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Convex Stability Analysis of Mamdani-Like Fuzzy
Systems with Singleton Consequents

Anh-Tu Nguyen∗, Senior Member, IEEE, Amine Dehak, Thierry-Marie Guerra, Michio Sugeno, Life
Member, IEEE

This paper is dedicated to the memory of Dr. Amine Dehak, a former PhD student of the first author, who
suddenly passed away in November 2022. He will be remembered for his great contributions, his passion for

research and his kindness of character. We who knew him will miss him forever.

Abstract—We study the stability of a class of discrete-time
fuzzy systems with singleton consequents, called Mamdani-like
fuzzy systems. The parametric expressions, specific to this class of
fuzzy systems, are leveraged to derive stability analysis conditions
via Finsler’s lemma and Lyapunov stability tools. This allows
avoiding the major challenge in dealing with high-dimensional
cases, encountered in the related literature when using the
classical state-space representation. Moreover, the information of
the piecewise region partition can be fully taken into account in
the stability analysis with the well-known S−procedure to further
reduce the stability conservatism. The stability of Mamdani-
like fuzzy systems can be checked by solving a set of linear
matrix inequalities (LMIs), that is numerically tractable with a
suitable semidefinite programming software. Several numerical
and physically motivated examples are provided to illustrate the
effectiveness of the proposed stability analysis results.

Index Terms—Fuzzy systems, fuzzy rules, stability analysis,
singleton consequents, Mamdani fuzzy systems.

I. INTRODUCTION

Fuzzy control has become one of the most prominent
approaches to deal with complex industrial plants, essentially
nonlinear systems. Since Mamdani’s seminal paper published
in 1974 on fuzzy modeling and control [1], many fuzzy control
systems have been proposed [2]. Depending on the conse-
quents of IF-THEN rules, three classes of fuzzy systems can
be distinguished as suggested in [3]: Mamdani fuzzy systems
[4], Takagi-Sugeno (TS) fuzzy systems [5] and singleton-type
fuzzy systems [3]. Mamdani fuzzy systems are defined by
IF-THEN rules with linguistic consequents as [4]

Rule Ri : IF x1 is Gi1, x2 is Gi2, . . . , xn is Gin
THEN y is F i, i = 1, 2, . . . ,m

(1)
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where F i and Gij , j = 1, 2, . . . , n, are fuzzy sets, m is the
number of fuzzy rules. Despite its practical interests in control
of industrial processes, Mamdani fuzzy control has received a
lot of criticisms from control community due to the lack of
a systematic stability analysis framework [2]. Indeed, most of
Mamdani fuzzy control schemes are remain model-free and
essentially heuristic [6]. TS fuzzy systems are with functional
consequents [5], defined by

Rule Ri : IF x1 is Gi1, x2 is Gi2, . . . , xn is Gin
THEN y is fi(x), i = 1, 2, . . . ,m

(2)

where x =
[
x1 x2 . . . xn

]>
, and the consequent func-

tions fi(x), for i = 1, 2, . . . ,m, are usually linear as

fi(x) = bi + a1ix1 + a2ix2 + · · ·+ anixn

where the parameters bi and aji, for j = 1, . . . , n, are constant.
TS fuzzy systems with nonlinear consequents or polynomial
consequents have been also studied, see for instance [7],
[8] and [9], [10], respectively. The functional characteristics
of the consequents makes possible to derive a systematic
framework for stability analysis of TS fuzzy systems [11].
Despite a tremendous advance, reducing the stability analysis
conservatism and dealing with complex systems with a large
number of nonlinearities and/or states still remain challenging
within TS fuzzy framework [2], [12], [13]. Singleton-type
fuzzy systems are defined with fuzzy rules of the form [3]

Rule Ri : IF x1 is Gi1, x2 is Gi2, . . . , xn is Gin
THEN y is bi, i = 1, 2, . . . ,m

(3)

where the consequents bi, for i = 1, 2, . . . ,m, are singletons,
i.e., real numbers. Note from (1), (2) and (3) that singleton-
type fuzzy systems are a special case of the two other classes
of fuzzy systems when the linguistic consequents of Mamdani
fuzzy systems and the functional consequents of TS fuzzy
systems are simplified to singletons. Moreover, since linguistic
labels may be assigned to singletons of singleton-type fuzzy
systems, they can be called Mamdani-like fuzzy systems [14].
These fuzzy systems have been also called piecewise multi-
affine systems due to their input-output multiaffine relation
with respect to an affine-in-control system [15].

Mamdani-like fuzzy modeling has been found advantageous
to study nonlinear systems for many reasons [3]. First, it can
be used to represent complex systems where only input-output
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data are available. This is particularly useful within industrial
contexts to study complex plants with no acceptable analytical
descriptions. Moreover, a Mamdani-like fuzzy model can
be also directly obtained from the mathematical expression
of a given nonlinear system. Second, as other classes of
fuzzy systems, Mamdani-like fuzzy systems are universal
approximators for any smooth nonlinear functions [16]. Third,
they can be conveniently implemented using look-up tables,
which are widely used in industry for model approximation
and control implementation. Finally and specifically, both the
state vector and the system dynamics of Mamdani-like fuzzy
systems can be represented by parametric expressions [3],
enabling a systematic framework for stability analysis [15],
which remains open for Mamdani fuzzy systems. Despite these
advantages, due to theoretical challenges, most of works on
Mamdani-like fuzzy modeling have been mainly devoted to
application aspects rather than theory [13].

Based on a quadratic Lyapunov function, Sugeno first set a
theoretical foundation for stability analysis of Mamdani-like
fuzzy models in the seminal paper [3]. Taking into account
the parametric expression of the system state, an equivalent
representation of triangular membership functions (MFs), this
result has been further improved in [14], [17] to analytically
derive necessary and sufficient stability conditions. Note that
these latter have not been achieved with TS fuzzy-model-based
stability approaches, especially for the approaches where the
corresponding MFs are considered as “uncertainty” for stabil-
ity analysis [18]. However, the stability conditions in [3], [14],
[17] are reformulated as nonlinear matrix inequalities, which
induce numerical difficulties. More importantly, these stability
results can be only applied to second-order systems. Due to
the specific piecewise polytopic affine form of the state-space
representation of Mamdani-like fuzzy models, extensions to
high-dimension cases are very challenging [13]. Due to these
drawbacks, the research mainstream has been to consider
Mamdani-like fuzzy controllers as nonlinear controllers, then
the Mamdani-like fuzzy stability analysis is reformulated as a
nonlinear stability approach based on absolute stability theory
[19], [20], sliding mode control [21]–[23], passivity control
approach [24], adaptive fuzzy control [25]–[30], TS fuzzy
control [31], [32], etc. Although these results are also based
on Lyapunov stability theory, a fundamental difference should
be made clear with the works developed by Sugeno and co-
workers [3], [14], [17]. That is, the above stability and control
results have mainly focused on the characteristics of Mamdani-
like fuzzy controllers performed on linear/nonlinear/TS fuzzy
objective systems, or using Mamdani-like fuzzy modeling to
represent their unknown/uncertain dynamics. Hence, the sta-
bility analysis of Mamdani-like fuzzy control systems can be
treated using conventional nonlinear control [33] or TS fuzzy
control [11], which is not the initial motivation of Mamdani-
like fuzzy control systems [13]. Indeed, as Mamdani-like fuzzy
systems are a special case of Mamdani fuzzy systems and
TS fuzzy systems, the primary goal for Mamdani-like fuzzy
control is to develop an analysis framework for nonlinear
complex plants, embedded in Mamdani-like fuzzy models.
This aims at inheriting the advantages while limiting the
respective drawbacks of these two classes of fuzzy systems,

i.e., a systematic theoretical tool to deal with complex systems
with a reduced conservativeness while being linguistically un-
derstandable to incorporate the expert’s skills and experience
[3]. Developing such a theoretical framework for Mamdani-
like fuzzy systems is expected to be particularly challenging
due to the novel fuzzy mathematics and linguistical features
involved in the stability analysis [3], [13], [34].

Recently, using piecewise Lyapunov functions, a system-
atic stability framework has been established in [15] for
continuous-time Mamdani-like fuzzy systems. In contrast to
the related works [3], [14], [17], parametric expressions, a
specific representation of Mamdani-like fuzzy systems, have
been fully exploited instead of state-space representation to
derive stability analysis conditions. The basic idea is based on
the fact that for each piecewise region, the system state and its
dynamics can be determined by convex combinations of the
respective vertex values. This has paved the way for numerical
stability analysis approaches for Mamdani-like fuzzy systems
with any order. This paper can be considered as a discrete-
time counterpart of the work in [15], concerned with the
continuous-time stability analysis. Dealing with the discrete-
time case is revealed to be more challenging since the stability
of Mamdani-like fuzzy systems must be guaranteed when the
system state can arbitrarily jump from one region to another,
possibly nonadjacent. This phenomenon does not appear in the
continuous-time case. Hence, additional technical treatments
are required to ensure that the variation of the Lyapunov
function along the system trajectory is decreasing despite these
arbitrary jumps between piecewise regions. Specifically, the
main contributions can be summarized as follows.

• Using the specific parametric expressions via Finsler’s
lemma, we establish Lyapunov-based stability conditions
for discrete-time Mamdani-like fuzzy systems of any
order, which is not the case in [3], [14], [31], [32].

• We propose a novel piecewise MFs-dependent Lyapunov
function for stability analysis. Moreover, to further reduce
the conservatism, the information of the piecewise region
partition can be fully taken into account in the Lyapunov
conditions via the S−procedure.

• The stability of discrete-time Mamdani-like fuzzy sys-
tems can be conveniently checked by solving a set of
LMI constraints.

Notation. IN denotes the subset of natural numbers
{1, 2, . . . , N}, R is the field of real numbers, and Z+ is the
field of nonnegative integer numbers. For a vector x ∈ Rn
and i ∈ In, xi denotes the ith entry of x. For a matrix X ,
X> indicates its transpose. For any square matrix X , X > 0
indicates a symmetric positive definite matrix, X � 0 means
that all its elements are nonnegative, and HeX = X+X>. We
denote In as the identity matrix of dimension n, and 0n×m as
the n×m zero matrix. The symbol ? stands for matrix blocks
that can be deduced by symmetry. The explicit dimensions of
both identity and null matrices are omitted if straightforwardly
deduced. Moreover, the time dependency of the variables is
dropped when convenient.
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II. FUZZY SYSTEMS WITH SINGLETON CONSEQUENTS

To construct a fuzzy model with singleton consequents, we
consider that the system state x ∈ Rn is bounded, i.e., xi ≤
xi ≤ xi, i ∈ In, where xi and xi denote respectively the upper
and lower bounds of the ith entry of x. Hence, x belongs to
the set R = [x1, x1] × . . . × [xn, xn]. We also partition the
system state-space as

xj = σ
[1]
j < σ

[2]
j < . . . < σ

[Nj+1]
j = xj , j ∈ In. (4)

Let Kv = IN1+1 × . . . × INn+1 be the set of multi-indices
corresponding to all the vertices induced by the partition
(4) and Kr = IN1

× . . . × INn
the set of multi-indices

corresponding to the regions. For i = (i1, . . . , in) ∈ Kr, the
region

[
σ
[i1]
1 , σ

[i1+1]
1

]
× . . . ×

[
σ
[in]
n , σ

[in+1]
n

]
is denoted by

Ri and Ki = {i1, i1 + 1} × . . . × {in, in + 1} is the set of
multi-indices corresponding to all vertices of Ri. For k ∈ Ki,
σk is the vertex of Ri whose jth component is defined as
σ
[kj ]
j , for j ∈ In. The partition of the state space into hyper-

rectangular piecewise regions for the two-dimension (2D) case
is illustrated in Fig. 1.

Fig. 1: Partition of the state space into hyper-rectangular
piecewise regions for a 2D case.

For a hyper-rectangle region Ri, for i ∈ Kr, we consider
the following set of fuzzy rules:

IF x1(t) is η[k1]1 (x1), . . . , xn(t) is η[kn]n (xn)

THEN x(t+ 1) is fk, k ∈ Ki

(5)

where fk ∈ Rn is the singleton vector, i.e., vector of
real scalars. To derive the parametric expressions for system
(5), we assume that the normalized membership functions
η
[kj ]
j (xj), for j ∈ In and kj ∈ INj+1, are of a triangular

form, defined as

η
[kj ]
j (xj) =



xj − σ
[kj−1]
j

σ
[kj ]
j − σ[kj−1]

j

,
if xj ∈

[
σ
[kj−1]
j , σ

[kj ]
j

]
and j ≥ 2

σ
[kj+1]
j − xj

σ
[kj+1]
j − σ[kj ]

j

,
if xj ∈

[
σ
[kj ]
j , σ

[kj+1]
j

]
and j ≤ Nj

0, otherwise.

(6)

Note that the triangular MFs (6) satisfy the following convexity
property [35]:

η
[kj ]
j (xj) ≥ 0,

ij+1∑
kj=ij

η
[kj ]
j (xj) = 1, j ∈ In∑

k∈Ki

ηk(x) =
∑
k∈Kv

ηk(x) = 1.

(7)

With these MFs, x(t+1) can be inferred from the fuzzy rules
(5) by taking the weighted average of fk as follows [3]:

x(t+ 1) =
∑
k∈Ki

ηk(x)fk, ηk(x) =

n∏
j=1

η
[kj ]
j (xj). (8)

The following parametric expression of x(t) can be directly
derived from those of the triangular MFs defined in (6) as
shown in [3, Proposition 1]:

x(t) =
∑
k∈Ki

ηk(x)σk. (9)

Based on (8) and (9), the parametric expressions of the fuzzy
model with singleton consequents, defined on R =

⋃
i∈Kr

Ri,
can be expressed as follows [15]:

x(t+ 1) =
∑
k∈Kv

ηk(x)fk

x(t) =
∑
k∈Kv

ηk(x)σk.
(10)

Note from (10) that the weights with respect to xj , for j ∈
In, in the premises are computed by the multiplication of
η
[kj ]
j (xj), kj ∈ INj+1. Hence, the fuzzy reasoning used here

is characterized by normalized triangular MFs, multiplicative
weights calculation, and weighted average aggregation [3]. For
each piecewise region Ri, by setting ηk(x) = 1 or 0, for k ∈
Ki, we can recover from the parametric expressions (8) and
(9) the fuzzy singleton rules: x(t) = σk 7→ x(t + 1) = fk at
the vertices of the region Ri. Then, for each piecewise region,
the parametric expressions (8) and (9) can be understood as
linear interpolation expressions to compute x(t) and x(t+ 1)
from the vertex values. The interpolation procedure for a 2D
case is illustrated in Fig. 2.

Fig. 2: Interpolation procedure of x(t) and xi(t+ 1) for a 2D
case using parametric expressions.
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Remark 1. The fuzzy model with singleton consequents
(5), or its parametric expression form (10), can be used to
approximate any nonlinear system [3], [15]

x(t+ 1) = f(x(t)) (11)

where f(x) : R → Rn is a smooth nonlinear function, and the
singleton vector in (5) is defined as fk = f(σk), for k ∈ Ki.
The approximation can be done with any arbitrary accuracy
on R by increasing the number of piecewise regions with (4).

Remark 2. Many types of MFs exist for fuzzy modeling, e.g.,
Gaussian functions or trapezoidal functions. However, using
triangular MFs allows to directly derive the parametric expres-
sion (9) of x(t) as shown in [3]. This particular representation
of the fuzzy model (10) is crucial to study its stability analysis.
Moreover, triangular MFs have been the most employed in
fuzzy control and applications [35].

For stability analysis, we assume that the equilibrium x ≡ 0
of system (10) corresponds to the vertex σk0 of the state-space
partition, for a given k0 ∈ Kv . Let KZ be the set of multi-
indices for regions containing the origin which is called zero-
regions, and KNZ = Kr\KZ is the set of multi-indices for
non-zero regions. We also denote K ∗

i = Ki\{k0}, for i ∈
KZ , and K ∗

v = Kv\{k0}. Then, each point in zero-regions
can be computed by interpolating 2n − 1 vertices, except for
the origin, as expressed by

x(t+ 1) =
∑
k∈K ∗

i

ηk(x)fk

x(t) =
∑
k∈K ∗

i

ηk(x)σk.
(12)

The following assumption is considered for the stability analy-
sis of discrete-time fuzzy systems with singleton consequents.

Assumption 1. When the system state transits from the region
Ri to the region Rj at the time sample t, the dynamics of the
fuzzy system (10) is governed by the dynamics within the
region Ri at that time sample.

A similar assumption can be found in [36] for stability
analysis of piecewise discrete-time linear systems. For future
uses, we define a set T that represents all possible transitions
from one region to another for any sample t ∈ Z+, that is

T = {i, j ∈ Kr : x(t) ∈ Ri, x(t+ 1) ∈ Rj , i 6= j}.

By construction, the state space of the fuzzy system (10) is
partitioned into hyper-rectangle regions. Then, exploiting the
information of the region structure in the stability analysis can
help to reduce the conservatism of the results [37]. To this end,
we construct the continuity matrices L̄i, for i ∈ Kr, such that

L̄ix̄ � 0, x ∈ Ri, i ∈ Kr (13)

where x̄ =
[
x> 1

]>
, L̄i =

[
Li li

]
, with li = 0, i ∈ KZ .

Remark 3. A systematic method to compute L̄i, for i ∈ Kr,
is given in [38]. However, since the hyper-rectangular state-
space partition of system (10) is structurally simple, we can
exactly determine the dimension of the continuity matrix in

(13), namely L̄i ∈ R2n×(n+1) and Li ∈ R2n×n, which is
generally not the case for piecewise control systems [36], [38].

The following Finsler’s lemma is useful to convert checking
the sign of a quadratic form over a subspace into solving an
LMI problem for stability analysis.

Lemma 1 ([39]). Consider a vector π ∈ Rn and two matrices
Q = Q> ∈ Rn×n and R ∈ Rm×n such that rank(R) < n,
the following statements are equivalent:

i) π>Qπ < 0, ∀π ∈ {π ∈ Rn : π 6= 0, Rπ = 0}
ii) ∃M ∈ Rn×m such that Q + MR + R>M> < 0.

Based on Lemma 1, the parametric expressions of x(t + 1)
and x(t) in (10) can be fully exploited to derive the stability
analysis conditions for the Mamdani-like fuzzy system (5).

III. STABILITY ANALYSIS FOR FUZZY SYSTEMS WITH
SINGLETON CONSEQUENTS

Using a common quadratic Lyapunov function is unneces-
sarily restrictive for analysis of the fuzzy system (10), since the
dynamics given by the parametric expressions in (8) and (9) is
only valid within the region Ri. Consequently, the following
theorem presents a new method for stability analysis of system
(10), which relies on a fuzzy Lyapunov function, expressed in
a parametric expression form.

Theorem 1. Consider the fuzzy system with singleton con-
sequents in (10). If there exist a positive definite matrix
Pk0 ∈ Rn×n, matrices Pk ∈ Rn×n, for k ∈ K ∗

v , sym-
metric matrices with nonnegative entries Uq ∈ R2n×2n and
Wq ∈ R2n×2n, for q ∈ Kr, Qij ∈ R2n×2n, for i, j ∈ T ,
matrices Y1i ∈ Rn×n, Y2i ∈ Rn×n, Y3i ∈ R1×n, Z1i ∈
Rn×n, Z2i ∈ Rn×n, Z3i ∈ R1×n, for i ∈ KZ , matrices
Ȳ1i ∈ Rn×n, Ȳ2i ∈ R(n+1)×n, Ȳ3i ∈ R1×n, Z̄1i ∈ Rn×(n+1),
Z̄2i ∈ R(n+1)×(n+1), Z̄3i ∈ R1×(n+1), for i ∈ KNZ , matrices
R1ij ∈ Rn×n, R2ij ∈ Rn×n, R3ij ∈ R1×n, S1ij ∈ Rn×n,
S2ij ∈ Rn×n, S3ij ∈ R1×n, for i, j ∈ T , i ∈ KZ , j ∈ Kr,
matrices R̄1ij ∈ Rn×n, R̄2ij ∈ R(n+1)×n, R̄3ij ∈ R1×n,
S̄1ij ∈ Rn×(n+1), S̄2ij ∈ R(n+1)×(n+1), S̄3ij ∈ R1×(n+1),
for i, j ∈ T , i ∈ KNZ , j ∈ Kr, satisfying the following
linear matrix inequalities (14)–(19), shown at the top of the
next page, with

P̄k =
[
In 0n×1

]>
Pk
[
In 0n×1

]
, σ̂k =

[
σk
1

]
for k ∈ Ki and i ∈ KNZ . Then, the origin of the fuzzy system
(10) is asymptotically stable, i.e., x(t) exponentially tends to
the origin for every trajectory in R.

Proof. Let us define

V(x) = x>
∑
k∈Kv

ηk(x)Pkx (20)

with Pk0 > 0 as assumed by Theorem 1. Note that V(x)
shares the same triangular MFs (6) as the fuzzy system (10),
and V(0) = 0. By the convexity property in (7) and constraint
(13), if conditions (14) and (15) are verified, it follows that

V(x) = x>
∑
k∈Ki

ηk(x)Pkx > 0, x 6= 0, i ∈ Kr.
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σ>l Pkσm − σ>l LiUiLiσm > 0, i ∈ KZ , k ∈ Ki, l,m ∈ K ∗
i (14)

σ>l Pkσm − σ̄>l L̄iUiL̄iσ̄m > 0, i ∈ KNZ , k, l,m ∈ Ki (15)

He

Ȳ1i + 1
2Pp Z̄1i −Ȳ1ifk − Z̄1iσk

Ȳ2i Z̄2i + 1
2 (L̄>i WiL̄i − P̄k) −Ȳ2ifk − Z̄2iσk

Ȳ3i Z̄3i −Ȳ3ifk − Z̄3iσk

 < 0, i ∈ KNZ , k, p ∈ Ki (16)

He

Y1i + 1
2Pp Z1i −Y1ifk − Z1iσk

Y2i Z2i + 1
2 (L>i WiLi − Pk) −Y2ifk − Z2iσk

Y3i Z3i −Y3ifk − Z3iσk

 < 0, i ∈ KZ , k, p ∈ Ki, m ∈ K ∗
i (17)

He

R1ij + 1
2Pp S1ij −R1ijfk − S1ijσk

R2ij S2ij + 1
2 (L>i QijLi − Pk) −R2ijfk − S2ijσk

R3ij S3ij −R3ijfk − S3ijσk

 < 0,
i, j ∈ T , i ∈ KZ , j ∈ Kr

p ∈ Kj , k ∈ Ki, m ∈ K ∗
i

(18)

He

R̄1ij + 1
2Pp S̄1ij −R̄1ijfk − S̄1ij σ̄k

R̄2ij S̄2ij + 1
2 (L̄>i QijL̄i − P̄k) −R̄2ijfk − S̄2ij σ̄k

R̄3ij S̄3ij −R̄3ijfk − S̄3ij σ̄k

 < 0,
i, j ∈ T , i ∈ KZ , j ∈ Kr

p ∈ Kj , k ∈ Ki

(19)

Then, by the interpolation procedure with the positive mem-
bership functions ηk(x), for k ∈ Kv , the function V(x) is
positive definite. Therefore, the function V(x) defined in (20)
is a proper Lyapunov function candidate.

For stability analysis, we examine the difference ∆Vx =
V(x(t + 1)) − V(x(t)) along the trajectories of system (10).
Note that there are only four possible cases that must be distin-
guished. To study the stability, we also consider Assumption
1, which is useful for the proofs of Cases 3 and 4.

a) Case 1: x(t) ∈ Ri and x(t+ 1) ∈ Ri, for i ∈ KNZ .
To derive the stability conditions, the variation of V(x) along
the solution of the fuzzy system (10) is required to be negative
definite, that is

∆Vx = x(t+ 1)>Pi+x(t+ 1)− x(t)>Pix(t) < 0 (21)

for i ∈ KNZ , with

Pi+ =
∑
p∈Ki

ηp(x(t+ 1))Pp, Pi =
∑
k∈Ki

ηk(x(t))Pk. (22)

Since Wi � 0 and by the construction of L̄i in (13), using the
well-known S−procedure [39], it is clear that condition (21)
holds if

x(t+ 1)>Pi+x(t+ 1)− x̄(t)>P̄ix̄(t)

+ x̄(t)>L̄>i WiL̄ix̄(t) < 0 (23)

with P̄i =
[
In 0n×1

]> Pi [In 0n×1
]
, for i ∈ KNZ . Note

that inequality (23) can be rewritten in the form

ξ(t)>W̄iξ(t) < 0, i ∈ KNZ (24)

where

ξ(t) =

x(t+ 1)
x̄(t)

1

 , W̄i =

Pi+ 0 0
? L̄>i WiL̄i − P̄i 0
? ? 0

 .
Moreover, for conciseness the expressions in (8) and (9) can
be rewritten in the following respective compact forms:

x(t+ 1) = Fi
x̄(t) = Σ̄i

(25)

for i ∈ KNZ , where

Fi =
∑
k∈Ki

ηk(x)fk, Σ̄i =
∑
k∈Ki

ηk(x)σ̄k, σ̄k =

[
σk
1

]
.

It follows from (25) that

N̄iξ(t) = 0, i ∈ KNZ (26)

with

N̄i =

[
In 0n×(n+1) −Fi

0(n+1)×n In+1 −Σ̄i

]
, ξ(t) =

x(t+ 1)
x̄(t)

1

 .
Note that the algebraic expression (26) is simply obtained from
(25) by matrix manipulation. By Finsler’s lemma, condition
(24) holds under the equality constraint (26), if there exist
matrices M̄i such that

W̄i + M̄iN̄i + N̄>i M̄>i < 0, i ∈ KNZ . (27)

Let us partition

M̄i =

Ȳ1i Z̄1i

Ȳ2i Z̄2i

Ȳ3i Z̄3i

 .
Then, condition (27) is rewritten as

He

Ȳ1i + 1
2Pi+ Z̄1i −Ȳ1iFi − Z̄1iΣ̄i

Ȳ2i Z̄2i −Ȳ2iFi − Z̄2iΣ̄i
Ȳ3i Z̄3i −Ȳ3iFi − Z̄3iΣ̄i

 < 0 (28)

with Z̄2i = Z̄2i + 1
2 (L̄>i WiL̄i − P̄i), for i ∈ KNZ . By the

convexity property (7), we deduce that condition (16) implies
inequality (28), which guarantees that ∆Vx < 0, for all x(t) ∈
Ri, x(t+ 1) ∈ Ri and i ∈ KNZ .

b) Case 2: x(t) ∈ Ri and x(t+1) ∈ Ri, for i ∈ KZ . It is
important to note that the vertices corresponding to the origin
are excluded in the parametric expressions of x(t) and x(t+1)
in (12) for zero-regions. Hence, these parametric expressions
do not correspond to convex combinations of the vertex values.
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A convexification procedure via some changes of variables is
required to deal with this issue. To this end, we define

α(x(t)) =
∑

m∈K ∗
i

ηm(x(t)) = 1− ηk0(x(t))

for x(t) ∈ Ri\{0}, i ∈ KZ . For simplicity, we denote α(x) =
α(x(t)). Note that α(x) > 0, for x 6= 0. Then, we perform
the changes of variables x∗(t) = 1

α(x)x(t) and

x∗(t+ 1) =
1

α(x)
x(t+ 1), η∗m(x) =

1

α(x)
ηm(x)

F∗i =
∑

m∈K ∗
i

η∗m(x)fm, Σ∗i =
∑

m∈K ∗
i

η∗m(x)σm.

Then, the parametric expressions of x(t) and x(t + 1) in
(12) can be equivalently represented in the following convex
combination form, for x ∈ Ri\{0}, i ∈ KZ :

x∗(t+ 1) =
∑

m∈K ∗
i

η∗m(x)fk = F∗i

x∗(t) =
∑

m∈K ∗
i

η∗m(x)σk = Σ∗i .
(29)

Following similar steps as in the proof of Case 1 for system
(29), we can prove that condition (17) implies that

He

Y1i + 1
2Pi+ Z1i −Y1iF∗i − Z1iΣ

∗
i

Y2i Z2i −Y2iF∗i − Z2iΣ
∗
i

Y3i Z3i −Y3iF∗i − Z3iΣ
∗
i

 < 0 (30)

with Z2i = Z2i + 1
2 (L>i WiLi − Pi), for i ∈ KZ . Condition

(30), in turn, equivalently implies that

α(x)2x∗(t)>Wix
∗(t) = ∆Vx + x(t)>L>i WiLix(t) < 0(31)

for x ∈ Ri\{0} and i ∈ KZ , with

Wi =

Pi+ 0 0
? L>i WiLi − Pi 0
? ? 0

 .
Since Wi � 0 and by (13), via the S−procedure we can
deduce from (31) that ∆Vx < 0, for x ∈ Ri\{0} and i ∈ KZ .

c) Case 3: x(t) ∈ Ri and x(t+ 1) ∈ Rj , for i, j ∈ T ,
i ∈ KZ and j ∈ Kr. In this case, the variation of ∆Vx along
the trajectory of system (10) is given by

∆Vx = V(x(t+ 1))− V(x(t))

= x(t+ 1)>Pj+x(t+ 1)− x(t)>Pix(t) (32)

where Pj+ and Pi are defined similarly as in (22) with i ∈
KZ and j ∈ Kr. Dividing both sides of inequality (32) by
α(x)2 > 0, defined in Case 2, it follows that

∆V∗x = x∗(t+ 1)>Pj+x∗(t+ 1)− x∗(t)>Pix∗(t). (33)

By the S−procedure with Qij � 0 and constraint (13), it
follows from (32) and (33) that ∆Vx < 0 if

∆V∗x + x∗(t)>L>i QijLix
∗(t) < 0 (34)

for i, j ∈ T , i ∈ KZ and j ∈ Kr. Condition (34) can be
rewritten in the form

ξ∗(t)>Qijξ∗(t) < 0, i, j ∈ T , i ∈ KZ , j ∈ Kr (35)

where

ξ∗(t) =

x∗(t+ 1)
x∗(t)

1

 , Qij =

Pj+ 0 0
? L>i QijLi − Pi 0
? ? 0

 .
Moreover, it can be obtained from (29) that

N ∗i ξ∗(t) = 0, i ∈ KZ (36)

with
N ∗i =

[
In 0n×n −F∗i

0n×n In −Σ∗i

]
.

Using Finsler’s lemma, condition (35) holds under the equality
constraint (36) if there exist matrices M∗ij such that

Qij +M∗ijN ∗i +N ∗>i M∗>i < 0 (37)

for i, j ∈ T , i ∈ KZ and j ∈ Kr. We partition

Mij =

R1ij S1ij

R2ij S2ij

R3ij S3ij

 .
Then, condition (37) can be rewritten as

He

R1ij + 1
2Pj+ S1ij −R1ijF∗i − S1ijΣ

∗
i

R2ij S2ij −R2ijF∗i − S2ijΣ
∗
i

R3ij S3ij −R3ijF∗i − S3ijΣ
∗
i

 < 0 (38)

with S2ij = S2ij + 1
2 (L>i QijLi −Pi), for i, j ∈ T , i ∈ KZ

and j ∈ Kr. By the convexity property of the parametric
expressions of F∗i and Σ∗i in (29), we can see that condition
(18) implies (38), which, in turn, guarantees that ∆Vx < 0,
for x 6= 0, in this case.

d) Case 4: x(t) ∈ Ri and x(t+ 1) ∈ Rj , for i, j ∈ T ,
i ∈ KNZ and j ∈ Kr. As for the previous cases, it is required
that ∆Vx < 0 along the trajectory of system (10) in this case,
that is

x(t+ 1)>Pj+x(t+ 1)− x(t)>Pix(t) < 0 (39)

where Pj+ and Pi are defined similarly as in (22) with i ∈
KNZ and j ∈ Kr. Using the S−procedure with Qij � 0 and
constraint (13), condition (39) is verified if

x(t+ 1)>Pj+x(t+ 1)− x̄(t)>P̄ix̄(t)

+ x̄(t)>L̄>i QijL̄ix̄(t) < 0 (40)

for i, j ∈ T , i ∈ KNZ and j ∈ Kr. We rewrite inequality
(40) in the form

ξ(t)>Q̄ijξ(t) < 0, i, j ∈ T , i ∈ KNZ , j ∈ Kr (41)

where

Q̄ij =

Pj+ 0 0
? L̄>i QijL̄i − P̄i 0
? ? 0

 .
Similar to (26), we have

N̄iξ(t) = 0, i ∈ T ∩KNZ . (42)

It follows from Finsler’s lemma that condition (41) holds under
constraint (42) if there exist matrices M̄ij satisfying

Q̄ij + M̄ijN̄i + N̄>i M̄>ij < 0 (43)
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for i, j ∈ T , i ∈ KNZ and j ∈ Kr. We partition

M̄ij =

R̄1ij S̄1ij

R̄2ij S̄2ij

R̄3ij S̄3ij

 .
Then, condition (43) can be explicitly rewritten as

He

R̄1ij + 1
2Pj+ S̄1ij −R̄1ijFi − S̄1ijΣ̄i

R̄2ij S̄2ij −R̄2ijFi − S̄2ijΣ̄i
R̄3ij S̄3ij −R̄3ijFi − S̄3ijΣ̄i

 < 0 (44)

with S̄2ij = S̄2ij+ 1
2 (L̄>i QijL̄i−P̄i), for i, j ∈ T , i ∈ KNZ

and j ∈ Kr. Using again the convexity property in (7), we can
conclude that condition (19) implies (44), which guarantees
that ∆Vx < 0, for x ∈ Ri in this case.

The results of all the above cases lead to ∆Vx < 0, for
∀x ∈ R\{0}, which concludes the proof.

The stability analysis conditions in Theorem 1 are strictly
expressed in terms of linear matrix inequalities, whose feasibil-
ity can be checked using a suitable semidefinite programming
software. Conditions (14)–(15) guarantee that the Lyapunov
function candidate V(x), defined in (20), is positive definite.
LMI conditions (16)–(17) ensure that the Lyapunov function is
decreasing along the trajectory of system (10) in each region,
whereas the LMI conditions (18)–(19) ensure that this function
decreases when the system state transits from one region to
another on the state space R.

Remark 4. The membership-functions-dependent Lyapunov
function V(x) in (20) is expected to yield less conservative
stability results than those obtained with a common quadratic
Lyapunov function V (x) = x>Px, with P > 0. Indeed, the
latter can be regarded as a special case of (20) by imposing
Pk = P , for k ∈ Kv . Moreover, we leverage the parametric
expression of x(t) in (14) and (15) so that the Lyapunov
matrices Pk, for k ∈ K ∗

v , are not explicitly required to be
positive definite.

Remark 5. The slack matrices Uq , Wq , for q ∈ Kr, and
Qij , for i, j ∈ T , are introduced into the stability analysis
via the S−procedure [39]. This contributes to reduce the
stability conservatism since the hyper-rectangular piecewise-
region information of the fuzzy model (10) can be fully
exploited via constraint (13).

Remark 6. For the stability results in Theorem 1, the para-
metric expressions of both x(t) and x(t + 1) in (10) can be
leveraged using Finsler’s lemma [39]. As discussed in [3],
expression (9) is a reformulation of the triangular MFs (6),
whose information can be considered for stability analysis.

Remark 7. The stability conditions in Theorem 1 do not
necessarily imply the stability of system (11) due to the
approximation error between this system and its fuzzy model
(10). The error characterization and its impacts on stability
analysis of fuzzy models with singleton consequents are left
for future works. At this stage, we emphasize the tradeoff
between the computational burden and the approximation
precision in the stability analysis using the fuzzy modeling
(5). Specifically, a fine modeling repartition (4) decreases the

approximation error, but leads to a more expensive computa-
tional cost.

IV. ILLUSTRATIVE EXAMPLES

This section provides four numerical examples to illustrate
the effectiveness and the conservativeness of the proposed
stability results. All the involved LMI-based conditions are
solved using YALMIP toolbox with SDPT3 solver [40].

Example 1. This example is used to study the stability
of a Mamdani-like fuzzy system, described in a parametric
expression form. To this end, we consider the second-order
fuzzy model taken from [14], whose the state-space partition
and the values of the singleton consequents are given in Table
I. Fig. 3 shows the characteristics of this fuzzy model, which
is nonlinear. Solving the stability conditions in Theorem 1,
we obtain a feasible solution, whose details are omitted for
conciseness. The Lyapunov function proving the stability of
the considered fuzzy system is depicted in Fig. 4, whereas Fig.
5 shows the corresponding Lyapunov level sets and several
trajectories. In contrast to the stability results in [3], [14],
we can see in Fig. 5 that the obtained Lyapunov level sets
have a nonquadratic form. Moreover, the convergence of the
trajectories to the origin in the phase plane confirms that the
studied Mamdani-like fuzzy system is stable.

TABLE I: State-Space Partition and Singleton Consequents of
Fuzzy Model in Example 1.

f1(σ1, σ2) σ
[1]
2 σ

[2]
2 σ

[3]
2 σ

[4]
2 σ

[5]
2

f2(σ1, σ2) −π/2 −π/6 0 π/6 π/2

σ
[1]
1

-2 -1.000 0.500 2.000 3.500 5.000
11.47 9.047 8.000 6.952 4.858

σ
[2]
1

-1 -2.000 -0.500 1.000 2.500 4.000
4.142 2.047 1.000 -0.047 -2.142

σ
[3]
1

0 -4.000 -2.500 0 0.500 2.000
-3.000 -1.500 0 1.500 3.000

σ
[4]
1

1 3.142 1.047 -1.000 -1.047 -3.142
2.142 0.047 -1.000 -2.047 -4.142

σ
[5]
1

2 -5.000 -3.500 -2.000 -0.500 1.000
-4.858 -6.953 -8.000 -9.047 -11.14

Example 2. To evaluate the conservatism of the stability
analysis results, we consider the nonlinear system (11), where

f(x) =

[
(1− Te)x1 + Te(cos(x1) + 5 sin(x2))x2

aTe sin(x2)x1 + Te(b+ 1)x2

]
(45)

where the parameters are given by Te = 0.001, a ∈ [−5, 5] and
b ∈ [−5, 5]. The state vector x =

[
x1 x2

]>
belongs to the set

R = [−π, π] × [−π, π]. The fuzzy model (10) is constructed
from 25 points of a 5 × 5 rectangular partition on the state
space resulting in 16 piecewise rectangular regions, which can
approximate very accurately the nonlinear function (45). To
evaluate the conservatism, we compare the proposed result
in Theorem 1 and the stability analysis results obtained with
TS fuzzy modeling. To this end, using the sector nonlinearity
approach [11], the nonlinear system (11) with f(x) given in
(45) can be represented by the following TS fuzzy model:

x(t+ 1) =

4∑
i=1

hi(x)Aix(t) (46)
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Fig. 3: Nonlinear characteristics of the Mamdani-like fuzzy
model with singleton consequents in Example 1.

Fig. 4: Nonquadratic Lyapunov function V(x) obtained with
Example 1.

where the local linear submodels Ai, for i ∈ I4, are given by

A1 =

[
1− Te −6Te
−aTe bTe + 1

]
, A2 =

[
1− Te 4Te
aTe bTe + 1

]
A3 =

[
1− Te −4Te
−aTe bTe + 1

]
, A4 =

[
1− Te 6Te
aTe bTe + 1

]
.

The corresponding membership functions hi(x), for i ∈ I4,

Fig. 5: Nonquadratic Lyapunov level sets and trajectories in
the phase plane of Mamdani-like fuzzy model in Example 1.

in (46) are defined as

h1(x) =
(1− cosx1)(1− sinx2)

4

h2(x) =
(1− cosx1)(sinx2 − 1)

4

h3(x) =
(cosx1 − 1)(1− sinx2)

4

h4(x) =
(cosx1 − 1)(sinx2 − 1)

4
.

Fig. 6 shows the feasibility regions obtained with the four
following stability analysis results.
• TS fuzzy model-based stability result with a quadratic

Lyapunov function [41, Theorem 4.3].
• TS fuzzy model-based stability result with a nonquadratic

Lyapunov function [42, adapted Theorem 5].
• Mamdani-like fuzzy stability result in Theorem 1 with a

quadratic Lyapunov function, i.e., Pk = P , for k ∈ Kv .
• Fuzzy stability result in Theorem 1.

We can see that larger feasibility regions can be obtained with
Mamdani-like fuzzy model-based approaches. As expected, for
both TS fuzzy and Mamdani-like fuzzy approaches, the sta-
bility results derived from nonquadratic Lyapunov functions,
including the information of the MFs in their constructions,
are less conservative than those based on a common quadratic
Lyapunov function. Note that using Mamdani-like fuzzy ap-
proaches, we can deal with nonlinear systems in the form
(11), without requiring a classical state-space parameterization
x(t + 1) = A(z)x(t), where z(t) is the vector of premise
variables, as for TS fuzzy approaches or related ones. Such
a state-space parameterization is not unique, which may be
a source of conservativeness [13]. As discussed in Remark
7, although the stability of Mamdani-like fuzzy models does
not directly imply the stability of the nonlinear system (11)-
(45), the proposed comparison provides an idea on the conser-
vativeness of the stability analysis conditions in Theorem 1,
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especially when the constructed Mamdani-like fuzzy models
accurately approximate system (45).

For illustrations, Fig. 7 presents the nonquadratic Lyapunov
level sets obtained with Theorem 1 and some trajectories in the
phase plane of the Mamdani-like fuzzy model of system (45)
with a = 1.84 and b = −5. We can see that the corresponding
fuzzy model is stable within the state-space set R. Moreover,
note that the trajectories of the nonlinear system (45) and
those of its Mamdani-like fuzzy model are superposed in Fig.
7, which confirms an accurate approximation of the fuzzy
modeling in this case.

-5 0 5

-5

0

5

Fig. 6: Feasibility regions obtained with [41, Theorem 4.3]
(◦), [42, adapted Theorem 5] (◦,∗), adapted Theorem 1 with
a quadratic Lyapunov function (◦,∗,×), Theorem 1 (◦,∗,×,+).

Fig. 7: Nonquadratic Lyapunov level sets and trajectories in
the phase plane of Mamdani-like fuzzy model in Example 2
with a = 1.84 and b = −5.

Example 3. To further study the stability conservatism, we
consider a physically motivated two-tank system, whose dy-
namics can be described as [43]

ḣ1(t) =
1

A

(
k̄v(t)− a1

√
2g(h1(t)− h2(t))

)
ḣ2(t) =

1

A

(
a1
√

2g(h1(t)− h2(t))− a2
√

2gh2(t)
) (47)

where h1(t) and h2(t) denote the water level of the two tanks,
v(t) is the flow rate of the pump, A = 100 cm2 is the
horizontal section, k̄ = 0.01 is a constant, a1 ∈ [1, 50] cm2 is
the section of the valve connecting the tanks, a2 ∈ [0.7, 35]
cm2 is the section of the outlet valve, g = 981 cm/s2 is the
gravitational acceleration constant. Considering the equilib-
rium of system (47) as

[
h1e h2e

]>
=
[
15 6

]>
, then it

follows that

0 =
1

A

(
k̄ve − a1

√
2g(h1e − h2e)

)
0 =

1

A

(
a1
√

2g(h1e − h2r)− a2
√

2gh2e

)
.

Let us define x1 = h1 − h1e, x2 = h2 − h2e, ∆v = v − ve.
Then, the following incremental model can be obtained:

ẋ1 =
a1
A

2g

φ(x)
(x2 − x1) +

k̄

A
∆v

ẋ2 =
a1
A

2g

φ(x)
(x1 − x2)− 2ga2x2

A
ϕ(x2)

(48)

with

φ(x) =
√

2g(x1 − x2 + h1e − h2e) +
√

2g(h1e − h2e)

ϕ(x2) =
1√

2g(x2 + h2e) +
√

2gh2e
.

The state x =
[
x1 x2

]>
of system (48) belongs to the set

R = [−4, 4]× [−5, 5]. For stability analysis, we consider the
case without control input, i.e., ∆v = 0. Moreover, we perform
a forward Euler discretization with a sampling period Te = 0.5
[s], the discrete-time model of system (47) can be represented
by (11) with

f(x) =

[
a1Te

A
2g
φ(x) (x2 − x1) + x1

a1Te

A
2g
φ(x) (x1 − x2) + x2 − 2ga2Tex2

A ϕ(x2)

]
(49)

The fuzzy model (10) is constructed with 16 piecewise rect-
angular regions, partitioned on R in a similar way as for
Example 2. Moreover, using the sector nonlinearity approach
[11] with two premise variables 1

φ(x) and ϕ(x2), a TS fuzzy
model can be directly obtained, whose details are omitted here
for conciseness. For comparison purposes, we also consider
four stability analysis results as in Example 2 for this system.
Fig. 8 shows the feasibility regions corresponding to the four
stability analysis results. We can see that compared to TS
fuzzy based methods, Mamdani-like fuzzy based results yield
a much larger feasibility region. For this physically motivated
example, quadratic and nonquadratic approaches for both TS
fuzzy and Mamdani-like fuzzy cases lead to the same level
of conservativeness with the same feasibility regions. Fig. 9
illustrates the nonquadratic Lyapunov level sets in the phase
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Fig. 8: Feasibility regions obtained with [41, Theorem 4.3]
and [42, adapted Theorem 5] (◦), adapted Theorem 1 with a
quadratic Lyapunov function and Theorem 1 (◦,+).
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Fig. 9: Nonquadratic Lyapunov level sets in the phase plane
of Mamdani-like fuzzy model in Example 3 with a1 = 6.44
and a2 = 35.

plane obtained with Theorem 1 and the Mamdani-like fuzzy
model of system (49) with a1 = 6.44 and a2 = 35.

Example 4. One of our key contributions compared to the
seminal work [3] and related references [14], [31], [32] is
the possibility to study the stability of discrete-time high-
dimensional nonlinear systems, i.e., n ≥ 3. To illustrate this
contribution, we consider the following electric circuit system,

modeled by a Hopfield artificial neural network [33]:

ẋi = Λi

(
3∑
i=1

Sijxj −
2Vm
λπRi

tan

(
πxi
2Vm

))
Λi =

λ

Ci

1

1 + tan2
(
πxi

2Vm

) (50)

where the state variables xi, for i ∈ I3, are the voltages at the
amplifier outputs. These voltages can only take values in the
set R = [−Vm, Vm]×[−Vm, Vm]×[−Vm, Vm]. The parameter
values are given by λ = 7.0×10−2, C1 = 3.3 [µF], C2 = 1.5
[µF], C2 = 5.6 [µF], R1 = 1.0 [kΩ], R2 = 3.3 [kΩ], R3 =
1.2 [kΩ], Vm = 5 [V], and

Sij = 10−3 ×

1 2 1
2 2 3
1 3 3

 .
Performing a forward Euler discretization with a sampling
period Te = 0.001 [s], a discrete-time version of system
(50) can be represented by (11). The Mamdani-like fuzzy
model (10) of this system is constructed with 800 points
of a 5 × 4 × 4 hyper-rectangular grid on the state space
R. Solving LMI conditions in Theorem 1, a membership-
functions-dependent Lyapunov function (20) can be found
to prove the stability of the discrete-time fuzzy model of
system (50). Fig. 10 shows the behaviors of system (50) in the
phase plane and the time evolution of the obtained Lyapunov
function corresponding to the system trajectories with four
different initial conditions: x(0) =

[
1.667 −2.778 −5

]>
,

x(0) =
[
1.667 −2.778 3.889

]>
, x(0) =

[
−5 −5 5

]>
and x(0) =

[
−5 −5 −5

]>
. These results indicates a stable

behavior of the fuzzy model of system (50). It is important to
note that the trajectories of the nonlinear system (50) and those
of its Mamdani-like fuzzy model are superposed in Fig. 10.
This again confirms that the considered Mamdani-like fuzzy
modeling can accurately approximate the complex nonlinear
system (50).

V. CONCLUDING REMARKS

A numerical method to check the stability of discrete-time
fuzzy systems with singleton consequents has been proposed.
We leverage parametric expressions, specific to this class of
Mamdani-like fuzzy systems, together with Finsler’s lemma
to derive stability analysis conditions for systems of any
order. In particular, using the S−procedure and Lyapunov
stability tools, the information of the piecewise regions of
fuzzy systems is fully exploited to further reduce the con-
servatism of the stability conditions, expressed in terms of
linear matrix inequalities. Several numerical and physically
motivated examples are provided to show the interests of the
new stability method for Mamdani-like fuzzy systems. As
discussed in Remark 7, future works focus on characteriz-
ing the approximation errors between the original nonlinear
system and its Mamdani-like fuzzy model, which is crucial to
derive fuzzy-model-based conditions for stability analysis of
general nonlinear systems. Another promising research topic
is to develop stabilizing Mamdani-like fuzzy controllers in
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Fig. 10: Behavior in the phase plane of both the nonlinear
system and its Mamdani-like fuzzy model in Example 4, and
the time evolution of the obtained nonquadratic Lyapunov
function with respect to four different initial conditions.

parametric expression forms, conveniently implemented with
look-up tables for industrial interests.
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