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Deep Reinforcement Learning Based Decision Making to Improve Multi-

Lane Highway Traffic Under Uncertain Driving Environments 

 

 
Abstract 
Dealing with environmental uncertainties and improving vehicle decision-making ability are among the most important issues 

for autonomous highway driving. To this end, we propose a vehicle decision-making framework based on heuristic 

reinforcement learning while considering environmental uncertainties. In particular, a future integrated risk assessment model 

is used to solve the environmental uncertainty. First, this paper predicts the uncertain environment based on a long short-term 

memory model, including predicting driving intention and vehicle motion trajectory. A future integrated risk assessment model 

in uncertain environments is proposed in the reinforcement learning framework. Moreover, to solve the exploration and 

exploitation dilemma in reinforcement learning, a heuristic decaying state entropy (HDSE) deep reinforcement learning 

algorithm is proposed, which effectively shortens the training time period of the agent. A path tracking model and a rule-based 

vehicle decision model are built to deal with the path tracking problem and the interaction decision problem of surrounding 

vehicles. Finally, the vehicle decision framework is validated in both low-density and high-density traffic scenarios. The 

obtained results show that the proposed vehicle decision-making framework based on HDSE deep reinforcement learning 

considering environmental uncertainty improves the traffic efficiency while ensuring the vehicle safety. 

 

Keywords: Automated driving, decision making, uncertain driving environment, reinforcement learning, multi-lane 

traffic, integrated risk assessment.  

Abbreviations 
AUC   Area under curve 

CL       Changing the lane 

DARPA   Defense advanced research projects agency 

DQN      Deep Q-network 

EB        Emergency braking 

FCNN     Fully connected neural network 

FD        Drive faster 

HDSE     Heuristic decaying state entropy 

IDM      Intelligent driver model 

LC       Change to the left lane 

LK        Lane keeping 

LSTM     Long short-term memory 

MAE      Mean absolute error 

MOBIL    Overall braking induced by lane changes 

MSE      Mean square error 

NGSIM    Next generation simulation 

NONE     Maintain speed and lane 

POMDP   Partially observable Markov decision process 

RC        Change to the right lane 

ROC      Receiver operating characteristic 

SD        Drive slower 

TTC      Time-to-collision 

 

1. Introduction 

Over the past two decades, autonomous vehicles have rapidly 

developed and attracted much attention in academic and 

industry research [1]. About 94% of traffic accidents are 

caused by drowsiness, distraction, and poor decision-making, 

which can be solved by autonomous driving [2]. An 

autonomous driving system can be divided into four key parts: 

perception, decision-making, planning and control [3]. A 

decision-making strategy is regarded as the human brain, 

which is crucial for autonomous driving [4]. Under uncertain 

environments, an autonomous vehicle needs to understand the 

driving intentions of surrounding vehicles to cooperate with 

them via reasonable driving behaviors. The corresponding 

behavior decision-making ability largely determines the 

driving performance of autonomous vehicles. 

Vehicle decision-making methods can generally be divided 

into rule-based and data-driven methods. The most famous 

rule-based decision-making method can be found in the 

defense advanced research projects agency (DARPA) Urban 

Challenge, where the Junior team won the 2005 DARPA 

championship with a finite state machine [5]; in 2007, the 

Knigh Rider team used a hierarchical state machine to solve 

parking task [6]. However, these methods ignore the 

dynamics and uncertainty of the environment. Moreover, the 

traditional rule-based systems cannot solve the decision-

making problems with many characteristics of driving scenes. 

Recently, with the rapid developments of artificial 

intelligence, using machine learning to solve the vehicle 

decision-making problem has become a hotspot research 

topic. The most common one is reinforcement learning, which 

is different from supervised learning and unsupervised 

learning. In reinforcement learning, the agent continuously 

interacts with the environment to improve its performance on 
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specified tasks, so this learning scheme is very similar to the 

learning of human beings [7]. Since reinforcement learning 

has the advantages of active learning and the ability to react 

to changes in the environment, reinforcement learning-based 

vehicle decision making has applications in highways [8], 

roundabouts [9], highway exits [10], on-ramp merging [11], 

and other scenarios. 

Image-based solutions have been used to obtain the 

information about the vehicle’s surrounding environment [12, 

13]. However, these observation models (image, radar, or 

grid-based) are all unstructured datasets and need to be 

processed by convolutional neural networks. This approach 

requires a large number of samples and time convergence 

[14], resulting in a long learning process [15]. Therefore, it is 

necessary to preprocess the data and use structured datasets to 

speed up the convergence. For example, Fu et al. proposed an 

emergency braking strategy based on the deep deterministic 

policy gradient, which considered efficiency, accuracy, and 

passengers’ comfort in the reward function [16]. Hoel et al. 

[17] extended the AlphaGo Zero algorithm to the continuous 

state-space domain and applied it to the field of autonomous 

driving decision-making. In [18], the dueling deep Q-network 

algorithm was used to solve the decision-making problem 

under the highway driving conditions. 

There are multiple uncertainties in the driving process of 

autonomous vehicles. Most papers use the partially 

observable Markov decision process (POMDP) to solve the 

vehicle decision-making problem under an uncertain 

environment. Hubmann et al. [19] adopted POMDP to solve 

the vehicle decision-making problem at the intersection by 

considering the uncertainty of the intention of surrounding 

vehicles and the uncertainty of sensors. However, the 

designed action space is only longitudinal action, which is not 

extended to the lateral motion of the vehicle, so it is not 

suitable for highway decision-making. Zhang et al. [20] 

combined the POMDP model with heuristics and proposed a 

probabilistic modeling framework to explain environmental 

uncertainty. Galceran et al. [21] proposed a multi-strategy 

decision framework based on POMPD, which models the 

vehicle behavior of the self-vehicle and surrounding vehicles 

as a set of discrete closed-loop policies. However, due to 

insufficient samples of intentions and inaccurate initial 

behavior predictions, the risk-aware objective may not reflect 

the policy evaluation [22]. POMPD provides a general 

mathematical framework to solve uncertainty problems. 

However, due to the “curse of dimensionality” issue, POMDP 

is challenging in terms of computation [23]. Although various 

simplification and discretization methods have been adopted, 

the existing methods are not efficient enough to deal with 

highly dynamic driving scenarios [24]. 

Autonomous vehicles are faced with many unavoidable 

uncertainties, such as the uncertainty of surrounding vehicles’ 

behavior, the uncertainty of surrounding vehicles’ motion, 

and the uncertainty of interaction between self-vehicle and 

surrounding vehicles [25]. These complex and uncertain 

factors are unavoidable and widespread in highway 

environments, bringing severe challenges to autonomous 

vehicles’ behavior decision-making system. An unreasonable 

decision-making behavior lead to significant traffic accidents.  

The vehicle observation space describes the information 

obtained by the autonomous vehicle. It generally includes the 

state of the vehicle (position, speed and heading angle), the 

topology information, and other traffic participants, e.g., 

surrounding vehicles, obstacles [26]. The selection of the 

vehicle state space is critical. Table 1 shows the state space 

and the corresponding action space in related works. In the 

observation space, 
egov  is the speed of the self-vehicle, 

egolane  is the lane index of the self-vehicle, 
desv  is the ideal 

speed of the self-vehicle, 
egobehavior  is the behavior of the 

self-vehicle, 
egoheading  is the heading angle of the self-

vehicle, 
slane  is the lane index of the surrounding vehicles, 

sdx  and 
sdy  are the relative longitudinal and lateral 

distances between the surrounding vehicles and the self-

vehicle, respectively. 
sdv  and 

sdvy  are the relative 

longitudinal and lateral speeds of the surrounding vehicles 

and the self-vehicle, , ,s s sx y v  and 
sheading  are the 

longitudinal displacement, lateral displacement, speed, and 

heading angle of the self-vehicle, respectively. Moreover, LK 

represents the lane keeping, LC is the change to the left lane, 

RC is the change to the right lane, FD is to drive faster, SD is 

to drive slower, EB represents the emergency braking, CL 

represents the action of changing the lane, and NONE 

corresponds to maintain the speed and the lane. 

From Table 1, it can be seen that the state of the self-vehicle 

and the surrounding vehicles are chosen as the observation 

space in most of related works. Motivated by the above issues, 

we propose a new decision-making framework for 

autonomous driving considering the uncertainty of driving 

environments. Moreover, a new future integrated risk 

assessment state model is proposed as the observation space. 

How to obtain an efficient exploration is one of the main 

challenges in reinforcement learning [27]. Moreover, the 

essence of the exploration and exploitation dilemma is how to 

make the algorithm achieve better convergence in a limited 

time. Therefore, we propose a novel exploration method to 

balance the exploration and the exploitation. Specifically, the 

main contributions of this paper are summarized as follows. 
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Table 1. Selection of the state space and the corresponding action space in related works. 
Method Problem Observation Space Action Space 

Alizadeh et al. 

[28] 
Highway 

 
 

ego: ,

surrounding: , , ,

ego ego

s s s s

v lane

lane dx dy dv

 
 

:

, ,LK LC RC

Discrete
 

Ye et al. 

[29] 

Vehicle-

following 

 
 

ego:

surrounding: ,

ego

s s

v

dx dv

 
 

:

x

Continuo s

a

u
 

Hoel et al. 

[30] 
Highway 

 
 

ego: ,

surrounding: , ,

ego ego

s s s

v lane

lane dx dv

 
 , , , ,

:

,LC RC FD LK SD EB

Discrete
 

Xu et al. 
[8] 

Highway 
 

 

ego: , ,

surrounding: , ,

ego ego des

s s s

v lane v

lane dx v

 
 

:

, ,LK LC RC

Discrete
 

Wolf et al.  

[31] 
Highway 

 
 

ego: , ,

surrounding: , , , ,

ego ego ego

s s s s s

behavior v lane

lane y headx ingv
 

 , , ,

:

LC RC FD SD

Discrete
 

Nageshrao et al. 

[32] 
Highway  surrounding: , , ,s s s sdx dy dv dvy  

 , , , , , ,

:

LK LC RC FD NONE SD EB

Discrete
 

Aradi et al. 

[33] 
Highway 

 
 

ego: , ,

surrounding: , ,

ego ego ego

s s s

gv y d

dx dy

ea in

dv

h
 

 , , ,

:

LC RC FD SD

Discrete
 

Yu et al. 

[34] 
Highway 

 
 

ego: ,

surrounding: , ,

ego ego

s s s

v lane

dx dy dv

 
 

:

, L

D e

L

sc et

K

i

C

r
 

1) Differently from [18, 35], the design of the new decision-

making framework for autonomous driving takes into account 

the environmental uncertainty in terms of driving intention of 

surrounding vehicles, future driving risk in each lane, and 

interaction between surrounding vehicles and self-vehicle. 

2) A heuristic decaying state entropy (HDSE) deep 

reinforcement learning algorithm is proposed to solve the 

well-known exploration and exploitation dilemma.  

3) A future integrated risk assessment model is developed 

to effectively deal with environmental uncertainties. 

This paper is organized as follows. In Section 2, the 

algorithm framework is presented. Moreover, the uncertain 

driving environment is discussed, including the prediction of 

lane change intention, the vehicle motion trajectory, and the 

future integrated risk assessment model. In Section 3, the 

problem of vehicle decision-making in an uncertain 

environment is proposed, and the HDSE deep reinforcement 

learning algorithm is designed to solve the Markov problem. 

Section 4 shows the relevant results of a series of case studies. 

Section 5 concludes the paper. 
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Fig. 1 System framework for vehicle decision system.

2. System Framework and Prediction of 

Uncertain Driving Environment  

2.1. System Framework 

The proposed vehicle decision-making framework is 

illustrated in Fig. 1, which can be divided into uncertain 

environment prediction and vehicle decision system. The 

driving intention identification module identifies the lane-

changing intention and the vehicle motion trajectory of the 

surrounding vehicles based on long short-term memory 

(LSTM). The future integrated risk assessment function and 

the future target lane of surrounding vehicles are calculated 

using a prediction of the driving environment and the 

integrated risk assessment function, see Section 2.4. The 

result is used as the input of the vehicle decision system 

together with the current state of the vehicle and the 

surrounding vehicles. In addition, the data obtained from the 

interaction with the environment is stored in the experience 

replay memory and are extracted to input the reinforcement 

learning model during the training process. The vehicle 

decision system adopts the HDSE deep reinforcement 

learning algorithm to learn the optimal driving behavior by 

interacting with the driving environment. In particular, the 

optimal action is heuristically generated by RULEa , which is 

determined by the intelligent driver model (IDM) in [36] and 

minimizes the overall braking induced by lane changes 

(MOBIL) [37]. By this way, the vehicle decision system 

obtains optimal decision actions considering environment 

uncertainties, which include different driving actions, e.g., 

change to the left lane, change to the right lane, drive faster, 

drive slower, maintain speed and lane. 

2.2. Lane Change Intention Prediction 

Driving intent prediction is one of the core technologies of 

intelligent vehicles, which can infer the future intent of the 

driver to predict the likelihood of a possible collision and also 

take measures to avoid accidents in advance [38]. This paper 

uses data from the Next Generation Simulation (NGSIM) 

program conducted by the Federal Highway Administration 

for lane change intention prediction and driving trajectory 

prediction [39]. The NGSIM project was undertaken to study 

microscopic vehicle driving behavior and included the US-

101 and I-80 highway datasets. For this paper, 543 lane 

change scenarios and 870 lane-keeping scenarios were 

extracted to construct the dataset. We used 11 data items from 

the NGSIM data, including dataset id, Vehicle id, Frame 

index, Local X, Local Y, Lane id, v_length, v_Width, 

v_Class, Velocity, Acceleration. Moreover, the dataset is 

divided into a training set and a test set with a ratio of 8:2. 

Each dataset has a trajectory duration of 8 s, and here we use 

4 s of track history and a 4 s prediction horizon. The inputs of 

both the lane change intention prediction and the vehicle 

motion trajectory prediction can be expressed as  

( )( ) ( ) ( )
e p, , , 1,t t t

si t T T T T = = − −
 

I S E  (1) 

where  ( ) ( ) ( ) ( ) ( )
e ,, , oego ego e
t t t t t

eg gox y lanev=S is the history 

information for the predicted vehicle, 

 ( ) ( ) ( ) ( ), ,t t t t
si si si sidx dv lane=E  is the history information for the 

surrounding vehicle, pT  is the history time horizon. 

Moreover, the output of the intention prediction module is the 

probability of changing lanes _lane changeP . 

Since the driving intention is influenced by various 
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potential factors, we choose the LSTM model with a high 

nonlinear fitting ability and data feature extraction capability 

for its prediction. After the training periods, the lane change 

decision model summarizes the lane change decision 

behavior’s pattern in the NGSIM data, predicting the driver’s 

lane change or lane-keeping choice under current traffic 

environments. We selected the same training and test sets 

from the NGSIM dataset to test the intention recognition 

model under the fully connected neural network (FCNN), and 

LSTM network, respectively, and the results are shown in 

Table 2. The structure of both the FCNN network and the 

LSTM network have the same number of network nodes. The 

structure of the LSTM network is shown in Fig. 2, where Relu 

and Sigmoid are the activation functions, and the FC means 

the fully connected layers. The Area Under Curve (AUC) is 

the area under the Receiver Operating Characteristic (ROC) 

curve, which is the evaluation index of the two-class 

classification. F1-score is the harmonic mean of precision and 

recall. As can be seen from Table 2, the accuracy of the LSTM 

method is higher than that of the neural-network-based 

method. Moreover, the accuracy and loss evolutions during 

the training process are shown in Fig. 3. 

Table 2. Performance comparison for lane change intention. 

Method Actual classification 
Predicted lane 

changing 

Predicted lane 

keeping 
Accuracy Total accuracy F1 AUC 

LSTM 
lane changing 267 9 96.7% 

96.8% 0.878 0.97 
lane keeping 65 1978 96.8% 

FCNN 
lane changing 262 14 94.9% 

91.5% 0.670 0.91 
lane keeping 244 1799 88.1% 

 

Fig. 2. Network structure of the LSTM method in lane change 

intention prediction. 

 

Fig. 3. Accuracy and loss evolutions during the training process. 

2.3. Vehicle Motion Trajectory Prediction 

The vehicle motion trajectory is generally considered a time 

series. Hence, we built a vehicle motion trajectory prediction 

based on the LSTM model which is suitable for time series 

prediction. The network structure of the model is shown in 

Fig. 4, where R-dropout 0.2 means that the dropout 

probability. With the particular structure of LSTM, the cell 

states are transferred to the subsequent training with minimal 

time loss, which can avoid the gradual decay of the leading 

output. The output of the trajectory prediction module is 

defined as 

( )( ) ( ) ( ), , 1, 2, ,ego eg
t

o
t t

fx y t T T T T = = + + +
 

O  (2) 

where fT  is the predicted time horizon. 

 

 

Fig. 4. Network structure of the LSTM method in lane change 

trajectory prediction. 

After the vehicle motion trajectory prediction training is 

completed, we randomly selected 10 different initial positions 

and vehicle speeds for testing from the test set, and the results 

are shown in Table 3. As shown in Table 3, the proposed 

model can effectively predict the vehicle motion trajectory. 

The mean absolute error (MAE) of the lateral position is 

significantly better than that of the longitudinal position, and 

the prediction accuracy decreases as the prediction time 

horizon increases. The prediction results of both root mean 

square error (RMSE) and MAE can meet the requirements of 

motion trajectory prediction. 

 

LSTM
FC FC FC FC FCIntput Output

Node 

number
1717 32 12 4 1

Relu Relu Sigmod

LSTM FC FCIntput Output

17128 5 2

Relu Tanh

LSTM

Node 

number

R- dropout

0.2
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Table 3. Vehicle nomenclature. 
Prediction 

horizon 

RMSE 

(m) 

MAE of x 

(m) 

MAE of y 

(m) 

1 0.70 0.45 0.15 

2 1.79 1.20 0.32 

3 3.22 2.37 0.40 

4 5.57 3.56 0.51 

2.4. Future Integrated Risk Assessment Model 

Time-to-collision (TTC) is commonly used for risk 

assessment, but it is inaccurate to only use TTC for risk 

assessment [40]. Hence, this paper defines a newly integrated 

risk assessment function based on the reference [41] to more 

comprehensively assess the future risk. Differently from TTC, 

the integrated risk assessment function considers both 

longitudinal and lateral risks of the vehicle. The vehicle 

nomenclature is given in Table 4. According to the vehicle 

kinematics model, the lateral risk and the longitudinal risk are 

expressed as  

 

Table 4. Vehicle nomenclature. 

Notation Description 

Δy  
Relative lateral position of the self-vehicle and the 

surrounding vehicle 

0c  
Distance between the self-vehicle’s distance sensor and the 

side of the vehicle 

ev  Vehicle speed of the self-vehicle 

e  Heading angle of the self-vehicle 

sv  Vehicle speed of the surrounding vehicle 

s  Heading angle of the surrounding vehicle 

x  
Relative longitudinal position of the self-vehicle and the 

surrounding vehicle 

0a  
Distance between the self-vehicle’s distance sensor and the 

leading vehicle 

1  Reaction time of the driver 

sd   Deceleration of the self-vehicle and surrounding vehicle 

next

ev  Self-vehicle speed at the next time 

next

sxv  Longitudinal vehicle speeds at the next time 

next

syv  Lateral vehicle speeds at the next time 

0Δ

sin sin
y

s s e e

y c

v v


 −

−
=  (3) 

( ) ( ) ( )
2 2

1 2cos cos cos

( ) 2 ( ) 2 ( )

e e e e s e

x e

es e es s es

v v v
d

D t d D t d D t

    


+
= + −  (4) 

where ( ) ( ) ( )0( ) cos coses s s e e yD t x a v v t  =  − + − . The 

specific derivations for vehicle longitudinal and lateral risks 

can be found in [41], which is omitted here for brevity. 

Combining lateral risk (3) and the longitudinal risk (4), the 

integrated risk assessment function can be defined as follows, 

where the exponential and weight function is added to make 

the threat risk obvious. 

( )( )
( )

exp 1xr l

y

btIRA
t

S tF w


  
 =  +  

  
  

 (5) 

where 
2

ego

b

v
t

g
= , 

lw is the weight of the lateral risk. The 

deceleration of automobiles is 7~26ft/s2, according to the 

Transportation Research Board [42]. Therefore, we select the 

values of 
ed  and 

sd  as 0.75g, where g is the gravitational 

acceleration. The system reaction time 
1  is around 

0.3~1.2s, here we take 0.7s. The brake reaction time 
2  is 

about 0.15s, 2.03rS =  is selected according to the road 

conditions. Moreover, we can obtain the future integrated risk 

assessment with the predicted results for the uncertain 

environment. With the predicted trajectories next

sx  and 

next

sy , the predicted future lateral risk is expressed as 

0Δ

sin

next

next

y next next

sy e e

y c

v v


−

−
=  (6) 

where Δ Δ sin ,next next next

s e ey y y v t= + −   ,next

e e ev v d t= −   

next next

sy sv y t=   , t  is the time interval from the current 

time to the next moment. Similarly, the predicted future 

longitudinal risk is expressed by 

( ) ( )
2 2

cos cos / 2 / 2

next

sfnext

x next

es

next next next

e e e e e sx s

next next

es es

D

D

v v d v d

D D



  

=

+
= −

 (7) 

with ( ) ( ) 0( ) cos cos ,next next next next next

es s s e e yD t v v t x a  = − + −

Δ Δ cosnext next next

s e ex x x v t= + −   and .next next

sx sv x t=    

Combining the predicted future lateral and longitudinal risk 

expressions (6) and (7), the future integrated risk assessment 

function can be defined as 

( )exp 1
n

bnext

x

ext

ne t

next

x

r l

y

t
IRAF S w



  
 = +  

  
  

 (8) 

with 2nextxt

b e

ne v gt = . 

 

3. Heuristic Decaying State Entropy Deep 

Reinforcement Learning Algorithm 

This section proposes a vehicle decision-making algorithm 

based on HDSE deep reinforcement learning in uncertain 

environments. First, we establish commonly used vehicle 

decision models and uncertainty vehicle decision models that 

consider the future vehicle uncertainty based on the future 

integrated risk assessment function (8). Then, based on these 
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models, the decision-making problem are solved by the 

HDSE deep reinforcement learning algorithm. 

3.1. Vehicle Decision Model 

We describe the vehicle decision problem as a Markov 

decision process, which is generally defined as a tuple (S, A, 

P, R, γ). This tuple is composed of a state space S, an action 

space A, a state transition probability P, a reward function R, 

and a discount factor γ which is used to calculate the 

cumulative reward of the whole process. 

1) Vehicle Actual Motion State Model: To reflect its 

representativeness, the first observation space of this paper is 

selected as 

{ , , , , , },ego ego ego si si siactualS x y lane d dv lane= 1,2,3,4.i =  (9) 

Since the surrounding vehicles are not always present around 

the observable range when the vehicle is running. To ensure 

that the same number of features is input to the deep neural 

network, assume that the ith vehicle is at the observable range 

boundary when it is absent, i.e., =200sid  and =30.sidv  

2) Future Integrated Risk Assessment State Model: The state 

space should be as efficient and straightforward as possible to 

effectively reduce the training difficulty and to improve the 

algorithm’s performance. Compared with the actual vehicle 

motion state model, we propose an observation space model 

that considers the intention of surrounding vehicles and the 

future risk assessment of vehicles. Based on the future 

integrated risk assessment model, we define an observation 

space that takes into account the driver intention and the 

future risk assessment as 

{ , , , },, next

IRAF ego si si s

target

i siS lane IRAF IRAF lane lane=  (10) 

for 1,2,3,4i = . target

silane  is the driver’s intention, 
siIRAF  

is the integrated risk assessment function defined in (5), 
next

siIRAF  is the future integrated risk assessment function 

calculated from (8), and i represents the leading vehicle on 

the ith lane. Similarly, if there is no leading vehicle in on the 

ith lane, it is assumed at the boundary of the observation 

range, i.e., 0IRAF = , 0next

siIRAF =  and 
i

targ

si s

etlane lane= . 

3) Action Space: To improve the convergence speed, the 

action space of the reinforcement learning output is the 

vehicle’s behavioral decisions. Then, the vehicle’s action is 

defined as the action space that solves all highway driving 

tasks, that is 

 , , , ,A LC RC FD SD NONE=  (11) 

To ensure the predictability of the vehicle behavior decision, 

the interval between two behavior decisions of the vehicle 

will not be too short, the execution interval is 1s. 

4) Reward Function: Complex reward functions, e.g., to 

guarantee the distance between the ego-vehicle and the 

vehicle ahead, may reduce the agent’s exploration ability [4]. 

Hence, the goal here is to use straightforward reward 

functions to solve the vehicle decision-making problem. To 

this end, we construct the following rewards to guarantee a 

high-speed driving with collision avoidance: 

( , ) ( , ) ( , )all speed collisionR s a R s a R s a= +  (12) 

min

max min

( , )speed speed

v v
R s a C

v v

−
=

−
 (13) 

vehicle collision
( , )

0 otherwise

collision

collision

C
R s a


= 


 (14) 

where s and a represent the current state and action, 
speedC  is 

the reward constant for vehicle speed in the desired range, 

collisionC  is the penalty factor for a vehicle collision. 

3.2. Heuristic Decaying State Entropy Dueling 

Double DQN 

The agent interacts and explores with the environment in real-

time and directly learns from the obtained experiential data to 

eventually maximize the cumulative returns or to achieve a 

specific goal. However, the high dimensionality of the input 

features and the computational complexity bring challenges 

to traditional reinforcement learning methods [43]. Mnih et 

al. of the Google DeepMind team proposed a deep Q-Network 

(DQN) algorithm based on convolutional neural networks 

[44], which solves the challenges of traditional reinforcement 

learning by exploiting deep learning features to fit functions 

and characterize learning properties nonlinearly. Then, 

double-DQN, which allows avoiding overestimation, and 

Dueling DQN, based on Advantage Learning, have been 

proposed to bring new developments to deep reinforcement 

learning. Meanwhile, Prioritized Experience Replay 

improves the learning efficiency of the agents. Moreover, 

existing vehicle decision models can provide heuristic 

guidance for agents and avoid meaningless exploration. In 

this paper, a deep reinforcement learning algorithm combines 

the above advantages and a HDSE deep reinforcement 

learning is proposed for vehicle decision making. 

In reinforcement learning, the agent’s goal is to maximize 

the expectation of the cumulative reward. The value function 

uses the expectation of return to evaluate the agent’s 

performance under the current state or a specific state and 

action. To solve the reinforcement learning problem, we 

define the following optimal state action-value function 

( ),t tQ s a  under optimal strategy π as the maximum 

expected return obtained for a specific action in a specific 

state: 

( ) ( ), max ,
a

Q s a r Q s a 

 


  = +
 

 (15) 

where s, a and r are the state, action and reward of each period 

respectively, 𝑠′  is the state of the next period, 𝑎′  is the 
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action of the next period,   is the discount factor,  is the 

expected value. The optimal strategy is obtained by 

maximizing the optimal action-value function as 

( ) ( )argmax ,
a

s Q s a =  (16) 

The observation space is generally a continuous high-

dimensional state space for the autonomous vehicle decision 

problem. Hence, we use a parameterized continuous function 

( ), ,Q s a   to estimate the state-action value, where   is 

the parameter of the evaluate Q-network. There are two neural 

networks in the DQN algorithm, i.e., the evaluate Q-network 

and the target Q-network 𝑄̂. The parameters of the evaluate 

Q-network are obtained by minimizing the loss function 𝐿(𝜃) 

( ) ( )
2

, , ,
( ) ( , , )Q

s a r s
L y Q s a 


 = −
  

 (17) 

where ( )max , ,Q

a
y r Q s a  − = + , the parameter of the 

target Q-network  −  is copied from the Q-network at a 

certain number of iterations during the training process. 

However, the target Q-network 
Qy  is prone to 

overestimation of values, then the target 
Qy  is replaced with  

( )( ),arg max , , , .DDQN

a
y r Q s Q s a   −= +   (18) 

Here, the actions are selected based on the evaluate Q-

network, and then the Q-value is determined based on the 

target Q-network. The double DQN uses two parameters   

and  − , where the parameter 𝜃 is used to select the action, 

and the parameter  −  is used to evaluate the state-action 

value function. The new loss function can be defined from 

(18) as  

( ) ( )( ), ,

2

,
( ) , ,DDQN

s a r s
L y Q s a 


 
 

= −


 (19) 

Minimizing the loss function (19), we obtain the parameters 

of the evaluate Q-network. To estimate more accurately the Q 

values, we use dueling networks to divide the Q-network into 

two parts, i.e., the value function part and the advantage 

function part. The Q-value function is defined as 

( , ) ( ) ( , )Q s a V s A s a= +  (20) 

where ( )V s  is the value function, ( , )A s a  is the advantage 

function. The detailed structure of the Q-network established 

in this paper is shown in Fig. 5. The network input is the future 

integrated risk assessment state 
IRAFS  described in (10), 

and the output is the state-action value function ( , )Q s a .  

 

Fig. 5. Structure of the Q-network. 

 

The traditional ε-greedy exploration has an equal 

probability for each exploration in the same episode, without 

considering that the weights of exploration should be varied 

for different values of ( , )Q s a . Here, we define the action 

probability distribution ( )sp a  based on ( , )Q s a  as  

( )
( )

exp ( , ) max ( , )
( )

exp ( , ) max ( , )

a A

s

b A a A

Q s a Q s a
p a

Q s b Q s a



 

−
=

−
 (21) 

where A is the action space. The entropy ( )H s  of a discrete 

random variable s with probability distribution ( )sp a  is 

defined as 

( ) ( ) ( )| |log .s A s

a A

H s p a p a


= −  (22) 

Differently from [45], to make the probability of entropy 

converge to 0 at the end of the training, we use the decaying 

method. The entropy processed by the decaying method can 

be expressed as  

( )( ) ( ) 1 exp r

de f f

n
H s H s t t



  
=  + −  −  

  
 (23) 

where ( )deH s  represents the post-decay entropy, rn  is the 

cumulative number of runs,  and 
ft  are constants that 

denote the post-decay convergence value and the decay speed, 

respectively. The algorithm for action selection based on the 

decaying state entropy method is shown in Algorithm 1, 
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where 
rulep  is the probability of choosing a rule-based 

algorithm, 
RULEa  is the rule-based action based on IDM 

model and MOBIL model, and 
Randoma  chosen uniformly 

randomly from  , , , ,A LC RC FD SD NONE= . 
 

Algorithm 1. Action selection strategies 

Input: Value function ( , )Q s a  

1. Compute the probability distribution of action ( )sp a  (21) 

2. Compute the entropy of state S ( )H s  (22) 

3. Compute the entropy of state S ( )deH s  (23) 

4. Choose an action strategy randomly from the set of action 

strategies ( ) arg max , , ,RULE Random
a

aQ s a a with distribution 

( )
( )

1
1 ,, ( )de

de d
rule

rule r

e

ule

p

p

H s
H s H

p
s

 −
− 

 

 

5. if the action strategy is ( )arg max ,
a

Q s a  then 

6. ( )arg max ,
a

a Q s a=  

7. else if the action strategy is 
RULEa  then 

8. 
RULEa a=  

9. else 

10. 
Randomaa =  

11. end 

Output: action a 

 

Remark 1. The proposed heuristic decaying state entropy 

exploration method is not limited to using the rules based on 

IDM model and MOBIL model. It can be equally heuristic by 

experienced drivers or other driving models. 

For the above method, we established the HDSE 

reinforcement learning algorithm for dueling double DQN, to 

improve the agent learning efficiency and to predict the value 

function more accurately. 

 

4. Case Studies 

To validate the proposed decision-making algorithm for 

autonomous vehicles, we provide two different cases to 

analyze the characteristics of our proposed algorithm from 

different perspectives. In addition, comparative studies 

between the proposed vehicle decision-making method and 

surrounding vehicles decision-making methods in different 

scenarios are also presented. 

4.1. Experiment Setting and Comparative Groups 

We adopt Breadth-First Search in the graph description of the 

road network to generate the shortest path from the initial 

point to the destination and transfer it to the path tracking 

model. An MPC controller is used for path tracking whereas 

the speed tracking is performed by an PI controller. 

Both the proposed algorithm and the compared algorithm 

are trained and evaluated in the highway-env on the python 

platform [46]. The initial states of the algorithms during 

training and testing are random, including the initial position 

and velocity of the self and surrounding vehicles. And the 

random range of initial velocity is 23-25m/s. In order to 

compare the performance of different algorithms, we selected 

the same random seeds for testing to ensure the uniformity of 

the test results. After generating the random initial state, the 

behavior of the surrounding vehicles is decided based on the 

current state. Specifically, the longitudinal and lateral 

decision models are IDM and MOBIL models, respectively. 

To increase the complexity of the case, we set the number 

of lanes as four, which is more complex than the three lanes 

and can further verify the reliability of the algorithm. And the 

initial speed of the self- vehicle is 25m/s. As for the 

hyperparameters of the dueling double DQN, the learning rate 

is 0.0005, and the reward discount factor γ is 0.99. The agent 

only acquires the signal of the vehicle ahead with a range of 

180m. For the same scenario, the four following strategies are 

tested and compared. 

1) UHDSE: HDSE reinforcement learning algorithm for 

dueling double DQN considering environment uncertainties. 

The observation space is the future integrated risk assessment 

state model (10), and the reinforcement learning model is the 

HDSE-dueling double DQN. 

2) UDDDQN: Dueling double DQN reinforcement learning 

algorithm considering environment uncertainty. The 

observation space is the future integrated risk assessment state 

model (10) in uncertain environments, and the reinforcement 

learning model is the dueling double DQN. 

3) DDDQN: Dueling double DQN reinforcement learning 

algorithm without considering environmental uncertainties. 

The observation space is the vehicle actual motion state model 

(9), and the reinforcement learning model is the dueling 

double DQN. 

4) RULE: Rule-based vehicle decision-making method. The 

longitudinal and lateral decision models are IDM and MOBIL 

models, respectively. 

To show the effectiveness of the risk assessment model 

proposed in this paper on the vehicle decision problem, we 

compare the UDDQN algorithm with the DDDQN algorithm. 

The risk assessment model was used in the UDDQN 

algorithm, while it is not used in the DDDQN algorithm. 

Similarly, we show the difference before and after accounting 

the uncertainty by comparing the performance of UDDQN 

and DDDQN algorithms. 

4.2. Case 1: Low-Density Traffic Flow  

For this case, the four methods (UHDSE, UDDDQN, 

DDDQN and RULE) are trained and tested in a low-density 

scenario simulating a normal highway driving situation, 
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which is depicted in Fig. 6. The low-density traffic flow means 

that the average headway is 28m. The corresponding 

simulation results are shown in Fig. 7.  

 

Fig. 6. Diagram of traffic flow for low-density cases: self-vehicle (in 

green) and surrounding vehicles (in blue). 

 

 

 

Table 5. Test data set results in low traffic flow. 
Items UHDSE UDDDQN DDDQN RULE 

Average Total Reward 25.14 23.42 22.35 20.16 

Crash percentage 0.12 0.24 0.32 0.40 

Average vehicle speed 22.33 23.04 21.90 22.13 

Lane change maneuver percentage 42.4% 31.5% 37.4% 12.8% 

Longitudinal maneuver percentage 57.6% 68.5% 62.6% 81.9% 

None action percentage 0.0% 0.0% 0.0% 5.3% 

 

 

Fig. 7. Results of the low-density traffic case. (a) Total rewards. (b) 

Collision probability. (c) Average speed of self-vehicle. (d) Optimal 

action probabilities. 

 

Fig. 7(a) shows the total rewards of the four methods under 

the considered low-density traffic flow. In the initial phase, 

the RULE strategy provides higher returns than the 

reinforcement learning-based vehicle decision strategy. 

However, after 400 training episodes, the reinforcement 

learning-based strategy leads to significantly higher rewards. 

Meanwhile, the agent obtains the highest rewards under the 

UHDSE method. The collision probability of the 

reinforcement learning-based vehicle decision strategy in Fig. 

7(b) rapidly decreases from 1 and converges to 0.1~0.3 with 

training. In addition, the UHDSE method has the lowest 

collision rate after 2100 training episodes, which yields a 

higher total rewards as shown in Fig. 7(a). Fig. 7(c) shows the 

average speed of the self-vehicle under the four decision-

making strategies. The reinforcement learning-based vehicle 

uses a relatively high speed (25m/s) in the initial phase for 

higher speed reward ( , )speedR s a . However, after a training 

period, the agent learns from the historical data that this is not 

the optimal choice because it brings a higher collision 

probability, so the vehicle speed gradually converges to about 

22.5km/h. The optimal probabilities in Fig. 7(d) all converge 

from 0 to 1. In particular, the variation of the optimal action 

probability based on the UHDSE strategy fluctuates 

significantly due to the state-entropy based exploration 

probability. In contrast, the optimal action probabilities of the 

UDDQN and DDDQN strategies equally and smoothly due to 

the ε-greedy exploration.  

The test results for the four decision-making strategies are 

summarized in Table 5 It can be seen that the UHDSE-based 

vehicle decision method leads to the highest rewards and the 

lowest collision percentage, which is consistent with the 

training results. The UDDDQN strategy achieves the highest 

average vehicle speed, and it sacrifices part of the safety for 

the highest traffic efficiency, which is undesirable. Moreover, 

the UHDSE-based method achieves a balance between the 

safety and the traffic efficiency, which improves the vehicle 

traffic efficiency while ensuring the safety as much as 

possible. We find that the vehicles performed more lane-
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changing behaviors to ensure the traffic efficiency to drive on 

the appropriate road in the low-density traffic environment. 

The None action percentage of the reinforcement learning-

based vehicle decision strategy is 0 because the agent learned 

that performing other actions brings higher gains. 

4.3. Case 2: High-Density Traffic Flow  

To analyze the obstacle avoidance capability of the proposed 

vehicle decision-making method, we perform a highway test 

scenario with a high density of vehicles as depicted in Fig. 8. 

Moreover, the high-density traffic flow means that the average 

headway is 14m.  

 

 

Fig. 8 Diagram of traffic flow for high-density cases: self-

vehicle (in green) and surrounding vehicles (in blue). 

The considered test scenario is more dangerous than the 

real-world situations to test the performance of the vehicle 

decision strategies in extreme environments. The 

corresponding results are shown in Fig. 9.Fig. 9(a) shows the 

total rewards of the agent under the four decision-making 

methods. The agent can obtain the highest reward under the 

UHDSE method and reaches the convergence at 1300 

episodes faster than the UDDQN (1950 episodes) and 

DDDQN (2150 episodes) methods. In addition, the total 

rewards of the converged UHDSE method (13.5) are higher 

than those of the UDDDQN (13.1) and DDDQN (12.3) 

methods. For the RULE method, the total rewards were better 

than the other methods when the agent was undertrained, but 

when the agent was trained for some time (about 800 

episodes), the reinforcement learning-based UHDSE, 

UDDDQN, and DDDQN methods performed significantly 

better than the RULE-based methods (5.6). From Fig. 9(b), it 

can be obtained that the collision probability under the 

UHDSE method is significantly lower than the other three 

methods. Since safety is the primary concern in the practical 

application of autonomous driving, the decision model based 

on the UHDSE method is more promising to be applied in the 

real driving environment.  
 

 

Fig. 9. Results of the high-density traffic case. (a) Total rewards. (b) 

Collision probability. (c) Average speed of self-vehicle. (d) Optimal 

action probabilities. 
 

Fig. 9(c) describes the average vehicle speed of the self-

vehicle under different methods. We can see that, at the 

beginning of the training, the reinforcement learning-based 

method maintains a higher speed than the RULE-based 

method to obtain a higher speed reward ( , )speedR s a . In 

particular, the average speed of the DDDQN-based method 

tends to increase at the beginning period. However, after a 

period of training, the reinforcement learning-based agent 

finds that higher speeds tend to bring negative collision 

rewards ( , )collisionR s a , so the speed decreases and eventually 

converges to the maximum reward. Compared with other 

methods, the UHDSE-based vehicle decision method can 

guarantee a higher vehicle speed while maintaining the lowest 

collision probability, improving traffic flow efficiency. Fig. 

9(d) shows the variation of optimal action selection 

probability as the running times increase in the reinforcement 

learning algorithm. At the initial stage of training in 

reinforcement learning, due to the lack of historical 

information, the optimal action probability should be set low 

since the actual optimal action is not available. The optimal 

probabilities in Fig. 9(d) all converge from 0 to 1, which is 

coherent to the requirement of exploration and exploitation 

balance in reinforcement learning algorithms. Unlike 
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UDDQN and DDDQN methods, the variation of the optimal 

action probabilities of the UHDSE-based agent significantly 

fluctuates. This is due to the state entropy-based exploration 

probability used by the UHDSE method, which obtains 

different action probabilities based on the current ( , )Q s a . 

The test results of the four decision strategies are 

summarized in Table 6 Compared with the DDDQN and 

RULE strategies, the UHDSE and UDDQN vehicle decision 

strategies considering environmental uncertainty have a better 

performance. However, the average vehicle speed of the 

UDDDQN strategy is the lowest, and a part of the vehicle 

traffic efficiency is sacrificed to ensure the safety. Moreover, 

for the specific action percentage, compared with DDDQN, 

the UHDSE-based vehicle decision method has a higher 

average speed and a lower collision rate but also a lower lane-

changing behavior, indicating that the DDDQN-based method 

has some invalid lane-changing. That is, lane changing may 

bring short-term rewards but not long-term rewards, and we 

will analyze the ineffective lane changing of the DDDQN 

strategy specifically in Figs. 10 and 11. The lowest percentage 

of none actions is adopted with the UHDSE method, which 

indicates that it explores the environment more fully. 

 

 

 
 

Table 6. Test data set results in high traffic flow. 
Items UHDSE UDDDQN DDDQN RULE 

Average Total Reward 16.43 15.68 14.03 9.26 

Crash percentage 0.28 0.46 0.53 0.81 

Average vehicle speed 20.41 19.94 20.33 21.09 

Lane change maneuver percentage 18.6% 15.2% 21.4% 8.3% 

Longitudinal maneuver percentage 81.2% 80.7% 62.7% 84.0% 

None action percentage 0.3% 4.0% 15.9% 7.7% 

 

Fig. 10. Vehicle driving conditions under Scenario 1: self-vehicle (in green), surrounding vehicles (in blue), crashed vehicle (in red) and the 

same markers (A, B, C and D) represent the same vehicles. 

 

 

Fig. 11. Vehicle driving conditions under Scenario 2: self-vehicle (in green), surrounding vehicles (in blue), crashed vehicle (in red) and the 

same markers (A, B, C and D) represent the same vehicles. 

 

To further analyze the impact of considering environmental uncertainty on vehicle decision-making, two scenarios from 

t = 2s

t = 3s

t = 4s

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

UHDSEDDDQN

UHDSEDDDQN

UHDSE
DDDQN

UHDSE
DDDQN

A

A

A

A

A

B

BB

A

B

B

A

B

A

B

B

t = 0s

1

2

3

4
DDDQN

C

D
t = 3s

1

2

3

4

DDDQN
C

D
t = 6s

1

2

3

4
DDDQN

D

Ct = 8s

1

2

3

4
UHDSE

C

D

1

2

3

4
UHDSE

C

D

1

2

3

4

UHDSE D

C



 13 

the test set were selected to analyze the difference in the 

decision-making of autonomous vehicles under UHDSE and 

DDDQN strategies. Figs. 10 and11 represent the vehicle 

positions in the two considered scenarios at different instants. 

In Fig. 10 at t=0s, the self-vehicle under both methods is 

moving in lane 3. At t=2s, the self-vehicle under DDDQN 

strategy changes lanes to lane 1 because vehicle A on lane 1 

is further away than vehicle B. After 2s, vehicle A started 

braking due to the small distance in front of it, so there is a 

collision with vehicle A, which is an invalid lane change, only 

considering the short-term traffic efficiency. On the other 

hand, under the UHDSE strategy, the effect of an uncertain 

environment is considered, and the future motion state of 

vehicle A is predicted. Then, it chooses to continue driving in 

lane 3, which improves the efficiency of the passage with the 

premise of safety. In Fig. 11, at t = 3s, the self-vehicle moves 

in lane 1 under both strategies. Since the leading vehicle C in 

lane 1 is slow, which affects the passing efficiency, the self-

vehicle under both strategies decides to perform a lane change 

operation. However, under the DDDQN strategy, the self-

vehicle did not choose the right time to change lanes and 

started to change lanes before vehicle D. The collision 

occurred because there was no suitable space for a lane 

change. On the other hand, under the UHDSE strategy, the 

self-vehicle slows down in advance and chooses to start a lane 

change after the vehicle D. There is a sufficient lane change 

space to ensure the safety of lane change. 

 

5. Conclusions 

We have proposed a novel vehicle decision framework based 

on heuristic deep reinforcement learning for vehicle decision 

problems in uncertain environments. In view of the 

environmental uncertainty of highways, the lane change 

intention and vehicle motion trajectory of vehicles are 

predicted based on LSTM. Based on this model, a future risk 

assessment state model is proposed as a part of the 

reinforcement learning framework. Aiming at the previous 

literature’s exploration and exploitation dilemma of 

reinforcement learning, we propose a heuristic decay state 

entropy-based reinforcement learning algorithm based on 

dueling double DQN, which adopts different exploration 

weights based on the entropy of current Q-values to improve 

the exploration efficiency.  

The obtained results show that the proposed decision-

making framework achieves a good performance in both low-

density and high-density traffic flows, reducing the collision 

rate and improving the traffic efficiency. In the low-density 

traffic case, the UHDSE algorithm significantly reduces the 

collision probability while increasing the average speed 

compared to the DDDQN algorithm, because the UHDSE 

algorithm considers the future risk and completes the lane 

change behavior in advance before the risk appears. In 

addition, compared with the common DDDQN method in 

high-density traffic cases, the convergence time is reduced 

about 39.5%, the collision rate is reduced about 25%, and the 

average total return is improved about 17.1%. However, as 

shown in Table 6 there is also a 12% probability of collision, 

which is caused by a mismatch in the dataset. Moreover, the 

training of the intention recognition is done with the NGSIM 

real vehicle data, while the training vehicle decisions are done 

with simulation data. Therefore, building a training 

environment that better simulates the real world and testing in 

real vehicles is our future work. Moreover, game theory can 

be applied to the decision-making framework to represent the 

interaction between the self-vehicle and surrounding vehicles. 
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