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This paper investigates the problem of unknown input observer (UIO) design for Takagi-Sugeno (TS) fuzzy systems with time-varying delay. For observer design, all the unmeasured nonlinearities are isolated in the nonlinear consequent parts of TS fuzzy systems. This allows dealing with the well-known issue related to unmeasured premise variables for TS fuzzy observer design in a more e↵ective fashion via the mean value theorem. Using the unknown input (UI) decoupling technique, no a priori information on the UI is needed for the proposed TS fuzzy observer design, which can guarantee the asymptotic estimations of both the system state and the unknown input. Employing a fuzzy Lyapunov-Krasovskii functional with a suitable augmented vector, the e↵ect of time-varying delay on the estimation error dynamics is taken into account in the observer design. Numerical examples are presented to demonstrate the e↵ectiveness of the proposed fuzzy UIO design method for nonlinear time-varying delay systems.

Introduction

State estimation of nonlinear systems in the presence of unknown inputs (UIs) has received increasing research attention. The main reason is that, within di↵erent application contexts, unknown inputs can be seen as unmodeled dynamics, faults in engineering systems, uncertain disturbances, and attack signals in secure communication or cyber-physical systems [START_REF] Rotondo | Robust unknown input observer for state and fault estimation in discrete-time Takagi-Sugeno systems[END_REF][START_REF] Xu | Generalized set-theoretic unknown input observer for LPV systems with application to state estimation and robust fault detection[END_REF][START_REF] Zhao | A novel approach to state and unknown input estimation for Takagi-Sugeno fuzzy models with applications to fault detection[END_REF][START_REF] Nguyen | Avoiding unmeasured premise variables in designing unknown input observers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Ding | Secure state estimation and control of cyber-physical systems: A survey[END_REF][START_REF] Coutinho | A su cient condition to design unknown input observers for nonlinear systems with arbitrary relative degree[END_REF]. Consequently, simultaneous estimation of the state of a dynamical system and its unknown input has become a key aspect in several practical applications [START_REF] Benyoucef | Towards kinematics from motion: Unknown input observer and dynamic extension approach[END_REF][START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF][START_REF] Kordestani | Observer-based attack detection and mitigation for cyberphysical systems: A review[END_REF].

Takagi-Sugeno (TS) fuzzy model-based technique [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] has become one of the most e↵ective tools to control and estimation of nonlinear systems. TS fuzzy modeling together with Lyapunov stability theory, conditions for stability analysis, control, and observer design can be described in terms of linear matrix inequality (LMI) constraints, which can be e↵ectively solved via numerical solvers. Therefore, TS fuzzy-model-based methods have received R1.1 considerable attention. Within this context, a great deal of research e↵ort has been devoted to the design of TS fuzzy observers for nonlinear systems [START_REF] Guerra | H 1 LMI-based observer design for nonlinear systems via Takagi-Sugeno models with unmeasured premise variables[END_REF][START_REF] Xie | Observer Design of Discrete-Time Fuzzy Systems Based on an Alterable Weights Method[END_REF][START_REF] Lu | Relaxed conditions of observer design of discrete-time Takagi-Sugeno fuzzy systems via a new multi-instant gainscheduling scheme[END_REF][START_REF] Xie | Relaxed observer-based state estimation of discrete-time Takagi-Sugeno fuzzy systems based on an augmented matrix approach[END_REF]. In particular, researchers have increasingly focused on developing TS fuzzy observer design methods in the presence of UIs, as UIs have become a key role in fault diagnosis [START_REF] Gao | Unknown input observer-based robust fault estimation for systems corrupted by partially decoupled disturbances[END_REF][START_REF] Zhang | Sensor fault estimation of switched fuzzy systems with unknown input[END_REF][START_REF] Liu | Fault detection observer design for nonlinear systems via fuzzy Lyapunov functions[END_REF][START_REF] Nguyen | Takagi-Sugeno fuzzy unknown input observers to estimate nonlinear dynamics of autonomous ground vehicles: Theory and real-time verification[END_REF][START_REF] Kaviarasan | Tuning parametersbased fault estimation observer for time-delay fuzzy systems over a finite horizon[END_REF] and robust and fault-tolerant control [START_REF] Lan | Integrated design of fault-tolerant control for nonlinear systems based on fault estimation and T-S fuzzy modeling[END_REF][START_REF] Sabbghian-Bidgoli | Polynomial fuzzy observer-based integrated fault estimation and fault-tolerant control with uncertainty and disturbance[END_REF][START_REF] Zhu | Fuzzy functional observer-based finite-time adaptive sliding-mode control for nonlinear systems with matched uncertainties[END_REF].

It is noteworthy that when the premise variables can be measured, many results existing for linear observer design can be extended to TS fuzzy systems [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Pan | A unified framework for asymptotic observer design of fuzzy systems with unmeasurable premise variables[END_REF]. However, the corresponding results can only be applied to a restrictive class of nonlinear systems. Hence, TS fuzzy observer design with unmeasured premise variables must be considered, which leads to a challenging TS fuzzy observer design problem due to mismatching nonlinear terms involved in the estimation error dynamics [START_REF] Guerra | H 1 LMI-based observer design for nonlinear systems via Takagi-Sugeno models with unmeasured premise variables[END_REF][START_REF] Ichalal | How to cope with unmeasurable premise variables in Takagi-Sugeno observer design: Dynamic extension approach[END_REF]. One of the most common approaches to deal with the mismatching terms is based on the Lipschitz property of the membership functions (MFs) [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Chen | Fuzzy nonlinear unknown input observer design with fault diagnosis applications[END_REF][START_REF] Vu | Unknown input method based observer synthesis for a discrete time uncertain T-S fuzzy system[END_REF]. However, as pointed out in [START_REF] Ichalal | How to cope with unmeasurable premise variables in Takagi-Sugeno observer design: Dynamic extension approach[END_REF], this approach generally leads to over-conservative results. To avoid this major drawback, the mean value theorem has been exploited for TS fuzzy observer design with unmeasured nonlinearities [START_REF] Guerra | H 1 LMI-based observer design for nonlinear systems via Takagi-Sugeno models with unmeasured premise variables[END_REF][START_REF] Nguyen | Avoiding unmeasured premise variables in designing unknown input observers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Nguyen | Takagi-Sugeno fuzzy observer design for nonlinear descriptor systems with unmeasured premise variables and unknown inputs[END_REF]. Unknown input observers (UIOs) have been also developed for TS fuzzy systems with unmeasured premise variables [START_REF] Vu | Unknown input method based observer synthesis for a discrete time uncertain T-S fuzzy system[END_REF][START_REF] Aouaouda | Fault tolerant tracking control using unmeasurable premise variables for vehicle dynamics subject to time varying faults[END_REF][START_REF] Nguyen | Avoiding unmeasured premise variables in designing unknown input observers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Arioui | Unknown dynamics decoupling to overcome unmeasurable premise variables in Takagi-Sugeno observer design[END_REF][START_REF] Echreshavi | Fuzzy reset-based H 1 unknown input observer design for uncertain nonlinear systems with unmeasurable premise variables[END_REF][START_REF] Nguyen | Takagi-Sugeno fuzzy observer design for nonlinear descriptor systems with unmeasured premise variables and unknown inputs[END_REF]. A proportionalintegral observer structure has been proposed in [START_REF] Aouaouda | Fault tolerant tracking control using unmeasurable premise variables for vehicle dynamics subject to time varying faults[END_REF] for continuous-time TS fuzzy models with unknown inputs, which are assumed to be of polynomial forms. The authors in [START_REF] Vu | Unknown input method based observer synthesis for a discrete time uncertain T-S fuzzy system[END_REF] have proposed a method to estimate the uncertainties of TS fuzzy systems using UIO techniques. However, the results in [START_REF] Vu | Unknown input method based observer synthesis for a discrete time uncertain T-S fuzzy system[END_REF] require a posteriori check on the Lipschitzian property of the nonlinear mismatching terms, caused by unmeasured premise variables, which can be restrictive for practical uses. Using a UI decoupling method for nonlinear dynamics, the issue of unmeasured premise variables in TS fuzzy observer synthesis can be overcome in [START_REF] Arioui | Unknown dynamics decoupling to overcome unmeasurable premise variables in Takagi-Sugeno observer design[END_REF][START_REF] Echreshavi | Fuzzy reset-based H 1 unknown input observer design for uncertain nonlinear systems with unmeasurable premise variables[END_REF]. In [START_REF] Nguyen | Avoiding unmeasured premise variables in designing unknown input observers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Nguyen | Takagi-Sugeno fuzzy observer design for nonlinear descriptor systems with unmeasured premise variables and unknown inputs[END_REF], nonlinear systems have been reformulated in a specific TS fuzzy form with unmeasured nonlinear consequent parts to design UIOs while avoiding unmeasured premise variables. It R2.2 is worth mentioning that TS fuzzy models with nonlinear consequent parts have also been employed to deal with the stabilization problem of nonlinear systems, see [START_REF] Dong | Control synthesis of continuous-time t-s fuzzy systems with local nonlinear models[END_REF][START_REF] Araújo | Delayed nonquadratic L 2 -stabilization of continuous-time nonlinear Takagi-Sugeno fuzzy models[END_REF] and related references.

Time delays are omnipresent in many control engineering applications, for instance, packet-based communication systems, networked control systems, population dynamics, epidemics [START_REF] Fridman | Introduction to Time-Delay Systems: Analysis and Control, Syst. Control: Found. Appl[END_REF]. Furthermore, the presence of time delay in the system dynamics can lead to critical issues related to poor performance, oscillation, and instability. Hence, due to the theoretical significance and practical relevance, it is essential to take into account the influences of time delays in the study of dynamical systems. Within the context of time-delay TS fuzzy models, Lyapunov-Krasovskii stability theory has been largely exploited to derive LMI-based conditions to design TS fuzzy controllers and observers, see for instance [START_REF] Chen | Delay-dependent robust H 1 control for TS fuzzy systems with time delay[END_REF][START_REF] Souza | On stability and stabilization of T-S fuzzy time-delayed systems[END_REF][START_REF] Kang | Fuzzy observer for 2-D parabolic equation with output time delay[END_REF][START_REF] Mozelli | A new discretized Lyapunov-Krasovskii functional for stability analysis and control design of timedelayed TS fuzzy systems[END_REF][START_REF] Li | Robust H 1 sliding mode observer design for a class of Takagi-Sugeno fuzzy descriptor systems with time-varying delay[END_REF][START_REF] Wang | Further study on stabilization for continuous-time Takagi-Sugeno fuzzy systems with time delay[END_REF][START_REF] Hua | Stabilization of TS fuzzy system with time delay under sampled-data control using a new looped-functional[END_REF][START_REF] Chen | Delay-variationdependent criteria on stability and stabilization for discrete-time T-S fuzzy systems with time-varying delays[END_REF][START_REF] Sheng | An asymmetric Lyapunov-Krasovskii functional method on stability and stabilization for T-S fuzzy systems with time delay[END_REF][START_REF] Peixoto | Guaranteed region of attraction estimation for time-delayed fuzzy systems via static output-feedback control[END_REF] and related references. Following this idea, UIOs have been also developed for time-delay TS fuzzy systems. The robust fault detection problem has been addressed in [START_REF] Ahmadizadeh | A robust fault detection design for uncertain TS models with unknown inputs and time-varying delays[END_REF][START_REF] Islam | Robust fault detection of TS fuzzy systems with time-delay using fuzzy functional observer[END_REF] for TS fuzzy systems subject to unknown input and time-varying delay. Robust fault estimation has been studied for a class of delayed TS fuzzy systems in [START_REF] You | Robust fault estimation based on learning observer for Takagi-Sugeno fuzzy systems with interval timevarying delay[END_REF], in which the system state and the actuator fault can be simultaneously estimated using a learning observer scheme.

In [START_REF] Liu | Actuator and sensor fault estimation for discrete-time switched T-S fuzzy systems with time delay[END_REF], the estimation of both actuator and sensor faults have been studied for switched discrete-time TS fuzzy systems with constant time delay. The authors in [START_REF] Zhang | A novel approach to observer-based fault estimation and fault-tolerant controller design for T-S fuzzy systems with multiple time delays[END_REF] have developed a fault-tolerant control scheme for TS fuzzy systems with multiple time-varying delays as well as sensor and actuator faults. In [START_REF] Ning | H 1 output feedback control for fractional-order T-S fuzzy model with time-delay[END_REF], an observer-based control method has been proposed for fractional-order uncertain TS fuzzy systems with unknown input and time delay. It is worth mentioning that the above-mentioned results on TS fuzzy UIO design are only concerned with the case of measured premise variables, which can be restrictive for engineering applications. Notice also that UIOs have been also developed for Lipschitz nonlinear systems with constant time-delay in [START_REF] Ghanes | Observer design for nonlinear systems under unknown time-varying delays[END_REF][START_REF] You | State and unknown input simultaneous estimation for a class of nonlinear systems with time-delay[END_REF][START_REF] Nguyen | Unknown input observer design for one-sided Lipschitz discrete-time systems subject to time-delay[END_REF]. Despite a great advance, there is a lack of literature on UIO design for delayed TS fuzzy systems with unmeasured premise variables. Motivated by the aforementioned discussion, this paper presents novel conditions to design UIOs for nonlinear systems with time-varying delays and unmeasured nonlinearities. To this end, nonlinear systems are represented by TS fuzzy model, where all unmeasured nonlinearities are regrouped in the nonlinear consequents. By means of the mean value theorem [START_REF] Zemouche | Observers for a class of Lipschitz systems with extension to H 1 performance analysis[END_REF], this enables an e↵ective way to deal with the major issue related to unmeasured premise variables in TS fuzzy observer design. The e↵ect of time-varying delay on the estimation error dynamics is explicitly taken into account in the observer design procedure via a fuzzy Lyapunov-Krasovskii functional (LKF) with a suitable augmented vector to reduce the design conservativeness. The Wirtinger-based summation inequality is used together with Moon's inequality as well as the well-known Finsler's lemma to derive numerically tractable UIO design conditions. Notice that the resulting UIO design for TS fuzzy systems with time-varying delay and unmeasured nonlinearities has not been reported in the open literature. The main contributions of this paper can be summarized as follows.

R2.3

• Using fuzzy LKF stability tools together with various relaxation techniques, a new set of delay-dependent LMI conditions are derived to design UIOs for TS fuzzy systems with time-varying delay and unmeasured nonlinearities.

• The designed fuzzy observer allows to simultaneously and asymptotically estimate both the system state and the UIs without requiring any a priori information on UIs.

Notation. Z + is the set of positive integers. For a natural number m, N m = {1, 2, . . . , m}. S n + is the set of symmetric positive definite matrices of order n. R n denotes the n-dimensional Euclidean space, and R m⇥n is the set of all m ⇥ n real matrices. For two vectors x, y 2 R n , x i denotes the ith entry of x; the convex hull of vectors and is denoted as co( ,

) = { +(1 ) : 2 [0, 1]}. For i 2 N m , we denote m (i) = [0, . . . , 0, 1 ith , 0, . . . , 0] > 2 R m . For a matrix Y , Y 0 means that Y is positive definite, and He{Y } = Y + Y > . If the existence is ensured, Y † denotes the Moore-Penrose pseudo-inverse of matrix Y , i.e., Y † = (Y > Y ) 1 Y > .
A block diagonal matrix whose elements are matrices A and B is denoted by diag(A, B). The identity matrix of order n is denoted by I n and the null matrix of order n ⇥ m by 0 n⇥m . If the dimensions of both identity and null matrices are straightforwardly deduced, they are omitted.

Problem Statement

After a system description, this section formulates the UIO design prob-115 lem for TS fuzzy systems with time-varying delays and unmeasured nonlinearities.

System Description

Consider a nonlinear system with time-varying delays given by

x k+1 = A(µ k )x k +A d (µ k )x k ⌧ k + f (µ k , u k ) + G(µ k ) (x k ) + Dd k , 8k 2 Z + y k = Cx k x k = ' k , k 2 { ⌧ , . . . , 0}, (1) 
being 

x k 2 D x ✓ R nx the state, y k 2 R ny the system output, u k 2 R nu the known input, d k 2 R n d is the unknown input (UI), µ k 2 R
x k+1 = A i x k + A di x k ⌧ k + Dd k + f (µ k , u k ) + G i (x k ) y k = Cx k x k = ' k , k 2 { ⌧ , . . . , 0}, (2) 
being R i the ith fuzzy rule, the matrices (A i , A di , G i ) are known, r denotes the number of fuzzy rules, and M i j , for i 2 N r and j 2 N nµ , are the fuzzy sets. The fuzzy membership functions are defined as

h i (µ k ) = Q nµ j=1 i j (µ j ) P r i=1 Q nµ j=1 i j (µ j ) , i 2 N r , (3) 
where i j (µ j ) represents the membership grade of µ j with respect to the fuzzy set M i j . Notice that the MFs defined in (3) belong to the unit simplex H with r vertices

H = ( h 2 R r : r X i=1 h i = 1, 0  h i  1, i 2 N r ) , where h = ⇥ h 1 (µ k ), h 2 (µ k ), . . . , h r (µ k ) ⇤ .
Using the center-of-gravity method for defuzzification [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF], the following compact form can be obtained for the TS fuzzy system (2):

x k+1 = A(h)x k + A d (h)x k ⌧ k + Dd k + f (µ k , u k ) + G(h) (x k ) y k = Cx k (4) 
x k = ' k , k 2 { ⌧ , . . . , 0}, with ⇥ A(h) A d (h) G(h) ⇤ = r X i=1 h i (µ k ) ⇥ A i A di G i ⇤ .
For UIO design, the following assumptions for system (1) equivalently represented in form (4) are considered.

R3 R4.1

Assumption 1. The time-varying delay ⌧ k is assumed to be known, with ⌧  ⌧ k  ⌧ , for 8k 2 Z + , where the lower bound ⌧ and the upper bound ⌧ are given positive integers.

Assumption 2. The nonlinear function (x) :

D x ! R n is di↵erentiable with respect to x and satisfies ij  @ i @x j (x)  ¯ ij , 8i 2 N n , 8j 2 N nx , (5) 
with ij = min x2Dx ⇣ @ i @x j (x) ⌘ and ij = max x2Dx ⇣ @ i @x j (x)
⌘ .

Assumption 3. The matrix D is of full column rank, the output matrix C is of full row rank, and rank(CD) = rank(D).

R2.1

Remark 1. The rank condition in Assumption 3 has been widely employed for UIO design to decouple the e↵ect of UIs on the estimation error dynamics [START_REF] Jia | Fault reconstruction and faulttolerant control via learning observers in Takagi-Sugeno fuzzy descriptor systems with time delays[END_REF][START_REF] Nguyen | Avoiding unmeasured premise variables in designing unknown input observers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Li | Unknown input functional observer design for discrete time interval type-2 Takagi-Sugeno fuzzy systems[END_REF]. Notice also that a large variety of nonlinearities satisfies condition (5), e.g., the class of di↵erentiable Lipschitzian nonlinear functions [START_REF] Pan | A unified framework for asymptotic observer design of fuzzy systems with unmeasurable premise variables[END_REF][START_REF] Zemouche | Observers for a class of Lipschitz systems with extension to H 1 performance analysis[END_REF][START_REF] Nguyen | Unknown input observer design for one-sided Lipschitz discrete-time systems subject to time-delay[END_REF]. Moreover, for fuzzy observer design, Assumption 2 is not restrictive, since TS fuzzy models are commonly constructed within a statespace compact set D x , especially when the sector nonlinearity approach [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] is used. 

Problem Definition

For the estimation of system (4), the following time-delay UIO structure is considered: 

z k+1 = N (h)z k + MA d (h)x k ⌧ k + L(h)y k + M ⇤k xk = z k F y k , z 0 = 0 (6) dk = (CD) † (y k+1 C ⇤k CA(h)x k CA d (h)x k ⌧ k ), where ⇤k = G(h) (x k ) + f (µ k , u k ),
M = I + F C. (7) 
Notice that Assumption 3 guarantees the existence of (CD) † . The MFdependent matrices L(h) 2 R nx⇥ny , N (h) 2 R nx⇥n , and the matrix F 2 R nx⇥ny , are gains to be determined defined as

⇥ N (h) L(h) ⇤ = r X i=1 h i (µ k ) ⇥ N i L i ⇤ . R5.2
Remark 2. Note from (6) that for UI estimation, it is required to have the future information of the measured output y k+1 . It is emphasized that this UI estimation expression is only used in theoretical analysis. In practice, the UI estimation should be implemented as follows:

dk 1 = (CD) † (y k C ⇤k 1 CA(h )x k 1 CA d (h )x k ⌧ k 1 )
.

where h = ⇥ h 1 (µ k 1 ), h 2 (µ k 1 ), . . . , h r (µ k 1 ) ⇤ .
Since the past values of all signals involved in the above estimation expression are available, we can always estimate the one-step-back value dk 1 of the UI. This practical issue is common for UI estimation with decoupling-based approaches [START_REF] Nguyen | Avoiding unmeasured premise variables in designing unknown input observers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Benyoucef | Towards kinematics from motion: Unknown input observer and dynamic extension approach[END_REF][START_REF] Vu | Unknown input method based observer synthesis for a discrete time uncertain T-S fuzzy system[END_REF][START_REF] Nguyen | Unknown input observer design for one-sided Lipschitz discrete-time systems subject to time-delay[END_REF][START_REF] Li | Unknown input functional observer design for discrete time interval type-2 Takagi-Sugeno fuzzy systems[END_REF].

Remark 3. All unmeasured nonlinearities of system (4) are regrouped in the nonlinear consequent (x). Then, the MFs h i (µ k ), for i 2 N r , only depend on measured premise variables. Therefore, for real-time implementation, these MFs can be directly employed to construct the TS fuzzy observer (6) without any estimated premise variables.
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The state estimation error is defined as e k = xk x k . Then, from ( 6) and ( 7), one has e k = z k F y k x k , or

e k = z k Mx k . (8) 
Hence, from ( 4), ( 6) and ( 8), the estimation error dynamics can be defined as

e k+1 = z k+1 Mx k+1 = N (h)e k + MA d (h)e k ⌧ k MDd k + (L(h)C + N (h)M MA(h)) x k + MG(h) , (9) where 
= (x k ) (x k ).
To convert this nonlinear mismatch term into a function of e k for UIO design, the following mean value theorem is used.

R4.6

Lemma 1 ([53, Proposition 2]). Let (x) : R nx ! R n and , 2 R nx . If (x) is di↵erentiable with respect to x on co( , ), then there exist constant vectors c i 2 co( , ), 8i 2 N n , such that

( ) ( ) = n X i=1 nx X j=1 n (i) > nx (j) @ i @x j (c i ) ! ( ).
The nonlinear term in (9) can be rewritten using Assumption 2 and R4.5 Lemma 1 as

= (x k ) (x k ) = e k , (10) where 
= " n X i=1 nx X j=1 n (i) > nx (j) @ i @x j ( i ) # , (11) 
with i 2 co(x, x). Defining ⇢ ij = @ i @x j ( i ), 8i 2 N n and 8j 2 N nx , note R4.3 from (5) that the matrix is with elements varying within a bounded convex set, whose set of 2 nxn vertices is given by

V = n ⇢ = ⇥ ⇢ 11 , . . . , ⇢ 1nx , . . . ⇢ n nx ⇤ : ⇢ ij 2 h ij , ij io , (12) 
with ij and ij defined as in [START_REF] Ding | Secure state estimation and control of cyber-physical systems: A survey[END_REF]. From ( 9) and ( 10), the error dynamics can R4.5 be rewritten as

e k+1 =N (h, )e k + MA d (h)e k ⌧ k MDd k + (N (h)M + L(h)C MA(h)) x k , ( 13 
) where N (h, ) = P r i=1 h i (µ k )N i ( ),
and

N i ( ) = N i + MG i . (14) 
Remark that N (h, ) can be represented in a polytopic form as

N (h, ⇢ lj ) = R4.3 P r i=1 h i (µ k )N i (⇢ lj ) with N i (⇢ lj ) = N i + MG i n X l=1 nx X j=1 n (l) > nx (j)⇢ lj .
The following UIO design problem for TS with time-varying delay fuzzy systems can be now formulated. The following technical lemmas are useful to develop time-varying delay UIOs as stated in Problem 1.

160 Lemma 2 (Wirtinger's summation inequality [START_REF] Seuret | Stability of discrete-time systems with time-varying delays via a novel summation inequality[END_REF]). Consider a given matrix R 2 S n + , integers > . Then, for any sequence of discrete-time variable x : [ , ] ! R n , the following inequalities hold:

1 X i= ⌘ > i R⌘ i 1  ⇥ 1 ⇥ 2 > " R 0 0 ⇣ +1 1 ⌘ 3R #  ⇥ 1 ⇥ 2 , ( 15 
) 1 X i= ⌘ > i R⌘ i 1  ⇥ 1 ⇥ 2 >  R 0 0 3R  ⇥ 1 ⇥ 2 , ( 16 
)
with ⌘ i = x i x i 1 ,
and

⇥ 1 = x x , ⇥ 2 = x + x 2 + 1 X i= x i .
Lemma 3 (Moon's inequality [START_REF] Liu | Stability analysis of systems with time-varying delays via the second-order Bessel-Legendre inequality[END_REF]). For any matrices R 1 , R 2 2 S n + and Y 1 , Y 2 2 R 2n⇥n , and any scalar % 2 (0, 1), the following inequality holds:

 1 % R 1 0 0 1 1 % R 2 ⌫ ⇥ R (%), (17) 
with

⇥ R (%) = He {Y 1 [I n 0 n ] + Y 2 [0 n I n ]} %Y 1 R 1 1 Y > 1 (1 %)Y 2 R 1 2 Y > 2 .
Remark 4. The use of Wirtinger's inequality together with Moon's inequality allows to deal with multiple summations, involved in LKF-based stability analysis conditions, in a less conservative fashion compared to the standard reciprocally convex combination lemma [START_REF] Liu | Comparison of bounding methods for stability analysis of systems with time-varying delays[END_REF]. Hence, these technical tools are employed here to derive LKF-based conditions to design UIOs for TS fuzzy 165 systems with time-varying delays.

UIO Design for Time-Varying Delay TS Fuzzy Systems

This section presents conditions to design UIOs for TS fuzzy systems with time-varying delays.

Existence of Time-Varying Delay Unknown Input Observers 170

The following theorem provides the existence conditions of time-varying delay fuzzy UIOs.

Theorem 1. Given positive integers ⌧ and ⌧ , with ⌧ < ⌧ , and a positive scalar ✏. There is an asymptotic UIO of the form (6), if there exist MFdependent matrices L(h) 2 R nx⇥ny , N (h) 2 R nx⇥nx , positive definite matrices

P (h) 2 S 3nx + , R 1 , R 2 , Z 1 , Z 2 2 S nx + , and matrices F 2 R nx⇥ny , W 2 R nx⇥nx and Y 1 , Y 2 2 R 8nx⇥2nx , such that L(h)C + N (h)M MA(h) = 0, ( 18 
)
MD = 0, ( 19 
)  (h, h + , ⌧) + He{W > B(h, )} Y 2 Y > 2 e Z 2 0, ( 20 
)  (h, h + , ⌧ ) + He{W > B(h, )} Y 1 Y > 1 e Z 2 0, (21) 
for h, h + 2 H and 2 V . The matrices (h, h + , ⌧), (h, h + , ⌧ ), W and B(h, ) in (20)-( 21) are defined as

175 (h, h + , ⌧) = #(h, h + ) He > (⌧ )P (h)F 2 + He > (⌧ )P (h + )F 1 + > (⌧ )P (h + ) (⌧ ) > (⌧ )P (h) (⌧ ), (h, h + , ⌧ ) = #(h, h + ) He > (⌧ )P (h)F 2 + He > (⌧ )P (h + )F 1 + > (⌧ )P (h + ) (⌧ ) > (⌧ )P (h) (⌧ ), #(h, h + ) = F > 1 (P (h + ) + ⇧ 1 ) F 1 F > 2 P (h)F 2 + e R G > 1 e Z 1 G 1 He{Y 1 G 2 + Y 2 G 3 }, (22) 
P (h) = r X i=1 h i (µ k )P i , P(h + ) = r X q=1 h q (µ k+1 )P q , e Z 1 = diag (Z 1 , 3 (⌧ ) Z 1 ) , e Z 2 = diag(Z 2 , 3Z 2 ), ⇧ 1 = diag ⌧ 2 Z 1 + ⌧ 2 Z 2 , 0 2nx , e R = diag (0, R 1 , R 2 R 1 , 0 nx , R 2 , 0 3nx ) , W = ✏W > v 1 + W > v 2 + W > v 4 , B(h, ) = v 1 + N (h, )v 2 + MA d (h)v 4 , F 1 = 2 4 v 1 v 2 v 6 v 3 v 7 + v 8 v 4 v 5 3 5 , F 2 = 2 4 0 nx⇥8nx v 6 v 2 v 7 + v 8 v 3 v 4 3 5 , (⌧ ) = 2 4 v 2 ⌧ v 6 ⌧ v 8 3 5 , (⌧ ) = 2 4 v 2 ⌧ v 6 ⌧ v 7 3 5 , G 1 =  v 2 v 3 v 2 + v 3 2v 6 , G 2 =  v 3 v 4 v 3 + v 4 2v 7 , G 3 =  v 4 v 5 v 4 + v 5 2v 8 , with v i = ⇥ 0 nx⇥(i 1)nx I nx 0 nx⇥(8 i)nx ⇤ , for i 2 N 8 , ⌧ = ⌧ ⌧ , and ( 
⌧ ) = 8 < : 1, if ⌧ = 1, ⌧ + 1 ⌧ 1 , if ⌧ > 1.
Proof. Using the algebraic constraints ( 18) and [START_REF] Lan | Integrated design of fault-tolerant control for nonlinear systems based on fault estimation and T-S fuzzy modeling[END_REF], it is possible to rewrite the error dynamics [START_REF] Lu | Relaxed conditions of observer design of discrete-time Takagi-Sugeno fuzzy systems via a new multi-instant gainscheduling scheme[END_REF] as

e k+1 = N (h, )e k + MA d (h)e k ⌧ k . (23) 
The following fuzzy Lyapunov-Krasovskii functional is employed to ensure the stability analysis of the time-varying delay system [START_REF] Pan | A unified framework for asymptotic observer design of fuzzy systems with unmeasurable premise variables[END_REF],

V (e k ) = V 1 (e k ) + V 2 (e k ) + V 3 (e k ), (24) 
where

V 1 (e k ) = $ > k P (h)$ k , V 2 (e k ) = k 1 X i=k ⌧ e > i R 1 e i + k ⌧ 1 X i=k ⌧ e > i R 2 e i , (25) 
V 3 (e k ) = ⌧ 0 X i= ⌧ +1 k X j=k+i ⌘ > j Z 1 ⌘ j + ⌧ ⌧ X i= ⌧ +1 k X j=k+i ⌘ > j Z 2 ⌘ j , $ k = h e > k P k 1 i=k ⌧ e > i P k ⌧ 1 i=k ⌧ e > i i > , ⌘ i = e i e i 1 .
Since the matrices P (h), R 1 , R 2 , Z 1 and Z 2 are positive definite, the LKF defined in ( 24) is also positive definite. Let us define the following augmented vector:

⇣ k = ⇥ e > k+1 e > k e > k ⌧ e > k ⌧ k e > k ⌧ ⌫ > 1k ⌫ > 2k ⌫ > 3k ⇤ > (26) 
with

⌫ 1k = 1 ⌧ + 1 k X i=k ⌧ e i , ⌫ 2k = 1 ⌧ k ⌧ + 1 k ⌧ X i=k ⌧ k e i , ⌫ 3k = 1 ⌧ ⌧ k + 1 k ⌧ k X i=k ⌧ e i .
Now, it is possible to compute an upper bound of the di↵erence V (e k ) =

V (e k+1 ) V (e k ), where V (e k ) is defined in [START_REF] Ichalal | How to cope with unmeasurable premise variables in Takagi-Sugeno observer design: Dynamic extension approach[END_REF]. To this end, we express V (e k ) in the function of ⇣ k . We have

V 1 (e k ) = V 1 (e k+1 ) V 1 (e k ) = $ > k+1 P (h + )$ k+1 $ > k P (h)$ k . (27) 
From the definitions of $ k in (25), and F 1 , F 2 in ( 22), it follows that

$ k = (F 2 + (⌧ k ))⇣ k and $ k+1 = (F 1 + (⌧ k ))⇣ k , (28) 
with

(⌧ k ) = 2 4 v 2 ⌧ v 6 (⌧ k ⌧ )v 7 + (⌧ ⌧ k )v 8 3 5 .
From ( 27) and ( 28), V 1 (e k ) can be rewritten as

V 1 (e k )=⇣ > k h (F 1 + (⌧ k )) > P (h + ) (F 1 + (⌧ k )) (F 2 + (⌧ k )) > P (h) (F 2 + (⌧ k )) i ⇣ k . (29) 
Moreover, the di↵erence V 2 (e k ) = V 2 (e k+1 ) V 2 (e k ) can be computed as

V 2 (e k ) = e > k R 1 e k + e > k ⌧ (R 2 R 1 )e k ⌧ e > k ⌧ R 2 e k ⌧ , which can be described in the compact form V 2 (e k ) = ⇣ > k e R⇣ k , (30) 
where e R is defined in [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF]. Furthermore, the computation of the di↵erence V 3 (e k ) = V 3 (e k+1 ) V 3 (e k ) results in

V 3 (e k ) = ⌘ > k+1 ⌧ 2 Z 1 + ⌧ 2 Z 2 ⌘ k+1 ⌧ k X i=k ⌧ +1 ⌘ > i Z 1 ⌘ i ⌧ k ⌧ X i=k ⌧ +1 ⌘ > i Z 2 ⌘ i ,
which can be rewritten as

V 3 (e k ) = ⌘ > k+1 ⌧ 2 Z 1 + ⌧ 2 Z 2 ⌘ k+1 ⌧ k X i=k ⌧ +1 ⌘ > i Z 1 ⌘ i (31) ⌧ k ⌧ k X i=k ⌧ +1 ⌘ > i Z 2 ⌘ i ⌧ k ⌧ X i=k ⌧ k +1 ⌘ > i Z 2 ⌘ i .
From ( 29), ( 30) and ( 31), the di↵erence V (e k ) = V (e k+1 ) V (e k ) can be expressed by

V (e k ) = ⇣ > k ⇥ (F 1 + (⌧ k )) > P (h + )(F 1 + (⌧ k )) (F 2 + (⌧ k )) > P (h)(F 2 + (⌧ k )) ⇤ ⇣ k + ⇣ > k e R⇣ k + ⌘ > k+1 ⌧ 2 Z 1 + ⌧ 2 Z 2 ⌘ k+1 ⌃ 1 ⌃ 2 ⌃ 3 , (32) 
where

⌃ 1 = ⌧ k X i=k ⌧ +1 ⌘ > i Z 1 ⌘ i , ⌃ 2 = ⌧ k ⌧ k X i=k ⌧ +1 ⌘ > i Z 2 ⌘ i , ⌃ 3 = ⌧ k ⌧ X i=k ⌧ k +1 ⌘ > i Z 2 ⌘ i . (33) 
Applying the Wirtinger's inequality [START_REF] Gao | Unknown input observer-based robust fault estimation for systems corrupted by partially decoupled disturbances[END_REF] to the summation ⌃ 1 , and ( 16) to the summations ⌃ 2 and ⌃ 3 defined in [START_REF] Fridman | Introduction to Time-Delay Systems: Analysis and Control, Syst. Control: Found. Appl[END_REF], with matrices

F 1 , F 2 , G 1 , G 2 and
G 3 defined in [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF], the following upper bound can be computed for V (e k ) in (32):

R5.3 V (e k ) ⇣ > k h (F 1 + (⌧ k )) > P (h + ) (F 1 + (⌧ k )) i ⇣ k (34) 
+ ⇣ > k h (F 2 + (⌧ k )) > P (h)(F 2 + (⌧ k )) + e R + F > 1 ⇧ 1 F 1 i ⇣ k + ⇣ > k " G > 1 e Z 1 G 1  G 2 G 3 > " ⌧ ⌧ k ⌧ Z2 0 2nx 0 2nx ⌧ ⌧ ⌧ k Z2 #  G 2 G 3 # ⇣ k .
Then, applying the Moon's inequality [START_REF] Liu | Fault detection observer design for nonlinear systems via fuzzy Lyapunov functions[END_REF] to the right-hand side expression in [START_REF] Chen | Delay-dependent robust H 1 control for TS fuzzy systems with time delay[END_REF] with

% = ⌧ k ⌧ ⌧ , it follows that V (e k )  ⇣ > k ⌅(h, h + , ⌧ k )⇣ k , (35) 
with

⌅(h, h + , ⌧ k ) = F > 1 (P (h + ) + ⇧ 1 ) F 1 + e R + He > (⌧ k )P (h + )F 1 + > (⌧ k )P (h + ) (⌧ k ) > (⌧ k )P (h) (⌧ k ) F > 2 P (h)F 2 He > (⌧ k )P (h)F 2 G > 1 e Z 1 G 1 He{Y 1 G 2 + Y 2 G 3 } + %Y 1 e Z 1 2 Y > 1 + (1 %)Y 2 e Z 1 2 Y > 2 .
It follows from [START_REF] Souza | On stability and stabilization of T-S fuzzy time-delayed systems[END_REF] that the error dynamics ( 23) is asymptotically stable if

⇣ > k ⌅(h, h + , ⌧ k )⇣ k < 0. ( 36 
)
Moreover, from the definitions of B(h, ) in ( 22) and ⇣ k in ( 26), we have

B(h, )⇣ k = 0. ( 37 
)
Using the well-known Finsler's lemma, one has that condition ( 36) is verified under constraint [START_REF] Mozelli | A new discretized Lyapunov-Krasovskii functional for stability analysis and control design of timedelayed TS fuzzy systems[END_REF] if

⌅(h, h + , ⌧ k ) + W > B(h, ) + B(h, ) > W 0, ( 38 
)
with W specifically chosen as in [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF] to obtain a tractable problem with LMI constraints.

Since the condition ( 38) is a ne with respect to ⌧ k , it can be satisfied for all ⌧ k 2 {⌧ , . . . , ⌧ } if it is satisfied at the vertices of the interval ⌧ k 2 {⌧ , . . . , ⌧ }. Therefore, by applying the Schur complement lemma, it is possible to notice that condition [START_REF] Li | Robust H 1 sliding mode observer design for a class of Takagi-Sugeno fuzzy descriptor systems with time-varying delay[END_REF] 

is equivalent to  (h, h + , ⌧) + He{W > B(h, )} Y 2 Y > 2 e Z 2 0, ( 39 
)  (h, h + , ⌧ ) + He{W > B(h, )} Y 2 Y > 2 e Z 2 0, (40) 
with (h, h + , ⌧) and (h, h + , ⌧ ) defined as in [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF]. Notice that inequalities [START_REF] Wang | Further study on stabilization for continuous-time Takagi-Sugeno fuzzy systems with time delay[END_REF] and [START_REF] Hua | Stabilization of TS fuzzy system with time delay under sampled-data control using a new looped-functional[END_REF] are exactly equal to inequalities ( 20) and [START_REF] Zhu | Fuzzy functional observer-based finite-time adaptive sliding-mode control for nonlinear systems with matched uncertainties[END_REF], respectively, which are a ne with respect to ⌧ k implying that [START_REF] Sabbghian-Bidgoli | Polynomial fuzzy observer-based integrated fault estimation and fault-tolerant control with uncertainty and disturbance[END_REF] and ( 21) are negative definite for all ⌧ k 2 {⌧ , . . . , ⌧ }. Hence, if LMIs [START_REF] Sabbghian-Bidgoli | Polynomial fuzzy observer-based integrated fault estimation and fault-tolerant control with uncertainty and disturbance[END_REF] and ( 21) are feasible the asymptotic stability of system ( 23) is ensured for any integer delay ⌧ k 2 {⌧ , ⌧ + 1, . . . , ⌧ }.

Finally, it is proved that the UI R4.2 estimate dk defined in (6) asymptotically converges to d k . To this end, the expression of the unknown input d k can be retrieved from (4) as

d k = (CD) † [y k+1 C(⇤ k + A(h)x k + A d (h)x k ⌧ k )] . (41) 
Then, it is possible to compute the UI estimation error " k = d k dk from ( 6) and [START_REF] Chen | Delay-variationdependent criteria on stability and stabilization for discrete-time T-S fuzzy systems with time-varying delays[END_REF] as

" k = (CD) † C (A(h)e k + A d (h)e k ⌧ k + G(h) ) .
Using [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF], it is possible rewrite the UI estimation error " k as

" k = (CD) † C (A (h, )e k + A d (h)e k ⌧ k ) , (42) 
with A (h, ) = P r i=1 h i (µ k )A i ( ), and

A i ( ) = A i + G i , (43) 
where is defined in [START_REF] Guerra | H 1 LMI-based observer design for nonlinear systems via Takagi-Sugeno models with unmeasured premise variables[END_REF]. We can see from [START_REF] Sheng | An asymmetric Lyapunov-Krasovskii functional method on stability and stabilization for T-S fuzzy systems with time delay[END_REF] that if e k ! 0, then e k ⌧ k ! 0 and " k ! 0, when k ! 1. This concludes the proof.

Notice that Theorem 1 cannot be straightforwardly solved for UIO design R1.3 because of the nonlinear matrix equalities ( 18)-( 19), the nonlinear matrix inequalities ( 20)-( 21), and their dependency on the membership functions. To deal with these issues, the following lemma is employed and numerically tractable conditions to design the TS fuzzy UIO (6) for system (4) are derived.

Lemma 4 ([59]

). Consider a matrix W 2 R m⇥n , with m n, and a matrix M 2 R k⇥n . Matrix X of the form X = ZW † + Y(I WW † ), with an arbitrary matrix Y 2 R k⇥m , is a solution of XW = M when the condition

MW † W = M holds.
Based on the results in Theorem 1 and Lemma 4, the following theorem presents LMI-based conditions to design TS fuzzy UIOs for system (4). Theorem 2. Consider the TS fuzzy system with time-varying delay (4), given positive integers ⌧ and ⌧ , with ⌧ < ⌧ , and a positive scalar ✏. There is an asymptotic UIO in the form (6), if there exist positive definite matrices

P i 2 S 3nx + , R 1 , R 2 , Z 1 , Z 2 2 S nx + , and matrices X i 2 R nx⇥ny , Q 2 R nx⇥ny , W 2 R nx⇥nx , Y 1 , Y 2 2 R 8nx⇥2nx , for i, 2 N r such that  iq (⌧ ) + He{⌥ i ( )} Y 2 Y > 2 e Z 2 0, ( 44 
)  iq (⌧ ) + He{⌥ i ( )} Y 1 Y > 1 e Z 2 0, ( 45 
)
for all i, q 2 N r , and 2 V . The matrices iq (⌧ ), iq (⌧ ) and ⌥ i ( ) are defined as

iq (⌧ ) = # iq He > (⌧ )P i F 2 + > (⌧ )P q (⌧ )+He > (⌧ )P q F 1 > (⌧ )P i (⌧ ), iq (⌧ ) = # iq He > (⌧ )P i F 2 + > (⌧ )P q (⌧ )+He > (⌧ )P q F 1 > (⌧ )P i (⌧ ), # iq = F > 1 (P q + ⇧ 1 )F 1 F > 2 P i F 2 + e R G > 1 e Z 1 G 1 He{Y 1 G 2 + Y 2 G 3 }, ⌥ i ( ) = I > (QA i ( )v 2 W v 1 X i Cv 2 + QA di v 4 ) , with A i ( ) = A i + G i , I = (✏v 1 + v 2 + v 4 ), Q = W + (W U + QT )C, and U = D(CD) † (46) 
T = I (CD)(CD) † (47) 
Q = W S (48) 
X i = W H i , (49) 
and

F 1 , F 2 , G 1 , G 2 , G 3 , e Z 1 , e Z 2 , ⇧ 1 , e R, ( 
⌧ ), (⌧ ) defined as in [START_REF] Bergsten | Observers for Takagi-Sugeno fuzzy systems[END_REF]. Moreover, the matrix gains F 2 R nx⇥ny , M 2 R nx⇥nx , N i 2 R nx⇥nx , and L i 2 R nx⇥ny , for 8i 2 N r , of the TS fuzzy UIO (6) can be computed as

F = U + ST (50) 
N i = MA i H i C (51) 
L i = H i (I + CF ) MA i F. (52) 
Proof. It follows from ( 7) and ( 19) that

F (CD) = D. (53) 
Using Lemma 4 and the rank condition in Assumption 3, the solution F of the matrix equation ( 53) can be directly obtained from [START_REF] Ghanes | Observer design for nonlinear systems under unknown time-varying delays[END_REF], where U and V are given in [START_REF] You | Robust fault estimation based on learning observer for Takagi-Sugeno fuzzy systems with interval timevarying delay[END_REF] and [START_REF] Liu | Actuator and sensor fault estimation for discrete-time switched T-S fuzzy systems with time delay[END_REF], respectively. Let us denote

H i = L i + N i F, 8i 2 N r . (54) 
From ( 7), ( 18) and ( 54), we can obtain [START_REF] You | State and unknown input simultaneous estimation for a class of nonlinear systems with time-delay[END_REF]. Moreover, expression (52) can be directly obtained from [START_REF] You | State and unknown input simultaneous estimation for a class of nonlinear systems with time-delay[END_REF] and [START_REF] Jia | Fault reconstruction and faulttolerant control via learning observers in Takagi-Sugeno fuzzy descriptor systems with time delays[END_REF]. Notice also from ( 7) and ( 51) that

N i = (I + F C)A i H i C = [I + (U + QT )C]A i H i C, 8i 2 N r . (55) 
Using expressions ( 7), ( 14), ( 43), ( 50) and ( 55), followed by the variable changes ( 48) and ( 49), inequalities ( 44) and ( 45) can be respectively rewritten as

 iq (⌧ ) + He{W > B i ( )} Y 2 Y > 2 e Z 2 0, (56) 
 iq (⌧ ) + He{W > B i ( )} Y 1 Y > 1 e Z 2 0, (57) 
with

B i ( ) = v 1 + N i ( )v 2 + MA di v 4 . Since h, h + 2 H and 2 
V , by convexity property, we prove that conditions ( 56) and ( 57) respectively imply [START_REF] Sabbghian-Bidgoli | Polynomial fuzzy observer-based integrated fault estimation and fault-tolerant control with uncertainty and disturbance[END_REF] and [START_REF] Zhu | Fuzzy functional observer-based finite-time adaptive sliding-mode control for nonlinear systems with matched uncertainties[END_REF]. Then, using the result in Theorem 1, the proof can be concluded.

R4.4

Remark 5. In this paper, we consider TS fuzzy systems with constant matrices C and D mainly because of the algebraic constraints induced by the proposed UI decoupling method. Indeed, if C and/or D are state-dependent, then it would be hard to get a solution from the algebraic equation [START_REF] Zemouche | Observers for a class of Lipschitz systems with extension to H 1 performance analysis[END_REF]. Moreover, even when the solution of this latter exists, the state-dependent forms of the solution matrices U and T in (46) and (47) become too complex to solve the corresponding state-dependent LMI conditions (44) and (45) in that case. This restriction is also observed in recent works on UIO design for TS fuzzy systems without time-varying delay [START_REF] Nguyen | Avoiding unmeasured premise variables in designing unknown input observers for Takagi-Sugeno fuzzy systems[END_REF][START_REF] Vu | Unknown input method based observer synthesis for a discrete time uncertain T-S fuzzy system[END_REF]. The design of TS fuzzy UI0 for time-delayed nonlinear systems, whose output and UI matrices are also a↵ected by unmeasured nonlinearities, is left for future works.

The procedure to design UIOs for time-varying TS fuzzy systems with unmeasured nonlinear consequents is summarized in Algorithm 1. This design procedure also enables determining the maximum allowable upper bound ⌧ of the time-delay function ⌧ k for a given lower bound ⌧ .

Illustrative Examples

This section provides two numerical examples to illustrate the e↵ectiveness of the proposed TS fuzzy unknown input observer design. All LMIbased design conditions are implemented in Matlab using Yalmip parser and Mosek solver. In both examples, a line search for ✏ with 10 points R2.4 gridded linearly on a logarithmic scale in [1, 10 3 ] has been performed.

Example 1. Consider the following nonlinear time-varying delay system adapted from [START_REF] Dong | Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems[END_REF]: Step 1: Compute U with (46) and T with (47).

x 1,k+1 = (1 + T s )x 1,k + cT s x 2,k + T s sin(x 3,k ) 0.1T s x 4,k + (1 c)T s x 2,k ⌧ k + T s (1 + x 2 1,k )u k (58) x 2,k+1 = T s x 1,k + (1 2cT s )x 2,k (1 c)2T s x 2,k ⌧ k x 3,k+1 = T s x 1,k + (1 0.3T s )x 3,k + cT s x 2 1,k x 2,k + (1 c)T s x 2 1,k x 2,k ⌧ k
Step 2: Solve LMI conditions ( 44) and ( 45) for ⌧ = ⌧ while true do ⌧ ⌧ + 1 Solve conditions ( 44) and ( 45) in Theorem 2.

if unfeasible then

Stop while loop.

end end

Step 3: Get W , Q and X i , for i 2 N r , with the maximum ⌧ obtained in Step 2.

Step 4: Compute S with ( 48) and H i with [START_REF] Ning | H 1 output feedback control for fractional-order T-S fuzzy model with time-delay[END_REF].

Step 5: Compute the observer gains F , M , L i and N i with ( 7), ( 50), ( 51) and ( 52), respectively.

x 4,k+1 = (1 T s )x 4,k + T s sin(x 3,k ) + T s d k y 1,k = x 1,k y 2,k = x 2,k + x 4,k with x 1,k 2 [ a, a], x 3,k = [ ⇡ 2 , ⇡ 2 
] and c 2 [0, 1]. For illustrations, we consider system (58) with c = 0.9, T s = 0.5, and the parameter a is used to study the design conservatism. The premise variable is defined as µ k = x 2 1,k . The unmeasured nonlinearity is given by (x) = sin(x 3,k ). Then, the set of vertices V in (12) is defined for system (58) as

V = ⇥ 0 0 ⇢ 0 ⇤ : ⇢ 2 { 1, 1} .
Moreover, system (58) can be rewritten in the form (1) with The corresponding membership functions are given by

A(µ k ) = + T s cT s 0 0.1T s T s 1 2cT s 0 0 T s cT s µ k 1 0.3T s 0 0 0 0 1 T s 3 7 7 5 , A d (µ k ) = (1 c)T s 0 0 (1 c)2T s 0 0 (1 c)T s µ k 0 0 0 0 0 3 7 7 5 , C = 0 1 0 1 3 7 7 5 > , f(µ k , u k ) = 2 
h 1 (µ k ) = x 2 1,k a 2 , h 2 (µ k ) = a 2 x 2 1,k a 2 .
For this example, we compute the largest value of parameter a, denoted by a ⇤ , for which a TS fuzzy UIO can be designed with di↵erent values of the upper bound ⌧ for system [START_REF] Liu | Comparison of bounding methods for stability analysis of systems with time-varying delays[END_REF]. To this end, Algorithm 1 is employed with ✏ = 10 3 and ⌧ = 1. The corresponding design result is shown in Table 1. As expected, we can see that a direct relation between a ⇤ and ⌧ , i.e., the larger value of a ⇤ leads to a smaller value of ⌧ . For illustrations, we consider the case with a = 832 and ⌧ = 8. Applying the design procedure given Algorithm 1, the following observer gains can be obtained: Example 2. We consider the electronic circuit system depicted in Fig. 2, whose dynamics can be described as [START_REF] Yang | Fault estimation and fault tolerant control for discrete-time nonlinear systems with perturbation by a mixed design scheme[END_REF] x

M =
1,k+1 = x 1,k c 11 x 1,k ⌧ k + c 12 10 x 1,k x 2,k c 13 (u k + d k ) x 2,k+1 = (1 c 25 )x 2,k + c 24 10 x 1,k ⌧ k (59) x 3,k+1 = (1 c 36 )x 3,k c 37 x 1,k + c 38 10 x 2 2,k y k = x 1,k being x 1,k , x 2,k and x 3,k the voltages on the capacitors with x 1,k 2 [ 1, 1],
x 2,k 2 [ 1, 1], the known input u k is the voltage source, and the unknown input d k can be viewed as a voltage fault signal. The system parameters are defined as

c 1l = T s R l C 1 , c 2m = T s R m C 2 , c 3n = T s R n C 3 ,
for l 2 {1, 2, 3}, m 2 {4, 5} and n 2 {6, 7, 8}. The parameter values are given by T s = 0.01s, R 1 = 0.6k⌦, R 2 = 66.667⌦, R 3 = 0.4k⌦, R 4 = 16.667⌦,

R 5 = 0.2k⌦, R 6 = 0.5⌦, R 7 = R 8 = 0.1k⌦, C 1 = C 2 = C 3 = 1mF. ≠ + R 5 R 4 C 2 + ≠ x 2 ◊ ≠ 1 10 
• (t) ◊ ≠ 1 10 ≠ + R 2 E d R 1 • (t) C 1 + ≠ x 1 R 3 ≠ + u ≠ + R 6 R 7 C 3 + ≠ x 3 R 8 ◊ ≠ 1 10
Figure 2: Diagram of the electronic circuit system.

The measured premise variable is defined as

µ k = x 1,k . With x 2,k 2 [ 1, 1]
, the set of vertices V is defined for the unmeasured nonlinearity (x) = x 2 2,k of system (58) as

V = ⇥ 0 ⇢ 0 ⇤ : ⇢ 2 { 2, 2} .
Notice that system (59) can be rewritten in the form

x k+1 = A(µ k )x k + A d x k ⌧ k + Dd k + f (u k ) + G (x k ), y k = Cx k (60) 
with The corresponding membership functions are given by

A(µ k ) =
h 1 (µ k ) = 1 x 1,k 2 , h 2 (µ k ) = 1 h 1 (µ k ).
For this example, the goal is to design a TS fuzzy observer (6) for system [START_REF] Rao | Generalized Inverse of Matrices and Its Applications[END_REF] with a maximum possible upper bound ⌧ of the time-varying delay ⌧ k such that xk ! x k and dk ! d k , when k ! 1. Following the design procedure in Algorithm 1 with ✏ = 100 and ⌧ = 1, the maximum delay bound ⌧ = 160 can be reached. For illustrative purposes, Fig. 3 depicts the estimation per-R1.4 formance of the proposed TS fuzzy UIO with respect to the initial condition x 0 = ⇥ 0.5 0.5 0.5 ⇤ > , the known input u k = 1.5 cos(0.1⇡k), the unknown input d k = cos(0.02⇡k) sin(0.1⇡k), and the time-delay function is selected as ⌧ k = round (80.5 + 79.5 cos(0.02k⇡)) 1 . As can be seen, the states x k of the electronic system (59) together with its unknown input d k are accurately estimated under the e↵ect of ⌧ k . Notably, the states x 2 and x 3 are not measured, and even so, the proposed UIO estimates these states quite e ciently. This result illustrates the e↵ectiveness and the practical interest of the proposed TS fuzzy UIO design for nonlinear systems with time-varying delays and unmeasured nonlinearities.

Conclusions

R1.6 R2.5

A method has been presented to design unknown input observers for nonlinear systems with time-varying delays and unmeasured nonlinearities. The nonlinear system has been reformulated for observer design using TS fuzzy modeling with nonlinear consequents. All unmeasured nonlinearities, isolated in the nonlinear consequents, are assumed to be Lipschitzian such that the mean value theorem can be applied to deal with the well-known mismatch issue in TS observer design caused by unmeasured premise variables. LMIbased conditions have been presented for UIO design, which can guarantee an asymptotic estimation of both the state and the unknown input. The e↵ectiveness and the practical interest of the proposed design procedure are illustrated with two examples. For future works, we focus on adapting the proposed UIO design results for fault-tolerant control of nonlinear systems with unknown time-varying delays.
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Problem 1 .

 1 Consider the nonlinear system with time-varying delay (1), 155 represented by the Takagi-Sugeno fuzzy model (4). Design an UIO (6) such that xk and dk asymptotically converge to x k and d k , respectively, for 8⌧ k 2 {⌧ , . . . , ⌧ }, k 2 Z.

Algorithm 1 :

 1 Time-Varying Delay UIO Design Input : TS fuzzy system (4), ✏, ⌧ Output: TS fuzzy observer (6) such that xk ! x k and dk ! d k , when k ! 1

6 6 4 T

 4 s (1 + µ k )u kApplying the sector nonlinearity approach [10, Chapter 2] with the measured premise variable µ k = x 2 1,k , system (58) can be represented by a two-rule TS fuzzy model (4) with

Fig. 1 , the known input u k = 2 .

 12 Fig. 1 depicts the estimation performance of the proposed UIO with respect to the initial condition x 0 = ⇥ 0.25 0.1 0.5 1 ⇤ > , the known input u k = 2.5x 1,k 0.7x 2,k x 3,k , and the unknown input d k = 2 cos(0.25⇡k) sin(0.1⇡k). The time-varying delay signal ⌧ k is generated randomly while respecting the minimum bound ⌧ = 1 and the maximum bound ⌧ = 8. We can see that both the estimates of the state xk and the unknown input dk asymptotically convergent to x k and d k , respectively, despite the e↵ect of the time-varying delay ⌧ k .

Figure 1 :

 1 Figure 1: Estimation performance obtained for system (58) with a = 832 and ⌧ = 8 under the e↵ect of time-varying bounded delay.

  u k )= ⇥ c 13 u k 0 0 ⇤ > , (x k ) = x 2 2,k .Applying the sector nonlinearity approach [10, Chapter 2] with the measured premise variable µ k = x 1,k , the electronic circuit system (60) can be represented by a two-rule TS fuzzy model (4) with

Figure 3 :

 3 Figure 3: Estimation performance obtained for the electronic circuit system (59) under the e↵ect of ⌧ k = round (80.5 + 79.5 cos(0.02k⇡)).

  nµ the vector of
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	measurable premise variables, ' k the initial condition, and ⌧ k is a bounded
	time-varying delay. The elements of function f : D x ⇥ R nu ! R nx can be measured from the output whereas the nonlinear function : D x ! R n depends on unmeasured states.
	Using the fuzzy modeling technique [10], the nonlinear system with time-
	varying delay (1) can be reformulated as a Takagi-Sugeno fuzzy model with
	nonlinear consequents:
	Rule R i : If µ 1 is M i 1 and . . . and µ nµ is M i nµ . Then 8 > <
	> :

  xk is the state estimate, dk is the UI estimate, and

Table 1 :

 1 Maximum delay upper bound ⌧ in function of a ⇤ in Example 1.

	⌧	2	5	8	11 14 17 20
	a ⇤ 1153 888 832 720 272 1.5 1

round(x) denotes the function that rounds the entry x

R to the nearest integer using the round half up tie-breaking rule.
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