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Márcia L. C. Peixotoa, Anh-Tu Nguyenb, Thierry-Marie Guerrab, Reinaldo
M. Palharesc,⇤

a
Federal University of Minas Gerais, Graduate Program in Electrical Engineering, Brazil

b
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Abstract

This paper investigates the problem of unknown input observer (UIO) design
for Takagi–Sugeno (TS) fuzzy systems with time-varying delay. For observer
design, all the unmeasured nonlinearities are isolated in the nonlinear con-
sequent parts of TS fuzzy systems. This allows dealing with the well-known
issue related to unmeasured premise variables for TS fuzzy observer design in
a more e↵ective fashion via the mean value theorem. Using the unknown in-
put (UI) decoupling technique, no a priori information on the UI is needed for
the proposed TS fuzzy observer design, which can guarantee the asymptotic
estimations of both the system state and the unknown input. Employing
a fuzzy Lyapunov-Krasovskii functional with a suitable augmented vector,
the e↵ect of time-varying delay on the estimation error dynamics is taken
into account in the observer design. Numerical examples are presented to
demonstrate the e↵ectiveness of the proposed fuzzy UIO design method for
nonlinear time-varying delay systems.
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1. Introduction

State estimation of nonlinear systems in the presence of unknown in-
puts (UIs) has received increasing research attention. The main reason
is that, within di↵erent application contexts, unknown inputs can be seen
as unmodeled dynamics, faults in engineering systems, uncertain distur-5

bances, and attack signals in secure communication or cyber-physical sys-
tems [1, 2, 3, 4, 5, 6]. Consequently, simultaneous estimation of the state
of a dynamical system and its unknown input has become a key aspect in
several practical applications [7, 8, 9].

Takagi–Sugeno (TS) fuzzy model-based technique [10] has become one10

of the most e↵ective tools to control and estimation of nonlinear systems.
TS fuzzy modeling together with Lyapunov stability theory, conditions for
stability analysis, control, and observer design can be described in terms of
linear matrix inequality (LMI) constraints, which can be e↵ectively solved via
numerical solvers. Therefore, TS fuzzy-model-based methods have received R1.115

considerable attention. Within this context, a great deal of research e↵ort has
been devoted to the design of TS fuzzy observers for nonlinear systems [11,
12, 13, 14]. In particular, researchers have increasingly focused on developing
TS fuzzy observer design methods in the presence of UIs, as UIs have become
a key role in fault diagnosis [15, 16, 17, 8, 18] and robust and fault-tolerant20

control [19, 20, 21].
It is noteworthy that when the premise variables can be measured, many

results existing for linear observer design can be extended to TS fuzzy sys-
tems [22, 23]. However, the corresponding results can only be applied to
a restrictive class of nonlinear systems. Hence, TS fuzzy observer design25

with unmeasured premise variables must be considered, which leads to a
challenging TS fuzzy observer design problem due to mismatching nonlinear
terms involved in the estimation error dynamics [11, 24]. One of the most
common approaches to deal with the mismatching terms is based on the Lip-
schitz property of the membership functions (MFs) [22, 25, 26]. However, as30

pointed out in [24], this approach generally leads to over-conservative results.
To avoid this major drawback, the mean value theorem has been exploited
for TS fuzzy observer design with unmeasured nonlinearities [11, 4, 27]. Un-
known input observers (UIOs) have been also developed for TS fuzzy systems
with unmeasured premise variables [26, 28, 4, 29, 30, 27]. A proportional-35

integral observer structure has been proposed in [28] for continuous-time TS
fuzzy models with unknown inputs, which are assumed to be of polynomial
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forms. The authors in [26] have proposed a method to estimate the uncer-
tainties of TS fuzzy systems using UIO techniques. However, the results
in [26] require a posteriori check on the Lipschitzian property of the nonlin-40

ear mismatching terms, caused by unmeasured premise variables, which can
be restrictive for practical uses. Using a UI decoupling method for nonlinear
dynamics, the issue of unmeasured premise variables in TS fuzzy observer
synthesis can be overcome in [29, 30]. In [4, 27], nonlinear systems have been
reformulated in a specific TS fuzzy form with unmeasured nonlinear conse-45

quent parts to design UIOs while avoiding unmeasured premise variables. It R2.2
is worth mentioning that TS fuzzy models with nonlinear consequent parts
have also been employed to deal with the stabilization problem of nonlinear
systems, see [31, 32] and related references.

Time delays are omnipresent in many control engineering applications, for50

instance, packet-based communication systems, networked control systems,
population dynamics, epidemics [33]. Furthermore, the presence of time de-
lay in the system dynamics can lead to critical issues related to poor perfor-
mance, oscillation, and instability. Hence, due to the theoretical significance
and practical relevance, it is essential to take into account the influences55

of time delays in the study of dynamical systems. Within the context of
time-delay TS fuzzy models, Lyapunov–Krasovskii stability theory has been
largely exploited to derive LMI-based conditions to design TS fuzzy con-
trollers and observers, see for instance [34, 35, 36, 37, 38, 39, 40, 41, 42, 43]
and related references. Following this idea, UIOs have been also developed60

for time-delay TS fuzzy systems. The robust fault detection problem has
been addressed in [44, 45] for TS fuzzy systems subject to unknown input
and time-varying delay. Robust fault estimation has been studied for a class
of delayed TS fuzzy systems in [46], in which the system state and the actu-
ator fault can be simultaneously estimated using a learning observer scheme.65

In [47], the estimation of both actuator and sensor faults have been stud-
ied for switched discrete-time TS fuzzy systems with constant time delay.
The authors in [48] have developed a fault-tolerant control scheme for TS
fuzzy systems with multiple time-varying delays as well as sensor and actu-
ator faults. In [49], an observer-based control method has been proposed for70

fractional-order uncertain TS fuzzy systems with unknown input and time
delay. It is worth mentioning that the above-mentioned results on TS fuzzy
UIO design are only concerned with the case of measured premise variables,
which can be restrictive for engineering applications. Notice also that UIOs
have been also developed for Lipschitz nonlinear systems with constant time-75
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delay in [50, 51, 52]. Despite a great advance, there is a lack of literature on
UIO design for delayed TS fuzzy systems with unmeasured premise variables.

Motivated by the aforementioned discussion, this paper presents novel
conditions to design UIOs for nonlinear systems with time-varying delays and
unmeasured nonlinearities. To this end, nonlinear systems are represented80

by TS fuzzy model, where all unmeasured nonlinearities are regrouped in
the nonlinear consequents. By means of the mean value theorem [53], this
enables an e↵ective way to deal with the major issue related to unmeasured
premise variables in TS fuzzy observer design. The e↵ect of time-varying
delay on the estimation error dynamics is explicitly taken into account in the85

observer design procedure via a fuzzy Lyapunov-Krasovskii functional (LKF)
with a suitable augmented vector to reduce the design conservativeness. The
Wirtinger-based summation inequality is used together with Moon’s inequal-
ity as well as the well-known Finsler’s lemma to derive numerically tractable
UIO design conditions. Notice that the resulting UIO design for TS fuzzy90

systems with time-varying delay and unmeasured nonlinearities has not been
reported in the open literature. The main contributions of this paper can be
summarized as follows. R2.3

• Using fuzzy LKF stability tools together with various relaxation tech-
niques, a new set of delay-dependent LMI conditions are derived to95

design UIOs for TS fuzzy systems with time-varying delay and unmea-
sured nonlinearities.

• The designed fuzzy observer allows to simultaneously and asymptoti-
cally estimate both the system state and the UIs without requiring any
a priori information on UIs.100

Notation. Z+ is the set of positive integers. For a natural number m, Nm =
{1, 2, . . . ,m}. Sn

+ is the set of symmetric positive definite matrices of order
n. Rn denotes the n-dimensional Euclidean space, and Rm⇥n is the set of all
m⇥n real matrices. For two vectors x, y 2 Rn, xi denotes the ith entry of x;
the convex hull of vectors � and � is denoted as co(�, �) = {��+(1��)� : � 2105

[0, 1]}. For i 2 Nm, we denote �m(i) = [0, . . . , 0, 1ith, 0, . . . , 0]> 2 Rm. For
a matrix Y , Y � 0 means that Y is positive definite, and He{Y } = Y + Y

>.
If the existence is ensured, Y † denotes the Moore-Penrose pseudo-inverse of
matrix Y , i.e., Y † = (Y >

Y )�1
Y

>. A block diagonal matrix whose elements
are matrices A and B is denoted by diag(A,B). The identity matrix of order110

n is denoted by In and the null matrix of order n ⇥ m by 0n⇥m. If the
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dimensions of both identity and null matrices are straightforwardly deduced,
they are omitted.

2. Problem Statement

After a system description, this section formulates the UIO design prob-115

lem for TS fuzzy systems with time-varying delays and unmeasured nonlin-
earities.

2.1. System Description

Consider a nonlinear system with time-varying delays given by

xk+1 = A(µk)xk+Ad(µk)xk�⌧k + f (µk, uk) +G(µk)� (xk) +Ddk, 8k 2 Z+

yk = Cxk

xk = 'k, k 2 {�⌧ , . . . , 0},
(1)

being xk 2 Dx ✓ Rnx the state, yk 2 Rny the system output, uk 2 Rnu the
known input, dk 2 Rnd is the unknown input (UI), µk 2 Rnµ the vector of120

measurable premise variables, 'k the initial condition, and ⌧k is a bounded
time-varying delay. The elements of function f : Dx ⇥ Rnu ! Rnx can be
measured from the output whereas the nonlinear function � : Dx ! Rn�

depends on unmeasured states.
Using the fuzzy modeling technique [10], the nonlinear system with time-

varying delay (1) can be reformulated as a Takagi-Sugeno fuzzy model with
nonlinear consequents:

Rule Ri : If µ1 is M
i
1 and . . . and µnµ is M

i
nµ
. Then

8
><

>:

xk+1 = Aixk + Adixk�⌧k +Ddk + f(µk, uk) +Gi�(xk)

yk = Cxk

xk = 'k, k 2 {�⌧ , . . . , 0},
(2)

being Ri the ith fuzzy rule, the matrices (Ai, Adi, Gi) are known, r denotes
the number of fuzzy rules, and M

i
j , for i 2 Nr and j 2 Nnµ , are the fuzzy

sets. The fuzzy membership functions are defined as

hi(µk) =

Qnµ

j=1 �
i
j(µj)Pr

i=1

Qnµ

j=1 �
i
j(µj)

, i 2 Nr, (3)
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where �ij(µj) represents the membership grade of µj with respect to the fuzzy
set M

i
j . Notice that the MFs defined in (3) belong to the unit simplex H

with r vertices

H =

(
h 2 Rr :

rX

i=1

hi = 1, 0  hi  1, i 2 Nr

)
,

where h =
⇥
h1(µk), h2(µk), . . . , hr(µk)

⇤
. Using the center-of-gravity method

for defuzzification [10], the following compact form can be obtained for the
TS fuzzy system (2):

xk+1 = A(h)xk + Ad(h)xk�⌧k +Ddk + f(µk, uk) +G(h)�(xk)

yk = Cxk (4)

xk = 'k, k 2 {�⌧ , . . . , 0},

with
⇥
A(h) Ad(h) G(h)

⇤
=

rX

i=1

hi(µk)
⇥
Ai Adi Gi

⇤
.

For UIO design, the following assumptions for system (1) equivalently rep-125

resented in form (4) are considered.
R3
R4.1Assumption 1. The time-varying delay ⌧k is assumed to be known, with

⌧  ⌧k  ⌧ , for 8k 2 Z+, where the lower bound ⌧ and the upper bound ⌧
are given positive integers.

Assumption 2. The nonlinear function �(x) : Dx ! Rn� is di↵erentiable
with respect to x and satisfies

�
ij
 @�i

@xj
(x)  �̄ij, 8i 2 Nn� , 8j 2 Nnx , (5)

with �
ij
= min

x2Dx

⇣
@�i

@xj
(x)

⌘
and �ij = max

x2Dx

⇣
@�i

@xj
(x)

⌘
.130

Assumption 3. The matrix D is of full column rank, the output matrix C

is of full row rank, and rank(CD) = rank(D).
R2.1

Remark 1. The rank condition in Assumption 3 has been widely employed
for UIO design to decouple the e↵ect of UIs on the estimation error dynam-
ics [54, 4, 55]. Notice also that a large variety of nonlinearities satisfies135
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condition (5), e.g., the class of di↵erentiable Lipschitzian nonlinear func-
tions [23, 53, 52]. Moreover, for fuzzy observer design, Assumption 2 is not
restrictive, since TS fuzzy models are commonly constructed within a state-
space compact set Dx, especially when the sector nonlinearity approach [10]
is used.140

2.2. Problem Definition

For the estimation of system (4), the following time-delay UIO structure
is considered:

zk+1 = N(h)zk +MAd(h)x̂k�⌧k + L(h)yk +M ⇤̂k

x̂k = zk � Fyk, z0 = 0 (6)

d̂k = (CD)†(yk+1 � C⇤̂k � CA(h)x̂k � CAd(h)x̂k�⌧k),

where ⇤̂k = G(h)�(x̂k) + f(µk, uk), x̂k is the state estimate, d̂k is the UI
estimate, and

M = I + FC. (7)

Notice that Assumption 3 guarantees the existence of (CD)†. The MF-
dependent matrices L(h) 2 Rnx⇥ny , N(h) 2 Rnx⇥n, and the matrix F 2
Rnx⇥ny , are gains to be determined defined as

⇥
N(h) L(h)

⇤
=

rX

i=1

hi(µk)
⇥
Ni Li

⇤
.

R5.2
Remark 2. Note from (6) that for UI estimation, it is required to have the
future information of the measured output yk+1. It is emphasized that this UI
estimation expression is only used in theoretical analysis. In practice, the UI
estimation should be implemented as follows:

d̂k�1 = (CD)†(yk � C⇤̂k�1 � CA(h�)x̂k�1 � CAd(h�)x̂k�⌧k�1).

where h� =
⇥
h1(µk�1), h2(µk�1), . . . , hr(µk�1)

⇤
. Since the past values of all

signals involved in the above estimation expression are available, we can al-
ways estimate the one-step-back value d̂k�1 of the UI. This practical issue is
common for UI estimation with decoupling-based approaches [4,7,26,52,55].145
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Remark 3. All unmeasured nonlinearities of system (4) are regrouped in the
nonlinear consequent �(x). Then, the MFs hi(µk), for i 2 Nr, only depend
on measured premise variables. Therefore, for real-time implementation,
these MFs can be directly employed to construct the TS fuzzy observer (6)
without any estimated premise variables.150

The state estimation error is defined as ek = x̂k � xk. Then, from (6)
and (7), one has ek = zk � Fyk � xk, or

ek = zk �Mxk. (8)

Hence, from (4), (6) and (8), the estimation error dynamics can be defined
as

ek+1 = zk+1 �Mxk+1

= N(h)ek +MAd(h)ek�⌧k �MDdk + (L(h)C +N(h)M �MA(h)) xk+

MG(h)��,
(9)

where �� = �(x̂k)� �(xk). To convert this nonlinear mismatch term �� into
a function of ek for UIO design, the following mean value theorem is used.

R4.6
Lemma 1 ([53, Proposition 2]). Let  (x) : Rnx ! Rn and �, � 2 Rnx. If
 (x) is di↵erentiable with respect to x on co(�, �), then there exist constant
vectors ci 2 co(�, �), 8i 2 Nn , such that

 (�)�  (�) =
 n X

i=1

nxX

j=1

�n (i)�
>
nx
(j)

@ i

@xj
(ci)

!
(� � �).

The nonlinear term �� in (9) can be rewritten using Assumption 2 and R4.5
Lemma 1 as

�� = �(x̂k)� �(xk) =  ek, (10)

where

 =

" n�X

i=1

nxX

j=1

�n�(i)�
>
nx
(j)

@�i

@xj
(�i)

#
, (11)

with �i 2 co(x, x̂). Defining ⇢ij =
@�i

@xj
(�i), 8i 2 Nn� and 8j 2 Nnx , note R4.3

from (5) that the matrix  is with elements varying within a bounded convex
set, whose set of 2nxn� vertices is given by

V� =
n
⇢ =

⇥
⇢11, . . . , ⇢1nx , . . . ⇢n�nx

⇤
: ⇢ij 2

h
�
ij
,�ij

io
, (12)
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with �
ij
and �ij defined as in (5). From (9) and (10), the error dynamics can R4.5

be rewritten as

ek+1=N (h, )ek +MAd(h)ek�⌧k�MDdk + (N(h)M + L(h)C �MA(h)) xk,

(13)
where N (h, ) =

Pr
i=1 hi(µk)Ni( ), and

Ni( ) = Ni +MGi . (14)

Remark that N (h, ) can be represented in a polytopic form as N (h, ⇢lj) = R4.3Pr
i=1 hi(µk)Ni(⇢lj) with

Ni(⇢lj) = Ni +MGi

n�X

l=1

nxX

j=1

�n�(l)�
>
nx
(j)⇢lj.

The following UIO design problem for TS with time-varying delay fuzzy
systems can be now formulated.

Problem 1. Consider the nonlinear system with time-varying delay (1),155

represented by the Takagi-Sugeno fuzzy model (4). Design an UIO (6)
such that x̂k and d̂k asymptotically converge to xk and dk, respectively, for
8⌧k 2 {⌧ , . . . , ⌧}, k 2 Z.

The following technical lemmas are useful to develop time-varying delay
UIOs as stated in Problem 1.160

Lemma 2 (Wirtinger’s summation inequality [56]). Consider a given matrix
R 2 Sn

+, integers � > �. Then, for any sequence of discrete-time variable
x : [�, �]! Rn, the following inequalities hold:

��1X

i=�

⌘
>
i R⌘i �

1

� � �


⇥1

⇥2

�> "R 0

0
⇣

���+1
����1

⌘
3R

# 
⇥1

⇥2

�
, (15)

��1X

i=�

⌘
>
i R⌘i �

1

� � �


⇥1

⇥2

�> 
R 0
0 3R

� 
⇥1

⇥2

�
, (16)

with ⌘i = xi � xi�1, and

⇥1 = x� � x�, ⇥2 = x� + x� �
2

� � � + 1

�X

i=�

xi.

9



Lemma 3 (Moon’s inequality [57]). For any matrices R1, R2 2 Sn
+ and

Y1, Y2 2 R2n⇥n, and any scalar % 2 (0, 1), the following inequality holds:

1
%R1 0
0 1

1�%R2

�
⌫ ⇥R(%), (17)

with

⇥R(%) = He {Y1 [In 0n] + Y2 [0n In]}� %Y1R
�1
1 Y

>
1 � (1� %)Y2R

�1
2 Y

>
2 .

Remark 4. The use of Wirtinger’s inequality together with Moon’s inequal-
ity allows to deal with multiple summations, involved in LKF-based stability
analysis conditions, in a less conservative fashion compared to the standard
reciprocally convex combination lemma [58]. Hence, these technical tools are
employed here to derive LKF-based conditions to design UIOs for TS fuzzy165

systems with time-varying delays.

3. UIO Design for Time-Varying Delay TS Fuzzy Systems

This section presents conditions to design UIOs for TS fuzzy systems with
time-varying delays.

3.1. Existence of Time-Varying Delay Unknown Input Observers170

The following theorem provides the existence conditions of time-varying
delay fuzzy UIOs.

Theorem 1. Given positive integers ⌧ and ⌧ , with ⌧ < ⌧ , and a positive
scalar ✏. There is an asymptotic UIO of the form (6), if there exist MF-
dependent matrices L(h) 2 Rnx⇥ny , N(h) 2 Rnx⇥nx, positive definite matrices
P (h) 2 S3nx

+ , R1, R2, Z1, Z2 2 Snx
+ , and matrices F 2 Rnx⇥ny , W 2 Rnx⇥nx

and Y1, Y2 2 R8nx⇥2nx, such that

L(h)C +N(h)M �MA(h) = 0, (18)

MD = 0, (19)

�(h, h+, ⌧) + He{W >

B(h, )} Y2

Y
>
2 � eZ2

�
� 0, (20)


�(h, h+, ⌧) + He{W >

B(h, )} Y1

Y
>
1 � eZ2

�
� 0, (21)

10



for h, h+ 2 H and  2 V�. The matrices �(h, h+, ⌧), �(h, h+, ⌧), W and
B(h, ) in (20)–(21) are defined as

175

�(h, h+, ⌧) = #(h, h+)� He
�
�>(⌧)P (h)F2

 
+He

�
�>(⌧)P (h+)F1

 

+ �>(⌧)P (h+)�(⌧)� �>(⌧)P (h)�(⌧),

�(h, h+, ⌧) = #(h, h+)� He
�
�>(⌧)P (h)F2

 
+He

�
�>(⌧)P (h+)F1

 

+ �>(⌧)P (h+)�(⌧)� �>(⌧)P (h)�(⌧),

#(h, h+) = F
>
1 (P (h+) + ⇧1)F1 � F

>
2 P (h)F2 + eR�G

>
1
eZ1G1

� He{Y1G2 + Y2G3}, (22)

P (h) =
rX

i=1

hi(µk)Pi, P (h+) =
rX

q=1

hq(µk+1)Pq,

eZ1 = diag (Z1, 3� (⌧)Z1) , eZ2 = diag(Z2, 3Z2),

⇧1 = diag
�
⌧
2
Z1 + ⌧̃

2
Z2, 02nx

�
,

eR = diag (0, R1, R2 �R1, 0nx ,�R2, 03nx) ,

W = ✏W
>
v1 +W

>
v2 +W

>
v4,

B(h, ) = �v1 + N (h, )v2 +MAd(h)v4,

F1 =

2

4
v1 � v2

v6 � v3

v7 + v8 � v4 � v5

3

5 , F2 =

2

4
0nx⇥8nx

v6 � v2

v7 + v8�v3 � v4

3

5 ,

�(⌧) =

2

4
v2

⌧v6

⌧̃v8

3

5 , �(⌧) =

2

4
v2

⌧v6

⌧̃v7

3

5 ,

G1 =


v2 � v3

v2 + v3 � 2v6

�
, G2 =


v3 � v4

v3 + v4 � 2v7

�
, G3 =


v4 � v5

v4 + v5 � 2v8

�
,

with vi =
⇥
0nx⇥(i�1)nx Inx 0nx⇥(8�i)nx

⇤
, for i 2 N8, ⌧̃ = ⌧ � ⌧ , and

� (⌧) =

8
<

:

1, if ⌧ = 1,

⌧ + 1

⌧ � 1
, if ⌧ > 1.
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Proof. Using the algebraic constraints (18) and (19), it is possible to rewrite
the error dynamics (13) as

ek+1 = N (h, )ek +MAd(h)ek�⌧k . (23)

The following fuzzy Lyapunov-Krasovskii functional is employed to ensure
the stability analysis of the time-varying delay system (23),

V (ek) = V1(ek) + V2(ek) + V3(ek), (24)

where

V1(ek) = $
>
k P (h)$k,

V2(ek) =
k�1X

i=k�⌧

e
>
i R1ei +

k�⌧�1X

i=k�⌧

e
>
i R2ei, (25)

V3(ek) = ⌧

0X

i=�⌧+1

kX

j=k+i

⌘
>
j Z1⌘j + ⌧̃

�⌧X

i=�⌧+1

kX

j=k+i

⌘
>
j Z2⌘j,

$k =
h
e
>
k

Pk�1
i=k�⌧ e

>
i

Pk�⌧�1
i=k�⌧ e

>
i

i>
,

⌘i = ei � ei�1.

Since the matrices P (h), R1, R2, Z1 and Z2 are positive definite, the LKF
defined in (24) is also positive definite. Let us define the following augmented
vector:

⇣k =
⇥
e
>
k+1 e

>
k e

>
k�⌧ e

>
k�⌧k

e
>
k�⌧ ⌫

>
1k ⌫

>
2k ⌫

>
3k

⇤>
(26)

with

⌫1k =
1

⌧ + 1

kX

i=k�⌧

ei, ⌫2k =
1

⌧k � ⌧ + 1

k�⌧X

i=k�⌧k

ei, ⌫3k =
1

⌧ � ⌧k + 1

k�⌧kX

i=k�⌧

ei.

Now, it is possible to compute an upper bound of the di↵erence �V (ek) =
V (ek+1) � V (ek), where V (ek) is defined in (24). To this end, we express
�V (ek) in the function of ⇣k. We have

�V1(ek) = V1(ek+1)� V1(ek)

= $
>
k+1P (h+)$k+1 �$>

k P (h)$k. (27)

12



From the definitions of $k in (25), and F1, F2 in (22), it follows that

$k = (F2 + �(⌧k))⇣k and $k+1 = (F1 + �(⌧k))⇣k, (28)

with

�(⌧k) =

2

4
v2

⌧v6

(⌧k � ⌧)v7 + (⌧ � ⌧k)v8

3

5 .

From (27) and (28), �V1(ek) can be rewritten as

�V1(ek)=⇣
>
k

h
(F1 + �(⌧k))

>
P (h+) (F1 + �(⌧k))� (F2 + �(⌧k))

>
P (h) (F2 + �(⌧k))

i
⇣k.

(29)

Moreover, the di↵erence �V2(ek) = V2(ek+1)� V2(ek) can be computed as

�V2(ek) = e
>
k R1ek + e

>
k�⌧ (R2 �R1)ek�⌧ � e

>
k�⌧R2ek�⌧ ,

which can be described in the compact form

�V2(ek) = ⇣
>
k
eR⇣k, (30)

where eR is defined in (22). Furthermore, the computation of the di↵erence
�V3(ek) = V3(ek+1)� V3(ek) results in

�V3(ek) = ⌘
>
k+1

�
⌧
2
Z1 + ⌧̃

2
Z2

�
⌘k+1 � ⌧

kX

i=k�⌧+1

⌘
>
i Z1⌘i � ⌧̃

k�⌧X

i=k�⌧+1

⌘
>
i Z2⌘i,

which can be rewritten as

�V3(ek) = ⌘
>
k+1

�
⌧
2
Z1 + ⌧̃

2
Z2

�
⌘k+1 � ⌧

kX

i=k�⌧+1

⌘
>
i Z1⌘i (31)

� ⌧̃
k�⌧kX

i=k�⌧+1

⌘
>
i Z2⌘i � ⌧̃

k�⌧X

i=k�⌧k+1

⌘
>
i Z2⌘i.

From (29), (30) and (31), the di↵erence �V (ek) = V (ek+1) � V (ek) can be
expressed by

�V (ek) = ⇣
>
k

⇥
(F1 + �(⌧k))

>
P (h+)(F1 + �(⌧k))� (F2 + �(⌧k))

>
P (h)(F2 + �(⌧k))

⇤
⇣k

+ ⇣
>
k
eR⇣k + ⌘

>
k+1

�
⌧
2
Z1 + ⌧̃

2
Z2

�
⌘k+1 � ⌃1 � ⌃2 � ⌃3,

(32)
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where

⌃1 = ⌧

kX

i=k�⌧+1

⌘
>
i Z1⌘i,

⌃2 = ⌧̃

k�⌧kX

i=k�⌧+1

⌘
>
i Z2⌘i,

⌃3 = ⌧̃

k�⌧X

i=k�⌧k+1

⌘
>
i Z2⌘i.

(33)

Applying the Wirtinger’s inequality (15) to the summation ⌃1, and (16) to
the summations ⌃2 and ⌃3 defined in (33), with matrices F1, F2, G1, G2 and
G3 defined in (22), the following upper bound can be computed for �V (ek)
in (32): R5.3

�V (ek) ⇣>k
h
(F1 + �(⌧k))

>
P (h+) (F1 + �(⌧k))

i
⇣k (34)

+ ⇣
>
k

h
�(F2 + �(⌧k))

>
P (h)(F2 + �(⌧k)) + eR + F

>
1 ⇧1F1

i
⇣k

+ ⇣
>
k

"
�G>

1
eZ1G1 �


G2

G3

�> " ⌧̃
⌧k�⌧ Z̃2 02nx

02nx
⌧̃

⌧�⌧k
Z̃2

# 
G2

G3

�#
⇣k.

Then, applying the Moon’s inequality (17) to the right-hand side expression
in (34) with % = ⌧k�⌧

⌧̃ , it follows that

�V (ek)  ⇣
>
k ⌅(h, h+, ⌧k)⇣k, (35)

with

⌅(h, h+, ⌧k) = F
>
1 (P (h+) + ⇧1)F1 + eR +He

�
�>(⌧k)P (h+)F1

 

+ �>(⌧k)P (h+)�(⌧k)� �>(⌧k)P (h)�(⌧k)� F
>
2 P (h)F2

� He
�
�>(⌧k)P (h)F2

 
�G

>
1
eZ1G1 � He{Y1G2 + Y2G3}

+ %Y1
eZ�1
2 Y

>
1 + (1� %)Y2

eZ�1
2 Y

>
2 .

It follows from (35) that the error dynamics (23) is asymptotically stable if

⇣
>
k ⌅(h, h+, ⌧k)⇣k < 0. (36)
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Moreover, from the definitions of B(h, ) in (22) and ⇣k in (26), we have

B(h, )⇣k = 0. (37)

Using the well-known Finsler’s lemma, one has that condition (36) is verified
under constraint (37) if

⌅(h, h+, ⌧k) + W
>
B(h, ) + B(h, )>W � 0, (38)

with W specifically chosen as in (22) to obtain a tractable problem with LMI
constraints.

Since the condition (38) is a�ne with respect to ⌧k, it can be satis-
fied for all ⌧k 2 {⌧ , . . . , ⌧} if it is satisfied at the vertices of the interval
⌧k 2 {⌧ , . . . , ⌧}. Therefore, by applying the Schur complement lemma, it is
possible to notice that condition (38) is equivalent to


�(h, h+, ⌧) + He{W >

B(h, )} Y2

Y
>
2 � eZ2

�
� 0, (39)


�(h, h+, ⌧) + He{W >

B(h, )} Y2

Y
>
2 � eZ2

�
� 0, (40)

with �(h, h+, ⌧) and �(h, h+, ⌧) defined as in (22).
Notice that inequalities (39) and (40) are exactly equal to inequalities (20)

and (21), respectively, which are a�ne with respect to ⌧k implying that (20)
and (21) are negative definite for all ⌧k 2 {⌧ , . . . , ⌧}. Hence, if LMIs (20)
and (21) are feasible the asymptotic stability of system (23) is ensured for
any integer delay ⌧k 2 {⌧ , ⌧ + 1, . . . , ⌧}. Finally, it is proved that the UI R4.2
estimate d̂k defined in (6) asymptotically converges to dk. To this end, the
expression of the unknown input dk can be retrieved from (4) as

dk = (CD)† [yk+1 � C(⇤k + A(h)xk + Ad(h)xk�⌧k)] . (41)

Then, it is possible to compute the UI estimation error "k = dk� d̂k from (6)
and (41) as

"k = (CD)†C (A(h)ek + Ad(h)ek�⌧k +G(h)��) .

Using (10), it is possible rewrite the UI estimation error "k as

"k = (CD)†C (A (h, )ek + Ad(h)ek�⌧k) , (42)

15



with A (h, ) =
Pr

i=1 hi(µk)Ai( ), and

Ai( ) = Ai +Gi , (43)

where  is defined in (11). We can see from (42) that if ek ! 0, then
ek�⌧k ! 0 and "k ! 0, when k !1. This concludes the proof.180

Notice that Theorem 1 cannot be straightforwardly solved for UIO design R1.3
because of the nonlinear matrix equalities (18)–(19), the nonlinear matrix
inequalities (20)–(21), and their dependency on the membership functions.
To deal with these issues, the following lemma is employed and numerically
tractable conditions to design the TS fuzzy UIO (6) for system (4) are derived.185

Lemma 4 ([59]). Consider a matrix W 2 Rm⇥n, with m � n, and a matrix
M 2 Rk⇥n. Matrix X of the form X = ZW† + Y(I � WW†), with an
arbitrary matrix Y 2 Rk⇥m, is a solution of XW = M when the condition
MW†W =M holds.

Based on the results in Theorem 1 and Lemma 4, the following theorem190

presents LMI-based conditions to design TS fuzzy UIOs for system (4).

Theorem 2. Consider the TS fuzzy system with time-varying delay (4), given
positive integers ⌧ and ⌧ , with ⌧ < ⌧ , and a positive scalar ✏. There is
an asymptotic UIO in the form (6), if there exist positive definite matrices
Pi 2 S3nx

+ , R1, R2, Z1, Z2 2 Snx
+ , and matrices Xi 2 Rnx⇥ny , Q 2 Rnx⇥ny ,

W 2 Rnx⇥nx, Y1, Y2 2 R8nx⇥2nx, for i,2 Nr such that


�iq(⌧) + He{⌥i( )} Y2

Y
>
2 � eZ2

�
� 0, (44)


�iq(⌧) + He{⌥i( )} Y1

Y
>
1 � eZ2

�
� 0, (45)

for all i, q 2 Nr, and  2 V�. The matrices �iq(⌧), �iq(⌧) and ⌥i( ) are
defined as

�iq(⌧) = #iq�He
�
�>(⌧)PiF2

 
+�>(⌧)Pq�(⌧)+He

�
�>(⌧)PqF1

 
��>(⌧)Pi�(⌧),

�iq(⌧) = #iq�He
�
�>(⌧)PiF2

 
+�>(⌧)Pq�(⌧)+He

�
�>(⌧)PqF1

 
��>(⌧)Pi�(⌧),

#iq = F
>
1 (Pq + ⇧1)F1 � F

>
2 PiF2 + eR�G

>
1
eZ1G1 � He{Y1G2 + Y2G3},

⌥i( ) = I
> (QAi( )v2 �Wv1 �XiCv2 + QAdiv4) ,
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with Ai( ) = Ai +Gi , I = (✏v1 + v2 + v4), Q = W + (WU +QT )C, and

U = �D(CD)† (46)

T = I � (CD)(CD)† (47)

Q = WS (48)

Xi = WHi, (49)

and F1, F2, G1, G2, G3, eZ1, eZ2, ⇧1, eR, �(⌧), �(⌧) defined as in (22).
Moreover, the matrix gains F 2 Rnx⇥ny , M 2 Rnx⇥nx, Ni 2 Rnx⇥nx, and
Li 2 Rnx⇥ny , for 8i 2 Nr, of the TS fuzzy UIO (6) can be computed as

F = U + ST (50)

Ni = MAi �HiC (51)

Li = Hi(I + CF )�MAiF. (52)

Proof. It follows from (7) and (19) that

F (CD) = �D. (53)

Using Lemma 4 and the rank condition in Assumption 3, the solution F of
the matrix equation (53) can be directly obtained from (50), where U and V

are given in (46) and (47), respectively. Let us denote

Hi = Li +NiF, 8i 2 Nr. (54)

From (7), (18) and (54), we can obtain (51). Moreover, expression (52) can
be directly obtained from (51) and (54). Notice also from (7) and (51) that

Ni = (I + FC)Ai �HiC

= [I + (U +QT )C]Ai �HiC, 8i 2 Nr. (55)

Using expressions (7), (14), (43), (50) and (55), followed by the variable
changes (48) and (49), inequalities (44) and (45) can be respectively rewritten
as


�iq(⌧) + He{W >

Bi( )} Y2

Y
>
2 � eZ2

�
� 0, (56)


�iq(⌧) + He{W >

Bi( )} Y1

Y
>
1 � eZ2

�
� 0, (57)
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with Bi( ) = �v1 + Ni( )v2 + MAdiv4. Since h, h+ 2 H and  2 V�,
by convexity property, we prove that conditions (56) and (57) respectively
imply (20) and (21). Then, using the result in Theorem 1, the proof can be
concluded.195

R4.4

Remark 5. In this paper, we consider TS fuzzy systems with constant ma-
trices C and D mainly because of the algebraic constraints induced by the
proposed UI decoupling method. Indeed, if C and/or D are state-dependent,
then it would be hard to get a solution from the algebraic equation (53). More-200

over, even when the solution of this latter exists, the state-dependent forms
of the solution matrices U and T in (46) and (47) become too complex to
solve the corresponding state-dependent LMI conditions (44) and (45) in that
case. This restriction is also observed in recent works on UIO design for TS
fuzzy systems without time-varying delay [4, 26]. The design of TS fuzzy UI0205

for time-delayed nonlinear systems, whose output and UI matrices are also
a↵ected by unmeasured nonlinearities, is left for future works.

The procedure to design UIOs for time-varying TS fuzzy systems with un-
measured nonlinear consequents is summarized in Algorithm 1. This design
procedure also enables determining the maximum allowable upper bound ⌧210

of the time-delay function ⌧k for a given lower bound ⌧ .

4. Illustrative Examples

This section provides two numerical examples to illustrate the e↵ective-
ness of the proposed TS fuzzy unknown input observer design. All LMI-
based design conditions are implemented in Matlab using Yalmip parser215

and Mosek solver. In both examples, a line search for ✏ with 10 points R2.4
gridded linearly on a logarithmic scale in [1, 103] has been performed.

Example 1. Consider the following nonlinear time-varying delay system
adapted from [60]:

x1,k+1 = (1 + Ts)x1,k + cTsx2,k + Ts sin(x3,k)� 0.1Tsx4,k + (1� c)Tsx2,k�⌧k

+ Ts(1 + x
2
1,k)uk (58)

x2,k+1 = Tsx1,k + (1� 2cTs)x2,k � (1� c)2Tsx2,k�⌧k

x3,k+1 = Tsx1,k + (1� 0.3Ts)x3,k + cTsx
2
1,kx2,k + (1� c)Tsx

2
1,kx2,k�⌧k
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Algorithm 1: Time-Varying Delay UIO Design

Input : TS fuzzy system (4), ✏, ⌧
Output: TS fuzzy observer (6) such that

x̂k ! xk and d̂k ! dk, when k !1
Step 1: Compute U with (46) and T with (47).
Step 2: Solve LMI conditions (44) and (45) for ⌧ = ⌧

while true do

⌧  ⌧ + 1
Solve conditions (44) and (45) in Theorem 2.
if unfeasible then

Stop while loop.
end

end

Step 3: Get W , Q and Xi, for i 2 Nr, with the maximum ⌧

obtained in Step 2.
Step 4: Compute S with (48) and Hi with (49).
Step 5: Compute the observer gains F , M , Li and Ni with (7),
(50), (51) and (52), respectively.

x4,k+1 = (1� Ts)x4,k + Ts sin(x3,k) + Tsdk

y1,k = x1,k

y2,k = x2,k + x4,k

with x1,k 2 [�a, a], x3,k = [�⇡
2 ,

⇡
2 ] and c 2 [0, 1]. For illustrations, we

consider system (58) with c = 0.9, Ts = 0.5, and the parameter a is used to
study the design conservatism. The premise variable is defined as µk = x

2
1,k.

The unmeasured nonlinearity is given by �(x) = sin(x3,k). Then, the set of
vertices V� in (12) is defined for system (58) as

V� =
�⇥

0 0 ⇢ 0
⇤
: ⇢ 2 {�1, 1}

 
.
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Moreover, system (58) can be rewritten in the form (1) with

A(µk) =

2

664

1 + Ts cTs 0 �0.1Ts

Ts 1� 2cTs 0 0
Ts cTsµk 1� 0.3Ts 0
0 0 0 1� Ts

3

775 ,

Ad(µk) =

2

664

0 (1� c)Ts 0 0
0 �(1� c)2Ts 0 0
0 (1� c)Tsµk 0 0
0 0 0 0

3

775 ,

C =

2

664

1 0
0 1
0 0
0 1

3

775

>

, f(µk, uk) =

2

664

Ts(1 + µk)uk

0
0
0

3

775 , G =

2

664

Ts

0
0
Ts

3

775 , D =

2

664

0
0
0
0.5

3

775 .

Applying the sector nonlinearity approach [10, Chapter 2] with the measured
premise variable µk = x

2
1,k, system (58) can be represented by a two-rule TS

fuzzy model (4) with

A1 =

2

664

1.5 0.5c 0 �0.05
0.5 1� c 0 0
0.5 0.5ca2 0.85 0
0 0 0 0.50

3

775 , A2 =

2

664

1.5 0.5c 0 �0.05
0.5 1� c 0 0
0.5 0 0.85 0
0 0 0 0.50

3

775 ,

Ad1 =

2

664

0 (1� c)0.5 0 0
0 �1 + c 0 0
0 (1� c)0.5a2 0 0
0 0 0 0

3

775 , Ad2 =

2

664

0 (1� c)0.5 0 0
0 c� 1 0 0
0 0 0 0
0 0 0 0

3

775 ,

D =

2

664

0
0
0
0.5

3

775 , G =

2

664

0.5
0
0
0.5

3

775 .

The corresponding membership functions are given by

h1(µk) =
x
2
1,k

a2
, h2(µk) =

a
2 � x

2
1,k

a2
.

For this example, we compute the largest value of parameter a, denoted by
a
⇤, for which a TS fuzzy UIO can be designed with di↵erent values of the
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upper bound ⌧ for system (58). To this end, Algorithm 1 is employed with220

✏ = 103 and ⌧ = 1. The corresponding design result is shown in Table 1. As
expected, we can see that a direct relation between a

⇤ and ⌧ , i.e., the larger
value of a⇤ leads to a smaller value of ⌧ .

Table 1: Maximum delay upper bound ⌧ in function of a⇤ in Example 1.

⌧ 2 5 8 11 14 17 20
a
⇤ 1153 888 832 720 272 1.5 1

For illustrations, we consider the case with a = 832 and ⌧ = 8. Applying
the design procedure given Algorithm 1, the following observer gains can be
obtained:

M =

2

664

0 0 0 0
0 1 0 0

�0.2176 0 1 0
0 �1 0 0

3

775 , F =

2

664

�1 0
0 0

�0.2176 0
0 �1

3

775 ,

L1 =

2

664

0 0
0.5 0

0.3527 0.0109
�0.5 0

3

775 , L2 =

2

664

0 0
0.5 0

0.3586 0.0109
�0.5 0

3

775 ,

N1 = 105

2

664

0 0 0 0
0 0 0 0
0 1.6004 0 �1.5146
0 0 0 0

3

775 ,

N2 = 103

2

664

0.0009 0 0 0
0 0.0005 0 0.0004
0 7.8585 0.0008 7.8586
0 0.0004 0 0.0005

3

775 .

Fig. 1 depicts the estimation performance of the proposed UIO with respect

to the initial condition x0 =
⇥
0.25 �0.1 0.5 �1

⇤>
, the known input uk =225

�2.5x1,k�0.7x2,k�x3,k, and the unknown input dk = 2 cos(0.25⇡k) sin(0.1⇡k).
The time-varying delay signal ⌧k is generated randomly while respecting the
minimum bound ⌧ = 1 and the maximum bound ⌧ = 8. We can see that
both the estimates of the state x̂k and the unknown input d̂k asymptotically
convergent to xk and dk, respectively, despite the e↵ect of the time-varying230

delay ⌧k.
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Figure 1: Estimation performance obtained for system (58) with a = 832 and ⌧ = 8 under
the e↵ect of time-varying bounded delay.

Example 2. We consider the electronic circuit system depicted in Fig. 2,
whose dynamics can be described as [61]

x1,k+1 = x1,k � c11x1,k�⌧k +
c12

10
x1,kx2,k � c13(uk + dk)

x2,k+1 = (1� c25)x2,k +
c24

10
x1,k�⌧k (59)

x3,k+1 = (1� c36)x3,k � c37x1,k +
c38

10
x
2
2,k

yk = x1,k

being x1,k, x2,k and x3,k the voltages on the capacitors with x1,k 2 [�1, 1],
x2,k 2 [�1, 1], the known input uk is the voltage source, and the unknown
input dk can be viewed as a voltage fault signal. The system parameters are
defined as

c1l =
Ts

RlC1

, c2m =
Ts

RmC2

, c3n =
Ts

RnC3

,
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for l 2 {1, 2, 3}, m 2 {4, 5} and n 2 {6, 7, 8}. The parameter values are
given by Ts = 0.01s, R1 = 0.6k⌦, R2 = 66.667⌦, R3 = 0.4k⌦, R4 = 16.667⌦,
R5 = 0.2k⌦, R6 = 0.5⌦, R7 = R8 = 0.1k⌦, C1 = C2 = C3 = 1mF.

≠

+
R5

R4

C2

+ ≠
x2

◊

≠ 1
10

·(t)

◊

≠ 1
10

≠

+

R2

E

d

R1
·(t)

C1

+ ≠
x1

R3

≠
+ u

≠

+
R6

R7

C3

+ ≠
x3

R8
◊

≠ 1
10

Figure 2: Diagram of the electronic circuit system.

The measured premise variable is defined as µk = x1,k. With x2,k 2
[�1, 1], the set of vertices V� is defined for the unmeasured nonlinearity
�(x) = x

2
2,k of system (58) as

V� =
�⇥

0 ⇢ 0
⇤
: ⇢ 2 {�2, 2}

 
.

Notice that system (59) can be rewritten in the form

xk+1 = A(µk)xk + Adxk�⌧k +Ddk + f(uk) +G�(xk),

yk = Cxk (60)

with

A(µk) =

2

4
1 c12

10 µk 0
0 1� c25 0
�c37 0 1� c36

3

5 , D =

2

4
�c13
0
0

3

5 ,

Ad =

2

4
�c11 0 0
c24
10 0 0
0 0 0

3

5 , G =

2

4
0
0
c38
10

3

5 ,

C =
⇥
1 0 0

⇤
, f(uk)=

⇥
�c13uk 0 0

⇤>
, �(xk) = x

2
2,k.
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Applying the sector nonlinearity approach [10, Chapter 2] with the measured
premise variable µk = x1,k, the electronic circuit system (60) can be repre-
sented by a two-rule TS fuzzy model (4) with

A1 =

2

4
1.0 �0.015 0
0 0.95 0
�0.1 0 0.95

3

5 , Ad =

2

4
�0.0167 0 0
0.0600 0 0

0 0 0

3

5 ,

A2 =

2

4
1.0 0.015 0
0 0.95 0
�0.1 0 0.95

3

5 , D =

2

4
�0.025

0
0

3

5 .

The corresponding membership functions are given by

h1(µk) =
1� x1,k

2
, h2(µk) = 1� h1(µk).

For this example, the goal is to design a TS fuzzy observer (6) for system (59)235

with a maximum possible upper bound ⌧ of the time-varying delay ⌧k such that
x̂k ! xk and d̂k ! dk, when k ! 1. Following the design procedure in Al-
gorithm 1 with ✏ = 100 and ⌧ = 1, the maximum delay bound ⌧ = 160 can
be reached. For illustrative purposes, Fig. 3 depicts the estimation per- R1.4
formance of the proposed TS fuzzy UIO with respect to the initial condition240

x0 =
⇥
�0.5 0.5 �0.5

⇤>
, the known input uk = 1.5 cos(0.1⇡k), the unknown

input dk = cos(0.02⇡k) sin(0.1⇡k), and the time-delay function is selected
as ⌧k = round (80.5 + 79.5 cos(0.02k⇡)) 1. As can be seen, the states xk of
the electronic system (59) together with its unknown input dk are accurately
estimated under the e↵ect of ⌧k. Notably, the states x2 and x3 are not mea-245

sured, and even so, the proposed UIO estimates these states quite e�ciently.
This result illustrates the e↵ectiveness and the practical interest of the pro-
posed TS fuzzy UIO design for nonlinear systems with time-varying delays
and unmeasured nonlinearities.

5. Conclusions250

R1.6
R2.5A method has been presented to design unknown input observers for non-

linear systems with time-varying delays and unmeasured nonlinearities. The

1round(x) denotes the function that rounds the entry x 2 R to the nearest integer using
the round half up tie-breaking rule.
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Figure 3: Estimation performance obtained for the electronic circuit system (59) under
the e↵ect of ⌧k = round (80.5 + 79.5 cos(0.02k⇡)).

nonlinear system has been reformulated for observer design using TS fuzzy
modeling with nonlinear consequents. All unmeasured nonlinearities, iso-
lated in the nonlinear consequents, are assumed to be Lipschitzian such that255

the mean value theorem can be applied to deal with the well-known mismatch
issue in TS observer design caused by unmeasured premise variables. LMI-
based conditions have been presented for UIO design, which can guarantee
an asymptotic estimation of both the state and the unknown input. The
e↵ectiveness and the practical interest of the proposed design procedure are260

illustrated with two examples. For future works, we focus on adapting the
proposed UIO design results for fault-tolerant control of nonlinear systems
with unknown time-varying delays.
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[34] B. Chen, X. Liu, Delay-dependent robust H1 control for TS fuzzy sys-
tems with time delay, IEEE Trans Fuzzy Syst. 13 (4) (2005) 544–556.

[35] F. Souza, L. Mozelli, R. Palhares, On stability and stabilization of T–
S fuzzy time-delayed systems, IEEE Trans. Fuzzy Syst. 17 (6) (2009)
1450–1455.385

[36] W. Kang, Z. Han, Z. Liu, B.-Z. Guo, Fuzzy observer for 2-D parabolic
equation with output time delay, IEEE Trans. Fuzzy Syst. 29 (11) (2020)
3552–3560.

[37] L. Mozelli, F. O. Souza, R. Palhares, A new discretized Lyapunov–
Krasovskii functional for stability analysis and control design of time-390

delayed TS fuzzy systems, Int. J. Robust Nonlinear Control 21 (1) (2011)
93–105.

[38] R. Li, Q. Zhang, Robust H1 sliding mode observer design for a class of
Takagi–Sugeno fuzzy descriptor systems with time-varying delay, Appl.
Math. Comput. 337 (2018) 158–178.395

29



[39] L. Wang, J. Liu, H.-K. Lam, Further study on stabilization for
continuous-time Takagi–Sugeno fuzzy systems with time delay, IEEE
Trans. Cybern. 51 (11) (2020) 5637–5643.

[40] C. Hua, S. Wu, X. Guan, Stabilization of TS fuzzy system with time
delay under sampled-data control using a new looped-functional, IEEE400

Trans. Fuzzy Syst. 28 (2) (2019) 400–407.

[41] W.-H. Chen, C.-K. Zhang, K.-Y. Xie, C. Zhu, Y. He, Delay-variation-
dependent criteria on stability and stabilization for discrete-time T-S
fuzzy systems with time-varying delays, IEEE Trans. Fuzzy Syst. (2022)
1–1.405

[42] Z. Sheng, C. Lin, B. Chen, Q.-G. Wang, An asymmetric Lyapunov-
Krasovskii functional method on stability and stabilization for T-S fuzzy
systems with time delay, IEEE Trans. Fuzzy Syst. 30 (6) (2022) 2135–
2140.

[43] M. L. C. Peixoto, P. H. S. Coutinho, M. J. Lacerda, R. M. Palhares,410

Guaranteed region of attraction estimation for time-delayed fuzzy sys-
tems via static output-feedback control, Automatica (2022) 110438.

[44] S. Ahmadizadeh, J. Zarei, H. Karimi, A robust fault detection design
for uncertain TS models with unknown inputs and time-varying delays,
Nonlinear Anal.: Hybrid Syst. 11 (2014) 98–117.415

[45] S. Islam, C.-C. Lim, P. Shi, Robust fault detection of TS fuzzy systems
with time-delay using fuzzy functional observer, Fuzzy Sets Syst. 392
(2020) 1–23.

[46] F. You, S. Cheng, K. Tian, X. Zhang, Robust fault estimation based on
learning observer for Takagi-Sugeno fuzzy systems with interval time-420

varying delay, Int. J. Adapt. Control Signal Process. 34 (1) (2020) 92–
109.

[47] Y. Liu, Y. Wang, Actuator and sensor fault estimation for discrete-time
switched T–S fuzzy systems with time delay, J. Franklin Inst. 358 (2)
(2021) 1619–1634.425

30



[48] H. Zhang, S. Sun, C. Liu, K. Zhang, A novel approach to observer-based
fault estimation and fault-tolerant controller design for T–S fuzzy sys-
tems with multiple time delays, IEEE Trans. Fuzzy Syst. 28 (8) (2019)
1679–1693.

[49] J. Ning, C. Hua, H1 output feedback control for fractional-order T-S430

fuzzy model with time-delay, Appl. Math. Comput. 416 (2022) 126736.

[50] M. Ghanes, J. De Leon, J. P. Barbot, Observer design for nonlinear sys-
tems under unknown time-varying delays, IEEE Trans. Autom. Control
58 (6) (2013) 1529–1534.

[51] F. You, H. Li, F. Wang, State and unknown input simultaneous esti-435

mation for a class of nonlinear systems with time-delay, Nonlinear Dyn.
83 (3) (2016) 1653–1671.

[52] M.-C. Nguyen, H. Trinh, Unknown input observer design for one-sided
Lipschitz discrete-time systems subject to time-delay, Appl. Math. Com-
put. 286 (2016) 57–71.440

[53] A. Zemouche, M. Boutayeb, G. I. Bara, Observers for a class of Lipschitz
systems with extension to H1 performance analysis, Syst. Control Lett.
57 (1) (2008) 18–27.

[54] Q. Jia, W. Chen, Y. Zhang, H. Li, Fault reconstruction and fault-
tolerant control via learning observers in Takagi–Sugeno fuzzy descriptor445

systems with time delays, IEEE Trans. Indus. Electron. 62 (6) (2015)
3885–3895.

[55] Y. Li, M. Yuan, M. Chadli, Z.-P. Wang, D. Zhao, Unknown input func-
tional observer design for discrete time interval type-2 Takagi-Sugeno
fuzzy systems, IEEE Trans. Fuzzy Syst. (2022) 1–1.450

[56] A. Seuret, F. Gouaisbaut, E. Fridman, Stability of discrete-time systems
with time-varying delays via a novel summation inequality, IEEE Trans.
Autom. Control 60 (10) (2015) 2740–2745.

[57] K. Liu, A. Seuret, Y. Xia, Stability analysis of systems with time-varying
delays via the second-order Bessel–Legendre inequality, Automatica 76455

(2017) 138–142.

31



[58] K. Liu, A. Seuret, Comparison of bounding methods for stability analy-
sis of systems with time-varying delays, J. Franklin Inst. 354 (7) (2017)
2979–2993.

[59] C. Rao, S. Mitra, Generalized Inverse of Matrices and Its Applications,460

John Wiley & Sons, New York, NY, 1973.

[60] J. Dong, Y. Wang, G.-H. Yang, Output feedback fuzzy controller design
with local nonlinear feedback laws for discrete-time nonlinear systems,
EEE Trans. Syst., Man, Cybern., Part B: Cybern. 40 (6) (2010) 1447–
1459.465

[61] X. Yang, T. Li, Y. Wu, Y. Wang, Y. Long, Fault estimation and fault
tolerant control for discrete-time nonlinear systems with perturbation
by a mixed design scheme, J. Franklin Inst. 358 (3) (2021) 1860–1887.

32

View publication stats

https://www.researchgate.net/publication/370924615

