
HAL Id: hal-04278804
https://uphf.hal.science/hal-04278804v1

Submitted on 25 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fuzzy Unknown Input Observer for Estimating Sensor
and Actuator Cyber-Attacks in Intelligent Connected

Vehicles
Juntao Pan, Tran Anh-Tu Nguyen, Sujun Wang, Huifan Deng, Hui Zhang

To cite this version:
Juntao Pan, Tran Anh-Tu Nguyen, Sujun Wang, Huifan Deng, Hui Zhang. Fuzzy Unknown Input
Observer for Estimating Sensor and Actuator Cyber-Attacks in Intelligent Connected Vehicles. Au-
tomotive Innovation, 2023, 6 (2), pp.164-175. �10.1007/s42154-023-00228-1�. �hal-04278804�

https://uphf.hal.science/hal-04278804v1
https://hal.archives-ouvertes.fr


See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/371302151

Fuzzy Unknown Input Observer for Estimating Sensor and Actuator Cyber-

Attacks in Intelligent Connected Vehicles

Article  in  Automotive Innovation · June 2023

DOI: 10.1007/s42154-023-00228-1

CITATIONS

0
READS

115

5 authors, including:

Anh-Tu Nguyen

Université Polytechnique Hauts-de-France

140 PUBLICATIONS   2,084 CITATIONS   

SEE PROFILE

Huifan Deng

Nanjing University of Aeronautics & Astronautics

21 PUBLICATIONS   134 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Anh-Tu Nguyen on 04 July 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/371302151_Fuzzy_Unknown_Input_Observer_for_Estimating_Sensor_and_Actuator_Cyber-Attacks_in_Intelligent_Connected_Vehicles?enrichId=rgreq-11c858bb1eb41f97ded8359803f292a8-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMwMjE1MTtBUzoxMTQzMTI4MTE3MjExMzk3NEAxNjg4NDU2MDgzMzU4&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/371302151_Fuzzy_Unknown_Input_Observer_for_Estimating_Sensor_and_Actuator_Cyber-Attacks_in_Intelligent_Connected_Vehicles?enrichId=rgreq-11c858bb1eb41f97ded8359803f292a8-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMwMjE1MTtBUzoxMTQzMTI4MTE3MjExMzk3NEAxNjg4NDU2MDgzMzU4&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-11c858bb1eb41f97ded8359803f292a8-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMwMjE1MTtBUzoxMTQzMTI4MTE3MjExMzk3NEAxNjg4NDU2MDgzMzU4&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anh-Tu-Nguyen?enrichId=rgreq-11c858bb1eb41f97ded8359803f292a8-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMwMjE1MTtBUzoxMTQzMTI4MTE3MjExMzk3NEAxNjg4NDU2MDgzMzU4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anh-Tu-Nguyen?enrichId=rgreq-11c858bb1eb41f97ded8359803f292a8-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMwMjE1MTtBUzoxMTQzMTI4MTE3MjExMzk3NEAxNjg4NDU2MDgzMzU4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_Polytechnique_Hauts-de-France?enrichId=rgreq-11c858bb1eb41f97ded8359803f292a8-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMwMjE1MTtBUzoxMTQzMTI4MTE3MjExMzk3NEAxNjg4NDU2MDgzMzU4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anh-Tu-Nguyen?enrichId=rgreq-11c858bb1eb41f97ded8359803f292a8-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMwMjE1MTtBUzoxMTQzMTI4MTE3MjExMzk3NEAxNjg4NDU2MDgzMzU4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Huifan-Deng?enrichId=rgreq-11c858bb1eb41f97ded8359803f292a8-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMwMjE1MTtBUzoxMTQzMTI4MTE3MjExMzk3NEAxNjg4NDU2MDgzMzU4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Huifan-Deng?enrichId=rgreq-11c858bb1eb41f97ded8359803f292a8-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMwMjE1MTtBUzoxMTQzMTI4MTE3MjExMzk3NEAxNjg4NDU2MDgzMzU4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanjing-University-of-Aeronautics-Astronautics?enrichId=rgreq-11c858bb1eb41f97ded8359803f292a8-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMwMjE1MTtBUzoxMTQzMTI4MTE3MjExMzk3NEAxNjg4NDU2MDgzMzU4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Huifan-Deng?enrichId=rgreq-11c858bb1eb41f97ded8359803f292a8-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMwMjE1MTtBUzoxMTQzMTI4MTE3MjExMzk3NEAxNjg4NDU2MDgzMzU4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anh-Tu-Nguyen?enrichId=rgreq-11c858bb1eb41f97ded8359803f292a8-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMwMjE1MTtBUzoxMTQzMTI4MTE3MjExMzk3NEAxNjg4NDU2MDgzMzU4&el=1_x_10&_esc=publicationCoverPdf


ACCEPTED TO SPRINGER AUTOMOTIVE INNOVATION 1

Fuzzy Unknown Input Observer for Estimating
Sensor and Actuator Cyber-Attacks in Intelligent

Connected Vehicles
Juntao Pan, Anh-Tu Nguyen?, Sujun Wang, Huifan Deng, Hui Zhang

Abstract—The detection and mitigation of cyber-attacks
in connected vehicle systems (CVSs) are critical for en-
suring the security of intelligent connected vehicles. This
paper presents a solution to estimate sensor and actuator
cyber-attacks in CVSs. A novel method is proposed that
utilizes an augmented system representation technique and
a nonlinear unknown input observer (UIO) to achieve
asymptotic estimation of both CVS dynamics and cyber-
attacks. The nonlinear CVS dynamics are represented
in a Takagi-Sugeno (TS) fuzzy form with nonlinear
consequents, which allows for the effective use of the
differential mean value theorem to handle unmeasured
premise variables. Furthermore, via Lyapunov stability
theory we propose sufficient conditions, expressed in terms
of linear matrix inequalities, to design TS fuzzy UIO.
Several test scenarios are performed with high-fidelity
Simulink-CarSim co-simulations to show the effectiveness
of the proposed cyber-attack estimation method.

Index Terms—Connected vehicle systems, cyber-attacks,
unknown input observers, vehicle dynamics estimation,
Takagi-Sugeno fuzzy models.
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ACRONYMS
CACC Cooperative Adaptive Cruise Control
CCC Connected Cruise Control
CVS Connected Vehicle Systems
DoS Denial-of-Service
LMI Linear Matrix Inequality
MAE Mean Absolute Errors
PDE Partial Differential Equation
PIV Proportional-Integral-Velocity
RMSD Root Mean Square Deviations
TS Takagi-Sugeno
UI Unknown Input
UIO Unknown Input Observer
V2V Vehicle-to-Vehicle
V2I Vehicle-to-Infrastructure

I. INTRODUCTION

Over the past decades, with an increasing transporta-
tion demand of modern society, the number of vehicles
on the road has experienced a considerable growth,
which has put great pressure on the traffic system.
Therefore, alleviating traffic congestion and improving
driving safety and fuel economy have recently received a
particular attention within the field of traffic systems [1].
Connected vehicle systems (CVS) allow connected vehi-
cles to obtain traffic information using wireless vehicle-
to-vehicle (V2V) and/or vehicle-to-infrastructure (V2I)
communication. CVS technologies have been one of the
most prospective solutions to alleviate traffic congestion
and improve traffic safety [1]–[3].

CVSs are designed to allow vehicles to maintain
a distance-dependent velocity using V2V and/or V2I
information received from leading vehicles. With the
benefit of those wireless communication technologies,
connected autonomous vehicles can increase traffic effi-
ciency by enabling closer vehicle following. Moreover,
CVS technologies can improve the efficiency of the fuel
consumption using knowledge of future vehicle trajecto-
ries, and enhance driving safety by blocking shock wave
propagation [4]. Various modeling and control schemes
have been investigated for CVSs [2], [5], e.g., connected
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cruise control (CCC) [6], [7] and cooperative adaptive
cruise control (CACC) [8]–[10]. However, despite a
great advance in CVS control and estimation techniques,
CVSs are still vulnerable to undesired cyber-attacks
from the connected networks. Such network failures
may significantly deteriorate the performance of CVSs.
Hence, handling effectively any potential cyber-attacks
is essential for CVS technologies [1].

CVS cyber-attack related issues have been extensively
studied in recent decades, see for instance [9], [11]–
[13]. The risks of CVS cyber-attacks include packet
dropping [14], denial of service [11], [15], communica-
tion induced-delay [16], etc. The authors in [17] present
an attacker identification scheme for CVSs, which can
effectively recognize the malicious actors. Using a partial
differential equation (PDE) approach, false data injection
attacks have been studied for a platoon of connected ve-
hicles equipped with cooperative adaptive cruise control
in [9]. The analysis of string stability is also important
for CVS system under cyber-attacks. Communication-
based control methods have been proposed for CVSs that
can guarantee the string stability despite the time delays
in the control loop [18], [19]. The authors in [20] present
a state-estimation-based control method for connected
cruise control with delays. An event-triggered control
problem has been investigated in [21] for connected
vehicles under multiple and aperiodic cyber-attacks, in-
cluding denial-of-service (DoS) attacks and deception
attacks. Although the modeling, the control design and
the stability analysis of CVSs are widely studied in the
existing literature, the problem of real-time detection
of cyber-attacks of CVSs has not been well addressed
despite its critical importance.

Two observer design methods have been proposed
to estimate vehicle speed sensor faults in [22]. The
authors in [23] proposed a sliding mode observer to
detect and estimate DoS attacks of CVSs. Based on a
modified unbiased finite impulse response estimator, a
method has been proposed in [24] for the detection and
estimation of deception attacks for a local vehicle in
vehicle platooning. The authors in [25] have investigated
the distributed attack detection and recovery in a vehicle
platooning control system, wherein an active adversary
may introduce cyber-attacks to deteriorate both sensor
and control data due to the presence of the wireless
communication. A cyber-attack detection method for
autonomous vehicles, under attacks in the vehicle local-
ization system, based on secure estimation of vehicle
states has been proposed in [26]. Note that most of
the existing results on CVSs have focused on either
cyber-attacks or sensor faults, which do not allow for
a simultaneous estimation/detection of cyber-attacks at

both sensors and actuators levels. An unknown input (UI)
observer-based fault detection method has been recently
presented in [12], which can jointly detect a fault in the
radar system and a cyber-attack. However, for unknown
input observer (UIO) design in [12], nonlinearities in
CVS dynamics must be neglected. Obviously, nonlinear
behaviors involved in CVS dynamics have important
impacts on the detection and estimation performance of
faults and/or cyber-attacks [2], [6].

Motivated by the above-mentioned CVS issues, we
develop a new nonlinear UIO-based method to estimate
cyber-attacks and/or faults potentially affecting both
CVS actuators and sensors. To take into account the
inherent nonlinear nature of CVS dynamics, Takagi-
Sugeno (TS) fuzzy technique is adopted for nonlinear
UIO design. Different from the conventional TS fuzzy
modeling [27], largely used in the current nonlinear
control and estimation literature, the nonlinear CVS
dynamics is represented in a specific TS fuzzy form with
nonlinear fuzzy consequents, called N-TS fuzzy form
[28]. By means of the differential mean value theorem,
this N-TS fuzzy form allows dealing with the problem
of unmeasured premise variables while avoiding the
conservative Lipschitz assumption in TS fuzzy observer
design [29]. The main contributions of this paper can be
summarized as follows.

• The nonlinear CVS dynamics is represented using a
N-TS fuzzy model with nonlinear consequents. This
allows not only to reduce the number of fuzzy rules,
i.e., TS local submodels, but also to effectively deal
with unmeasured nonlinearities via the differential
mean value theorem for TS fuzzy UIO design.

• Using an augmented system technique, the proposed
TS fuzzy UIO can achieve an asymptotic estima-
tion convergence of both the CVS dynamics and
the sensor and actuator cyber-attacks. In particular,
the proposed estimation method does not require
any a priori information on the fault/cyber-attack
signals, which is typically unavailable due to the
random nature of cyber-attacks, as most of existing
estimation results [30], [31].

• Based on Lyapunov stability theory, the TS fuzzy
UIO design condition is represented by a set of lin-
ear matrix inequality (LMI) constraints, which can
be solved with existing numerical solvers. More-
over, the effectiveness of the proposed estimation
method is verified through high-fidelity Simulink-
CarSim co-simulation results, obtained under dif-
ferent types of cyber-attack signals.

The paper is organized as follows. Section II presents
the modeling of the nonlinear CVS dynamics for UIO de-
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sign. Section III first formulates the estimation problem,
then LMI design conditions are derived using Lyapunov
stability theory. Simulink-CarSim simulation results are
provided in Section IV to show the effectiveness of
the proposed UIO-based method for the simultaneous
estimation of CVS dynamics and cyber-attacks. Section
V concludes the paper with related future works.
Notation. For vector a, its jth element is denoted by
aj . For matrix Y , its transpose and Moore–Penrose
pseudo-inverse are denoted by Y > and Y †, respectively.
Y � 0 (Y ≺ 0) means that Y is positive (negative)
definite. The symbol ? represents transpose terms in
a symmetric matrix. For two vectors A,B ∈ Rnx ,
denote co(A,B) = {(1 − χ)B + χA : χ ∈ [0, 1]} as
the convex hull of A and B. N+ denotes the positive
integers set. Iq = {1, . . . , q} ⊂ N+. For b ∈ Il, denote
ςl(b) = [0, . . . , 0, 1bth , 0, . . . , 0]> ∈ Rl as the canonical
basis of Rl. Denote I as the unit matrix. We omit the
arguments of functions when the meaning is clear.

II. CONNECTED VEHICLES MODELING

This section presents a CVS model with one-vehicle
look-head strategy, which is practically feasible for sev-
eral existing connected vehicular platoons, e.g., con-
nected cruise control or adaptive cruise control. As
shown in Fig. 1, the connected vehicles communicate
with each other via wireless V2V technique represented
by red dashed arrows. The symbol σ denotes the commu-
nication delay, s(t) and sL(t) are the position of the front
bumper of vehicles while v(t) = ṡ(t) and vL(t) = ṡL(t)
are the corresponding velocities. We adopt the symbol
`L(t) to represent the length of the vehicle. Then, the
actual inter-vehicle distance h(t) can be obtained as

h(t) = sL(t)− s(t)− `L(t). (1)

Fig. 1: Schematic of a connected vehicle system.

With an assumption of no slip condition on the wheels,
the nonlinear longitudinal dynamics of connected vehicle
is given by [6]

v̇(t) = −βg − ka
m
v2(t) +

η

mR
Ten(t), (2)

where R is the wheel radius, β is the rolling resistance
constant, m is the vehicle mass, ka is the air drag
coefficient, g is the gravitational constant, η is gear ratio.
The engine torque Ten(t) is regulated by a designed
controller which is capable of keeping velocity depend
on the distance. To exploit the available motion informa-
tion from the leading vehicle, the following proportional-
integral-velocity (PIV) controller is used:

Ten(t) = Tcom(t− σ),

Tcom(t) = kpż(t) + kiz(t) + kv
(
vL(t)− v(t)

)
,

(3)

where kp, ki and kv are the proportional, integral and
velocity gains, respectively. The integral variable z(t) in
(3), defined as

ż(t) = λ
(
h(t)

)
− v(t), (4)

is introduced to eliminate the steady-state error caused
by unknown external disturbances, e.g., headwind, and/or
inaccurate vehicle parameters. The function λ(h(t)) is
the velocity-depend range policy that should be strictly
monotonously increasing such that λ(h1) = 0 and
λ(h2) = vm, where h1 is the desired stopping distance,
h2 is the minimal free-flow distance, and vm is the
desired maximum velocity. To this end, we select the
following range policy:

λ(h(t)) =


0, if h(t) ≤ h1

vm
2 (1− cos (πϑ(t))) , if h1 < h(t) < h2

vm, if h(t) ≥ h2

(5)

with

ϑ(t) =
h(t)− h1

h2 − h1
.

The velocity-depend range policy defined in (5) is de-
picted in Fig. 2, which allows to guarantee a safe driving
at a short inter-vehicle distance [6].
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Fig. 2: Range policy of a connected vehicle system.
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Using the first-order lag approximation, it follows
from (3) that

Tcom(t) = Ten(t+ σ) ≈ Ten(t) + σṪen(t). (6)

The torque expression (6) has been widely adopted
in the literature to facilitate the controller design and
implementation [4]. With the approximation (6), the
engine torque dynamics is rewritten as

ẇ(t) =
1

σ
(Kpż(t) +Kiz(t) +Kvεv(t)− w(t)), (7)

with εv(t) = vL(t)− v(t), and

w(t) =
η

mR
Ten(t), Kp =

η

mR
kp,

Ki =
η

mR
ki, Kv =

η

mR
kv.

From (1), (2), (4) and (7), the nonlinear dynamics of
CVS can be established as

ḣ(t) = vL(t)− v(t)

v̇(t) = −βg − ka
m
v2(t) + w(t)

ż(t) = λ(h)− v(t)

ẇ(t) =
1

σ

(
Kpż(t) +Kiz(t) +Kvεv(t)− w(t)

)
(8)

Let u(t) = vL(t) be the CVS control input and
x(t) =

[
h(t) v(t) z(t) w(t)

]> be the CVS state
vector. Then, we derive the state-space CVS model from
(8) as

ẋ(t) = Av(x)x(t) +Bvu(t), (9)

where

Av(x) =


0 −1 0 0

−βg
h −ka

m v 0 1
λ(h)
h −1 0 0

Kpλ(h)
σh −Kp+Kv

σ
Ki
σ − 1

σ

 ,
Bv =

[
1 0 0 Kv

σ

]>
.

In real-word driving scenarios, the positions s(t) and
sL(t) can be obtained by the global positioning system.
Using (1) and such positions information, we can deduce
the actual inter-vehicle distance h(t). Moreover, we as-
sume that Ten(t) is given by a predefined PIV controller
[6] and the longitudinal velocity v(t) is not directly
measured from sensors. Hence, the output equation of
the CVS model (9) is given by

y(t) = Cx(t), (10)

with

C =

[
1 0 0 0
0 0 0 1

]
.

For the CVS shown in Fig. 1, the vehicle receives the
velocity information vL(t) from the preceding vehicle
via wireless V2V communication. Hence, a undesirable
fault signal may be injected due to cyber-attacks. To
take into account possible cyber-attacks concerning the
vehicle velocity that affect to both CVS actuator and
sensor, we include the cyber-attack term f(t) in the CVS
dynamics (9)–(10) as

ẋ(t) = Av(x)x(t) +Bvu(t) + Fvf(t)

y(t) = Cx(t) +Df(t)
(11)

with

Fv = Bv =
[
1 0 0 Kv

σ

]>
, D =

[
0 1

]>
.

Note that the CVS model (11) has three nonlinear
terms in Av(x), i.e., v(t), 1

h(t) and λ(h(t))
h(t) . This induces

technical challenges in designing TS fuzzy observers,
especially when the variable v(t) is unmeasured. Indeed,
we face to the well-known problem of handling unmea-
sured premise variables in TS fuzzy observer design
issue [29]. To overcome this problem, the CVS model
(11) is reformulated in the form

ẋ(t) = Av(γ)x(t) + φv(u(t)) + Fvf(t) +Gvψ
(
x(t)

)
y(t) = Cx(t) +Df(t) (12)

with γ(t) = λ(h(t))
h(t) , ψ

(
x(t)

)
= v2(t), and

Av(γ) =


0 −1 0 0
0 0 0 1
λ(h)
h −1 0 0

Kpλ(h)
σh −Kp+Kv

σ
Ki
σ − 1

σ

 ,

φv(u) =


vL
−βg

0
Kv
σ vL

 , Gv =


0

−ka
m

0
0

 .
Hereafter, to ease the real-time implementation, the
Euler’s transformation is adopted to transform the
continuous-time CVS model (12) into its following
discrete-time counterpart:

xk+1 = A(γk)xk + φ(uk) + Ffk +Gψ(xk),

yk = Cxk +Dfk,
(13)

where

A(γk) = TsAv(γk) + I, F = TsFv,

φ(uk) = Tsφv(uk), G = TsGv.

The sampling time is given by Ts = 0.01 [s]. Define γk
as the measured premise variable. Then, employing the
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sector nonlinearity approach [32], we have the following
two-rule N-TS fuzzy model of system (13):

xk+1 =

2∑
i=1

%i(γk)Aixk + φ(uk) + Ffk +Gψ(xk),

yk = Cxk +Dfk. (14)

The local constant matrices Ai, for i ∈ I2, are obtained
by replacing the measurable premise variable γk = λ(hk)

hk
with its maximal and minimal bounds γ and γ in A(γk).
The details on the local matrices Ai are given by

A1 =


1 −Ts 0 0
0 1 0 Ts
Tsγ −Ts 1 0

TsKpγ −Ts Kp+Kv
σ Ts

Ki
σ −Ts

σ + 1

 ,

A2 =


1 −Ts 0 0
0 1 0 Ts
Tsγ −Ts 1 0

TsKpγ −Ts Kp+Kv
σ Ts

Ki
σ −Ts

σ + 1

 .
The corresponding membership functions (MFs) are de-
fined as

%1(γk) =
γk − γ
γ − γ

, %2(γk) =
γ − γk
γ − γ

.

Note that the membership functions verify the property
%1(γk) ≥ 0, %2(γk) ≥ 0 and %1(γk) + %2(γk) = 1.

This paper aims at providing an effective algorithm
to simultaneously estimate both the state xk and the un-
known input fk of the CVS (8), represented by the two-
rule N-TS fuzzy model (14). This estimation algorithm
is based on a TS fuzzy unknown input observer, whose
structure is depicted in Fig. 3. A numerically tractable
UIO design is discussed in the next section.

Fig. 3: Structure of the proposed TS fuzzy unknown
input observer for CVS estimation.

III. FUZZY UIO DESIGN FOR CYBER-ATTACKS AND

CVS DYNAMICS ESTIMATION

This section presents a method to design TS fuzzy
UIO, which can be used to simultaneously estimate the
states of an CVS and its potential cyber-attacks.

A. Problem Formulation

We consider the TS fuzzy model (14) in its more
general form

xk+1 = A(%)xk + φ(γk, uk) + F (%)fk +G(%)ψ(xk),

yk = Cxk +Dfk, (15)

where yk ∈ Rny is the measured output vector, uk ∈
Bu ⊆ Rnu is the input vector, xk ∈ Bx ⊆ Rnx is
the state vector, fk ∈ Rnf is the unknown cyber-attack
signal, γk ∈ Bγ ⊆ Rnγ is the vector of measured
premise variables. The matrices in (15) are given by[

A(%) F (%) G(%)
]

=

nr∑
i=1

%i(γk)
[
Ai Fi Gi

]
,

where the MFs %i(γk) satisfying
nr∑
i=1

%i(γk) = 1, 0 ≤ %i(γk) ≤ 1. (16)

We denote % =
[
%1(γk), %2(γk), . . . , %nr(γk)

]> ∈ F ,
%+ =

[
%1(γk+1), %2(γk+1), . . . , %nr(γk+1)

]> ∈ F ,
where F is the MFs set satisfying (16). φ : Bγ ×
Bu → Rnx and ψ : Bx → Rnψ are respectively the
measured and unmeasured nonlinear function. We define
the Jacobian matrix of ψ(xk) as

Cψ(x) =


∂ψ1

∂x1
(x) · · · ∂ψ1

∂xnx
(x)

...
. . .

...
∂ψnψ
∂x1

(x) · · · ∂ψnψ
∂xnx

(x)

 ∈ Rnψ×nx . (17)

In addition, we assume that the Jacobian matrix in (17)
satisfies the following boundedness conditions.

Assumption 1. The elements of the matrix Cψ(x) are
assumed to be bounded as follows:

ρ
ij
≤ ∂ψi
∂xj

(x) ≤ ρij , x ∈ Bx, (18)

where

ρ
ij

= min
µ∈Bx

(
∂ψi
∂xj

(µ)

)
, ρij = max

µ∈Bx

(
∂ψi
∂xj

(µ)

)
,

for ∀(i, j) ∈ Inψ × Inx . We note that the state xk is of-
ten physically bounded for engineering systems. Hence,
those lower and upper bounds of ∂ψi

∂xj
(x) in Assumption

1 can be calculated easily. For instance, as shown in
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Fig. 2 we consider in this work the velocity range as
v(t) ∈ [0, 30] [m/s]. With ψ(x) = v2(t), it follows for the
nonlinear observer design that ∂ψi

∂xj
(x) = 2v(t) ∈ [0, 60].

For estimation purposes, we extend the system (15) as

x̄k+1 = Ā(%)x̄k + Ḡ(%)ψ(xk) + Tφφ(γk, uk) + Tddk

yk = C̄x̄k (19)

where dk = fk+1, and

x̄k =

[
xk
fk

]
, Ā(%) =

[
A(%) F (%)

0 0

]
,

Tφ =

[
I
0

]
, C̄ =

[
C D

]
,

Td =

[
0
I

]
, Ḡ(%) =

[
G(%)

0

]
.

Note that fk is unknown cyber-attack signal. Then, we
can regard dk as a new UI for (19). Moreover, we
introduce the following rank restriction on C̄ and Td:

rank

[
I Td
C̄ 0

]
= nx + nf + nf . (20)

Remark that the rank condition (20) is commonly used to
develop unknown input observers in the literature [30],
[33], [34]. Note also that the CVS model (14) verifies
this rank condition for N-TS fuzzy UIO design.

We now focus on designing a TS fuzzy UIO for
system (15) where the asymptotic estimation of the state
and the unknown cyber-attack signal can be guaranteed.
Considering the extended system (19), the estimation
problem of the state xk and the unknown signal fk of
system (15) can be converted to state estimation problem
of the system (19) in the presence of the new UI dk. To
this end, we propose the TS fuzzy UIO structure

εk+1 = T ψ̂k +M(%)−1L(%)(yk − ŷk)
ˆ̄xk = εk +N yk

(21)

where ψ̂k = Ā(%)ˆ̄xk + Tφφ(γk, uk) + Ḡ(%)ψ(x̂k), ˆ̄xk
is the extended state estimation. εk is an intermediate
estimation variable. T ∈ Rnx×nx , M(%) ∈ Rnx×nx ,
L(%) ∈ Rnx×ny , and N ∈ Rnx×ny are the gain matrices
of the fuzzy UIO which need to be designed such that
conditions (22a)–(22b) are verified.

T +N C̄ = I, T Td = 0, (22a)

L(%) =

nr∑
i=1

%i(γk)Li, M(%) =

nr∑
i=1

%i(γk)Mi. (22b)

Define ek = x̄k − ˆ̄xk as the state estimation error. Then,
from (19), (21) and (22), we have

ek+1 =

(
T Ā(%)−M(%)−1L(%)C̄

)
ek + T Ḡ(%)∆ψ,

(23)

where ∆ψ = ψ(xk) − ψ(x̂k). Due to the existence
of the mismatching term ∆ψ in (23), several technical
problems arise while designing fuzzy observers [29]. To
handle ∆ψ effectively, we adopt the following differen-
tial mean value theorem [35] to reformulate ∆ψ as a
function dependent to ek.

Lemma 1 ([29]). Consider nonlinear function ψ(x) :
Rnx → Rnψ which is differentiable on co(α, β), then
there exist constant vectors κ ∈ co(α, β), κ 6= α, κ 6= β,
such that

ψ(α)−ψ(β) =

 nψ∑
i=1

nx∑
j=1

ςnψ(i)ς>nx(j)
∂ψi
∂xj

(κ)

 (α−β).

By Lemma 1, the mismatch nonlinear term ∆ψ can
be reformulated as follows:

∆ψ =

 nψ∑
i=1

nx∑
j=1

ςnψ(i)ς>nx(j)
∂ψi
∂xj

(τ)

 (xk − x̂k)

= Cψ(τ)(xk − x̂k). (24)

for τ ∈ co(xk, x̂k). Taking into account Assumption 1,
the elements of the unknown matrix Cψ(τ) belong to
a bounded convex set Dψ. The vertices of Dψ can be
obtained by

Vψ =

{
∂ψi
∂xj

(τ) ∈ {ρ
ij
, ρij}

}
, ∀(i, j) ∈ Inψ × Inx ,

where the bounds ρ
ij

and ρij are given in (18). With the
definition of ek and x̄k, expression (24) can be rewritten
as follows:

∆ψ =
[
Cψ(τ) 0

]︸ ︷︷ ︸
C̄ψ(τ)

[
xk − x̂k
dk − d̂k

]
︸ ︷︷ ︸

ek

. (25)

From (23) and (25), the state estimation error dynamics
can be rewritten as

ek+1 =
(
T A (%, τ)−M(%)−1L(%)C̄

)
ek, (26)

where

A (%, τ) =

nr∑
p=1

%p(γk)Ap(τ),

Ap(τ) = Āp + ḠpC̄ψ(τ).

(27)

The following TS fuzzy UIO design problem can be
formulated.

Problem 1. Determine the gain matrices M(%), L(%),
N , and T of TS fuzzy UIO (21) such that the asymptotic
convergence of the estimation error dynamics (26) can
be guaranteed.
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To derive the design conditions of TS fuzzy UIO, the
following lemmas are adopted.

Lemma 2 ([34]). Given matrices H and G. If the
condition GH†H = Y is verified. Then, Y = GH† +
X (I −HH†) is the solution of YH = G, where X is an
arbitrary matrix.

Lemma 3 ([36]). Given matrices Ωpql, for p, q, l ∈ Inr .
The following MFs-dependent inequality

Ω(%, %+) =

nr∑
p=1

nr∑
q=1

nr∑
l=1

%p(γk)%q(γk)%l(γk+1)Ωpql � 0,

holds with %, %+ ∈ F if

Ωppl � 0, p, l ∈ Inr
2

nr − 1
Ωppl + Ωpql + Ωqpl � 0, p, q, l ∈ Inr , p 6= q.

B. LMI-Based UIO Design for TS Fuzzy Systems

This section provides a numerically tractable solution
to the design of TS fuzzy UIO stated in Problem 1.

Theorem 1. If there exist matrices N , T satisfying
(22), and matrices Qp ∈ Rnx×nx , Mp ∈ Rnx×nx ,
Lp ∈ Rnx×ny , for p ∈ Inr such that the following
conditions hold:

Ωppl(τ) � 0, (28a)
2

nr − 1
Ωppl(τ) + Ωpql(τ) + Ωqpl(τ) � 0, (28b)

for p, q, l ∈ Inr , and p 6= q. Then, the estimation error
dynamics (23) is asymptotically stable. The quantity
Ωpql(τ) is defined as

Ωpql(τ) =

[
Qq ?

MqT Ap(τ)− LqC̄ Mq +M>q −Ql

]
,

with Ap(τ) given in (27), for Cψ(τ) ∈ Dψ.

Proof. Consider the fuzzy Lyapunov function candidate

V (ek) = e>k Q(%)ek, Q(%) =

nr∑
p=1

%p(γk)Qp.

Then, we have the following variation of V (ek) along
the solution of the error dynamics (26):

∆Vk = e>k+1Q(%+)ek+1 − e>k Q(%)ek (29)

= e>k

(
K>(%, τ)Q(%+)K(%, τ)−Q(%)

)
e(k),

with K(%, τ) = T A (%, τ) − M(%)−1L(%)C̄. Using
Lemma 3 as well as the convexity property of the set
Dψ, it follows from (28a) and (28b) that[

Q(%) ?
M(%)T A (%, τ)− L(%)C W (%, %+)

]
� 0, (30)

with W (%, %+) = M(%) + M(%)> − Q(%+), for
%, %+ ∈ F and Cψ(τ) ∈ Dψ. The condition (30) implies
W (%, %+) � 0. Note that Q(%+) � 0. Then, we have
M(%) +M(%)> � 0 which guarantees the existence of
M(%)−1. Multiplying (30) with

[
I −K>(%, τ)

]
on the

left and
[
I −K>(%, τ)

]> on the right, we have

K>(%, τ)Q(%+)K(%, τ)−Q(%) ≺ 0, (31)

It can be seen from (29) that ∆Vk < 0 can be guaranteed
by (31). Hence, with the Lyapunov-based argument,
we can conclude that the asymptotic stability of the
estimation error dynamics (26) can be guaranteed by
condition (31).

Remark 1. The matrix conditions in (22a) can be
reformulated as[

T N
] [ I Td
C̄ 0

]
=
[
I 0

]
. (32)

According to Lemma 2, if the rank condition (20) is
verified, the solution to (32) is given by[

T N
]

=

[
I
0

]> [
I Td
C̄ 0

]†
+

X

(
I −

[
I Td
C̄ 0

] [
I Td
C̄ 0

]†)
. (33)

The matrix of appropriate dimension X in (33) can be
arbitrarily selected.

Remark 2. The conditions to design TS fuzzy UIO
presented in Theorem 1 are expressed in terms of LMIs,
which can be conveniently solved with existing LMI
solvers [37]. Algorithm 4 summarizes the procedure to
design the proposed TS fuzzy unknown input observer.

Algorithm 1: Fuzzy UIO Design Algorithm
Input: TS fuzzy model (15).
Output: TS fuzzy UIO (21) such that ˆ̄xk → x̄k.

1 Examine the rank conditions (20).
• If SATISFIED, move to Step 2.
• If UNSATISFIED, fuzzy UIO design failure.

2 Calculate T and N from (33).
3 Solve Theorem 1 to obtain Mi, Li, for i ∈ Inr .
4 Design fuzzy UIO (21) to estimate x̄k.

IV. ILLUSTRATIVE RESULTS

This section presents illustrative results to demon-
strate the effectiveness of the proposed TS fuzzy UIO
design to simultaneously estimate the CVS dynamics
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and cyber-attack signals. To this end, the CVS is estab-
lished using a high-fidelity model in CarSim software.
The TS fuzzy UIO is implemented in Matlab/Simulink.
Then, Simulink-CarSim cosimulations are performed
with three test scenarios with different types of cyber-
attack signals to show the accurate estimation perfor-
mance of proposed fuzzy UIO. The parameters of the
connected vehicle are given in Table I.

To emphasize the interests of the proposed fuzzy UIO,
a comparison with the conventional TS fuzzy model-
based UIO design approach in [33] is performed. To
this end, an eight-rule TS fuzzy model can be directly
obtained from model (9) using the sector nonlinearity
approach [32] with 3 premise variables v(t), 1

h(t) and
λ(h(t))
h(t) . Then, the corresponding eight-rule TS fuzzy

UIO can be designed using the method in [33] with a
maximum admissible Lipschitz constant δmax = 2.781.
However, using the optimization-based strategy in [32,
Chapter 4], the real Lipschitz constant of the CVS can be
computed as δ = 14.438. Since δ � δmax, the conven-
tional TS fuzzy model-based UIO design approach fails
to provide a feasible estimation solution for the CVS.
Solving Theorem 1 with SDPT3 solver, the following
observer gains can be obtained:

L1 =


2.827 0.022
−0.047 0.775
−0.386 −0.411
−0.026 0.473
0.030 −0.472

 , L2 =


2.828 0.022
0.059 0.775
−0.422 −0.411
0.039 0.472
−0.041 −0.473

 ,

M1 =


5.653 −0.004 0.007 0.004 −0.012
0.072 5.700 −1.030 0.766 −0.766
0.787 −1.033 2.871 −0.418 0.418
0.051 0.681 −0.387 3.274 2.312
−0.043 −0.681 0.387 2.312 3.274

 ,

M2 =


5.653 −0.004 0.007 0.008 −0.008
0.072 5.700 −1.030 0.766 −0.766
0.787 −1.033 2.871 −0.418 0.418
0.045 0.681 −0.387 3.274 2.312
−0.049 −0.681 0.387 2.312 3.274

 ,

T =


0.5 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1.0 −0.0
0 0 0 −1.0 0.0

 , N =


0.5 0
0 0
0 0
0 −0.0
0 1.0

 .

In the sequel, three test scenarios are performed with
three different types of cyber-attack signals to verify the
estimation performance of the designed TS fuzzy UIO.

TABLE I: Parameters of Connected Vehicles.

Parameter Description Value
m Vehicle mass 1555 [kg]
k Air drag constant 0.46 [kg/m]
R wheel radius 0.313 [m]
β Rolling resistance constant 0.011
g Gravitational constant 9.81 [m/s2]
` Vehicle length 5 [m]
vm Desired maximum velocity 30 [m/s]
h1 Desired stopping distance 5 [m]
h2 Minimal free-flow distance 35 [m]

A. Scenario 1: Abrupt Cyber-Attack Signal

For this test scenario, the leading vehicle, with an
initial velocity of 6 [m/s], drives at a constant speed after
acceleration and deceleration phases as shown in Fig.
4(a). The initial inter-vehicle distance is 10 [m] while the
initial velocity of the self-vehicle is 2 [m/s]. The CVS is
subject to an abrupt cyber-attack as depicted in Fig. 4(b).
As can be seen in Fig. 5 that the estimated CVS states
quickly converge to their measurements. Moreover, Fig.
6 shows that the cyber-attack signal can be also exactly
estimated by the proposed fuzzy UIO.
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Fig. 4: Scenario 1. (a) Velocity of the leading connected
vehicle vL, (b) Cyber-attack signal.

B. Scenario 2: Repetitive Cyber-Attack Signal

For this test, the leading vehicle, with zero initial
velocity, drives at a constant speed after acceleration
and deceleration phases, see Fig. 7(a). The initial inter-
vehicle distance is 7 [m] and the initial velocity of the
self-vehicle is 1 [m/s]. To represent a repetitive cyber-
attack, we select a sinusoidal signal with an amplitude
of 0.35 [m/s] and a frequency as 3 [rad/s] as shown in
Fig. 7(b). It can be seen from Figs. 8 and 9 that the CVS
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Fig. 5: Scenario 1. Estimation performance of the CVS
dynamics.
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Fig. 6: Scenario 1. Estimation performance of the cyber-
attack signal.

states and the unknown cyber-attack signal are able to
be accurately achieved with the proposed fuzzy UIO.

C. Scenario 3: Random Cyber-Attack Signal

This scenario is performed with a random high-
frequency cyber-attack signal to further emphasize the
estimation performance of the proposed UIO without
requiring any information about the cyber-attacks. To this
end, the leading vehicle with initial velocity stops after
a deceleration phase as shown in Fig. 10(a). The initial
inter-vehicle distance is 15 [m] and the initial velocity
of the self-vehicle is 3 [m/s]. The random attack signal
is shown in Fig. 10(b), which is a band-limited white
noise signal limited within [−0.5, 0.5], with a sampling
step of 0.25 [s] and a noise energy of 0.01. As in two
previous test scenarios, Figs. 11 and 12 clearly show that
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Fig. 7: Scenario 2. (a) Velocity of the leading connected
vehicle vL, (b) Cyber-attack signal.
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Fig. 8: Scenario 2. Estimation performance of the CVS
dynamics.

not only the CVS dynamics but also the high-frequency
cyber-attack signal are able to be exactly estimated with
the proposed method.

D. Quantitative Performance Analysis

This section provides a quantitative estimation perfor-
mance analysis for the proposed fuzzy UIO method. To
this end, the root mean square deviations (RMSD) and
mean absolute errors (MAE) are adopted as estimation
performance indicators, which are defined as

ζMAE =
1

T

∫ T

0

∣∣∣ζ(t)− ζ̂(t)
∣∣∣ dt

ζRMSD =

√
1

T

∫ T

0

(
ζ(t)− ζ̂(t)

)2
dt
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Fig. 9: Scenario 2. Estimation performance of the cyber-
attack signal.
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Fig. 10: Scenario 3. (a) Velocity of the leading connected
vehicle vL, (b) Cyber-attack signal.

where ζ(t) is the considered estimation variable, ζ̂(t)
is its estimate and T is the test duration time. The
results of the performance indicators corresponding to
the three above test scenarios are summarized in Table
II. Since the error indicators are very small, we can
conclude that an accurate estimation performance of both
the unmeasured system state and the unknown cyber-
attack can be achieved with the proposed TS fuzzy UIO
for all considered scenarios.

V. CONCLUSIONS

This paper presents a TS fuzzy UIO to simultaneously
estimate the states and sensor-actuator cyber-attacks
of CVSs. Taking advantage of N-TS fuzzy modeling
method, a way of dealing with unmeasured nonlinearities
involved in the connected vehicle dynamics is proposed
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Fig. 11: Scenario 3. Estimation performance of the CVS
dynamics.
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Fig. 12: Scenario 3. Random cyber-attack estimation
performance.

TABLE II: Estimation Performance Analysis.

Error Indicator Scenario 1 Scenario 2 Scenario 3
hMAE [m] 0.0018 0.0012 0.0018
vMAE [m/s] 0.0623 0.0384 0.0526
zMAE [m] 0.0408 0.0429 0.0969
wMAE [m/s2] 0.0735 0.0376 0.0395
fMAE [-] 0.0050 0.0037 0.0062
hRMSD [m] 0.0913 0.0639 0.0913
vRMSD [m/s] 0.2834 0.1543 0.1756
zRMSD [m] 0.1615 0.1413 0.2528
wRMSD [m/s2] 0.3114 0.1521 0.1478
fRMSD [-] 0.0233 0.0145 0.0189

in this paper. Using an augmented system technique
together with the well-known differential mean value
theorem, an asymptotic convergence is guaranteed for the
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estimation of both CVS dynamics and cyber-attacks. In
particular, no a prior information on cyber-attack signals
is required for TS fuzzy UIO design, which allows to
deal with the random nature of CVS cyber-attacks. The
proposed TS fuzzy UIO design conditions are derived
in the form of LMI constraints via Lyapunov stabil-
ity theory. Illustrated results obtained with Simulink-
CarSim are provided to verify the effectiveness of the
new UIO-based estimation scheme. Future works focus
on designing resilient control for CVSs under multiple
cyber-attacks using the proposed TS fuzzy UIO.
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