

Fig. 8. State trajectories of the closed-loop system obtained from Corollary 1.

Case 1:
w=0
Case 2:
w=e".
Case 3:
0.5, 3<tr<5,
w=13-05 6<r<8,
0, else.

The state trajectories under the above 3 types of disturbances are shown in Figs. 8, demonstrating that all constraints
are satisfied. It should be noted that satisfied performance is still guaranteed when dealing with decaying disturbance
even if its upper bound of amplitude exceeds 0.5. The control inputs and external disturbances are depicted in Figs. 9.
The Lyapunov function and %%, performance index under zero-initial condition are shown in Fig. 10, which indicates
that its steady value is less than 1.6985.

5. Conclusions

A fuzzy Lyapunov based control method has been investigated for TS fuzzy systems. For the control synthesis,
a model reconstruction method by dividing subregions on premise variable was proposed to transform the multiple
multiplication terms in fuzzy Lyapunov functions into new fuzzy forms. This allows exploiting better the information
of the membership functions for the control design to further reduce the conservatism. And the proposed method
was expanded to 7%, robust control case. Numerical are given to demonstrate the effectiveness of the proposed
control approach in reducing the conservatism with respect to various existing control results. For future research, the
approach for effectively restrict z composed by a nonlinear function with x will be investigated.
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Fig. 10. Lyapunov function and 7% performance index of the closed-loop system obtained from Corollary 1.
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