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TRANSACTIONS ON FUZZY SYSTEMS 1 Convex Stability Analysis of Mamdani-Like Fuzzy Systems with Singleton Consequents
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We study the stability of a class of discrete-time fuzzy systems with singleton consequents, called Mamdani-like fuzzy systems. The parametric expressions, specific to this class of fuzzy systems, are leveraged to derive stability analysis conditions via Finsler's lemma and Lyapunov stability tools. This allows avoiding the major challenge in dealing with high-dimensional cases, encountered in the related literature when using the classical state-space representation. Moreover, the information of the piecewise region partition can be fully taken into account in the stability analysis with the well-known S-procedure to further reduce the stability conservatism. The stability of Mamdanilike fuzzy systems can be checked by solving a set of linear matrix inequalities (LMIs), that is numerically tractable with a suitable semidefinite programming software. Several numerical and physically motivated examples are provided to illustrate the effectiveness of the proposed stability analysis results.

I. INTRODUCTION

Fuzzy control has become one of the most prominent approaches to deal with complex industrial plants, essentially nonlinear systems. Since Mamdani's seminal paper published in 1974 on fuzzy modeling and control [START_REF] Mamdani | Application of fuzzy algorithms for control of simple dynamic plant[END_REF], many fuzzy control systems have been proposed [START_REF] Feng | A survey on analysis and design of model-based fuzzy control systems[END_REF]. Depending on the consequents of IF-THEN rules, three classes of fuzzy systems can be distinguished as suggested in [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF]: Mamdani fuzzy systems [START_REF] Mamdani | An experiment in linguistic synthesis with a fuzzy logic controller[END_REF], Takagi-Sugeno (TS) fuzzy systems [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF] and singleton-type fuzzy systems [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF]. Mamdani fuzzy systems are defined by IF-THEN rules with linguistic consequents as [START_REF] Mamdani | An experiment in linguistic synthesis with a fuzzy logic controller[END_REF] Rule R i :

IF x 1 is G i 1 , x 2 is G i 2 , . . . , x n is G i
where F i and G i j , j = 1, 2, . . . , n, are fuzzy sets, m is the number of fuzzy rules. Despite its practical interests in control of industrial processes, Mamdani fuzzy control has received a lot of criticisms from control community due to the lack of a systematic stability analysis framework [START_REF] Feng | A survey on analysis and design of model-based fuzzy control systems[END_REF]. Indeed, most of Mamdani fuzzy control schemes are remain model-free and essentially heuristic [START_REF] Precup | A survey on industrial applications of fuzzy control[END_REF]. TS fuzzy systems are with functional consequents [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF], defined by Rule R i :

IF x 1 is G i 1 , x 2 is G i 2 , . . . , x n is G i n THEN y is f i (x), i = 1, 2, . . . , m (2) 
where x = x 1 x 2 . . . x n , and the consequent functions f i (x), for i = 1, 2, . . . , m, are usually linear as

f i (x) = b i + a 1i x 1 + a 2i x 2 + • • • + a ni x n
where the parameters b i and a ji , for j = 1, . . . , n, are constant. TS fuzzy systems with nonlinear consequents or polynomial consequents have been also studied, see for instance [START_REF] Coutinho | A multiple parameterization approach for local stabilization of constrained Takagi-Sugeno fuzzy systems with nonlinear consequents[END_REF], [START_REF] Dong | Control synthesis of continuoustime TS fuzzy systems with local nonlinear models[END_REF] and [START_REF] Tanaka | A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems[END_REF], [START_REF] Sala | Polynomial fuzzy models for nonlinear control: A Taylor series approach[END_REF], respectively. The functional characteristics of the consequents makes possible to derive a systematic framework for stability analysis of TS fuzzy systems [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF]. Despite a tremendous advance, reducing the stability analysis conservatism and dealing with complex systems with a large number of nonlinearities and/or states still remain challenging within TS fuzzy framework [START_REF] Feng | A survey on analysis and design of model-based fuzzy control systems[END_REF], [START_REF] Sala | Perspectives of fuzzy systems and control[END_REF], [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF]. Singleton-type fuzzy systems are defined with fuzzy rules of the form [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF] Rule R i :

IF x 1 is G i 1 , x 2 is G i 2 , . . . , x n is G i n THEN y is b i , i = 1, 2, . . . , m (3) 
where the consequents b i , for i = 1, 2, . . . , m, are singletons, i.e., real numbers. Note from (1), ( 2) and (3) that singletontype fuzzy systems are a special case of the two other classes of fuzzy systems when the linguistic consequents of Mamdani fuzzy systems and the functional consequents of TS fuzzy systems are simplified to singletons. Moreover, since linguistic labels may be assigned to singletons of singleton-type fuzzy systems, they can be called Mamdani-like fuzzy systems [START_REF] Sugeno | On improvement of stability conditions for continuous Mamdani-like fuzzy systems[END_REF]. These fuzzy systems have been also called piecewise multiaffine systems due to their input-output multiaffine relation with respect to an affine-in-control system [START_REF] Nguyen | LMI-based stability analysis for piecewise multi-affine systems[END_REF]. Mamdani-like fuzzy modeling has been found advantageous to study nonlinear systems for many reasons [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF]. First, it can be used to represent complex systems where only input-output data are available. This is particularly useful within industrial contexts to study complex plants with no acceptable analytical descriptions. Moreover, a Mamdani-like fuzzy model can be also directly obtained from the mathematical expression of a given nonlinear system. Second, as other classes of fuzzy systems, Mamdani-like fuzzy systems are universal approximators for any smooth nonlinear functions [START_REF] Kosko | Fuzzy systems as universal approximators[END_REF]. Third, they can be conveniently implemented using look-up tables, which are widely used in industry for model approximation and control implementation. Finally and specifically, both the state vector and the system dynamics of Mamdani-like fuzzy systems can be represented by parametric expressions [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF], enabling a systematic framework for stability analysis [START_REF] Nguyen | LMI-based stability analysis for piecewise multi-affine systems[END_REF], which remains open for Mamdani fuzzy systems. Despite these advantages, due to theoretical challenges, most of works on Mamdani-like fuzzy modeling have been mainly devoted to application aspects rather than theory [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF].

Based on a quadratic Lyapunov function, Sugeno first set a theoretical foundation for stability analysis of Mamdani-like fuzzy models in the seminal paper [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF]. Taking into account the parametric expression of the system state, an equivalent representation of triangular membership functions (MFs), this result has been further improved in [START_REF] Sugeno | On improvement of stability conditions for continuous Mamdani-like fuzzy systems[END_REF], [START_REF] Taniguchi | Stabilization of nonlinear systems based on piecewise Lyapunov functions[END_REF] to analytically derive necessary and sufficient stability conditions. Note that these latter have not been achieved with TS fuzzy-model-based stability approaches, especially for the approaches where the corresponding MFs are considered as "uncertainty" for stability analysis [START_REF] Sala | On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems[END_REF]. However, the stability conditions in [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF], [START_REF] Sugeno | On improvement of stability conditions for continuous Mamdani-like fuzzy systems[END_REF], [START_REF] Taniguchi | Stabilization of nonlinear systems based on piecewise Lyapunov functions[END_REF] are reformulated as nonlinear matrix inequalities, which induce numerical difficulties. More importantly, these stability results can be only applied to second-order systems. Due to the specific piecewise polytopic affine form of the state-space representation of Mamdani-like fuzzy models, extensions to high-dimension cases are very challenging [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF]. Due to these drawbacks, the research mainstream has been to consider Mamdani-like fuzzy controllers as nonlinear controllers, then the Mamdani-like fuzzy stability analysis is reformulated as a nonlinear stability approach based on absolute stability theory [START_REF] Choi | Design and stability analysis of single-input fuzzy logic controller[END_REF], [START_REF] Kluska | PID-like adaptive fuzzy controller design based on absolute stability criterion[END_REF], sliding mode control [START_REF] Chen | Optimal design of fuzzy sliding-mode control: A comparative study[END_REF]- [START_REF] Prieto | Stability analysis for Mamdani-type integral fuzzybased sliding-mode control of systems under persistent disturbances[END_REF], passivity control approach [START_REF] Calcev | Some remarks on the stability of Mamdani fuzzy control systems[END_REF], adaptive fuzzy control [START_REF] Chen | Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach[END_REF]- [START_REF] Sun | Command filter-based finite-time adaptive fuzzy control for uncertain nonlinear systems with prescribed performance[END_REF], TS fuzzy control [START_REF] Kim | A new approach to numerical stability analysis of fuzzy control systems[END_REF], [START_REF]A new computational approach to stability analysis and synthesis of linguistic fuzzy control system[END_REF], etc. Although these results are also based on Lyapunov stability theory, a fundamental difference should be made clear with the works developed by Sugeno and coworkers [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF], [START_REF] Sugeno | On improvement of stability conditions for continuous Mamdani-like fuzzy systems[END_REF], [START_REF] Taniguchi | Stabilization of nonlinear systems based on piecewise Lyapunov functions[END_REF]. That is, the above stability and control results have mainly focused on the characteristics of Mamdanilike fuzzy controllers performed on linear/nonlinear/TS fuzzy objective systems, or using Mamdani-like fuzzy modeling to represent their unknown/uncertain dynamics. Hence, the stability analysis of Mamdani-like fuzzy control systems can be treated using conventional nonlinear control [START_REF] Khalil | Nonlinear Systems[END_REF] or TS fuzzy control [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF], which is not the initial motivation of Mamdanilike fuzzy control systems [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF]. Indeed, as Mamdani-like fuzzy systems are a special case of Mamdani fuzzy systems and TS fuzzy systems, the primary goal for Mamdani-like fuzzy control is to develop an analysis framework for nonlinear complex plants, embedded in Mamdani-like fuzzy models. This aims at inheriting the advantages while limiting the respective drawbacks of these two classes of fuzzy systems, i.e., a systematic theoretical tool to deal with complex systems with a reduced conservativeness while being linguistically understandable to incorporate the expert's skills and experience [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF]. Developing such a theoretical framework for Mamdanilike fuzzy systems is expected to be particularly challenging due to the novel fuzzy mathematics and linguistical features involved in the stability analysis [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF], [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF], [START_REF] Ying | Fuzzy control theory: A nonlinear case[END_REF].

Recently, using piecewise Lyapunov functions, a systematic stability framework has been established in [START_REF] Nguyen | LMI-based stability analysis for piecewise multi-affine systems[END_REF] for continuous-time Mamdani-like fuzzy systems. In contrast to the related works [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF], [START_REF] Sugeno | On improvement of stability conditions for continuous Mamdani-like fuzzy systems[END_REF], [START_REF] Taniguchi | Stabilization of nonlinear systems based on piecewise Lyapunov functions[END_REF], parametric expressions, a specific representation of Mamdani-like fuzzy systems, have been fully exploited instead of state-space representation to derive stability analysis conditions. The basic idea is based on the fact that for each piecewise region, the system state and its dynamics can be determined by convex combinations of the respective vertex values. This has paved the way for numerical stability analysis approaches for Mamdani-like fuzzy systems with any order. This paper can be considered as a discretetime counterpart of the work in [START_REF] Nguyen | LMI-based stability analysis for piecewise multi-affine systems[END_REF], concerned with the continuous-time stability analysis. Dealing with the discretetime case is revealed to be more challenging since the stability of Mamdani-like fuzzy systems must be guaranteed when the system state can arbitrarily jump from one region to another, possibly nonadjacent. This phenomenon does not appear in the continuous-time case. Hence, additional technical treatments are required to ensure that the variation of the Lyapunov function along the system trajectory is decreasing despite these arbitrary jumps between piecewise regions. Specifically, the main contributions can be summarized as follows.

• Using the specific parametric expressions via Finsler's lemma, we establish Lyapunov-based stability conditions for discrete-time Mamdani-like fuzzy systems of any order, which is not the case in [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF], [START_REF] Sugeno | On improvement of stability conditions for continuous Mamdani-like fuzzy systems[END_REF], [START_REF] Kim | A new approach to numerical stability analysis of fuzzy control systems[END_REF], [START_REF]A new computational approach to stability analysis and synthesis of linguistic fuzzy control system[END_REF]. • We propose a novel piecewise MFs-dependent Lyapunov function for stability analysis. Moreover, to further reduce the conservatism, the information of the piecewise region partition can be fully taken into account in the Lyapunov conditions via the S-procedure. • The stability of discrete-time Mamdani-like fuzzy systems can be conveniently checked by solving a set of LMI constraints.

Notation. I N denotes the subset of natural numbers {1, 2, . . . , N }, R is the field of real numbers, and Z + is the field of nonnegative integer numbers. For a vector x ∈ R n and i ∈ I n , x i denotes the ith entry of x. For a matrix X, X indicates its transpose. For any square matrix X, X > 0 indicates a symmetric positive definite matrix, X 0 means that all its elements are nonnegative, and HeX = X +X . We denote I n as the identity matrix of dimension n, and 0 n×m as the n × m zero matrix. The symbol stands for matrix blocks that can be deduced by symmetry. The explicit dimensions of both identity and null matrices are omitted if straightforwardly deduced. Moreover, the time dependency of the variables is dropped when convenient.

II. FUZZY SYSTEMS WITH SINGLETON CONSEQUENTS

To construct a fuzzy model with singleton consequents, we consider that the system state x ∈ R n is bounded, i.e., x i ≤ x i ≤ x i , i ∈ I n , where x i and x i denote respectively the upper and lower bounds of the ith entry of x. Hence, x belongs to the set R = [x 1 , x 1 ] × . . . × [x n , x n ]. We also partition the system state-space as

x j = σ [1] j < σ [2] j < . . . < σ [Nj +1] j = x j , j ∈ I n . (4)
Let K v = I N1+1 × . . . × I Nn+1 be the set of multi-indices corresponding to all the vertices induced by the partition (4) and K r = I N1 × . . . × I Nn the set of multi-indices corresponding to the regions. For i = (i 1 , . . . , i n ) ∈ K r , the region σ

[i1] 1 , σ [i1+1] 1 × . . . × σ [in] n , σ [in+1] n is denoted by R i and K i = {i 1 , i 1 + 1} × . . . × {i n , i n + 1} is the set of multi-indices corresponding to all vertices of R i . For k ∈ K i , σ k is the vertex of R i whose jth component is defined as σ [kj ]
j , for j ∈ I n . The partition of the state space into hyperrectangular piecewise regions for the two-dimension (2D) case is illustrated in Fig. 1. For a hyper-rectangle region R i , for i ∈ K r , we consider the following set of fuzzy rules:

IF x 1 (t) is η [k1] 1 (x 1 ), . . . , x n (t) is η [kn] n (x n ) THEN x(t + 1) is f k , k ∈ K i ( 5 
)
where f k ∈ R n is the singleton vector, i.e., vector of real scalars. To derive the parametric expressions for system (5), we assume that the normalized membership functions η

[kj ] j (x j ), for j ∈ I n and k j ∈ I Nj +1 , are of a triangular form, defined as

η [kj ] j (x j ) =                    x j -σ [kj -1] j σ [kj ] j -σ [kj -1] j , if x j ∈ σ [kj -1] j
, σ

[kj ] j and j ≥ 2

σ [kj +1] j -x j σ [kj +1] j -σ [kj ] j , if x j ∈ σ [kj ] j , σ [kj +1] j and j ≤ N j 0, otherwise. (6) 
Note that the triangular MFs (6) satisfy the following convexity property [START_REF] Pedrycz | Why triangular membership functions?[END_REF]:

η [kj ] j (x j ) ≥ 0, ij +1 kj =ij η [kj ] j (x j ) = 1, j ∈ I n k∈Ki η k (x) = k∈Kv η k (x) = 1. (7) 
With these MFs, x(t + 1) can be inferred from the fuzzy rules (5) by taking the weighted average of f k as follows [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF]:

x(t + 1) = k∈Ki η k (x)f k , η k (x) = n j=1 η [kj ] j (x j ). ( 8 
)
The following parametric expression of x(t) can be directly derived from those of the triangular MFs defined in ( 6) as shown in [3, Proposition 1]:

x(t) = k∈Ki η k (x)σ k . ( 9 
)
Based on ( 8) and ( 9), the parametric expressions of the fuzzy model with singleton consequents, defined on R = i∈Kr R i , can be expressed as follows [START_REF] Nguyen | LMI-based stability analysis for piecewise multi-affine systems[END_REF]:

x(t + 1) = k∈Kv η k (x)f k x(t) = k∈Kv η k (x)σ k . (10) 
Note from ( 10) that the weights with respect to x j , for j ∈ I n , in the premises are computed by the multiplication of η

[kj ] j (x j ), k j ∈ I Nj +1 . Hence, the fuzzy reasoning used here is characterized by normalized triangular MFs, multiplicative weights calculation, and weighted average aggregation [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF]. For each piecewise region R i , by setting η k (x) = 1 or 0, for k ∈ K i , we can recover from the parametric expressions ( 8) and ( 9) the fuzzy singleton rules: x(t) = σ k → x(t + 1) = f k at the vertices of the region R i . Then, for each piecewise region, the parametric expressions ( 8) and ( 9) can be understood as linear interpolation expressions to compute x(t) and x(t + 1) from the vertex values. The interpolation procedure for a 2D case is illustrated in Fig. 2. Fig. 2: Interpolation procedure of x(t) and x i (t + 1) for a 2D case using parametric expressions.

Remark 1. The fuzzy model with singleton consequents [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF], or its parametric expression form [START_REF] Sala | Polynomial fuzzy models for nonlinear control: A Taylor series approach[END_REF], can be used to approximate any nonlinear system [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF], [START_REF] Nguyen | LMI-based stability analysis for piecewise multi-affine systems[END_REF] x(t + 1) = f (x(t)) [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] where f (x) : R → R n is a smooth nonlinear function, and the singleton vector in ( 5) is defined as

f k = f (σ k ), for k ∈ K i .
The approximation can be done with any arbitrary accuracy on R by increasing the number of piecewise regions with (4).

Remark 2. Many types of MFs exist for fuzzy modeling, e.g., Gaussian functions or trapezoidal functions. However, using triangular MFs allows to directly derive the parametric expression (9) of x(t) as shown in [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF]. This particular representation of the fuzzy model ( 10) is crucial to study its stability analysis. Moreover, triangular MFs have been the most employed in fuzzy control and applications [START_REF] Pedrycz | Why triangular membership functions?[END_REF].

For stability analysis, we assume that the equilibrium x ≡ 0 of system [START_REF] Sala | Polynomial fuzzy models for nonlinear control: A Taylor series approach[END_REF] corresponds to the vertex σ k0 of the state-space partition, for a given k 0 ∈ K v . Let K Z be the set of multiindices for regions containing the origin which is called zeroregions, and K N Z = K r \K Z is the set of multi-indices for non-zero regions. We also denote

K * i = K i \{k 0 }, for i ∈ K Z , and K * v = K v \{k 0 }.
Then, each point in zero-regions can be computed by interpolating 2 n -1 vertices, except for the origin, as expressed by

x(t + 1) = k∈K * i η k (x)f k x(t) = k∈K * i η k (x)σ k . ( 12 
)
The following assumption is considered for the stability analysis of discrete-time fuzzy systems with singleton consequents. Assumption 1. When the system state transits from the region R i to the region R j at the time sample t, the dynamics of the fuzzy system [START_REF] Sala | Polynomial fuzzy models for nonlinear control: A Taylor series approach[END_REF] is governed by the dynamics within the region R i at that time sample.

A similar assumption can be found in [START_REF] Feng | Stability analysis of piecewise discrete-time linear systems[END_REF] for stability analysis of piecewise discrete-time linear systems. For future uses, we define a set T that represents all possible transitions from one region to another for any sample t ∈ Z + , that is

T = {i, j ∈ K r : x(t) ∈ R i , x(t + 1) ∈ R j , i = j}.
By construction, the state space of the fuzzy system (10) is partitioned into hyper-rectangle regions. Then, exploiting the information of the region structure in the stability analysis can help to reduce the conservatism of the results [START_REF] Johansson | Piecewise quadratic stability of fuzzy systems[END_REF]. To this end, we construct the continuity matrices Li , for i ∈ K r , such that

Li x 0, x ∈ R i , i ∈ K r (13) 
where

x = x 1 , Li = L i l i , with l i = 0, i ∈ K Z .
Remark 3. A systematic method to compute Li , for i ∈ K r , is given in [START_REF] Johansson | Piecewise Linear Control Systems: A Computational Approach[END_REF]. However, since the hyper-rectangular statespace partition of system ( 10) is structurally simple, we can exactly determine the dimension of the continuity matrix in [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF], namely Li ∈ R 2n×(n+1) and L i ∈ R 2n×n , which is generally not the case for piecewise control systems [START_REF] Feng | Stability analysis of piecewise discrete-time linear systems[END_REF], [START_REF] Johansson | Piecewise Linear Control Systems: A Computational Approach[END_REF].

The following Finsler's lemma is useful to convert checking the sign of a quadratic form over a subspace into solving an LMI problem for stability analysis.

Lemma 1 ([39]

). Consider a vector π ∈ R n and two matrices Q = Q ∈ R n×n and R ∈ R m×n such that rank(R) < n, the following statements are equivalent:

i) π Qπ < 0, ∀π ∈ {π ∈ R n : π = 0, Rπ = 0} ii) ∃M ∈ R n×m such that Q + MR + R M < 0.
Based on Lemma 1, the parametric expressions of x(t + 1) and x(t) in ( 10) can be fully exploited to derive the stability analysis conditions for the Mamdani-like fuzzy system [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF].

III. STABILITY ANALYSIS FOR FUZZY SYSTEMS WITH

SINGLETON CONSEQUENTS Using a common quadratic Lyapunov function is unnecessarily restrictive for analysis of the fuzzy system [START_REF] Sala | Polynomial fuzzy models for nonlinear control: A Taylor series approach[END_REF], since the dynamics given by the parametric expressions in ( 8) and ( 9) is only valid within the region R i . Consequently, the following theorem presents a new method for stability analysis of system [START_REF] Sala | Polynomial fuzzy models for nonlinear control: A Taylor series approach[END_REF], which relies on a fuzzy Lyapunov function, expressed in a parametric expression form.

Theorem 1. Consider the fuzzy system with singleton consequents in [START_REF] Sala | Polynomial fuzzy models for nonlinear control: A Taylor series approach[END_REF]. If there exist a positive definite matrix

P k0 ∈ R n×n , matrices P k ∈ R n×n , for k ∈ K * v , sym- metric matrices with nonnegative entries U q ∈ R 2n×2n and W q ∈ R 2n×2n , for q ∈ K r , Q ij ∈ R 2n×2n , for i, j ∈ T , matrices Y 1i ∈ R n×n , Y 2i ∈ R n×n , Y 3i ∈ R 1×n , Z 1i ∈ R n×n , Z 2i ∈ R n×n , Z 3i ∈ R 1×n , for i ∈ K Z , matrices Ȳ1i ∈ R n×n , Ȳ2i ∈ R (n+1)×n , Ȳ3i ∈ R 1×n , Z1i ∈ R n×(n+1) , Z2i ∈ R (n+1)×(n+1) , Z3i ∈ R 1×(n+1) , for i ∈ K N Z , matrices R 1ij ∈ R n×n , R 2ij ∈ R n×n , R 3ij ∈ R 1×n , S 1ij ∈ R n×n , S 2ij ∈ R n×n , S 3ij ∈ R 1×n , for i, j ∈ T , i ∈ K Z , j ∈ K r , matrices R1ij ∈ R n×n , R2ij ∈ R (n+1)×n , R3ij ∈ R 1×n , S1ij ∈ R n×(n+1) , S2ij ∈ R (n+1)×(n+1) , S3ij ∈ R 1×(n+1) , for i, j ∈ T , i ∈ K N Z , j ∈ K r ,
satisfying the following linear matrix inequalities ( 14)-( 19), shown at the top of the next page, with

Pk = I n 0 n×1 P k I n 0 n×1 , σk = σ k 1 for k ∈ K i and i ∈ K N Z .
Then, the origin of the fuzzy system (10) is asymptotically stable, i.e., x(t) exponentially tends to the origin for every trajectory in R.

Proof. Let us define

V(x) = x k∈Kv η k (x)P k x (20) 
with P k0 > 0 as assumed by Theorem 1. Note that V(x) shares the same triangular MFs (6) as the fuzzy system [START_REF] Sala | Polynomial fuzzy models for nonlinear control: A Taylor series approach[END_REF], and V(0) = 0. By the convexity property in [START_REF] Coutinho | A multiple parameterization approach for local stabilization of constrained Takagi-Sugeno fuzzy systems with nonlinear consequents[END_REF] and constraint [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF], if conditions ( 14) and ( 15) are verified, it follows that

V(x) = x k∈Ki η k (x)P k x > 0, x = 0, i ∈ K r . σ l P k σ m -σ l L i U i L i σ m > 0, i ∈ K Z , k ∈ K i , l, m ∈ K * i ( 14 
)
σ l P k σ m -σ l Li U i Li σm > 0, i ∈ K N Z , k, l, m ∈ K i (15) 
He

  Ȳ1i + 1 2 P p Z1i -Ȳ1i f k -Z1i σ k Ȳ2i Z2i + 1 2 ( L i W i Li -Pk ) -Ȳ2i f k -Z2i σ k Ȳ3i Z3i -Ȳ3i f k -Z3i σ k   < 0, i ∈ K N Z , k, p ∈ K i (16) 
He

  Y 1i + 1 2 P p Z 1i -Y 1i f k -Z 1i σ k Y 2i Z 2i + 1 2 (L i W i L i -P k ) -Y 2i f k -Z 2i σ k Y 3i Z 3i -Y 3i f k -Z 3i σ k   < 0, i ∈ K Z , k, p ∈ K i , m ∈ K * i (17) 
He

  R 1ij + 1 2 P p S 1ij -R 1ij f k -S 1ij σ k R 2ij S 2ij + 1 2 (L i Q ij L i -P k ) -R 2ij f k -S 2ij σ k R 3ij S 3ij -R 3ij f k -S 3ij σ k   < 0, i, j ∈ T , i ∈ K Z , j ∈ K r p ∈ K j , k ∈ K i , m ∈ K * i (18) 
He

  R1ij + 1 2 P p S1ij -R1ij f k -S1ij σk R2ij S2ij + 1 2 ( L i Q ij Li -Pk ) -R2ij f k -S2ij σk R3ij S3ij -R3ij f k -S3ij σk   < 0, i, j ∈ T , i ∈ K Z , j ∈ K r p ∈ K j , k ∈ K i (19) 
Then, by the interpolation procedure with the positive membership functions η k (x), for k ∈ K v , the function V(x) is positive definite. Therefore, the function V(x) defined in ( 20) is a proper Lyapunov function candidate.

For stability analysis, we examine the difference ∆V x = V(x(t + 1)) -V(x(t)) along the trajectories of system [START_REF] Sala | Polynomial fuzzy models for nonlinear control: A Taylor series approach[END_REF]. Note that there are only four possible cases that must be distinguished. To study the stability, we also consider Assumption 1, which is useful for the proofs of Cases 3 and 4.

a) Case 1: x(t) ∈ R i and x(t + 1) ∈ R i , for i ∈ K N Z . To derive the stability conditions, the variation of V(x) along the solution of the fuzzy system (10) is required to be negative definite, that is ∆V x = x(t + 1) P i+ x(t + 1) -x(t) P i x(t) < 0 [START_REF] Chen | Optimal design of fuzzy sliding-mode control: A comparative study[END_REF] for i ∈ K N Z , with

P i+ = p∈Ki η p (x(t + 1))P p , P i = k∈Ki η k (x(t))P k . (22)
Since W i 0 and by the construction of Li in (13), using the well-known S-procedure [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], it is clear that condition [START_REF] Chen | Optimal design of fuzzy sliding-mode control: A comparative study[END_REF] holds if

x(t + 1) P i+ x(t + 1) -x(t) Pi x(t) + x(t) L i W i Li x(t) < 0 (23) 
with Pi = I n 0 n×1 P i I n 0 n×1 , for i ∈ K N Z . Note that inequality [START_REF] Prieto | Stability analysis for Mamdani-type integral fuzzybased sliding-mode control of systems under persistent disturbances[END_REF] can be rewritten in the form

ξ(t) Wi ξ(t) < 0, i ∈ K N Z (24) 
where

ξ(t) =   x(t + 1) x(t) 1   , Wi =   P i+ 0 0 L i W i Li -Pi 0 0   .
Moreover, for conciseness the expressions in ( 8) and ( 9) can be rewritten in the following respective compact forms:

x(t + 1) = F i x(t) = Σi ( 25 
)
for i ∈ K N Z , where

F i = k∈Ki η k (x)f k , Σi = k∈Ki η k (x)σ k , σk = σ k 1 .

It follows from (25) that

Ni

ξ(t) = 0, i ∈ K N Z (26) 
with

Ni = I n 0 n×(n+1) -F i 0 (n+1)×n I n+1 -Σi , ξ(t) =   x(t + 1) x(t) 1   .
Note that the algebraic expression ( 26) is simply obtained from (25) by matrix manipulation. By Finsler's lemma, condition [START_REF] Calcev | Some remarks on the stability of Mamdani fuzzy control systems[END_REF] holds under the equality constraint [START_REF] Liu | Adaptive fuzzy output feedback control for a class of nonlinear systems with full state constraints[END_REF], if there exist matrices Mi such that

Wi + Mi Ni + N i M i < 0, i ∈ K N Z . (27) 
Let us partition

Mi =   Ȳ1i Z1i Ȳ2i Z2i Ȳ3i Z3i   .
Then, condition ( 27) is rewritten as

He   Ȳ1i + 1 2 P i+ Z1i -Ȳ1i F i -Z1i Σi Ȳ2i Z2i -Ȳ2i F i -Z2i Σi Ȳ3i Z3i -Ȳ3i F i -Z3i Σi   < 0 (28) with Z2i = Z2i + 1 2 ( L i W i Li -Pi ), for i ∈ K N Z .
By the convexity property [START_REF] Coutinho | A multiple parameterization approach for local stabilization of constrained Takagi-Sugeno fuzzy systems with nonlinear consequents[END_REF], we deduce that condition [START_REF] Kosko | Fuzzy systems as universal approximators[END_REF] implies inequality [START_REF] Wang | Event-triggered robust adaptive fuzzy control for a class of nonlinear systems[END_REF], which guarantees that ∆V x < 0, for all x(t) ∈ R i , x(t + 1) ∈ R i and i ∈ K N Z .

b) Case 2: x(t) ∈ R i and x(t+1) ∈ R i , for i ∈ K Z . It is important to note that the vertices corresponding to the origin are excluded in the parametric expressions of x(t) and x(t+1) in ( 12) for zero-regions. Hence, these parametric expressions do not correspond to convex combinations of the vertex values.

A convexification procedure via some changes of variables is required to deal with this issue. To this end, we define

α(x(t)) = m∈K * i η m (x(t)) = 1 -η k0 (x(t)) for x(t) ∈ R i \{0}, i ∈ K Z .
For simplicity, we denote α(x) = α(x(t)). Note that α(x) > 0, for x = 0. Then, we perform the changes of variables x * (t) = 1 α(x) x(t) and

x * (t + 1) = 1 α(x) x(t + 1), η * m (x) = 1 α(x)
η m (x)

F * i = m∈K * i η * m (x)f m , Σ * i = m∈K * i η * m (x)σ m .
Then, the parametric expressions of x(t) and x(t + 1) in ( 12) can be equivalently represented in the following convex combination form, for x ∈ R i \{0}, i ∈ K Z :

x * (t + 1) =

m∈K * i η * m (x)f k = F * i x * (t) = m∈K * i η * m (x)σ k = Σ * i . (29) 
Following similar steps as in the proof of Case 1 for system (29), we can prove that condition [START_REF] Taniguchi | Stabilization of nonlinear systems based on piecewise Lyapunov functions[END_REF] implies that He

  Y 1i + 1 2 P i+ Z 1i -Y 1i F * i -Z 1i Σ * i Y 2i Z 2i -Y 2i F * i -Z 2i Σ * i Y 3i Z 3i -Y 3i F * i -Z 3i Σ * i   < 0 (30) 
with [START_REF] Sun | Command filter-based finite-time adaptive fuzzy control for uncertain nonlinear systems with prescribed performance[END_REF], in turn, equivalently implies that

Z 2i = Z 2i + 1 2 (L i W i L i -P i ), for i ∈ K Z . Condition
α(x) 2 x * (t) W i x * (t) = ∆V x + x(t) L i W i L i x(t) < 0(31) for x ∈ R i \{0} and i ∈ K Z , with W i =   P i+ 0 0 L i W i L i -P i 0 0   .
Since W i 0 and by [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF], via the S-procedure we can deduce from (31) that ∆V x < 0, for x ∈ R i \{0} and i ∈ K Z . c) Case 3: x(t) ∈ R i and x(t + 1) ∈ R j , for i, j ∈ T , i ∈ K Z and j ∈ K r . In this case, the variation of ∆V x along the trajectory of system ( 10) is given by

∆V x = V(x(t + 1)) -V(x(t)) = x(t + 1) P j+ x(t + 1) -x(t) P i x(t) (32) 
where P j+ and P i are defined similarly as in [START_REF] Yu | Design of fuzzy sliding-mode control systems[END_REF] with i ∈ K Z and j ∈ K r . Dividing both sides of inequality (32) by α(x) 2 > 0, defined in Case 2, it follows that ∆V * x = x * (t + 1) P j+ x * (t + 1) -x * (t) P i x * (t). (33) By the S-procedure with Q ij 0 and constraint [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF], it follows from ( 32) and ( 33) that ∆V x < 0 if

∆V * x + x * (t) L i Q ij L i x * (t) < 0 ( 34 
)
for i, j ∈ T , i ∈ K Z and j ∈ K r . Condition (34) can be rewritten in the form

ξ * (t) Q ij ξ * (t) < 0, i, j ∈ T , i ∈ K Z , j ∈ K r ( 35 
)
where

ξ * (t) =   x * (t + 1) x * (t) 1   , Q ij =   P j+ 0 0 L i Q ij L i -P i 0 0   .
Moreover, it can be obtained from ( 29) that

N * i ξ * (t) = 0, i ∈ K Z ( 36 
)
with

N * i = I n 0 n×n -F * i 0 n×n I n -Σ * i .
Using Finsler's lemma, condition [START_REF] Pedrycz | Why triangular membership functions?[END_REF] holds under the equality constraint [START_REF] Feng | Stability analysis of piecewise discrete-time linear systems[END_REF] if there exist matrices M * ij such that

Q ij + M * ij N * i + N * i M * i < 0 ( 37 
)
for i, j ∈ T , i ∈ K Z and j ∈ K r . We partition

M ij =   R 1ij S 1ij R 2ij S 2ij R 3ij S 3ij   .
Then, condition (37) can be rewritten as

He   R 1ij + 1 2 P j+ S 1ij -R 1ij F * i -S 1ij Σ * i R 2ij S 2ij -R 2ij F * i -S 2ij Σ * i R 3ij S 3ij -R 3ij F * i -S 3ij Σ * i   < 0 (38)
with

S 2ij = S 2ij + 1 2 (L i Q ij L i -P i ), for i, j ∈ T , i ∈ K Z and j ∈ K r .
By the convexity property of the parametric expressions of F * i and Σ * i in ( 29), we can see that condition ( 18) implies [START_REF] Johansson | Piecewise Linear Control Systems: A Computational Approach[END_REF], which, in turn, guarantees that ∆V x < 0, for x = 0, in this case.

d) Case 4: x(t) ∈ R i and x(t + 1) ∈ R j , for i, j ∈ T , i ∈ K N Z and j ∈ K r . As for the previous cases, it is required that ∆V x < 0 along the trajectory of system [START_REF] Sala | Polynomial fuzzy models for nonlinear control: A Taylor series approach[END_REF] in this case, that is x(t + 1) P j+ x(t + 1) -x(t) P i x(t) < 0 [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] where P j+ and P i are defined similarly as in [START_REF] Yu | Design of fuzzy sliding-mode control systems[END_REF] with i ∈ K N Z and j ∈ K r . Using the S-procedure with Q ij 0 and constraint [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF], condition (39) is verified if

x(t + 1) P j+ x(t + 1) -x(t) Pi x(t) + x(t) L i Q ij Li x(t) < 0 ( 40 
)
for i, j ∈ T , i ∈ K N Z and j ∈ K r . We rewrite inequality [START_REF] Löfberg | YALMIP: A toolbox for modeling and optimization in MATLAB[END_REF] in the form

ξ(t) Qij ξ(t) < 0, i, j ∈ T , i ∈ K N Z , j ∈ K r ( 41 
)
where

Qij =   P j+ 0 0 L i Q ij Li -Pi 0 0   .
Similar to [START_REF] Liu | Adaptive fuzzy output feedback control for a class of nonlinear systems with full state constraints[END_REF], we have

Ni ξ(t) = 0, i ∈ T ∩ K N Z . ( 42 
)
It follows from Finsler's lemma that condition (41) holds under constraint [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF] if there exist matrices Mij satisfying

Qij + Mij Ni + N i M ij < 0 ( 43 
)
for i, j ∈ T , i ∈ K N Z and j ∈ K r . We partition

Mij =   R1ij S1ij R2ij S2ij R3ij S3ij   .
Then, condition ( 43) can be explicitly rewritten as

He   R1ij + 1 2 P j+ S1ij -R1ij F i -S1ij Σi R2ij S2ij -R2ij F i -S2ij Σi R3ij S3ij -R3ij F i -S3ij Σi   < 0 (44) with S2ij = S2ij + 1 2 ( L i Q ij Li -Pi )
, for i, j ∈ T , i ∈ K N Z and j ∈ K r . Using again the convexity property in [START_REF] Coutinho | A multiple parameterization approach for local stabilization of constrained Takagi-Sugeno fuzzy systems with nonlinear consequents[END_REF], we can conclude that condition ( 19) implies (44), which guarantees that ∆V x < 0, for x ∈ R i in this case.

The results of all the above cases lead to ∆V x < 0, for ∀x ∈ R\{0}, which concludes the proof.

The stability analysis conditions in Theorem 1 are strictly expressed in terms of linear matrix inequalities, whose feasibility can be checked using a suitable semidefinite programming software. Conditions ( 14)-( 15) guarantee that the Lyapunov function candidate V(x), defined in [START_REF] Kluska | PID-like adaptive fuzzy controller design based on absolute stability criterion[END_REF], is positive definite. LMI conditions ( 16)-( 17) ensure that the Lyapunov function is decreasing along the trajectory of system [START_REF] Sala | Polynomial fuzzy models for nonlinear control: A Taylor series approach[END_REF] in each region, whereas the LMI conditions ( 18)- [START_REF] Choi | Design and stability analysis of single-input fuzzy logic controller[END_REF] ensure that this function decreases when the system state transits from one region to another on the state space R.

Remark 4. The membership-functions-dependent Lyapunov function V(x) in ( 20) is expected to yield less conservative stability results than those obtained with a common quadratic Lyapunov function V (x) = x P x, with P > 0. Indeed, the latter can be regarded as a special case of (20) by imposing P k = P , for k ∈ K v . Moreover, we leverage the parametric expression of x(t) in ( 14) and ( 15) so that the Lyapunov matrices P k , for k ∈ K * v , are not explicitly required to be positive definite.

Remark 5. The slack matrices U q , W q , for q ∈ K r , and Q ij , for i, j ∈ T , are introduced into the stability analysis via the S-procedure [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]. This contributes to reduce the stability conservatism since the hyper-rectangular piecewiseregion information of the fuzzy model ( 10) can be fully exploited via constraint [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF]. Remark 6. For the stability results in Theorem 1, the parametric expressions of both x(t) and x(t + 1) in ( 10) can be leveraged using Finsler's lemma [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]. As discussed in [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF], expression ( 9) is a reformulation of the triangular MFs (6), whose information can be considered for stability analysis.

Remark 7. The stability conditions in Theorem 1 do not necessarily imply the stability of system [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] due to the approximation error between this system and its fuzzy model [START_REF] Sala | Polynomial fuzzy models for nonlinear control: A Taylor series approach[END_REF]. The error characterization and its impacts on stability analysis of fuzzy models with singleton consequents are left for future works. At this stage, we emphasize the tradeoff between the computational burden and the approximation precision in the stability analysis using the fuzzy modeling [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF]. Specifically, a fine modeling repartition (4) decreases the approximation error, but leads to a more expensive computational cost.

IV. ILLUSTRATIVE EXAMPLES This section provides four numerical examples to illustrate the effectiveness and the conservativeness of the proposed stability results. All the involved LMI-based conditions are solved using YALMIP toolbox with SDPT3 solver [START_REF] Löfberg | YALMIP: A toolbox for modeling and optimization in MATLAB[END_REF]. Example 1. This example is used to study the stability of a Mamdani-like fuzzy system, described in a parametric expression form. To this end, we consider the second-order fuzzy model taken from [START_REF] Sugeno | On improvement of stability conditions for continuous Mamdani-like fuzzy systems[END_REF], whose the state-space partition and the values of the singleton consequents are given in Table I. Fig. 3 shows the characteristics of this fuzzy model, which is nonlinear. Solving the stability conditions in Theorem 1, we obtain a feasible solution, whose details are omitted for conciseness. The Lyapunov function proving the stability of the considered fuzzy system is depicted in Fig. 4, whereas Fig. 5 shows the corresponding Lyapunov level sets and several trajectories. In contrast to the stability results in [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF], [START_REF] Sugeno | On improvement of stability conditions for continuous Mamdani-like fuzzy systems[END_REF], we can see in Fig. 5 that the obtained Lyapunov level sets have a nonquadratic form. Moreover, the convergence of the trajectories to the origin in the phase plane confirms that the studied Mamdani-like fuzzy system is stable. Example 2. To evaluate the conservatism of the stability analysis results, we consider the nonlinear system [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF], where 10) is constructed from 25 points of a 5 × 5 rectangular partition on the state space resulting in 16 piecewise rectangular regions, which can approximate very accurately the nonlinear function (45). To evaluate the conservatism, we compare the proposed result in Theorem 1 and the stability analysis results obtained with TS fuzzy modeling. To this end, using the sector nonlinearity approach [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF], the nonlinear system [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] with f (x) given in (45) can be represented by the following TS fuzzy model: in (46) are defined as We can see that larger feasibility regions can be obtained with Mamdani-like fuzzy model-based approaches. As expected, for both TS fuzzy and Mamdani-like fuzzy approaches, the stability results derived from nonquadratic Lyapunov functions, including the information of the MFs in their constructions, are less conservative than those based on a common quadratic Lyapunov function. Note that using Mamdani-like fuzzy approaches, we can deal with nonlinear systems in the form [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF], without requiring a classical state-space parameterization x(t + 1) = A(z)x(t), where z(t) is the vector of premise variables, as for TS fuzzy approaches or related ones. Such a state-space parameterization is not unique, which may be a source of conservativeness [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF]. As discussed in Remark 7, although the stability of Mamdani-like fuzzy models does not directly imply the stability of the nonlinear system ( 11)-( 45), the proposed comparison provides an idea on the conservativeness of the stability analysis conditions in Theorem 1, especially when the constructed Mamdani-like fuzzy models accurately approximate system (45).

f 1 (σ 1 , σ 2 ) σ [1] 2 σ [2] 2 σ [3] 2 σ [4] 2 σ [5] 2 
f 2 (σ 1 , σ 2 ) -π/2 -π/6 0 π/6 π/2 σ [1] 1 -2 -1.
f (x) = (1 -T e )x
x(t + 1) = 4 i=1 h i (x)A i x(t) (46) 
h 1 (x) = (1 -cos x 1 )(1 -sin x 2 ) 4 h 2 (x) = (1 -cos x 1 )(sin x 2 -1) 4 
h 3 (x) = (cos x 1 -1)(1 -sin x 2 ) 4 h 4 (x) = (cos x 1 -1)(sin x 2 -1) 4 .
For illustrations, Fig. 7 presents the nonquadratic Lyapunov level sets obtained with Theorem 1 and some trajectories in the phase plane of the Mamdani-like fuzzy model of system (45) with a = 1.84 and b = -5. We can see that the corresponding fuzzy model is stable within the state-space set R. Moreover, note that the trajectories of the nonlinear system (45) and those of its Mamdani-like fuzzy model are superposed in Fig. 7, which confirms an accurate approximation of the fuzzy modeling in this case. Example 3. To further study the stability conservatism, we consider a physically motivated two-tank system, whose dynamics can be described as [START_REF] Nguyen | Constrained output-feedback control for discrete-time fuzzy systems with local nonlinear models subject to state and input constraints[END_REF] ḣ1

(t) = 1 A kv(t) -a 1 2g(h 1 (t) -h 2 (t)) ḣ2 (t) = 1 A a 1 2g(h 1 (t) -h 2 (t)) -a 2 2gh 2 (t) (47) 
where h 1 (t) and h 2 (t) denote the water level of the two tanks, v(t) is the flow rate of the pump, A = 100 cm 2 is the horizontal section, k = 0.01 is a constant, a 1 ∈ [1, 50] cm 2 is the section of the valve connecting the tanks, a 2 ∈ [0.7, 35] cm 2 is the section of the outlet valve, g = 981 cm/s 2 is the gravitational acceleration constant. Considering the equilibrium of system (47) as h 1e h 2e = 15 6 , then it follows that

0 = 1 A kv e -a 1 2g(h 1e -h 2e ) 0 = 1 A a 1 2g(h 1e -h 2r ) -a 2 2gh 2e . Let us define x 1 = h 1 -h 1e , x 2 = h 2 -h 2e , ∆v = v -v e .
Then, the following incremental model can be obtained:

ẋ1 = a 1 A 2g φ(x) (x 2 -x 1 ) + k A ∆v ẋ2 = a 1 A 2g φ(x) (x 1 -x 2 ) - 2ga 2 x 2 A ϕ(x 2 ) (48) with φ(x) = 2g(x 1 -x 2 + h 1e -h 2e ) + 2g(h 1e -h 2e ) ϕ(x 2 ) = 1 2g(x 2 + h 2e ) + √ 2gh 2e .
The state x = x 1 x 2 of system (48) belongs to the set R = [-4, 4] × [-5, 5]. For stability analysis, we consider the case without control input, i.e., ∆v = 0. Moreover, we perform a forward Euler discretization with a sampling period T e = 0.5 [s], the discrete-time model of system (47) can be represented by [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] with

f (x) = a1Te A 2g φ(x) (x 2 -x 1 ) + x 1 a1Te A 2g φ(x) (x 1 -x 2 ) + x 2 -2ga2Tex2 A ϕ(x 2 ) (49) 
The fuzzy model ( 10) is constructed with 16 piecewise rectangular regions, partitioned on R in a similar way as for Example 2. Moreover, using the sector nonlinearity approach [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] with two premise variables 1 φ(x) and ϕ(x 2 ), a TS fuzzy model can be directly obtained, whose details are omitted here for conciseness. For comparison purposes, we also consider four stability analysis results as in Example 2 for this system. Fig. 8 shows the feasibility regions corresponding to the four stability analysis results. We can see that compared to TS fuzzy based methods, Mamdani-like fuzzy based results yield a much larger feasibility region. For this physically motivated example, quadratic and nonquadratic approaches for both TS fuzzy and Mamdani-like fuzzy cases lead to the same level of conservativeness with the same feasibility regions. Fig. 9 illustrates the nonquadratic Lyapunov level sets in the phase plane obtained with Theorem 1 and the Mamdani-like fuzzy model of system (49) with a 1 = 6.44 and a 2 = 35.

Example 4. One of our key contributions compared to the seminal work [START_REF] Sugeno | On stability of fuzzy systems expressed by fuzzy rules with singleton consequents[END_REF] and related references [START_REF] Sugeno | On improvement of stability conditions for continuous Mamdani-like fuzzy systems[END_REF], [START_REF] Kim | A new approach to numerical stability analysis of fuzzy control systems[END_REF], [START_REF]A new computational approach to stability analysis and synthesis of linguistic fuzzy control system[END_REF] is the possibility to study the stability of discrete-time highdimensional nonlinear systems, i.e., n ≥ 3. To illustrate this contribution, we consider the following electric circuit system, modeled by a Hopfield artificial neural network [START_REF] Khalil | Nonlinear Systems[END_REF]: Performing a forward Euler discretization with a sampling period T e = 0.001 [s], a discrete-time version of system (50) can be represented by [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF]. The Mamdani-like fuzzy model (10) of this system is constructed with 800 points of a 5 × 4 × 4 hyper-rectangular grid on the state space R. Solving LMI conditions in Theorem 1, a membershipfunctions-dependent Lyapunov function [START_REF] Kluska | PID-like adaptive fuzzy controller design based on absolute stability criterion[END_REF] can be found to prove the stability of the discrete-time fuzzy model of system (50). Fig. 10 shows the behaviors of system (50) in the phase plane and the time evolution of the obtained Lyapunov function corresponding to the system trajectories with four different initial conditions: x(0) = 1.667 -2.778 -5 , x(0) = 1.667 -2.778 3.889 , x(0) = -5 -5 5 and x(0) = -5 -5 -5 . These results indicates a stable behavior of the fuzzy model of system (50). It is important to note that the trajectories of the nonlinear system (50) and those of its Mamdani-like fuzzy model are superposed in Fig. 10. This again confirms that the considered Mamdani-like fuzzy modeling can accurately approximate the complex nonlinear system (50).

ẋi = Λ i 3 i=1 S ij x j - 2V m λπR i tan πx i 2V m Λ i = λ C i 1 1 + tan 2 πxi

V. CONCLUDING REMARKS

A numerical method to check the stability of discrete-time fuzzy systems with singleton consequents has been proposed. We leverage parametric expressions, specific to this class of Mamdani-like fuzzy systems, together with Finsler's lemma to derive stability analysis conditions for systems of any order. In particular, using the S-procedure and Lyapunov stability tools, the information of the piecewise regions of fuzzy systems is fully exploited to further reduce the conservatism of the stability conditions, expressed in terms of linear matrix inequalities. Several numerical and physically motivated examples are provided to show the interests of the new stability method for Mamdani-like fuzzy systems. As discussed in Remark 7, future works focus on characterizing the approximation errors between the original nonlinear system and its Mamdani-like fuzzy model, which is crucial to derive fuzzy-model-based conditions for stability analysis of general nonlinear systems. Another promising research topic is to develop stabilizing Mamdani-like fuzzy controllers in 

Fig. 1 :
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 6 Fig. 6: Feasibility regions obtained with [41, Theorem 4.3] (•), [42, adapted Theorem 5] (•, * ), adapted Theorem 1 with a quadratic Lyapunov function (•, * ,×), Theorem 1 (•, * ,×,+).

Fig. 7 :

 7 Fig. 7: Nonquadratic Lyapunov level sets and trajectories in the phase plane of Mamdani-like fuzzy model in Example 2 with a = 1.84 and b = -5.
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 8 Fig. 8: Feasibility regions obtained with [41, Theorem 4.3] and [42, adapted Theorem 5] (•), adapted Theorem 1 with a quadratic Lyapunov function and Theorem 1 (•,+).

Fig. 9 :

 9 Fig. 9: Nonquadratic Lyapunov level sets in the phase plane of Mamdani-like fuzzy model in Example 3 with a 1 = 6.44 and a 2 = 35.

  variables x i , for i ∈ I 3 , are the voltages at the amplifier outputs. These voltages can only take values in theset R = [-V m , V m ]×[-V m , V m ]×[-V m , V m ].The parameter values are given by λ= 7.0 × 10 -2 , C 1 = 3.3 [µF], C 2 = 1.5 [µF], C 2 = 5.6 [µF], R 1 = 1.0 [kΩ], R 2 = 3.3 [kΩ], R 3 = 1.2 [kΩ], V m = 5 [V],andS ij = 10 -3 ×
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 10 Fig. 10: Behavior in the phase plane of both the nonlinear system and its Mamdani-like fuzzy model in Example 4, and the time evolution of the obtained nonquadratic Lyapunov function with respect to four different initial conditions.
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